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• Low frequency shift, dispersive Raman spectroscopy 

can be used to identify drug components and their solid 

state in respirable powders. 
 

•Small amorphous fractions (LOD ~ 0.5 %, LOQ ~ 1%) 

of actives in phospholipid particles can be analyzed. 
 

• Small crystalline fractions (LOD ~ 0.2 %, LOQ ~ 0.5 %)  

of actives in multicomponent systems can be analyzed. 
 

• Solid state changes, including potential enatiomeric or 

polymorphic changes can be detected. 

Conclusions 

Introduction Materials and Methods 

Raman spectroscopy is a valuable technique for 

identification of drug components and their 

crystallinity in respirable combination products, which 

may consist of multiple excipients and drugs. Most 

Raman spectroscopy techniques analyze the internal 

vibrational modes of molecules which can be used to  

indirectly derive information about the solid state 

using secondary effects of the molecular environment 

on intra-molecular vibrations. It would be 

advantageous to make use of the much larger large 

differences between lattice vibrations in crystals and 

phonon modes in disordered matter. These vibrational 

modes are associated with low energy transitions in 

the terahertz range, which corresponds to very small 

frequency shifts <200 cm-1 in Raman spectroscopy 

[1].  This work uses recently developed filter 

technology to extend the range of a comparatively 

simple, dispersive Raman system into the low 

frequency shift range.  

 

 

 

 

 

 

 

 

 

 

 

The test articles were spray dried lipid porous particles for 

use in pMDIs in two different configurations: 

1: Lipid particles without active ingredients cosuspended 

[2,3] in HFA 134a with crystalline  glycopyrrolate (GP) and 

formoterol fumarate (FF), as a physcial mixture.  Powder 

samples were extracted from the pMDIs.  

2. Phospholipid particles spray dried [4] from a feedstock 

in which GP or FF was dissolved. In the resulting particles 

the drug is present as a solid dispersion in the lipid matrix. 

 

Raman spectra were excited with an Argon ion laser,        

= 514.5 nm. A setup using a single stage Czerny-Turner 

spectrograph with additional filter stage and a liquid 

nitrogen cooled CCD sensor [5] was modified for the low 

frequency shift range by adding a series of ultra narrow-

band notch filters (SureBlock, Ondax, Monrovia)  
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Results 

Reference spectra used in the deconvolution of glycopyrrolate and formoterol fumarate containing lipid porous particles and cosuspensions 
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Glycopyrrolate (5% w/w) formulated into spray dried 

phospholipid particles is amorphous 

Formoterol Fumarate (2% w/w) formulated into  spray dried 

phospholipid particles is amorphous. 

         Experimental Setup  

Glycopyrrolate and Formoterol Fumarate cosuspended in pMDI 

with phospholipid particles are crystalline 

Secondary electron image 

false colored based on 

energy dispersive x-ray 

spectroscopy 

Instrument Performance 

Sample Requirement: < 5 µl, ~ 0.5 - 5 mg 

Sample Environment: -50 – 300°C, 0–50 %RH, N2 or air 

Measurement Time: 1-5 min 

Spectral Window: -500 to -20 cm-1 (Anti-Stokes) 

15 to 4000 cm-1 (Stokes) 

Resolution 1.5 cm-1 

Accuracy 0.7 cm-1 

Differences in the crystal structures of glycopyrrolate 

diastereoisomers can be identified 

GP (R*,S*), (±) (racemate) 

GP Erythro-diastereomer 


