

Nebulized Bacteriophage D29 Provides Prophylactic Protection Against *Mycobacterium tuberculosis* Aerosol Challenge in a Preclinical Mouse Model

Nicholas B. Carrigy^{1*}, Sasha E. Larsen², Melissa Harrison³, Philip J. Kuehl⁴, Graham F. Hatfull⁵, Dominic Sauvageau³, Warren H. Finlay¹, Rhea N. Coler^{2,6,7}, <u>Reinhard Vehring¹</u>

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada; 2. Infectious Disease Research Institute, Seattle, USA; 3. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada;
 Lovelace Biomedical, Albuquerque, USA; 5. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA; 6. Department of Global Health, University of Washington, Seattle, USA; 7. PAI Life Sciences Inc., Seattle, USA
 *E-mail: carrigy@ualberta.ca

Introduction

Tuberculosis has led to the **most deaths worldwide** of any infectious disease over the last four years [1]

Mycobacterium tuberculosis (*Mtb*) is becoming increasingly drug-resistant and BCG vaccine has limited effectiveness

Bacteriophage (phage) D29 is a parasitic virus of mycobacteria, including *Mtb*, and infects and **lyses regardless of drug-resistance**

Aerosolization with a vibrating mesh nebulizer resulted in less phage D29 inactivation than a jet nebulizer [2]

Nose-only inhalation exposure provides most **uniform aerosol deposition** in the **lungs of mice** [3]

Prophylactic phage D29 delivery to the lungs may allow for lysis of *Mtb* **before granuloma formation**

Results & Discussion

Lung Homogenization Does Not Inactivate D29

- Phage D29 titer after lung homogenization was 12.08 ± 0.03 log(PFU/mL)
- Control titer before homogenization was 12.12 ± 0.04 log(PFU/mL)
 - No significant difference (p > 0.5; n=3 each)

Lung homogenization did not cause phage D29 inactivation

No innate tissue factor influencing phage activity or the properties of the plaque assay for phage quantification

Mtb H37Rv Susceptible to Phage D29

- Control plate with *Mtb* (no phage added) incubated for 3 weeks resulted in 38 CFU
- Plate with *Mtb* and phage D29 addition (2 replicates) resulted in 1 CFU or 2 CFU
- Phage D29 efficiently lyses Mtb H37Rv

Dose Simulation Matches In Vivo Experiment

Dose Simulation

- Model developed to predict number of phage D29 per alveolus, $T_{m/A}$, delivered with the nose-only exposure system
 - T_0 is the initial titer of the lysate input into the vibrating mesh nebulizer in PFU
 - f_n is the fraction of the phage not inactivated by the nebulizer taken as 0.319 [2]
 - f_i is the fraction of the breathing cycle spent inhaling approximated as 0.5

In Vivo Experiment

Phage D29 dose in lungs of mice after delivery with nose-only inhalation device

Uninfected cell Phage adsorption

Lytic cycle [5] *M. smegmatis* pl assay plate

- *f_m* is the fraction of the aerosol emitted from the nebulizer that is inhaled by a single mouse from tryptophan tracer dose simulation experiments (from mouse filter results in Table 1)
- f_l is the fraction of aerosol that is inhaled by a mouse that reaches its lungs taken as 0.08 [9]
- A_m is the number of alveoli per mouse taken as 4×10^7 [10]

Relatively high dose predicted to reach lungs of a mouse by nose-only inhalation based on tryptophan tracer deposition experiments and a mathematical model to simulate phage D29 delivery

First plenum width (mm)	Nebulizer reservoir (%)	First plenum (%)	Mixing tube (%)	Back plenum (%)	Nosepiece & adapter (%)	Mouse filter (%)	Exit filter (%)	Unaccounted (%)	Predicted dose to a mouse $T_{m/A}$ (PFU/alveolus)
95	1.0 ± 0.8	61.2 ± 7.5	1.9	5.1 ± 1.2	0.062 ± 0.008	0.013 ± 0.005	1.07 ± 0.05	30 ± 6	0.4 ± 0.2
32	1.2 ± 0.6	60.3 ± 0.4	3.2	6.3 ± 0.6	0.073 ± 0.004	0.033 ± 0.004	1.50 ± 0.023	27 ± 3	1.0 ± 0.1

Use of smaller first plenum width resulted in 1 PFU/alveolus predicted to be delivered

- > Total dose reaching all 12 noseports was ~2.5% of dose input to nebulizer
- Small standard deviation indicated dosing was repeatable

Prophylactic Respiratory Delivery of D29 Provides In Vivo Protection against M. tuberculosis

Approximately **1 PFU/alveolus**, or 7.6 log(PFU/mouse), of phage D29 measured to be delivered prior to all bacterial challenge experiments. In vivo results show a prophylactic effect.

