

Strategies for Nasal and Pulmonary Delivery of Proteins and Viral Vaccines

Reinhard Vehring

Associate Director, Solid Dosage Forms MedImmune Inc. 319 North Bernardo Ave, Mountain View, CA 94043

Outline

Pulmonary and Nasal Delivery

- Anatomy of Nose and Lung
- Delivery Losses
- Uptake Limitations

Strategies

- Particle Engineering
- Penetration Enhancers and Transporters
- Active Transport

Anatomy of the Nose

 Warms, humidifies and filters air

- Captures > 50 % of particles with an aerodynamic diameter d_a > 3 µm
- Captures > 90 % of particles with d_a > 10 µm
- Surface area: 150 cm²
- Volume: 15 cm³

Aerodynamic Diameter

$$d_a = \sqrt{\rho_p} d_g$$

Nose Ultrastructure

 Cilia and mucus transport particles to the pharnyx.
 Mucociliary clearance takes 15 – 20 min.

Columnar ciliated epithelium

casweb.cas.ou.edu/pbell/Histology/Captions/Respiratory/106.nasal.epithel.40x.html www.colorado.edu/epob/epob3730rlynch/image/figure8-18.jpg

3-5% of total nasal surface

Olfactory Region

Lung - Conducting Airways

Conducting Zone

- Consists of Trachea,
 Bronchi, Bronchioles,
 Terminal Bronchioles
- Ciliated
- Surface area: 3500 cm²
 - Volume 175 cm³

Adapted from: F.H. Netter, Respiratory System, Ciba Geigy, 1992

Conducting Airways

Ultrastructure of the Conducting Airways

- Diffusion through mucus layer competes with mucociliary clearance
- Transport can be paracellular, transcellular or receptor mediated
- Larger distances favor small molecules
- Bioavaliability depends on location of local target

Lung - Respiratory Zone

- Respiratory Bronchioles, Alveolar Ducts, Alveoli (300 million)
- Volume: 5,000 cm³, Surface Area: 100 m²
- The entire blood volume of the body passes through the lungs each minute
- Fast, IV-like absorption kinetics

Adapted from: F.H. Netter, Respiratory System, Ciba Geigy, 1992

Ultrastructure and Pharmacology of the Respiratory Zone

A typical aerosol dose (1 - 50 mg) deposits only a few particles per alveolus into the lining fluid of a thin alveolar wall (200 nm)

Transport mechanisms

- Paracellular
 - Tight junctions epithelium
 - Loose junctions endothelium
 - Transcellular
 - Diffusion
 - Transcytosis
 - Receptor mediated
 - Bioavailability depends on molecular weight, solubility, and partition coefficient

Losses in Pulmonary Delivery

Losses in Nasal Delivery

Loss and Deposition Mechanisms

Impaction Primary mechanism for big particles and upper airways

Sedimentation More important in small airways. Affected by breath-hold

Diffusion Main mechanism in the respiratory zone

Factors affecting lung and nose deposition

- Aerodynamic particle / droplet diameter
 (rule of thumb: > 10 μm nasal, < 5 μm pulmonary)
- Inspiratory flow
- Lung / Nose volume
- Aerosol concentration and initial velocity

Further Defense Mechanisms

- Mucus / Mucociliary Clearance
- Phagocytosis
- Cellular Barrier
 - Tight Junctions
 - Cell Wall
- Lysosomal Proteases

Virus, Proteins, and Peptides in Development for Pulmonary Delivery

Phase I	Phase II	Phase III	Approved
Insulin (Qdose)	Insulin (KOS)	Insulin (Novo Nordisk) Insulin (Alkermes) Insulin (MannKind)	Insulin (Nektar)
Ostabolin-C (Nektar) PTH (Alkermes) PTH (Mannkind) Calcitonin (Mannkind) Leuprolide (Nektar) hGH (Alkermes)	α-1-antitrypsin (Arriva) Sinapultide (Discovery Labs)	Lucinactant (Discovery Labs) Interferon-γ (Intermune) Denufosol (Inspire)	Measles Vaccine (WHO) rhDNase (Genentech)
CC10 (Claragen) DNA nanoparticles (Copernicus)			Liquid Dry powder

Virus, Proteins, and Peptides for Nasal Delivery

Phase I	Phase II	Phase III	Approved
PTH 1-34 (Nastech) Insulin (Nastech) Epo-Fc (Syntonix) RSV / PIV vaccine (MedImmune) Influenza WIV (DelSite)	Bremelanotide (Palatin Tech.) YY 3-36 (Nastech) Leuprolide (Archimedes) Insulin (Bentley) Influenza subunit (GSK)	Influenza LAV (Medimmune)	Calcitonin (Novartis) Nafarelin (Pfizer) Desmopressin (ZLB Behring) Influenza LAV (MedImmune)

Penetration Enhancer / Active Transport Local

Bioavailability of Nasal Drugs on the Market

Bioavailability for molecules > 1 kDa is very low
 High Variability

Delivery Strategies – Particle Engineering

- Low Density Particles
- Prevention of Macrophage Uptake
- Trojan Horses / Nanoparticles

First Generation Particles - Poor Delivery Efficiency

Typically not more than 10 – 20 % delivered to the lung. The active was typically milled to achieve the required particle size. The resulting dense, poorly dispersing particles were blended with carrier particles to facilitate dispersion.

