A Continuous, Monodisperse Propellant Microdroplet Stream as a Model System for Laser Analysis
for Examining Mass Transfer in Metered Dose Inhaler Sprays
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Introduction Results Conclusion

Drug delivery from MDIs Is influenced by the diameter and 1 Base
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heat and mass tr’ansfer orocesses that control droplet 5 | Orifice Cup Holder with a custom vibrating orifice generator.
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evaporation. Here we present a propellant droplet generator 7 O-ring . . .
that can be used to produce a continuous, monodisperse 3 Orifice Plate The generator Is capable of producing droplets with
droplet stream which can be studied for extended periods of : 9 |  Spring Contact diameters and velocities similar to droplets generated In
time by laser light scattering. The droplet generator uses the 10 P‘ez_:’_ceramic commercial MDls (4).
vibrating orifice principle (1) and Is integrated into a custom E Disp:r:iolcr:]eccijl:)pBody
liquid feed system for use with high propellant pressure. 13 | Dispersion Cup Top The propellant droplets can be produced for extended

periods of time making it a suitable model system for the

Figure 2. Finished Generator study of heat and mass transfer in propellant sprays.
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Method and Materials

Laser light scattering patterns provide droplet diameter
e a0+ Eiinsen and velocity as a function of distance from the generator,
o e which can be used to calculate droplet diameter as a
The droplet generator creates a liquid jet via a pressure drop, § o | (]| s — Tertvcs’" | - function of time, i.e., evaporation rates
. . . . 1 ropeliant su = y Iy .
Ap, across an orifice with diameter, D, and discharge A ® : ; + T Drootet Generator | =
cnv_afﬁqlent, C. The volume flow, V, for a propellant with density, > O Z DrainFIj(:servoir 5 The new monodisperse droplet generator will be utilized to
. I lter . . .
p, 18 given Dy: E e : T Needle vie develop an idealized experimental model for the study of
V=P (8P (1) Vj - E@ s | 8 | Pressure Gauge propellant sprays.
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Figure 6: High excitation frequency allows realistic droplet diameters.
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