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Abstract. You may have seen the words “topological recursion” mentioned in papers on matrix
models, Hurwitz theory, Gromov-Witten theory, topological string theory, knot theory, topological
field theory, JT gravity, cohomological field theory, free probability theory, gauge theories, to
name a few. The goal of these lecture notes is certainly not to explain all these applications of
the topological recursion framework. Rather, the intention is to provide a down-to-earth (and
hopefully accessible) introduction to topological recursion itself, so that when you see these words
mentioned, you can understand what it is all about. These lecture notes accompanied a series
of lectures at the Les Houches school “Quantum Geometry (Mathematical Methods for Gravity,
Gauge Theories and Non-Perturbative Physics)” in Summer 2024.

1. Introduction

Topological recursion was originally obtained by Eynard and Orantin in [EO07a; EO08], inspired
by previous work with Chekhov [CE06], as a recursive method for computing correlators of
Hermitian matrix models. However, what made [EO07a] such an important paper is the au-
thors’ deep insight that the topological recursion framework may be much more general than
previously anticipated. The authors proposed that, given any spectral curve, topological recur-
sion can be used to construct a sequence of correlators that may have interesting applications,
regardless of whether there is a matrix model behind the scenes or not. In essence, Eynard
and Orantin proposed in [EO07a] a framework for constructing collections of objects attached
to spectral curves, and asked the mathematical physics community: are these objects useful?

It turns out that topological recursion now has applications in a wide range of areas in
mathematics and physics. You may have seen the words “topological recursion” mentioned
in papers on matrix models, Hurwitz theory, Gromov-Witten theory, topological string theory,
knot theory, topological field theory, JT gravity, cohomological field theory, free probability
theory, gauge theories, to name a few. The goal of these lecture notes is certainly not to explain
all these applications of the topological recursion framework. Rather, the intention is to provide
an introduction to topological recursion itself, so that when you see these words mentioned,
you can understand what it is all about.

These notes accompanied a series of three 90 minute lectures at the Les Houches school
in Quantum Geometry in the summer of 2024. As such, they are rather limited in scope. My
intention is to provide a down-to-earth (and hopefully accessible) introduction to the topological
recursion framework. Given the extensive literature on the subject, and the fact that this research
area often involves lengthy technical calculations, I hope that having an introductory set of
lecture notes on topological recursion itself may be of use for newcomers to the subject.

Instead of introducing the framework as it was first formulated by Eynard and Orantin,
I decided to start from the point of view of Airy structures. Airy structures are particular
classes of differential constraints that naturally generalize the Virasoro constraints appearing in
Witten’s conjecture. Airy structures were first proposed by Kontsevich and Soibelman in 2017 as
an algebraic reformulation of topological recursion [KS17] (see also [ABCO24]) . I will however
introduce Airy structures following the approach in [BCJ22]. I find that Airy structures provide
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a clean, clear formulation of the type of recursion relations that we are interested in, and, as
such, a good starting point to dive into the theory of topological recursion. The theory of Airy
structures (or Airy ideals, as I like to call them) is explored in Section 2.

I will then introduce the original topological recursion framework, as a residue formulation
on spectral curves, in Section 3. I tried to be fairly general, but at the same time remain accessible
and pedagogical. For instance, I focused mostly on spectral curves with simple ramification
points, which is the case originally covered in [EO07a], to avoid the complicated and technical
combinatorics that obscure the general case (see [BE13; BE17; BBCCN24; BKS24; BBCKS23]).

In Section 4 I connect the two frameworks via loop equations. Loop equations are in fact the
origin of topological recursion. In matrix models, loop equations are also known as Schwinger-
Dyson equations, and topological recursion was obtained as the relevant solution of loop
equations that calculates the correlators of the matrix model. More abstractly, it can be shown
that topological recursion is the unique solution to the loop equations that satisfies a particular
property known as the projection property. This is explained in Section 4.

The connection with Airy structures goes as follows. After imposing the projection property
on correlators, loop equations can be reformulated as differential constraints for an associated
partition function. Those differential constraints can be shown to generate an Airy ideal. As a
result, topological recursion can be thought of as a particular case of the differential constraints
provided by Airy structures. In fact, the picture is very nice. Topological recursion is a method
for constructing correlators on spectral curves; it does so via residue calculations locally at the
ramification points of the spectral curve. Through the connection via loop equations, we see
that topological recursion can be recast as attaching a collection of Virasoro constraints (or more
generally W-constraints) at each ramification point of the spectral curve. Neat!

Finally, I explore in Section 5 a few relations between topological recursion and the rest
of the world. What makes topological recursion so interesting in particular applications is
that it provides a direct connection between various topics, such as integrability, enumerative
geometry, differential constraints, cohomological field theory, quantum curves, WKB analysis
and resurgence. These established connections may lead to new results in a particular context
of application.

Given the length of this series of lectures, it is impossible to cover all connections. Instead,
I decided in Section 5 to explore a little bit two of them, namely enumerative geometry and
quantum curves. I already discuss the intimate connection between enumerative geometry on
the moduli space of curves and topological recursion in Section 3, but in Section 5 I explore
further connections with enumerative geometry, such as Hurwitz theory and Gromov-Witten
theory. In particular, I explain how the expansion of the same correlators at different points
on the spectral curve may connect distinct enumerative geometric interpretations and yield
interesting results such as ELSV-type formulae for Hurwitz numbers and localization formu-
lae for Gromov-Witten invariants. I also briefly explore in Section 5 the connection between
topological recursion and quantum curves. In particular, resurgence and Borel resummation
of WKB solutions to quantum curves obtained via topological recursion is a very active area of
research, which I briefly mention.

1.1. Word of caution

Given the limited amount of time in this lecture series, these lecture notes are limited in scope.
One could easily write a whole book on topological recursion and applications (and perhaps
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one should do that!), but this is not the goal of these lecture notes. To remain fairly concise,
especially given my tendency to be rather verbose, I had to make choices.

I decided to stay focused on the topological recursion framework itself. As such, I only briefly
mention applications of topological recursion, and omit entirely many topics of interest. For
instance, I do not discuss at all knot invariants, cohomological field theory, free probability,
matrix models, JT gravity, gauge theory and Whittaker vectors, to name a few. I only briefly
mention the very important connection with integrability. I also do not discuss many gener-
alizations of topological recursion and Airy structures, such as non-commutative topological
recursion, Q-deformed topological recursion, geometric recursion, super Airy structures and
super topological recursion, etc.

This may have been a poor decision, since after all what makes topological recursion interest-
ing is its applications and the connections that it provides. But to understand the applications
of topological recursion, one should first understand what topological recursion is all about in
the first place. I hope that these lecture notes may be little bit helpful in this direction.

I also apologize in advance for the many papers that I did not cite in this review. The
literature surrounding topological recursion is now rather extensive, and thus it is impossible
to do justice to all the interesting papers out there. I am also aware that my references throughout
the text may be skewed towards my own papers; this is not because I think they are particularly
interesting, it’s just that these are the ones I know the best! :-)
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2. Airy ideals (Airy structures)

2.1. Introduction: Witten’s conjecture

Witten’s conjecture [Wit91], which was proved by Kontsevich in [Kon92], is perhaps one of
the most celebrated result in physical mathematics. Witten was interested in studying two-
dimensional quantum gravity. His deep insight was that two theories describing the same
physics should actually be the same; more precisely, they should have the same partition
function.

One of the two models of two-dimensional quantum gravity he was interested in relates the
partition function to a fascinating problem in enumerative geometry, namely intersection theory
over the moduli space of curves. More precisely, using the conventions that will be relevant
later on, the partition function Z of the theory can be expanded as

Z = exp

 ∑
g∈N,n∈N∗

2g−2+n>0

 h2g−2+n

n!
∑

k1,...,kn∈N
Fg,n[2k1 + 1, . . . , 2kn + 1]x2k1+1 · · · x2kn+1

 , (2.1)
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where the variables x1, x3, x5, . . . are just formal variables for us. The coefficients Fg,n[2k1 +

1, . . . , 2kn + 1] have a natural intepretation as integrals of particular cohomology classes (so-
called “ψ-classes”) over the compactified moduli space of curves:

Fg,n[2k1 + 1, . . . , 2kn + 1] =

n∏
i=1

(2ki + 1)!!
∫
Mg,n

ψk1

1 · · ·ψkn
n , (2.2)

with the double factorial defined by

(2k+ 1)!! = (2k+ 1)(2k− 1)(2k− 3) · · · (3)(1). (2.3)

I will not define these objects here; I refer the reader to the lecture series on moduli spaces of
Riemann surfaces at this school [GL24].

The second model of two-dimensional quantum gravity relates the partition function to the
so-called KdV integrable system, which is an infinite system of partial differential equations
in the variables xa. A priori, the KdV integrable system appears to have nothing to do with
the physics at hand; the KdV equation, which is the first equation in the hierarchy, is used as a
mathematical model of waves on shallow water surfaces! But this particular model of quantum
gravity states that the partition function Z of the theory should be a particulat tau-function for
the KdV integrable system. What this means is that ∂2x1

logZ should be a solution of the KdV
integrable system, and not just any solution; it should be the unique solution that satisfies an
initial condition known as the string equation.

Witten’s insight is that both theories should be describing the same partition function! There-
fore, the Z of (2.1), which can be understood as a generating series for intersection numbers on
Mg,n, should be a tau-function for the KdV integrable system. What a remarkable and unex-
pected statement, which was ultimately proved by Kontsevich using matrix models (another
subject of a lecture series at this school).

There is a third way to rephrase Witten’s conjecture, which was proposed by Dĳkgraaf-
Verlinde-Verlinde [DVV91]. Instead of writing down the KdV integrable system for which Z
is a tau-function of, one can instead write directly an infinite set of differential constraints for
Z, which take the form LkZ = 0, k ∈ Z⩾−1, for some differential operators Lk in the variables
xa (we will see the explicit form of these operators later). Moreover, these operators are not
random; they form a representation of a subalgebra of the Virasoro algebra:

[Lm, Ln] =  h2(m− n)Lm+n, m, n ⩾ −1. (2.4)

What is great with these differential constraints is that they uniquely fix Z. Furthermore, by
applying the operators on Z, one obtains a very explicit recursive formula for the coefficients
Fg,n, which are (up to rescaling) intersection numbers on Mg,n.

These differential constraints and the resulting recursion relations are what Airy structures
generalize. We move away from the particular geometric problem studied by Witten, and ask
a much more general question. Given a general partition function, which we can think of as
a generating series for some coefficients Fg,n (which may have a particular interpretation in a
given geometric or physical problem), when is it the case that there exists differential constraints
that uniquely fix the partition function recursively?
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2.2. Formulating differential constraints more generally

Our main of object of study will be what we will call a “partition function”:

Z = exp
( ∞∑

k=1

 hkq(k+2)(xA)

)
, (2.5)

where the q(k+2)(xA) are polynomials of degree ⩽ k + 2 in a set of variables xA (normalized
such that q(k+2)(0) = 0). We can decompose the polynomials q(k+2)(xA) into homogeneous
polynomials Fg,n(xA) of degree n:1

q(k+2)(xA) =
∑

g∈ 1
2N,n∈N∗

2g−2+n=k

Fg,n(xA), (2.6)

so that the partition function is rewritten as

Z = exp

 ∑
g∈ 1

2N,n∈N∗

2g−2+n>0

 h2g−2+nFg,n(xA)

 . (2.7)

We also often expand the homogeneous polynomials Fg,n(xA) as

Fg,n(xA) =
∑

k1,...,kn∈A

1

n!Fg,n[k1, . . . , kn]xk1
· · · xkn

(2.8)

which brings the partition function in the standard form

Z = exp

 ∑
g∈ 1

2N,n∈N∗

2g−2+n>0

 h2g−2+n

n!
∑

k1,...,kn∈A

Fg,n[k1, . . . , kn]xk1
· · · xkn

 . (2.9)

A natural question is to ask whether there exists non-trivial differential operators P in the
variables xA and that are polynomial in  h such that PZ = 0. For a generic partition function Z,
there will be no such non-zero operators. But for some specific choices of partition functions,
such operators may exist.

The reason that this is interesting is the following. On the one hand, if such an operator
P exists, the differential constraint PZ = 0 leads to recursion relations for the coefficients
Fg,n[k1, . . . , kn], since the operator P is polynomial in  hwhile the argument of the exponential
is a formal series in  h. On the other hand, in general we will be interested in calculating
the coefficients Fg,n[k1, . . . , kn], as those may give interesting enumerative invariants, such as
integrals over the moduli space of curves or correlation functions of a physical theory. Thus,
the existence of non-trivial operators P that annihilate Z lead to non-trivial recursion relations
between the quantities of interest.