Micronized Budesonide

Lactose Blend

Vehring, et al., AAPS 1st Annual Pharmaceutics and Drug Delivery Conference, Arlington, VA, 2002

Highly Dispersible, Low Density Particles (Nektar Therapeutics)

Trileucine Shell

Structured Microparticles

Protein Shell

Crystalline Amino Acid Shell

MedImmune

< 5 % device retention</p>

Up to 80 % delivered to lung

US Pat.: 6,685,967; 6,673,335; 6,589,560; 6,136,346, 6,372,258, 6,518,239

Lipid Based Particles (Nektar Therapeutics)

Small Molecule Formulation Small porous particles provide good dispersibility and facilitate transport to the peripheral lung

 Main excipient is a lung surfactant (DSPC)

 May use blowing agent to lower and control particle density

 High bioavailability -Increased transcellular transport ?

MedImmune

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Calcitonin

Large Particles Avoid Macrophage Uptake (Alkermes / AIR)

d_p = 5-30 μm
 d_a = 1-5 μm

- Large particles with small aerodynamic diameter
- Low solubility
- Macrophages cannot internalize particles that are larger than ~ 15 µm

Edwards et al. Large porous particles for pulmonary drug delivery. Science 1997, 276:1868-1871.

Trojan Horses and Composite Particles

- Macrophage targeting (tuberculosis)
- Controlled release

http://people.deas.harvard.edu/~ntsapis/AIR.html N. Tsapis et al. PNAS **99**, 12001, 2002

Delivery Strategies – Penetration Enhancers

Tight Junction Modulators

- Irreversible (toxicity concerns)
- Reversible, targeting extracellular tight junction proteins (occludin, claudin family)

Bioadhesives

Carbopol, cellulose agents, starch, dextran, chitosan, gelatin microspheres, ionic polysaccharides

Transduction Agents

- TAT, VP22, penetratin (Antp), transportan, MAP, haptides

Tight Junction Modulation (Nastech)

http://www.nastech.com/nastech/junctions_biology

Bioadhesives

 Enhance absorption by increasing residence time at mucosal surfaces

- Enhances immune response of vaccines
- Examples:
 - ChiSys[™] (Archimedes)
 16 21 % bioavailability for Leuprolide
 - GelSite[™] polysaccharide purified from aloe (DelSite)
 In situ gelling

Transporters: siRNA – peptide conjugation (Nastech)

R. T. Witkowska, et al., Peptide – Mediated Delivery of siRNA via Noncovalent Complexes and Covalent Conjugates. American Peptide Symposium, June 20, 2005

siRNA Delivery to the Cytoplasm (Nastech)

siRNA in the cell visualized by fluorescent microscopy

R. T. Witkowska, et al., Peptide – Mediated Delivery of siRNA via Noncovalent Complexes and Covalent Conjugates. American Peptide Symposium, June 20, 2005

Delivery Strategies – Active Transport

FcRn Pathway

- Albumin
- Antibodies
- Fc Fusion molecules
- Blood Brain Barrier

FcRn Trafficking

Local IgG1 Delivery (Genentech)

Distribution of anti-IgE in brochoalveolar lavage fluid, lung tissue, and serum 1 hour after administration by inhalation or IV in the rat.

Clinical study did not show efficacy

Sweeney, T.D., et al., RDD VII, 59, 2000; Fahy, J. V., et al., Am J Respir Crit Care Med 160, 1023, 1999.

Systemic Delivery of Fc-Fusion Molecules (Syntonix)

- Fc-fusion molecules: API attached to Fc fragment.
- 5 to 50 % bioavailability depends on type of fusion molecule, monomeric vs. dimeric.
- Receptor saturation occurs at doses ~ 1-2 mg/kg
- Limited capacity for systemic delivery

FcRn – Antibody Affinity Modulation

IgG1 Fc - FcRn docking surface

W. F. Dall'Aqua et al. J. Immunol. 169, 5171, 2002

Increasing the Affinity of Human IgG1 to Mouse FcRn Affects Pharmacokinetics

Summary

- Pulmonary and nasal delivery are attractive routes for some systemically or locally acting protein therapeutics or vaccines
- Delivery issues regarding anatomic filter functions and device efficiency are largely solved
- Bioavailability limits systemic delivery to small proteins and peptides
- Penetration enhancers for nasal delivery are in clinical development
- Multiple novel approaches for controlled release, active transport, and targeting are in the research stage.