Prophylactic protection demonstrated by reduced bacterial burden 24 hours post-challenge with a low dose of H37Rv

Evidence of prophylactic protection against challenge with an ultra-low dose of H37Rv

 and euthanization (min)
 mouse lungs in

 $log(PFU/mouse)^*$

 0
 6.6 ± 0.3

 30
 7.3 ± 0.1

 90
 7.0 ± 0.4

Time between exposure Phage D29 dose in

*avg ± SD of n=3 mice per time point

- Measured dose in vivo matched dose
- simulation for amount of phage nebulized
 Phage active in lungs 90 minutes post-
- **exposure**, indicating challenging mice with *Mtb* 30 minutes after phage exposure would be acceptable
- Higher dose of phage in the lungs of mice than in any other study that used noseonly inhalation
 - Poisson statistics [11] useful for estimating the probability, *P*, that an alveolus will contain a certain number of phages, *x*, knowing the average number of PFU/alveolus, *λ*,

Poisson statistics predictions of alveolar coverage of phage in the lungs of a mouse for different average PFU/alveolus.

Schematic and picture of nose-only aerosol exposure system, set-up for dose simulation experiments with aerosolized tryptophan tracer; the air flow in was 500 mL/min to minimize convection of aerosol by the noses of the mice

Female C57BL/6 mice age 4-6 weeks, weighing 14-16 grams, have a minute ventilation of ~22 mL/min [6]; the mice were trained to remain calm in the restraint tubes.

Decrease in bacterial burden in the lungs still observed 3 weeks post-challenge

~67% reduction in bacterial burden was observed *in vivo* for pretreatment with ~1 PFU/alveolus

- Predicted alveolar coverage according to Poisson statistics is 63%
- In agreement if all bacteria that deposit in an alveolus in the
- presence of phage are inactivated
 Complete prophylaxis in humans appears possible based on doses achievable and average
 PFU/alveolus predicted to be required by Poisson statistics

PFU/alveolus, λ	Alveolar Coverage
0.001	0.1%
0.01	1%
0.1	10%
0.5	39%
0.7	50%
1	63%
2	86%
5	99%
7	99.9%
≥18	Complete

Conclusions

- > Phage D29 appears promising for prophylactic protection against Mtb, exhibiting capacity to significantly reduce bacterial levels in the lungs of mice
- Vibrating mesh nebulizer coupled with a nose-only exposure system is a good choice for delivering phage D29 in animal exposure experiments; delivered on average 7.6 log(PFU) to lungs of each of 12 mice in ~20 minutes
- > Lysis of bacteria in the alveoli by phage is effective
- > Development of cocktails active against tuberculosis is of interest; developed exposure system may be used to test efficacy of each anti-tuberculosis phage
- > Large doses of nebulized mycobacteriophage cocktail aerosol to the lungs may be a valuable intervention to provide extra protection to health care professionals frequently exposed to infectious active cases of tuberculosis and to individuals in regions with high tuberculosis transmission rates
- > Complete prophylaxis in humans may be achievable as higher doses could be more easily achieved; human clinical trials are of interest

Mtb H37Rv delivered to mice within 30 minutes of phage D29 pre-treatment using a Wisconsin-Madison aerosol chamber; low dose challenge delivered ~50-100 CFU and ultra-low dose challenge delivered ~5-10 CFU (image from [7])

Lung samples removed, placed in 5 mL buffer, homogenized, centrifuged, and plated for assay of D29 and H37Rv levels (image from [8])

Further details regarding this poster is available in:

Carrigy NB, Larsen S, Reese V, Pecor T, Harrison M, Kuehl PJ, Hatfull GF, Sauvageau D, Finlay WH, Coler RN, Vehring R. Prophylaxis of *Mycobacterium tuberculosis* H37Rv Infection in a Preclinical Mouse Model via Inhalation of Nebulized Bacteriophage D29. *Antimicrobial Agents and Chemotherapy*. Submitted April 26, 2019.

[1] World Health Organization. Global tuberculosis report 2018. Available from: https://www.who.int/tb/publications/global_report/en/
 [2] Carrigy *et al.* 2017. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler.
 Pharm Res 34:2084-2096.

[3] Leong *et al.* 1998. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. *J Appl Toxicol* 18:149-160.

[4] Image from: https://en.wikipedia.org/wiki/Bacteriophage

[5] Sabehi *et al.* 2012. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. *PNAS* 109:2037-42.
[6] Fairchild. 1972. Measurement of respiratory volume for virus retention studies in mice. *Appl Microbiol* 24:812-818.
[7] Image from:

http://www.sacmm.org/pdf/SOP/3%20Guinea%20Pig%20Inhalational%20Pulmonary%20Aspergillosis%20Version%201_1.pdf [8] Image from: https://www.omni-inc.com/omni-prep.html

[9] Nadithe *et al.* 2003. Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs. *J Pharm Sci* 92:1066-1076.

[10] Soutiere et al. 2004. Differences in alveolar size in inbred mouse strains. Respir Physiol Neurobiol 140:283-291.

[11] Wheeler, Ganji. 2010. Introduction to engineering experimentation, 3rd edition. Pearson Higher Education, Upper Saddle River, NJ, USA.

Acknowledgements

The authors thank Bernie Faulkner for manufacturing the first plenum. The vibrating mesh nebulizer was provided by Jim Fink and Ronan MacLoughlin (Aerogen Ltd.).

The 22nd Congress of the International Society for Aerosols in Medicine. May 25-29, 2019. Montreux, Switzerland.