In fact, we can ask an even stronger question: for what Z can we find a “maximal” set
of differential operators that annihilate Z? This is even more interesting, because if there
are enough such independent operators (and hence the notion of “maximality”), then the
resulting recursion relations could potentially be used to fully reconstruct Z uniquely, and
hence completely determine the quantities of interest.

This is the question that Airy structures address.

1In these notes, we use N to denote the set of non-negative integers, and N∗ to denote the set of positive integers.
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2.3. The Rees Weyl algebra

Let us now make these concepts more precise. We follow the approach in [BCJ22]. Let A be
a finite or countably infinite index set (think of A = N). We use the notation xA for the set of
variables {xa}a∈A, and ∂A for the set of differential operators

{
∂

∂xa

}
a∈A

.

Definition 2.1. The Weyl algebra C[xA]⟨∂A⟩ is the algebra of differential operators with poly-
nomial coefficients. We define the completed Weyl algebra DA to be the completion of the Weyl
algebra where we allow infinite sums in the derivatives (when A is a countably infinite index
set) but not in the variables. For simplicity, we will usually call DA the Weyl algebra in the
variables xA.

Example 2.2. If A = N, then P =
∑

a∈A ∂a ∈ DA, but Q =
∑

a∈A xa /∈ DA.

The Weyl algebra DA is a filtered algebra, but not a graded algebra. Recall that an (exhaustive
ascending) filtration on DA is an increasing sequence of subspaces FiDA ⊆ DA, for i ∈ N, such
that

{0} ⊆ F0DA ⊆ F1DA ⊆ F2DA ⊆ . . . ⊆ DA, (2.10)

with ∪i∈NFiDA = DA and FiDA · FjDA ⊆ Fi+jDA for all i, j ∈ N.

It turns out that there are many filtrations on the Weyl algebra. The one that we will be
interested in is called the Bernstein filtration.

Definition 2.3. The Bernstein filtration on DA is the exhaustive ascending filtration which is
defined by assigning degree one to all variables xa and partial derivatives ∂a and defining the
subspaces FiDA to contain all operators in DA of degree ⩽ i. Mathematically, we can write
FiDA as

FiDA =


∑

m,k∈N
m+k=i

∑
a1,...,am∈A

p
(k)
a1···am(xA)∂a1

· · ·∂am

 , (2.11)

where the p(k)a1···am(xA) are polynomials of degree ⩽ k. Here, F0DA = C.

Exercise. Show that this is an exhaustive ascending filtration of DA.

The Weyl algebra is filtered but not graded. However, there is a natural way to construct a
graded algebra out of any filtered algebra, which is sometimes called the “Rees construction”.

Definition 2.4. The Rees Weyl algebra D h
A associated to DA with the Bernstein filtration is

D
 h
A =

⊕
n∈N

 hnFnDA. (2.12)

It is easy to see that D h
A is a graded algebra, graded by powers of  h.

Remark 2.5. A word of caution: our  h differs from the  h introduced in [KS17] where Airy
structures were originally defined. To connect the two conventions, one should start with
the original definition of Airy structures in [KS17], rescale the variables as xi 7→  h1/2xi, and
then redefine  h 7→  h2. With this transformation, the grading defined in [KS17] becomes the
natural  h-grading on the Rees algebra that we introduce here. Although the two conventions
are ultimately equivalent, we find the introduction of  h via the Bernstein filtration more natural
and transparent.
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When A is countably infinite, we also need to introduce a technical condition on collections
of differential operators in D

 h
A. The point is that we want to be able to take infinite linear

combinations of operators Pa without divergent sums appearing. To this end, we define the
notion of a bounded collection of differential operators:

Definition 2.6. Let I be a finite or countably infinite index set, and {Pi}i∈I a collection of
differential operators Pi ∈ D

 h
A of the form

Pi =
∑
n∈N

 hn
∑

m,k∈N
m+k=n

∑
a1,...,am∈A

p
(n,k)
i;a1,...,am

(xA)∂a1
. . . ∂am . (2.13)

We say that the collection is bounded if, for all fixed choices of indices a1, . . . , am, n and k, the
polynomials p(n,k)

i;a1,...,am
(xA) vanish for all but finitely many indices i ∈ I.

It is easy to see that for any bounded collection {Pi}i∈I, linear combinations
∑

i∈I ciPi for any
ci ∈ D

 h
A are well defined operators in D

 h
A, regardless of whether I is finite or countably infinite.

Exercise. Check this!

2.4. Airy ideals

Our original question was to dermine for what partition functionsZdoes there exist a “maximal”
set of differential operators that annihilateZ. Following the concepts introduced in the previous
section, we would like these operators to live in the Rees Weyl algebra D

 h
A. However, as is usual

in the theory of differential equations, it is better to formulate the question in terms of left
ideals, instead of a specific collection of differential operators. This is because if PZ = 0, then
QPZ = 0 for any differential operator Q. So it is more natural to talk about the left ideal in D

 h
A

that annihilates Z. This is called the “annihilator ideal” of Z.

Definition 2.7. Let Z be a partition fuction as in (2.9). The annihilator ideal I = AnnD
 h
A
(Z) of Z

in D
 h
A is the left ideal in D

 h
A defined by

AnnD
 h
A
(Z) = {P ∈ D

 h
A | PZ = 0}. (2.14)

So we can reformulate our original question as follows: when is the annihilator ideal of a
partition function Z in D

 h
A as large as possible?

To this end, we define the notion of an “Airy ideal”, which is a class of left ideals that will
arise as annihilator ideals of partition functions.

Definition 2.8. Let I ⊆ D
 h
A be a left ideal. We say that it is an Airy ideal (or Airy structure) if

there exists a bounded generating set {Ha}a∈A for I such that:2

(1) The operators Ha take the form

Ha =  h∂a +O( h2). (2.15)

(2) The left ideal I satisfies the property:

[I, I] ⊆  h2I. (2.16)
2We abuse notation slightly here. We say that I is generated by the Ha, even though in standard terminology

the ideal generated by the Ha should only contain finite linear combinations of the generators. Here we allow finite
and infinite (when A is countably infinite) linear combinations, which is allowed since the collection {Ha}a∈A is
bounded.
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Remark 2.9. We note that condition (2) is highly non-trivial. First, it is clear that, for any left
ideal I ⊆ D

 h
A, [I, I] ⊆ I, by definition of a left ideal. Second, because of the definition of the

Rees Weyl algebra, it is also clear that [I, I] ⊆  h2D h
A. However, the requirement that [I, I] ⊆  h2I

is highly non-trivial; most left ideals do not satisfy this condition.

As a simple example of a left ideal that does not satisfy condition (2), take A = {1, 2}, and
consider the left ideal I generated by the two operators H1 =  h∂1 and H2 =  h∂2 +  h2x1. Then
[H1, H2] =  h3 =  h2 ·  h. While  h ∈ D

 h
A, and  h3 ∈ I since  h3 = H1H2 − H2H1, it is easy to see

that  h /∈ I, and thus I does not satisfy condition (2).

Definition 2.8 proposes an answer to the question that we asked.

Definition 2.10. Let Z be a partition function as in (2.9). We say that Z is an Airy partition
function if its annihilator ideal I = AnnD

 h
A
(Z) ⊂ DA is an Airy ideal.

The two conditions in (2.8) have a very concrete meaning:

• Condition (1) is a precise statement of what it means for the annihilator ideal to be “as
large as possible”.

• Condition (2) is a necessary condition for the left ideal I to be the annihilator ideal of a
partition function of the form (2.9). To see this, suppose that I is the annihilator ideal of
a partition function Z. Then [I, I] · Z = 0. From the definition of the Rees Weyl algebra,
we also know that for all P,Q ∈ D

 h
A, [P,Q] =  h2S for some S ∈ D

 h
A. But since the action

of  h2 on Z is just multiplication, we conclude that, for all P,Q ∈ I, [P,Q] ·Z =  h2S ·Z = 0,
which implies that S · Z = 0, that is, S ∈ I. In other words, [I, I] ⊆  h2I.

We say that a partition function is Airy if its annihilator ideal is an Airy ideal; this is a
characterization of partition functions for which the annihilator ideal is as large as it gets. The
resulting differential constraints HaZ = 0 give rise to recursion relations for the coefficients
Fg,n[k1, . . . , kn] in Z. But two questions remain:

(1) Are the recursion relations sufficient to fully reconstruct the partition functionZuniquely?
(2) Given an Airy ideal I, is it always the case that it is the annihilator ideal of a partition

function of the form (2.5)?

In other words, given an Airy ideal I, does there always exist a unique solution Z of the form
(2.9) to the constraints IZ = 0? The main theorem in the theory of Airy structures, which was
first proved in [KS17], gives a positive answer to this question.

Theorem 2.11. Let I ⊂ D
 h
A be an Airy ideal. Then there exists a unique partition function Z of the

form (2.9) such that I is the annihilator ideal of Z in D
 h
A.

In words, given any Airy ideal I, there always exists a partition function Z such that IZ = 0,
and the resulting recursion relations can be used to fully reconstruct Z uniquely.

2.5. Sketch of the proof

We will not prove Theorem 2.11 in these lecture notes, but rather sketch the main ideas of the
proof. The original proof was provided in [KS17], but we follow here the approach of [BCJ22],
which is perhaps more instructive.
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The starting point of the proof is to work in the  h-adic completion D̂
 h
A of the Rees Weyl

algebra D
 h
A:

D̂
 h
A =

∏
n∈N

 hnFnDA. (2.17)

The difference between D
 h
A and D̂

 h
A is that operators that are formal series in  h are included in

the latter, while the former only includes operators that are polynomial in  h. Thus D h
A ⊂ D̂

 h
A.

Let I ⊂ D
 h
A be an Airy ideal, and Î ⊂ D̂

 h
A be the left ideal generated by the {Ha}a∈A in the

completion D̂
 h
A. Then it is straightforward to see that if I is the annihilator ideal in D

 h
A for some

partition function Z, then Î is the annihilator ideal in D̂
 h
A of the same partition function Z.

The key realization then is that the ideal Î in the completion D̂
 h
A is actually quite simple.

What do we mean by that? We proceed in four steps.

(1) In the first step, we show that there exists a collection of operators {H̄a}a∈A in Î of the
form

H̄a =  h∂a −

∞∑
n=2

 hnp
(n)
a (xA), (2.18)

where the p(n)
a (xA) are polynomials of degree ⩽ n. Note that those operators are

generally much simpler than the Ha, which may include terms with derivatives at all
orders in  h.

To show this, write the generators of Î as Ha =  h∂a + Pa, with Pa = O( h2). Pick
one of them, say Ha, and consider first the terms in Pa of order  h2. There are two
types of terms (we assume everything is normal ordered, with derivatives on the right
of variables): terms that have no derivatives (“polynomial terms”) and terms with at
least one derivative. Keep the terms in the first class untouched, and for all terms in the
second class, replace the right-most derivatives  h∂k byHk − Pk. This creates new terms
with aHk on the right (those are in the left ideal Î), and new terms of order  h3. We then
do the same thing at order  h3, and so on and so forth. As we are now working in the
completed algebra, where formal power series in  h are included, we can keep doing this
process inductively, and we end up with the statement that

Ha =  h∂a −

∞∑
n=2

 hnp
(n)
a (xA) +Qa, (2.19)

where the p(n)
a (xA) are polynomials of degree ⩽ n, and Qa ∈ Î. Since Ha ∈ Î and

Qa ∈ Î, we conclude that H̄a :=  h∂a −
∑∞

n=2
 hnp

(n)
a (xA) is also in Î. Of course, we can

do that for all Ha in the generating set.
Note that for this process to work, it is very important that we work in the completion

D̂
 h
A, so that the inductive process can keep going forever.

(2) In the second step, we show that, not only are the simpler operators H̄a in Î, but, in fact,
the collection {H̄a}a∈A generates Î. In other words, we can write any element in Î as a
(potentially infinite) linear combination of the H̄a.

(3) The third step consists in showing that, while the operators Ha do not necessarily
commute, the H̄a do. That is, [H̄a, H̄b] = 0 for all a, b ∈ A. To show this, we use the
condition [Î, Î] ⊆  h2Î, which implies that there are no non-zero operators in Î that are
formal power series in  h with polynomial coefficents (no derivatives).

(4) In the fourth step, we use Poincare lemma to show that the condition [H̄a, H̄b] = 0 implies
that we can rewrite the polynomials p(n)

a (xA) as derivatives of a single polynomial
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q(n+1)(xA); that is,

H̄a =  h∂a −

∞∑
n=2

 hn∂aq
(n+1)(xA). (2.20)

The result is that the ideal Î in the completed Rees Weyl algebra is very simple; it is generated
by the collection of operators H̄a from (2.20). Using the standard action of derivatives on
exponentials, it is then clear that the H̄a annihilate the partition function Z of the form

Z = exp
( ∞∑

n=2

 hn−1q(n+1)(xA)

)
. (2.21)

More precisely, Î is the annihilator ideal of Z in D̂
 h
A. It then follows thatHaZ = 0 as well, for all

a ∈ A, since Ha ∈ Î. Furthermore, Z is uniquely determined, after fixing the initial conditions
q(n+1)(0) = 0. This essentially concludes the proof of the theorem. Tadam!

Remark 2.12. We note that we can generalize the definition of Airy ideals, Definition 2.8, slightly.
We can include in the Ha extra terms of degree  h1 of the form  hp

(1)
a (xA) for some linear

polynomials p(1)a (xA). Everything goes through, with the caveat that the sum over n in the
resulting partition function (2.21) starts at n = 1. In the notation of (2.9), this means that
unstable terms with 2g− 2+ n = 0 are included.

We could also try to include degree  h0 terms in the Ha, but this is a lot more subtle. Except
for rather trivial cases, introducing degree zero terms requires refining the construction of
Airy structures to work over formal power series in these coefficients. This is related to the
construction of Whittaker states, which are relevant for supersymmetric gauge theories, via
Airy structures in [BBCC24; BCU24].

2.6. Examples

A definition is interesting only if it has non-trivial examples. Perhaps there are no left ideal in
D

 h
A that are Airy ideals! How boring would that be! Fortunately, it turns out that there many

interesting Airy ideals, and that, in fact, many of the differential constraints already known in
enumerative geometry fall into the Airy framework.

We could start by searching for Airy ideals in D
 h
A withA a finite index set (i.e., the Rees Weyl

algebra in a finite number of variables). In fact, an interesting question is to classify all Airy
ideals that can be realized in this way. See for instance [ABCO24; HR21].

However, most interesting examples arise whenA is a countably infinite index set, and hence
this is what we focus on in this section.

2.6.1. Kontsevich-Witten Virasoro constraints

The prototypical example of an Airy ideal comes from the Virasoro constraints satisfied by the
Kontsevich-Witten partition function originally formulated by Dikgraaf, Verlinde and Verlinde
in [DVV91].
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Let A be the set of odd natural numbers, and define the following differential operators in
D

 h
A:

Lk =  hJ2k+3 −  h2

12 ∑
m1+m2=2k
m1,m2 odd

: Jm1
Jm2

: +
1

8
δk,0

 , k ⩾ −1, (2.22)

where, form ⩾ 1,
Jm = ∂m, J−m = mxm, (2.23)

and : : denotes normal ordering, where we put the Jk with positive k’s to the right of those
with negative k’s (i.e. derivatives to the right).

First, one can show that the left ideal I ⊂ D
 h
A generated by the collection {Lk}k⩾−1 is an Airy

ideal. Indeed, by direct calculation, we get that

[Lm, Ln] =  h2(m− n)Lm+n, m, n ⩾ −1. (2.24)

That is, the differential operators above form a representation of a subalgebra of the Virasoro
algebra (appropriately rescaled by  h – see Section 2.6.4).

Exercise. Show that the operators in (2.22) satisfy the Virasoro commutation relations (2.24).

A consequence of (2.24) is that the ideal I satisfies condition (2) of Definition 2.8, namely
[I, I] ⊆  h2I. Indeed, pick any two P,Q ∈ I. We can write P =

∑
a∈A caLa andQ =

∑
b∈A dbLb.

Calculating the commutator, we get

[P,Q] =[
∑
a∈A

caLa,
∑
b∈A

dbLb] (2.25)

=
∑

a,b∈A

(cadb[La, Lb] + ca[La, db]Lb + db[ca, Lb]La + [ca, db]LbLa) . (2.26)

The last three terms on the RHS are clearly in  h2I, and the first term is also in  h2I because of
(2.24).

As for condition (1), looking at (2.22) we see that

Lk =  h∂2k+3 +O( h2), k ⩾ −1, (2.27)

and as we are working over the set A of odd natural numbers, condition (1) is also satisfied
(after trivially redefining H2k+3 = Lk). It follows that I is an Airy ideal.3

Now that we know that the collection {Lk}k⩾−1 from (2.22) generates an Airy ideal, Theorem
2.11 gives us for free that there is a unique solution Z of the form (2.9) to the constraints

LkZ = 0, k ⩾ −1. (2.28)

Of course, Z is nothing but the Kontsevich-Witten tau-function of the KdV integrable hierarchy
(with a suitable choice of normalization), written explicitly as

Z = exp

 ∑
g∈N,n∈N∗

2g−2+n>0

 h2g−2+n

n!
∑

k1,...,kn∈N
Fg,n[2k1 + 1, . . . , 2kn + 1]x2k1+1 · · · x2kn+1

 (2.29)

with the coefficients given by

Fg,n[2k1 + 1, . . . , 2kn + 1] =

n∏
i=1

(2ki + 1)!!
∫
Mg,n

ψk1

1 · · ·ψkn
n . (2.30)

3To be precise, we should also check that the collection {Lk}k⩾−1 is bounded, which is easy to show.
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The Virasoro constraints LkZ = 0, k ⩾ −1, therefore determine intersection numbers over Mg,n

uniquely recursively, which is a well known consequence of Witten’s conjecture.

2.6.2. BGW Virasoro constraints

We can do a small variation on the previous example. Let A still be the set of odd natural
numbers, but define the following differential operators in D

 h
A:

Lk =  hJ2k+1 −  h2

12 ∑
m1+m2=2k
m1,m2 odd

: Jm1
Jm2

: +
1

8
δk,0

 , k ⩾ 0. (2.31)

Note that we changed the O( h1) terms, and also we kept only the operators with k ⩾ 0. One
can show that those operators still form a representation of the Virasoro algebra:

[Lm, Ln] =  h2(m− n)Lm+n, m, n ⩾ 0. (2.32)

It then follows, as above, that they generate an Airy ideal in D
 h
A (with H2k+1 = Lk), and hence

there is a unique partition function Z of the form (2.9) satisfying the constraints LkZ = 0, k ⩾ 0.

Exercise. In this example, show that the constraints LkZ = 0, k ⩾ 0 imply that F0,n[2k1 +

1, . . . , 2kn + 1] = 0 for all n ∈ N∗.

What is this partition function Z? Can we write the coefficients Fg,n[k1, . . . , kn] in terms of
intersection numbers overMg,n? Already in this simple example the answers to these equations
are quite interesting!

It turns out that Z is still a tau-function of the KdV integrable hierarchy, but a different one:
the BGW tau-function (it provides a different solution of the integrable system, satisfying differ-
ent initial conditions). Moreover, the enumerative geometric interpretation of the coefficients
Fg,n[k1, . . . , kn] was only obtained recently by Norbury in [Nor23], and involves constructing
new cohomology classes over Mg,n. Fascinating!

More precisely, the geometric statement is that

Fg,n[2k1 + 1, . . . , 2kn + 1] =

n∏
i=1

(2ki + 1)!!
∫
Mg,n

Θg,nψ
k1

1 · · ·ψkn
n , (2.33)

where Θg,n is a cohomology class on Mg,n now known as the Norbury class (it is a particular
case of a construction due to Chiodo [Chi08]). The Virasoro constraints LkZ = 0, k ⩾ 0

determine these intersection numbers uniquely, by recursion on 2g− 2+ n.

As we will see, this is only the first example of a large class of interesting Airy ideals that
appear as “building blocks” of the general theory. Much remains to be understood for these
building blocks, as far as the relations with integrable systems and enumerative geometry go.

2.6.3. Quadratic operators

In both previous examples, the operators that generate the Airy ideal are quadratic in  h. Let us
now look at the general case of Airy ideals generated by operators that are quadratic in  h. In
fact, this is the original case that was studied by Kontsevich and Soibelman in [KS17].
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Let A be an index set. We write general operators in D
 h
A that are quadratic in  h and that

satisfy condition (1) of Definition 2.8 as:

Ha =  h∂a −  h2
(
1

2
Aabcxbxc + Babcxb∂C +

1

2
Cabc∂b∂c +Da

)
. (2.34)

In this section we use the convenient notation that repeated indices are summed over the index
setA. Note that we could also include terms that are linear in x’s and ∂’s in theO( h2) term, but
for simplicity we omit them, as was originally done in [KS17].

Let I be the left ideal generated by {Ha}a∈A. Condition (1) of Definition 2.8 is satisfied by
construction. We also assume that the collection {Ha}a∈A is bounded. What about condition
(2)? From the calculation in (2.25), it is easy to see that [I, I] ⊆  h2I if and only if

[Ha, Hb] =  h2fabcHc (2.35)

for some fabc ∈ D
 h
A. But since the Ha are quadratic in  h, it follows that the fabc must be

O( h0). That is, fabc ∈ C. In other words, condition (2) is satisfied if and only if the Ha form a
representation of a Lie algebra! Note that this only holds for operators that are quadratic in  h;
if we include higher order terms, Airy ideals do not have to come from representations of Lie
algebras.

Assuming that (2.35) holds, from Theorem 2.11 we know that there is a unique partition
function Z of the form (2.9) that satisfies the constraints HaZ = 0, a ∈ A. Its coefficients
Fg,n[k1, . . . , kn] are determined recursively. In fact, we can write down the recursion explicitly
here. It reads [ABCO24]:

Fg,n[k1, . . . , kn] =

∞∑
m=2

Bk1kmaFg,n−1[a, k2, . . . , k̂m, . . . , kn]

+
1

2
Ck1ab

Fg−1,n+1[a, b, k2, . . . , kn] +
∑

g1+g2=g
I∪J={k2,...,kn}

Fg1,|I|+1[a, I]Fg2,|J|+1[b, J]

 ,
(2.36)

where the notation k̂m means that km is omitted, and in the last sum we sum over all possibly
empty disjoint subsets I, J ⊆ {k2, . . . , kn} such that I∪ J = {k2, . . . , kn}. The initial conditions of
the recursion are

F0,3[a, b, c] = Aabc, F1,1[a] = Da. (2.37)

Exercise. Obtain the recursion formula (2.36) and the initial conditions (2.38) from the differ-
ential constraints HaZ = 0.

This is our first take on “topological recursion”; in the context of Airy ideals, it appears
simply as the recursive structure satisfied by the coefficients Fg,n[k1, . . . , kn] as a consequence
of the differential constraints IZ = 0. We wrote it explicitly here for the case of operators that
are quadratic in  h, but it can of course be written as well for operators of any order in  h (see
[BBCCN24]).

Remark 2.13. The astute reader may ask the following question. What if we start directly from
the topological recursion of (2.36), with the initial conditions in (2.38)? Doesn’t it construct a
partition functionZ recursively that solves the constraintsHaZ = 0, for any choice of tensorsAabc,
Babc, Cabc and Da? That would be rather strange, as it would mean that any collection of
quadratic operators {Ha}a∈A satisfies the condition [I, I] ⊆  h2I in the definition of Airy ideals.
Surely that can’t be right!
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The subtlety is in the recursive formula (2.36). For this formula to reconstruct a partition
function Z, it must produce coefficients Fg,n[k1, . . . , kn] that are symmetric under permutations
of the indices k1, . . . , kn. This is highly non-trivial! The formula is manifestly symmetric under
permutations that leave k1 fixed, but it is far from obviously symmetric for permutations that
involve k1. In fact, the conditions on the tensors Aabc, Babc, Cabc and Da that are necessary
for the recursion (2.36) to produce symmetric Fg,n[k1, . . . , kn] are quite involved; see [ABCO24]
for details. Nevertheless, it turns out that symmetry is implied by the condition [I, I] ⊆  h2I, as
it should, and everything is well.

2.6.4. Universal enveloping algebras and W-algebras

Our previous examples of Airy ideals are constructed via representations of Lie algebras. This
is not a coincidence; many interesting examples of Airy ideals can be constructed in this way,
or more generally as representations of non-linear Lie algebras such as W-algebras. Let me
explain the construction in more general terms. This subsection is a little more technical, and
may be skipped.

Recall that a Lie algebra g is a vector space g with an alternating bilinear map [, ] : g× g → g.
For the purpose of the construction, we can be more general and allow g to be a “non-linear Lie
algebra” (see for instance Section 3 of [DK06] for a precise definition). Roughly speaking, a non-
linear Lie algebra is like a Lie algebra, but the bilinear map now takes the form [, ] : g×g → T(g),
where T(g) is the tensor algebra over g.4 In other words, if {ei} is a basis for g, in a Lie algebra,
the commutator [p, q] for any p, q ∈ g is a linear combination of the ei, while in a non-linear
Lie algebra [p, q] is a “polynomial” in the ei (with product given by tensor product). Many of
the properties of Lie algebras carry through to non-linear Lie algebras; for instance, one can
construct the universal enveloping algebra U(g) as usual, and g is a PBW basis for U(g) (see
[DK06]).

Let g be a Lie algebra or a non-linear Lie algebra, and U(g) the universal enveloping algebra.
Suppose that there is an exhaustive ascending filtration

{0} ⊆ F0U(g) ⊆ F1U(g) ⊆ . . . ⊆ U(g). (2.38)

Then we can construct the Rees universal enveloping algebra U h(g) =
⊕

n∈N  hnFnU(g) using
the Rees construction as in Definition 2.4. We assume that the filtration is such that

[FiU(g), FjU(g)] ⊆ Fi+j−2U(g), (2.39)

in which case
[U

 h(g), U
 h(g)] ⊆  h2U

 h(g). (2.40)
To construct Airy ideals, we proceed as follows:
Lemma 2.14. Let ρ : U h(g) → D

 h
A be a representation of the Rees enveloping algebra in the Rees Weyl

algebra, for some index set A. Let IU h ⊆ U
 h(g) be a left ideal in U h(g), and I = D

 h
Aρ(IU h) ⊆ D

 h
A be

the corresponding left ideal in D
 h
A generated by ρ(IU h).

Suppose that IU h satisfies the property [IU h , IU h ] ⊆  h2IU h , and that there exists a generating set
{Ha}a∈A for IU h such that ρ(Ha) =  h∂a +O( h2) and the collection {ρ(Ha)}a∈A is bounded. Then I

is an Airy ideal.

Proof. This is clear. It is easy to show that the condition [IU h , IU h ] ⊆  h2IU h implies that
[I, I] ⊆  h2I, and since the set {ρ(Ha)}a∈A generates I, we conclude that I is an Airy ideal. □

4The definition is actually a little more involved than this. In particular, one needs to impose a grading condition
on the algebra and the bilinear map. We refer the reader to Definition 3.1 of [DK06] for a precise definition.
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In this construction, we see that the two conditions in the definition of Airy ideals are realized
independently. On the one hand, the condition [IU h , IU h ] ⊆  h2IU h is a condition on the left ideal
IU h ⊆ U

 h(g) in the Rees universal enveloping algebra, which is independent of the choice of
representation ρ : U h(g) → D

 h
A. On the other hand, the condition that there exists a generating

set with ρ(Ha) =  h∂a +O( h2) is very much representation-dependent.

The condition [IU h , IU h ] ⊆  h2IU h is in fact fairly easy to satisfy, as it is naturally obtained
from left ideals in U(g) as follows. We first define an operation that maps elements of U(g) to
elements of U h(g) (see for instance Section 1.2 in [SST99]).

Definition 2.15. Let p ∈ U(g), and let i = min{k ∈ N | p ∈ FkU(g)}. We define the homogenization
h(p) of p to be h(p) =  hip ∈ U

 h(g). We define the homogenization h(IU) of a left ideal
IU ⊆ U(g) to be the left ideal in U h(g) generated by all homogenized elements h(p), p ∈ IU.

Then we have the following simple lemma:

Lemma 2.16. Let IU ⊆ U(g) be a left ideal. Then its homogenization h(IU) ⊆ U
 h(g) satisfies

[h(IU), h(IU)] ⊆  h2h(IU).

Proof. For any p, q ∈ IU, [p, q] = s for some s ∈ IU. Moreover, by our requirement (2.40),
we know that if p ∈ FiU(g) and q ∈ FjU(g), then s ∈ Fi+j−2U(g). This means that the
homogenizations satisfy [h(p), h(q)] =  hkh(s) for some k ⩾ 2. Since h(IU) is generated by all
homogenized elements h(p), p ∈ IU, it is easy to show that this implies that [h(IU), h(IU)] ⊆
 h2h(IU). □

Thus any left ideal IU h ⊆ U h(g) that is obtained as the homogenization of a left ideal inU(g)
automatically satisfies [IU h , IU h ] ⊆  h2IU h . This perhaps helps demystify the meaning of this
condition.

Remark 2.17. One has to be careful however; if {pa}a∈A is a generating set for a left ideal
IU ⊆ U(g), then it is not necessarily true that the homogenizations {h(pa)}a∈A form a generating
set for the homogenization of the left ideal h(IU) ⊆ U

 h(g) (see Proposition 1.2.11 in [SST99]).
Let us illustrate this with an example. Let g be the Virasoro algebra, spanned by the modes
{Lm}m∈Z and the central charge c. Consider the left ideal IU ⊆ U(g) generated by {L1, L2}.
Since [L2, L1] = L3 ∈ IU, [L3, L1] = 2L4 ∈ IU, and so on and so forth, we know that Lm ∈ IU
for all m ⩾ 1. We use the filtration by conformal weight, where Lm ∈ F2U(g) for all m ∈ Z,
and thus h(Lm) =  h2Lm. Let h(IU) ⊆ U

 h(g) be the homogenization of the left ideal. Then
h(Lm) =  h2Lm ∈ h(IU) for allm ⩾ 1. This means thath(IU) is not generated by {h(L1), h(L2)} =

{ h2L1,  h
2L2}, since for instance h(L3) =  h2L3 is not in the ideal generated by {h(L1), h(L2)} in

U
 h(g) — indeed, [h(L2), h(L1)] =  h2h(L3), which means that  h2h(L3) is in the ideal generated

by {h(L1), h(L2)}, but not h(L3).

Nevertheless, this gives a clear recipe on how to obtain Airy ideals from universal enveloping
algebras.

(1) We start with a left ideal IU ⊆ U(g) or, equivalently, a cyclic left module M ≃ U(g)/IU
generated by a vector v whose annihilator is IU = AnnU(g)(v).

(2) We construct the homogenization IU h = h(IU), which is a left ideal in U h(g). By
construction, we know that [IU h , IU h ] ⊆  h2IU h . From the point of view of modules, we
obtain a cyclic left module M[ h] ≃ U

 h(g)/IU h generated by the vector v and where  h

acts by multiplication; the annihilator of v in U h(g) is IU h = AnnU h(g)(v).
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(3) We find a representation ρ : U h(g) → D
 h
A, for some index set A, such that there exists a

generating set {Ha}a∈A for IU h with ρ(Ha) =  h∂a+O( h
2) and the collection {ρ(Ha)}a∈A

bounded.

By Lemma 2.14, the left ideal I ⊆ D
 h
A generated by {ρ(Ha)}a∈A is an Airy ideal.

The examples presented previously were obtained in this way.

Example 2.18. Let g be the Virasoro algebra with central charge c. g is spanned by the modes
{Lm}m∈Z and the central charge c, with commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n. (2.41)

There is a natural filtration on U(g) that satisfies (2.40), where the Lm have degree 2 and
c has degree 0 (this is the filtration by conformal weight). The homogenizations are then
h(Lm) =  h2Lm and h(c) = c. Thus, in U h(g), we have

[h(Lm), h(Ln)] =  h2(m− n)h(Lm+n) +  h4
h(c)

12
(m3 −m)δm,−n. (2.42)

Consider the left ideal IU ⊆ U(g) generated by {Lm}m⩾−1. ThenU(g)/IU is the cyclic module
generated by the vacuum vector v, which is such that Lmv = 0 for all v ⩾ −1. It is easy to see
that the homogenization IU h = h(IU) ⊆ U

 h(g) is the left ideal generated by {h(Lm)}m⩾−1. By
construction, it satisfies [IU h , IU h ] ⊆  h2IU h . To get the Kontsevich-Witten Virasoro constraints
from Section 2.6.1, we construct the representation of U h(g) in (2.22) (in the language of this
section, the Lk from (2.22) should be h(Lk) in the Rees universal enveloping algebra), which
exists for central charge c = 1.

Example 2.19. The BGW example from Section 2.6.2 is very similar. The Lie algebra g is the
same, with the same filtration. We now look at the left ideal IU in U(g) generated by {Lm}m⩾0,
and construct its homogenizationh(IU), which is generated by {h(Lm)}m⩾0. The BGW Virasoro
constraints are obtained via the representation (2.31) for theh(Lm), which again exists for central
charge c = 1.

This construction could be generalized a little bit. We could have started with the left ideal
IU in U(g) generated by {Lm}m⩾1 and L0 − Λ for some Λ ∈ C. Then U(g)/IU is a highest
weight module for the Virasoro algebra with highest weight Λ, generated by a highest weight
vector v that satisfies Lmv = 0 for m ⩾ 1 and L0v = Λv. Its homogenization IU h = h(IU) is
generated by h(Lm) =  h2Lm for m ⩾ 1 and h(L0 − Λ) =  h2(L0 − Λ). Again, by construction
[IU h , IU h ] ⊆  h2IU h . Using the same representation (2.31) for the h(Lm), we obtain an Airy
ideal. As a result, we obtain a partition function Z uniquely fixed by the constraints h(Lm)Z = 0

for m ⩾ 1 and h(L0)Z =  h2ΛZ, with the h(Lm) represented as in (2.31). Explicitly, this gives
the constraints

 hJ2k+1Z =
 h2

2

∑
m1+m2=2k
m1,m2 odd

: Jm1
Jm2

: Z for k ⩾ 1, (2.43)

 hJ1Z = h2

12 ∑
m1+m2=0
m1,m2 odd

: Jm1
Jm2

: +
1

8
+Λ

Z. (2.44)

The result is simply a shift of the constant term 1/8 by the highest weight of the original
module for the Virasoro algebra. This gives a new Λ-dependent partition function, which can
be understood as the highest weight vector generating the highest weight module, with the
BGW case corresponding to the zero weight Λ = 0.
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Example 2.20. So far all the examples started with a Lie algebra g. But many interesting
examples start with a non-linear Lie algebra. A typical example of a non-linear Lie algebra g

is the vector space spanned by the modes of the strong generators of a W-algebra. Explaining
what W-algebras are is beyond the scope of these notes; it will suffice to say here that one can
think of W-algebras as extensions of the Virasoro algebra that appear as symmetry algebras
for two-dimensional conformal field theories. See for instance [Ara17] for an introduction to
W-algebras.

Following the strategy above, many examples of Airy structures have been constructed via
representations of the Rees universal enveloping algebras of W-algebras – see for instance
[BBCCN24; BKS24; BM23; BBCC24; BCJ22; BCU24]. In particular, a class of Airy ideals that
arise from representations of the W(gln)-algebras at self-dual level reproduce the topological
recursion of [BE13] which we will encounter later on.

3. Topological recursion

Let us now study a different recursive structure, which at first will appear completely unrelated.
The recursive structure in question has become known as the “Eynard-Orantin topological re-
cursion”, or simply “topological recursion” (affectionately shortened as “TR”). It was originally
formulated in [EO07a] as a method for solving loop equations to recursively calculate the corre-
lators of matrix models. But it was proposed to be much more general than that, and indeed it
has now become a unifying theme in many different contexts, from Hurwitz theory, to Gromov-
Witten theory, to knot theory, to topological and cohomological field theories, to topological
string theory.

3.1. Spectral curves

The starting point is the geometry of a spectral curve. Note that many of the concepts and
results on the geometry of Riemann surfaces used in this section were beautifully explained in
Marco Bertola’s notes for his lecture series at the current school [Ber24].

Definition 3.1. A spectral curve is a quadruple S = (Σ, x,ω0,1,ω0,2), where:5

• Σ is a Riemann surface;
• x : Σ→ P1 is a holomorphic map between Riemann surfaces;
• ω0,1 is a meromorphic one-form on Σ;
• ω0,2 is a fundamental bidifferential (sometimes also called Bergman kernel and denoted by
B), which is a symmetric meromorphic bidifferential on Σ× Σwhose only pole consists
of a double pole on the diagonal with biresidue 1.

We will come back to the mysterious object ω0,2 in a second; you can forget about it for the
time being.

First, we remark that specifying a holomorphic map x : Σ → P1 is the same as specifying
a meromorphic function x on Σ. Second, specifying a one-form ω0,1 in Σ is equivalent to
specifying a second holomorphic map y : Σ → P1 (or meromorphic function y) such that
ω0,1 = y dx. This is why spectral curves are sometimes defined by specifying two holomorphic
maps x, y : Σ→ P1 instead of a map x and a one-formω0,1.

5We note here that the definition of spectral curves can be generalized in many different ways. We take here a
fairly simple approach, but general enough for our purposes.
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When Σ is a compact Riemann surface, the holomorphic map x : Σ → P1 is a finite de-
gree branched covering. Moreover, in this case there always exists an irreducible polynomial
P(x, y) such that the two holomorphic maps x and y identically satisfy the polynomial equation
P(x, y) = 0. So we can construct a spectral curve by starting with an algebraic curve

{P(x, y) = 0} ⊂ C2. (3.1)

We take Σ to be the normalization of the corresponding Riemann surface, x : Σ → P1 to be
projection on the x-axis, andω0,1 = y dx. Note however that our definition is more general, as
it allows non-compact Riemann surfaces Σ; those spectral curves may not come from algebraic
curves.

Locally, every non-constant holomorphic map between Riemann surfaces looks like a power
map. More precisely, let p ∈ Σ, and x(p) ∈ P1. Then there exists a local coordinate ζ on Σ
centered at p and a local coordinate on P1 centered at x(p) such that the map x : Σ→ P1 takes
the local normal form

x : ζ 7→ ζr (3.2)
for some positive integer r. If we think of x as a meromorphic function on Σ, then locally it can
be written as x = x(p) + ζr if x(p) ∈ C, and x = ζ−r if p is a pole of x.

The integer r is uniquely defined and called the ramification order of x at p. We say that p
is a ramification point if r ⩾ 2, and its image x(p) is called a branch point. Let us introduce the
notation Ram ⊂ Σ for the set of ramification points of x. Those correspond to the zeros of the
differential dx and the poles of x of order ⩾ 2.

The ramification order specifies the local behaviour of x near a point p. But what about the
one-formω0,1? We can expand it near p in a local coordinate ζ. We get:

ω0,1 =

∑
k⩾s̄

τkζ
k

 dζ

ζ
, (3.3)

where s̄ is the minimal exponent appearing in the expansion. For further use, we also define s,
which is the minimal exponent not divisible by r:

s = min{k ∈ Z | τk ̸= 0 and r does not divide k}. (3.4)

The three parameters (r, s̄, s) characterize the local behaviour of a spectral curve near a point p.

To make sense of topological recursion, we will need to impose an admissibility condition on
spectral curves, which constrains the local behaviour of a spectral curve.

Definition 3.2. Let S = (Σ, x,ω0,1,ω0,2) be a spectral curve. We say that it is admissible at a
point p ∈ Σ if either x is unramified at p, or x is ramified at p and the three following conditions
on the local behaviour at p are satisfied:

(1) r and s are coprime;
(2) either s ⩽ −1, or s ∈ {1, . . . , r+ 1} and r = ±1 mod s;
(3) s̄ = s or s̄ = s− 1.

We say that the spectral curve is admissible if it is admissible everywhere on Σ.

Example 3.3. Consider the spectral curve S = (Σ, x,ω0,1,ω0,2) with

Σ = C, x =
1

2
z2, ω0,1 = z2 dz (equivalently, y = z), ω0,2 =

dz1dz2
(z1 − z2)2

. (3.5)

This spectral curve is called the Airy spectral curve. As x has no pole on C and dx = zdz, there is
a single ramification point at z = 0, with ramification order r = 2. Looking at ω0,1 we see that
s = s̄ = 3. Thus it is admissible.
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Example 3.4. Consider the spectral curve S = (Σ, x,ω0,1,ω0,2) with

Σ = C, x =
1

2
z2, ω0,1 = dz (equivalently, y =

1

z
), ω0,2 =

dz1dz2
(z1 − z2)2

. (3.6)

This spectral curve is called the Bessel spectral curve. As x has no pole on C and dx = zdz, there
is a single ramification point at z = 0, with ramification order r = 2. Looking at ω0,1 we see
that s = s̄ = 1, and the spectral curve is admissible.

Those two spectral curves are the “building blocks” of topological recursion, as they en-
capsulate the two relevant possible local behaviours near simple ramification points (that is,
ramification points with r = 2).

There is a similar class of spectral curves that encapsulate the local behaviour near ramification
points of arbitrary order:

Example 3.5. Consider the spectral curve S = (Σ, x,ω0,1,ω0,2) with

Σ = C, x =
1

r
zr, ω0,1 = zs−1 dz (equivalently, y = zs−r), ω0,2 =

dz1dz2
(z1 − z2)2

,

(3.7)
with s ∈ {1, . . . , r + 1} and r = ±1 mod s. This spectral curve is called the (r, s) spectral curve.
As x has no pole on C and dx = zr−1dz, there is a single ramification point at z = 0, with
ramification order r. Looking atω0,1 we see that what we called s above is the local parameter
s, and s = s̄. Thus the spectral curve is admissible.

For simplicity, from now on in these notes we will generally assume that x only has simple
ramification points (that is, r = 2 at all ramification points). There is no particular reason to
assume this in the general framework of topological recursion,6 but it makes the formulae much
simpler, which is useful pedagogically in the context of lecture notes. For the general definition
of topological recursion for arbitrary ramification, see for instance [BE13; BE17; BBCCN24;
BKS24; BBCKS23].

When r = 2 at a ramification point, admissibility simplifies. More precisely, these are the
only possible choices of s:

• s ⩽ −1, which will make the ramification point irrelevant;
• s = 1, in which case we say that the ramification point is of “Bessel-type”;
• s = 3, in which case we say that the ramification point is of “Airy-type”.

For simplicity, we will also assume that ramification points of the first type do not appear;
these would not contribute to topological recursion anyway, and hence we do not really lose
generality by making such an assumption.

For clarity, let us introduce a name for this class of spectral curves:

Definition 3.6. Let S = (Σ, x,ω0,1,ω0,2) be an admissible spectral curve. We say that it is
simple if all ramification points in Ram are simple and of either Bessel-type (s = 1) or Airy-type
(s = 3).7

6Although one can argue that this is the generic case, since ramification points of a holomorphic maps are generi-
cally simple, but can become of higher ramification order after colliding (see for instance [BBCKS23]). Nevertheless,
many cases of interest correspond to holomorphic maps x : Σ→ P1 with higher ramification.

7In the standard literature on topological recursion, for spectral curves with simple ramification point it is usually
required that dx and dy do not have common zeros [EO07a; EO08]. This is equivalent to requiring that s is no greater
than 3 at a simple ramification point, since if dy had a zero at a simple zero of dx, then s > 3 at that ramification
point.
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3.2. Projection property and fundamental bidifferential

So far we did not discuss the mysterious fundamental bidifferential ω0,2, which is part of the
data of a spectral curve. What role does it play?

First, let us recall its definition: ω0,2 is a symmetric meromorphic bidifferential on Σ × Σ
whose only pole consists of a double pole on the diagonal with biresidue 1.

When Σ is a compact Riemann surface, it turns out that the fundamental bidifferential is
uniquely fixed by a choice of Torelli marking.

Lemma 3.7. Let Σ be a compact Riemann surface, and fix a Torelli marking on Σ, which is a choice of
symplectic basis {a1, . . . , aḡ, b1, . . . , bḡ} for the homology group H1(Σ,Z), where ḡ is the genus of Σ.
Then there is a unique fundamental bidifferentialω0,2(z1, z2) normalized such that∮

ai

ω0,2(·, z2) = 0, for all i ∈ {1, . . . , ḡ}. (3.8)

Note however that, when Σ is non-compact, there is no similar notion of uniqueness, so there
can be more choices of fundamental bidifferential, and this is why it is part of the data of a
spectral curve.

The genus zero case is particularly important.

Example 3.8. Let Σ = P1, and let z be a uniformizing coordinate on P1. Since for genus zero
compact Riemann surfaces H1(Σ,Z) = {0} (i.e. the first homology is trivial), there is no choice
of Torelli marking. The unique fundamental bidifferential simply reads

ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2
. (3.9)

This is the fundamental bidifferential that was used in the previous examples, and is the only
one that we will use in these lecture notes.

We now understand better what the object is. But why do we need to specify a fundamental
bidifferential? The main reason is that it defines a projection operator as follows.

Definition 3.9. Letω0,2 be a fundamental bidifferential onΣ. Letα be a meromorphic one-form
on Σ. Pick a finite set of points P ⊂ Σ. We define the projection B̂P[α](z

′) of α(z) at P to be the
one-form on Σ given by:

B̂P[α](z
′) =

∑
p∈P

Res
z=p

(∫z
p

ω0,2(·, z ′)
)
α(z). (3.10)

The cool thing about this operation is the following lemma:

Lemma 3.10. The projection B̂P[α] is a one-form on Σ that has the same principal part as α on P. It
then follows that it is indeed a projection, as B̂P ◦ B̂P = B̂P.

Proof. This is easiest to see in local coordinates. Pick a point p ∈ P and a local coordinate ζ
centered at p. We can expand the fundamental bidifferential and α in this local coordinate:

ω0,2 ≃ dζ1dζ2
(ζ1 − ζ2)2

+
∑

l,m>0

ϕlmζ
l−1
1 ζm−1

2 dζ1dζ2, (3.11)

α ≃
∞∑

k=−M

αkζ
kdζ. (3.12)



LES HOUCHES LECTURE NOTES ON TOPOLOGICAL RECURSION 21

Evaluating the projection at p in the local coordinate, we get:

B̂p[α](ζ
′) ≃Res

ζ=0

(∫ζ
0

ω0,2(ζ, ζ
′)

)
α(ζ) (3.13)

=

(
−1∑

k=−M

αk(ζ
′)k +O(1)

)
dζ ′. (3.14)

In other words, the one-forms B̂p[α] and α have the same principal part at p. The same holds
true for the one-form B̂P[α], where we now sum over all q ∈ P, since the projection at the other
points q ̸= p in P are holomorphic at p ∈ P.

As for showing that it is a projection, for any one-form α on Σ, we can write

α = B̂P[α] +ω (3.15)

where ω is holomorphic on P. (This is clearly true since α and B̂P[α] have the same principal
part on P.) But then, it is easy to see that B̂P[ω] = 0, and hence B̂P ◦ B̂P = B̂P. □

In fact, one can think of this projection operation as a “local-to-global” operation. Indeed, in
Definition 3.9, on the right-hand-side we don’t really need α to be a well-defined one-form on
Σ; all we need is its local data near the points p ∈ P. In other words, we could take as input only
the local data of differentials on open sets around the points p ∈ P (what is called the “germ”
of a one-form in fancy language), and the output of the operation would be a globally defined
one-form on Σ that has the same principal part at the points p ∈ P as the given local data. Neat!

Along these lines, this projection allows us to define a natural basis of one-forms on Σ with
prescribed poles at a point p:

Definition 3.11. Let ω0,2 be a fundamental bidifferential on Σ. Pick a point p ∈ Σ, with ζ a
local coordinate centered at p. For k ∈ N, we define the one-forms

ξ
(p)
−k (z

′) =B̂p

[
dζ(z)

ζk+1(z)

]
(z ′) (3.16)

= Res
z=p

(∫z
p

ω0,2(·, z ′)
dζ(z)

ζk+1(z)

)
. (3.17)

In other words, we start with the locally defined one-form dζ
ζk+1 at p, and construct a globally

defined one-form ξ−k(z)with the same principal part atp. That is, in local coordinate ζ centered
at p,

ξ
(p)
−k (z) ≃

(
1

ζ(z)k+1
+ holomorphic

)
dζ(z). (3.18)

This is a particularly nice basis of one-forms because one-forms obtained by projection have
a finite expansion in this basis:

Lemma 3.12. Letω0,2 be a fundamental bidifferential on Σ, and P ⊂ Σ a finite set of points. Let α be a
meromorphic one-form on Σ. Then

B̂P[α](z) =
∑
p∈P

∑
k∈N

αp,kξ−k(z), (3.19)

where only finitely many coefficients αp,k are non-vanishing.

Proof. Expand α in a local coordinate ζ at p ∈ P:

α ≃
∞∑

k=−M

αkζ
kdζ. (3.20)
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The projection operator turns the ζ−k−1 into ξ−k and kills the holomorphic part. □

This finite decomposition will prove to be very useful in the following. To end this section,
we define the “projection property”.

Definition 3.13. Letω0,2 be a fundamental bidifferential on Σ, and P ⊂ Σ a finite set of points.
Let α be a meromorphic one-form on Σ. We say that α satisfies the projection property on P if

B̂P[α] = α. (3.21)

By Lemma 3.12 this implies that α has a finite decomposition in the basis of one-forms ξ(p)−k (z)

for p ∈ P.

3.3. Topological recursion

With this under our belt, we are now ready to define topological recursion. As mentioned
previously, we will focus on simple spectral curves, for clarity. However, everything can be
naturally generalized to spectral curves with arbitrary ramification, with the only price to pay
being complicated combinatorics and ugly looking formulae.

Let S = (Σ, x,ω0,1,ω0,2) be a simple spectral curve. Let ζ be a local coordinate centered at
a ramification point a ∈ Ram. Since a is simple, locally near a we have x(ζ) = x(a) + ζ2 if
x(a) ∈ C, or x(ζ) = 1

ζ2 if a is a pole of x. In both cases, there is a natural involution σa : ζ 7→ −ζ

near a that fixes a and such that x(σa(ζ)) = x(ζ). This is the involution that exchanges the two
sheets of the branched covering x : Σ→ P1 that meet at the ramification point a ∈ Σ.

The goal of topological recursion is to construct a sequence of meromorphic differentials
{ωg,n}g∈N,n∈N∗ , where ωg,n is a symmetric meromorphic differential on Σn. We also impose
that those differentials only have poles at the ramification points in Ram and that they are
residueless. We will call those “correlators”.

Definition 3.14. Let S = (Σ, x,ω0,1,ω0,2) be a simple spectral curve. A system of correlators on
S is a collection {ωg,n}g∈N,n∈N∗ of symmetric n-differentials on Σn, where ω0,1 and ω0,2 are
already specified by S, and for 2g − 2 + n > 0, ωg,n only has poles on Ram with vanishing
residues.

To define topological recursion, we will need the following particular combination of corre-
lators:

Definition 3.15. Let S = (Σ, x,ω0,1,ω0,2) be a simple spectral curve, and {ωg,n}g∈N,n∈N∗ a
system of correlators on S. Let a ∈ Ram. We define

ω̃
(a)
g,n(z, z2, . . . , zn) =

1

ω0,1(z) −ω0,1(σa(z))

(
ωg−1,n+1(z, σa(z), z2, . . . , zn)

+

′∑
g1+g2=g

I∪J={z2,...,zn}

ωg1,|I|+1(z, I)ωg2,|J|+1(σa(z), J)
)
, (3.22)

which is a locally defined one-form (in the variable z) in the neighborhood of z = a. Here,
the second sum is over disjoint, possibly empty, subsets I, J ⊂ {z2, . . . , zn} such that I ∪ J =

{z2, . . . , zn}, and the prime means that we omit all terms involving ω0,1. We note that ω̃(a)
g,n is

constructed out ofωg ′,n ′ with 2g ′ − 2+ n ′ < 2g− 2+ n.
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The definition may seem strange at first, as we are “dividing by a one-form”. But this is just
a formal manipulation; the term in brackets is a quadratic differential in the variable z, so by
“dividing by a one-form” we just mean cancelling a differential so that the result is a one-form
in z.

We finally define topological recursion, which amounts to constructing globally defined
differentialsωg,n from the locally defined one-forms ω̃(a)

g,n from Definition 3.15 using the pro-
jection operator from Definition 3.9. In other words, topological recursion constructs globally
defined differentials ωg,n(z1, . . . , zn) on Σn that have the same principal parts (in z1) as the
local ω̃(a)

g,n(z1, . . . , zn).

Definition 3.16. We say that a system of correlators {ωg,n}g∈N,n∈N∗ on a simple spectral curve
S = (Σ, x,ω0,1,ω0,2) satisfies topological recursion if, for all g, n such that 2g− 2+ n > 0,

ωg,n(z1, . . . , zn) =
∑

a∈Ram
B̂a[ω̃

(a)
g,n(·, z2, . . . , zn)](z1) (3.23)

=
∑

a∈Ram
Res
z=a

(∫z
a

ω0,2(·, z1)
)
ω̃

(a)
g,n(z, z2, . . . , zn). (3.24)

We note that the correlators are uniquely reconstructed by topological recursion since, as
noted in Definition 3.15, ω̃(a)

g,n only involves contributions from ωg ′,n ′ with 2g ′ − 2 + n ′ <

2g−2+n. Thus the formula is recursive on 2g−2+n, with initial data given byω0,1 andω0,2.
For 2g−2+n > 0, the correlatorsωg,n only have poles on Ram, with order at most 6g−4+2n.

Remark 3.17. It is common in the literature on topological recursion to introduce the recursion
kernel

K(a)(z1, z) =

∫z
aω0,2(·, z1)

ω0,1(z) −ω0,1(σa(z))
, (3.25)

which is locally defined (in z) near z = a. Then topological recursion can be rewritten as

ωg,n(z1, . . . , zn) =
∑

a∈Ram
Res
z=a

K(a)(z1, z)
(
ωg−1,n+1(z, σa(z), z2, . . . , zn)

+

′∑
g1+g2=g

I∪J={z2,...,zn}

ωg1,|I|+1(z, I)ωg2,|J|+1(σa(z), J)
)
, (3.26)

which is a common way of writing topogical recursion in the literature.

3.3.1. Symmetry

You may have noticed a strong similarity between (3.22)-(3.23) (or (3.26)) and the recursive
formula for the coefficients Fg,n of a partition function Z that we obtained from the differential
constraints IZ = 0 when the Airy ideal I is generated by differential operators Ha that are
quadratic in  h, see (2.36). Indeed, the combinatorics of topological recursion are roughly the
same as the combinatorics of the action of differential operators Ha that are degree two in  h on
a partition function Z. This is of course not a coincidence; we will see how the two formalisms
are related in the next section.

As was the case with the recursion (2.36), symmetry of the correlators produced by (3.23)
is far from obvious, since z1 plays a very different role from the other variables z2, . . . , zn in
the formula. As symmetry is a defining property of a system of correlators in Definition 3.14,
saying that a system of correlators satisfies topological recursion on a given spectral curve is
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equivalent to saying that (3.23) produces symmetric correlators on that spectral curve. Note
that symmetry of the correlators produced by (3.23) on any admissible simple spectral curve
has been proved by direct calculation in [EO07a]. It will also follow as a consequence of the
relation with Airy structures, as we will see.

In fact, as mentioned previously the topological recursion formula can be generalized to spec-
tral curves with arbitrary ramification, see [BE13]. As in the particular case above, symmetry
of the correlators is then far from obvious. It turns out that the correlators produced by the
general form of topological recursion are symmetric whenever the spectral curve is admissible
according to Definition 3.2 — this is in fact the reason for introducing this particular admissibil-
ity condition. However, in contrast to the case of simple ramification above, proof of symmetry
in the general context has not been done by direct calculation, as it gets rather messy. It is
rather obtained in a much nicer way as a consequence of the relation with Airy structures (see
[BBCCN24]).

We can summarize these statements in the following theorem:

Theorem 3.18. Let S = (Σ, x,ω0,1,ω0,2) be an admissible spectral curve. Construct a collection
of differentials {ωg,n}g∈N,n∈N∗ via (3.23) if the curve is simple, and via the natural generalization of
topological recursion in [BE13] for spectral curves with higher ramification points. Then the differentials
ωg,n are symmetric.

3.3.2. Projection property

Another key property of the correlators produced by topological recursion is that they satisfy
the projection property. Recall the definition of the projection property in Definition 3.13.

Lemma 3.19. Let {ωg,n}g∈N,n∈N∗ be a system of correlators on a simple spectral curveS = (Σ, x,ω0,1,ω0,2)

that satisfies topological recursion. Then the correlators satisfy the projection property on Ram (in the
variable z1). That is,

ωg,n(z1, . . . , zn) =B̂Ram[ωg,n(·, z2, . . . , zn)](z1) (3.27)

=
∑

a∈Ram
Res
z=a

(∫z
a

ω0,2(·, z1)
)
ωg,n(z, z2, . . . , zn). (3.28)

We note that the statement remains true on any admissible spectral curve, with the correlators computed
via the generalization of topological recursion from [BE13].

Proof. This is clear by definition of topological recursion (see Definition 3.16) and the fact that
B̂Ram is a projection. For general admissible spectral curves, this is explained in [BBCKS23]. □

As explained in Lemma 3.12, a direct consequence of the projection property is the existence
of a finite expansion for the correlators in terms of the basis of one-forms ξ(a)−k introduced in
Definition 3.11.

Lemma 3.20. Let {ωg,n}g∈N,n∈N∗ be a system of correlators on a spectral curve S = (Σ, x,ω0,1,ω0,2)

that satisfy the projection property on Ram. Define the basis of one-forms ξ(a)−k for each ramification point
a ∈ Ram as in Definition 3.11. Then, for 2g− 2+ n > 0, the correlators take the form

ωg,n(z1, . . . , zn) =
∑

a1,...,an∈Ram

∑
k1,...,kn∈N∗

Fg,n

[
a1 . . . an
k1 . . . kn

]
ξ
(a1)
−k1

(z1) · · · ξ
(an)
−kn

(zn), (3.29)

where only a finite number of coefficients are non-zero.
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This property is crucial. As we will see, generally speaking the coefficients Fg,n of this
expansion will have an interesting interpretation in terms of the moduli space of curves.

Remark 3.21. When Σ is a compact Riemann surface with a Torelli marking, we can think of the
projection property in a different way. In this case, recall from Lemma 3.7 thatω0,2 is uniquely
fixed by imposing the normalization condition

∮
ai

ω0,2(·, z2) = 0, for all i ∈ {1, . . . , ḡ}. (3.30)

With this choice of fundamental bidifferential, it follows from the Riemannn bilinear identity
that the statement that the correlatorsωg,n satisfy the projection property on Ram is equivalent
to saying that they are normalized on a-cycles. That is, for all 2g− 2+ n > 0,

∮
ai

ωg,n(·, z2, . . . , zn) = 0, for all i ∈ {1, . . . , ḡ}. (3.31)

This is how the projection property was usually stated in the older literature on topological
recursion.

3.3.3. Graphical interpretation

The combinatorics involved in the topological recursion formula (3.26) have a nice graphical
interpretation. For now, this is simply a mnemonic trick to remember the terms on the right-
hand-side of (3.26). However, the graphical interpretation takes roots in the geometry of the
moduli space of curves, which is the natural setup to interpret the correlators produced by
topological recursion.

The idea of the graphical interpretation goes as follows. For each ramification point a, we do
the following.

• To each ωg,n(z1, . . . , zn), we attach a genus g Riemann surface with n boundary, and
label the boundaries with the variables z1, . . . , zn;

• To the recursion kernelK(a)(z1, z), we attach a “pair of pants” (that is, a genus 0Riemann
surface with three boundaries), and label the boundaries with z1, z and σa(z).

To get the terms on the right-hand-side of the recursion for ωg,n(z1, . . . , zn), we start with
a genus g Riemann surface with n boundaries labeled by the the variables z1, . . . , zn, and we
cut off a pair of pants such that it includes the boundary labeled by z1. This creates two new
boundaries on the resulting Riemann surface (which may or may not be connected), which we
label by z and σa(z) to match the two other boundaries of the pair of pants.

We do this in all possible ways, with the only constraint that we never allow discs (i.e.
genus zero surfaces with only one boundary). This creates all terms on the right-hand-side of
topological recursion (3.23). This is exemplified forω1,2(z1, z2) in figure 1.
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Figure 1. A graphical interpretation in terms of pairs of pants of the right-hand-
side of the topological recursion formula (3.23) forω1,2(z1, z2).

Another way to think of the recursive structure of (3.23) is to represent the terms on the
right-hand-side of (3.23) as nodal Riemann surfaces (see the lecture notes on moduli spaces
of Riemann surfaces from this school for this kind of drawing [GL24]). To get the terms on
the right-hand-side of the recursion for ωg,n(z1, . . . , zn), we draw all possible topologically
inequivalent connected nodal Riemann surfaces of genus g with n marked points and such
that:

• There is one component that is a sphere with three marked points, one of which is the
point z1 and the other two are nodes;

• There are no other nodes;
• There is no component that is a sphere with only one marked point.

We then take the normalization of the nodal surfaces, attach the kernel K(a)(z1; z) to the singled
out sphere with three marked points, and attach appropriate correlators ωg,n to the other
components as above.

Note that those are not necessarily stable nodal Riemann surfaces, as we may have compo-
nents that are spheres with two marked points. What this pictorial representation shows is that
the recursive structure seems to be somewhat related to going to the boundary of the compact-
ified moduli space of curves Mg,n, but in a not so straightforward way. This is exemplified for
ω1,2(z1, z2) in figure 2.
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Figure 2. A graphical interpretation in terms of nodal surfaces of the right-hand-
side of the topological recursion formula (3.23) forω1,2(z1, z2).

Remark 3.22. Using this graphical interpretation it is easy to explain the combinatorics that arise
in topological recursion for ramification points with ramification order r > 2. The idea is that,
instead of extracting only a pair of pants, if a ramification point has order r, we extract spheres
withm+1 boundaries, for allm ∈ {2, . . . , r}. We do this in all possible ways, following the rules
above, and this gives rise to all the terms on the right-hand-side of the generalized topological
recursion from [BE13]. You can find pretty pictures of this process in Section 2.2.3 of [BBCKS23].

Equivalently, we can also thinks of the generalized case from the point of view of nodal
surfaces. The rules are as above, but we now draw all connected nodal surfaces with one
component that is a sphere withm+ 1marked points, for allm ∈ {2, . . . , r}, one of which is the
point z1 and the otherm are nodes. Pretty pictures of this type can be found in [BHLMR13].

Note that this is also roughly the type of combinatorics that arise from Airy ideals, when the
differential operators Ha are of degree r in  h, which is again not a coincidence.

3.3.4. Dilaton equation

Correlators that satisfy topological recursion share many more interesting properties; we refer
the reader to [EO07a; EO08] for more on this. In this section we simply state one more important
property satisfied by the correlators, which is known as the dilaton equation.

Theorem 3.23. Let S = (Σ, x,ω0,1,ω0,2) be an admissible spectral curve. Construct a collection
of differentials {ωg,n}g∈N,n∈N∗ via (3.23) if the curve is simple, and via the natural generalization of
topological recursion in [BE13] for spectral curves with higher ramification points. Then the differentials
ωg,n, for 2g− 2+ n > 0, satisfy the dilaton equation:

ωg,n(z1, . . . , zn) =
1

2g− 2+ n

∑
a∈Ram

Res
z=a

Φ(z)ωg,n+1(z, z1, . . . , zn), (3.32)

where Φ(z) is an arbitrary antiderivative ofω0,1(z); that is,ω0,1(z) = dΦ(z).

For simple spectral curves, this was proved in [EO07a]. For the general case, one can get the
dilaton equation from limits as in [BBCKS23] or from the equivalence with Airy structures.

The dilaton equation allows us to extend the definition of correlators toωg,0, which are simply
numbers; those are also called “free energies” and denoted by Fg := ωg,0. The definition is:
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Definition 3.24. Let S = (Σ, x,ω0,1,ω0,2) be an admissible spectral curve. For g ⩾ 2, the free
energies Fg := ωg,0 are defined by

Fg =
1

2g− 2

∑
a∈Ram

Res
z=a

Φ(z)ωg,1(z). (3.33)

There is also a separate definition for F0 and F1, see [EO07a].

We will not use the free energies further in these lecture notes, but they play an important
role in relations to integrability, and will also appear in other lecture series in this school [Liu24].

3.4. Examples and enumerative geometry

In this section we study a few examples of spectral curves, and highlight the enumerative
interpretation of the coefficients Fg,n of the expansion (3.29).

3.4.1. Airy spectral curve

Consider the Airy spectral curve introduced in Example 3.3. We have

Σ = C, x =
1

2
z2, ω0,1 = z2 dz, ω0,2 =

dz1dz2
(z1 − z2)2

. (3.34)

There is only one ramification point at z = 0, which is simple.

(3.23) can be used to construct a system of correlators ωg,n. In fact, for this spectral curve
we can calculate the first few correlators by hand. We obtain:

ω0,3(z1, z2, z3) =
dz1dz2dz3

z21z
2
2z

2
3

, (3.35)

ω1,1(z1) =
dz1

8z41
, (3.36)

ω0,4(z1, z2, z3, z4) =3
dz1dz2dz3dz4

z21z
2
2z

2
3z

2
4

4∑
i=1

1

z2i
, (3.37)

ω1,2(z1, z2) =
dz1dz2
8

(
5

z21z
6
2

+
5

z61z
2
2

+
3

z41z
4
2

)
. (3.38)

Exercise. It is a good exercise to use the topological recursion formula (3.23) to calculate by
hand the first few correlators (ω0,3,ω1,1,ω0,4,ω1,2, . . . ). Do it!

For this spectral curve, since ω0,2 = dz1dz2
(z1−z2)2

, the basis of one-forms from Definition 3.11 at
the ramification point z = 0 is very simple:

ξ−k(z1) = Res
z=0

(∫z
0

ω0,2(·, z1)
dz

zk+1

)
=
dz1

zk+1
1

. (3.39)

We see that the first few correlators indeed have a finite expansion of the form

ωg,n(z1, . . . , zn) =
∑

k1,...,kn∈N∗

Fg,n[k1, . . . , kn]ξ−k1
(z1) · · · ξ−kn

(zn), (3.40)

as expected. The resulting non-zero coefficients (up to permutations of the entries) for the first
few correlators are

F0,3[1, 1, 1] = 1, F1,1[3] =
1

8
, F0,4[1, 1, 1, 3] = 3, F1,2[1, 5] =

5

8
, F1,2[3, 3] =

3

8
.

(3.41)
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In general, for the Airy spectral curve one can prove an explicit formula for the correlators
which relates them to intersection numbers over the moduli space of curves. Using the expan-
sion (3.40), one can prove that the only non-zero coefficients are when all ki’s are odd (in other
words, the correlatorsωg,n only have even powers of the variables, and thus are odd under the
involution zi 7→ −zi). Those non-zero coefficients are given by

Fg,n[2m1 + 1, . . . , 2mn + 1] =

n∏
i=1

(2mi + 1)!!
∫
Mg,n

ψm1

1 · · ·ψmn
n . (3.42)

Notice a similarity with (2.30)? This is of course not a coincidence! As we will see, topological
recursion on the Airy spectral curve is equivalent to the Kontsevich-Witten Virasoro constraints.

Using the explicit calculation of the coefficients Fg,n above, we get the first few non-zero
intersection numbers (up to permutations of the psi-classes):∫

M0,3

1 = 1,

∫
M1,1

ψ1 =
1

24
,

∫
M0,4

ψ1 = 1, (3.43)∫
M1,2

ψ2
1 =

1

24
,

∫
M1,2

ψ1ψ2 =
1

24
, (3.44)

which are well-known intersection numbers. For your interest, Bertrand Eynard has a nice
online program that computes intersection numbers for you [Eyn].

3.4.2. Bessel spectral curve

Consider next the Bessel spectral curve introduced in Example 3.3. We have

Σ = C, x =
1

2
z2, ω0,1 = dz, ω0,2 =

dz1dz2
(z1 − z2)2

. (3.45)

There is only one ramification point at z = 0, which is simple.

For this spectral curve, using (3.23) one can show that

ω0,n(z1, . . . , zn) = 0 (3.46)

for all n ∈ N∗. So the only non-zero correlators have g ⩾ 1. This can be proved with a simple
pole analysis.

Exercise. Check this!

The first few non-zero correlators can also be calculated by hand. We get:

ω1,1(z1) =
dz1

8z21
, (3.47)

ω1,2(z1, z2) =
dz1dz2

8z21z
2
2

. (3.48)

The basis of one-forms at the ramification point at z = 0 is the same as for the Airy spectral
curve, and we observe that we get a finite expansion in this basis as expected. Just as for the Airy
spectral curve, it is straightforward to show that the only non-zero coefficients Fg,n[k1, . . . , kn]
are when all ki’s are odd.

The coefficients also have an interpretation in terms of intersection numbers over the moduli
space of curves, which was only recently found by Norbury. The statement is that

Fg,n[2m1 + 1, . . . , 2mn + 1] =

n∏
i=1

(2mi + 1)!!
∫
Mg,n

Θg,nψ
m1

1 · · ·ψmn
n , (3.49)
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where Θg,n is the Norbury cohomology class on Mg,n, which already appeared in (2.33)
[Nor23]. Notice the similarity again!

For instance, using the first few correlators above, we get:∫
M1,1

Θ1,1 =
1

8
,

∫
M1,2

Θ1,2 =
1

8
, (3.50)

which were calculated in [Nor23].

3.4.3. Mirzakhani spectral curve

There is another simple spectral curve that plays an important role in applications; we will call
it the Mirzakhani spectral curve. It was first studied in [EO07c]. We consider the spectral curve

Σ = C, x =
1

2
z2, ω0,1 =

z sin(2πz)
2π

dz, ω0,2 =
dz1dz2

(z1 − z2)2
. (3.51)

This is an interesting spectral curve, as it does not come from an algebraic curve. There is only
one ramification point at z = 0, which is simple, and the basis of one-forms is still ξ−k(z) =

dz
zk+1 .

In this case, the first few correlators can still be calculated by hand. We get:

ω0,3(z1, z2, z3) =
dz1dz2dz3

z21z
2
2z

2
3

, (3.52)

ω1,1(z1) =dz1

(
1

8z41
+

π2

12z21

)
, (3.53)

ω0,4(z1, z2, z3, z4) =dz1dz2dz3dz4

(
3

z21z
2
2z

2
3z

2
4

4∑
i=1

1

z2i
+

2π2

z21z
2
2z

2
3z

2
4

)
, (3.54)

ω1,2(z1, z2) =dz1dz2

(
5

8z21z
6
2

+
5

8z61z
2
2

+
3

8z41z
4
2

+
π2

2z21z
4
2

+
π2

2z41z
2
2

+
π4

4z21z
2
2

)
. (3.55)

Exercise. If you are are not bored yet, use the TR formula (3.23) to calculate these correlators by
hand! Or, write a code that you can then use to calculate TR for your favourite spectral curve.
:-)

Interestingly, we see that the correlators are the correlators of the Airy spectral curve plus
corrections that involve π. This is not surprising, given that near the ramification point z = 0,

ω0,1(z) =
z sin(2πz)

2π
=

(
z2 −

2π2z4

3
+O(z6)

)
dz, (3.56)

and hence to first order this is just the Airy spectral curve.

The enumerative interpretation for this spectral curve is very nice. Expanding in the basis of
one-forms ξ−k(z) =

dz
zk+1 , one can prove that the only non-zero coefficients Fg,n[k1, . . . , kn] are

when all ki’s are odd, and they take the form (see [EO07c; EO08]):

Fg,n[2k1 + 1, . . . , 2kn + 1] = (2π2)k0

n∏
i=1

(2ki + 1)!!
∫
Mg,n

κk0

1 ψ
k1

1 · · ·ψkn
n , (3.57)

where κ1 is a kappa classes. In particular, the correlatorsωg,n are the Laplace transforms of the
Weil-Petersson volumes Vg,n(L1, . . . , Ln) of the moduli spaces of bordered Riemann surfaces
with geodesic boundaries of lengths L1, . . . , Ln and genus g. The inverse Laplace transform of
the topological recursion formula recovers Mirzakhani’s recursion relations for these volumes
[Mir07], as was shown in [EO07c]. This particular example also plays a significant role in
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applications of topological recursion to JT gravity (see for instance [SSS19] and the lecture series
on JT gravity in this school [Tur24]).

Remark 3.25. It is worth noting that this example can be generalized to compute a general
generating series for intersection numbers ofψ andκ classes onMg,n from topological recursion,
see [KN21]. The spectral curve looks like

Σ = C, x =
1

2
z2, ω0,1 =

(
z2 +

∞∑
k=1

gkz
2k+2

)
dz, ω0,2 =

dz1dz2
(z1 − z2)2

, (3.58)

where the gk are formal variables that appear in the generaring series for intersection numbers.
(Correspondingly, through the correspondence with Airy structures, one can write general
Virasoro constraints for the associated partition function.) As a result, it follows from this that
for any spectral curve of the form

Σ = C, x =
1

2
z2, ω0,1 =

(
z2 +O(z3)

)
dz, ω0,2 =

dz1dz2
(z1 − z2)2

, (3.59)

the Fg,n[k1, . . . , kn] computed by topological recursion are particular combinations of integrals
of ψ and κ classes on Mg,n [KN21].

There is a deep reason for this, which is that the Fg,n[k1, . . . , kn] are correlators of a semisim-
ple cohomological field theory, which can be recovered from the trivial cohomological field
theory (the Kontsevich-Witten or Airy case, which computes intersection numbers ofψ-classes)
via the action of the Givental group. In the case of spectral curves of the form (3.59), the
corresponding cohomological field theory is obtained simply via a Givental translation. This is
explained in [DOSS14] – see also the lecture notes on moduli spaces of Riemann surfaces in this
summer school [GL24].

3.4.4. Simple admissible spectral curves

The Airy and Bessel examples are the building blocks for simple spectral curves, as they control
the local behaviour of a spectral curve near a simple ramification point. For simple admissible
spectral curves, we can construct correlators using the topological recursion formula (3.23),
which produces symmetric correlators. We expand in the natural basis of one-forms dξ(a)−k at
the ramification points a ∈ Ram as in (3.29). Do the coefficients

Fg,n

[
a1 . . . an
k1 . . . kn

]
(3.60)

of the expansion have an interpretation as integrals over Mg,n, as was the case for the Airy and
Bessel spectral curves?

The answer is yes, at least when all ramification points are of Airy-type; one can write down
an expression for these coefficients as integrals over Mg,n. As mentioned above in Remark 3.25,
the reason is that the Fg,n are correlators of a semisimple cohomological field theory, which
can be obtained by acting on a product of trivial cohomological field theories (one for each
ramification point) via the Givental group action. In this case however we need to act with both
translations and rotations. Writing down the explicit resulting expression is beyond the scope
of these lecture notes; we refer the reader to [Eyn11; DOSS14] for more details and for the direct
connection with cohomological field theory.
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3.4.5. The (r, s) spectral curves

Our next example is the (r, s) spectral curve introduced in Example 3.5. We haveΣ = C, x = 1
rz

r,
ω0,1 = zs−1dz (or, equivalently, y = zs−r), andω0,2 = dz1dz2

(z1−z2)2
. There is only one ramification

point at z = 0, but for r > 2 it is not simple anymore. Thus, the topological recursion formula
(3.23) only applies when r = 2; for r > 2 we need to use its generalization from [BE13].

Nevertheless, for any r ⩾ 2we can proceed as usual. Asω0,2 = dz1dz2
(z1−z2)2

, the natural basis of
one-forms at z = 0 is still given by ξ−k(z) =

dz
zk+1 . We expand the correlators ωg,n as in (3.40).

Do the coefficients Fg,n[k1, . . . , kn] have a natural enumerative geometric interpretation?

This question turns out to be a lot more subtle than expected.

For the case s = r + 1, it was shown that the Fg,n calculate intersection numbers over the
moduli space of curves with r-spin structures [BE17; DNOPS17], which is an enumerative
geometric problem that was first studied by Witten in [Wit93]. Indeed, as we will see, for this
case topological recursion is equivalent to a set of W(glr)-constraints satisfied by the r-spin
partition function. It is also follows that Z is a tau-function for the r-KdV hierarchy (sometimes
known as the “r-spin Witten conjecture”), which was originally proved by Faber, Shadrin and
Zvonkine in [FSZ10].

For the case s = r− 1, an enumerative interpretation was found very recently in [CGG23]. It
is the natural r-spin generalization of the intersection numbers appearing for the Bessel spectral
curve, with the Norbury class replaced by its natural generalization based on the work of Chiodo
[Chi08]. In this case, the partition function Z is a still a tau-function for the r-KdV hierarchy; it
is the so-called r-BGW tau-function [ABDKS23].

However, for other choices of s ∈ {1, . . . , r − 1} with r = ±1 mod s, at this point the enu-
merative interpretation of the coefficients is unknown. The natural candidate is to take the top
class of the Chiodo class as for the case s = r− 1, but this is incorrect. Finding an enumerative
interpretation for these coefficients is an interesting open question in the field.

3.4.6. Arbitrary admissible spectral curves

The (r, s) spectral curves are the building blocks for arbitrary admissible spectral curves, as they
control the local behaviour near ramification points. Just as for the case of arbitrary admissible
simple spectral curves, we expect the coefficients of the expansion in the natural basis of one-
forms dξ(a)−k to have an enumerative interpretation. However, as the enumerative interpretation
for ramification points of type (r, s) is still unknown in general, at this stage we do not have a
general expression for these coefficients in terms of enumerative geometry of curves.

3.5. A few remarks

We end this section with a few remarks concerning generalizations of topological recursion,
beyond the natural generalization to curves with arbitrary ramification.

• The reader may have noticed that in going from Section 2 to Section 3 we replaced the
sum over half-integers g ∈ 1

2N by a sum over integers g ∈ N. There is actually no reason
to do this; topological recursion could (and should) be defined for systems of correlators
{ωg,n}g∈ 1

2N,n∈N∗ . This introduces no new complexity; however, there is now a third
initial condition, namely the correlator ω 1

2 ,1
(z), as 2(12) − 2 + 1 = 0. This correlator
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should be given as part of the data of a spectral curve. We omitted this straigthforward
generalization in this section for brevity.

• In the definition of spectral curves, we assumed that x : Σ → P1 is a holomorphic map
between Riemann surfaces. Equivalently, we can think of x as a meromorphic function
on Σ. We can however generalize the topological recursion framework to include points
in Σwhere x has exponential singularities. We can think of the exponential singularities
as ramification points of infinite order, and naturally generalize the topological recur-
sion formula for arbitrary ramification to this context. This framework has interesting
applications in enumerative geometry, for instance in the context of Hurwitz theory. See
[BKW23] for more details.

• One of the most fundamental property of topological recursion is known as “symplectic
invariance”, and, in particular, “x − y invariance”. The precise statement of x − y

invariance is not so easy to formulate, but it proceeds as follows. Let S be a spectral
curve, which we now think of as a Riemann surface Σ, two functions x and y on Σ,
and ω0,2. Let us define a “dual” spectral curve S∨, obtained by swapping x and y.
In other words, S∨ is defined by the same Riemann surface Σ, the functions x∨ = y

and y∨ = x, and ω0,2. The statement of x − y invariance is that the correlators ωg,n

produced by topological recursion on S can be fully reconstructed from the correlators
ω∨

g,n produced by topological recursion on S∨, and vice-versa. This statement was
proposed already in the very early days of topological recursion in [EO07a; EO07b],
but a fully explicit reconstruction reformula relating the two systems of correlators has
only been written down recently [ABDKS24b]. We refer to the reader to [ABDKS24b]
for more details. Interestingly, for x − y invariance to hold in general, one need to
generalize topological recursion slightly. In particular, in the definition of spectral
curves, x and y are not required to be meromorphic anymore; only dx and dy have to
be (this is not unrelated to the case of exponential singularities mentioned above). The
general recursive formula adds correction terms to (3.23), and has become known as “log
TR” [ABDKS24b] (note that for most interesting curves however the correction terms
vanish and log TR reduces to the original TR presented here). The resulting projection
property satisfied by the correlators is also modified accordingly. Very recently, a further
generalization of topological recursion that takes its roots in symplectic invariance is
known as “generalized TR” [ABDKS24a]; we caution the reader that for curves with
higher ramification, the correlators constructed from generalized TR generally differs
from those constructed by the topological recursion of [BE13].

• There are many more generalizations of topological recursion that we will not cover in
these lectures notes, for instance, β-deformed (or non-commutative) topological recur-
sion [EM11; CEM09; CEM11; BE19; BE20; BBCC24], Q-deformed topological recursion
[KO23; Osu23], geometric recursion [ABO23], super topological recursion and super
Airy structures [Bou+20; BO21], etc.

4. The bridge: loop equations

As should have become clear by studying the examples of the Airy and Bessel spectral curves,
the topological recursion formula (3.23) should be somehow related to the Airy ideals of Section
2. What is the connection?

This brings us to the roots of topological recursion. Eynard and Orantin originally formulated
topological recursion as a method for calculating correlators of Hermitian matrix models, which
are generating functions for expectation values of products of traces of matrices. More precisely,
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they formulated topological recursion as a method for calculating a formal asymptotic solution
to the loop equations of matrix models. However, they realized that the recursion formula
is much more general than that, and indeed, it is now known to appear in many different
contexts, regardless of whether there is an underlying matrix model or not. Nevertheless, the
origin of topological recursion as a solution of loop equations is key; this is how we will connect
topological recursion with Airy ideals.

4.1. The origin of TR: loop equations

As in the previous section, for the sake of clarity we focus on simple spectral curves. However, all
the main statements (suitably generalized of course) hold true for arbitrary admissible spectral
curves.

Loop equations (also sometimes called “abstract loop equations”) are a set of equations
satisfied by correlators on a spectral curve. They concern the local behaviour near ramification
points of particular combinations of correlators.

LetS = (Σ, x,ω0,1,ω0,2)be a simple admissible spectral curve. We split the set of ramification
points as Ram = RamA ∪ RamB, where RamA and RamB include ramification points of Airy-
type and Bessel-type respectively. Moreover, for any a ∈ Ram, let σa(z) be the local involution
near a that exchanges the two sheets (in a local coordinate ζ centered at a, σa(ζ) = −ζ).

Definition 4.1. Let {ωg,n}g∈N,n∈N∗ be a system of correlators on a simple admissible spectral
curve S = (Σ, x,ω0,1,ω0,2).

We say that the correlators satisfy the linear loop equation if, for all 2g − 2 + n > 0 and all
a ∈ Ram,

1

dx(z)
(ωg,n(z, z2, . . . , zn) +ωg,n(σa(z), z2, . . . , zn)) (4.1)

is holomorphic in z at z = a.

We say that the correlators satisfy the quadratic loop equation if, for all 2g − 2 + n > 0 and all
a ∈ Ram,

1

dx(z)2

ωg−1,n+1(z, σa(z), z2, . . . , zn) +
∑

g1+g2=g
I∪J={z2,...,zn}

ωg1,|I|+1(z, I)ωg2,|J|+1(σa(z), J)


(4.2)

is either holomorphic in z at z = a if a ∈ RamA, or it has at most a double pole at z = a if
a ∈ RamB.

Those equations may seem to come out of nowhere, but this is the type of equations that
one obtains for correlators of Hermitian matrix models. In this context, they follow from the
Schwinger-Dyson equations for the matrix model.

Remark 4.2. Note that the combinatorics of the quadratic loop equation (4.2) are very similar to
the recursive structure of topological recursion in (3.22), but the sum in (4.2) does not have a
“prime”: this means that terms with ω0,1 are included in (4.2), while they were not included
in (3.22). This is very important.

Remark 4.3. For spectral curves with higher ramification, loop equations can be similarly for-
mulated, see [BE17; BBCCN24; BKS24; BBCKS23]. If a ramification point has order r, then there
are r loop equations at this point, with the first two being suitable generalizations of the linear
and quadratic loop equations above.
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Given a spectral curve, one can study the solution space of loop equations. Correlators that
satisfy both the linear and quadratic loop equations on a simple admissible spectral curves are
said to satisfy “blobbed topological recursion” [BS16].

Definition 4.4. Let {ωg,n}g∈N,n∈N∗ be a system of correlators on a simple admissible spectral
curve S = (Σ, x,ω0,1,ω0,2). We say that the correlators satisfy blobbed topological recursion if
they satisfy both linear and quadratic loop equations.

Blobbed topological recursion is not really a recursion. Indeed, the linear and quadratic
loop equations do not uniquely specify the correlators. What they do, however, is specify the
principal parts of theωg,n at the ramification points a ∈ Ram in terms of the correlatorsωg ′,n ′

with 2g ′−2+n ′ < 2g−2+n. In other words, we get some sort of recursive process on 2g−2+n,
but at each step of the recursion we can add to ωg,n a differential that is holomorphic at all
a ∈ Ram and still get a solution to the loop equations.

To fix this ambiguity and uniquely determine a solution of the loop equations, we need to
impose a further property on the correlators. The natural condition to impose is the projection
property on Ram, which was introduced in Definition 3.13. This gives rise to the Eynard-Orantin
topological recursion.

Theorem 4.5. Let S = (Σ, x,ω0,1,ω0,2) be a simple admissible spectral curve. There is a unique system
of correlators {ωg,n}g∈N,n∈N∗ on S that satisfies both blobbed topological recursion (i.e. the linear and
quadratic loop equations) and the projection property on Ram, and it is given by the topological recursion
formula (3.23).

The proof of this theorem can be found in many places, for instance [BS16; BBCKS23].

This is a key result in the theory of topological recursion, and is in fact the origin of the
recursion formula in the first place. Imposing the projection property fixes the holomorphic
ambiguity at each step of the pseudo-recursive process of blobbed topological recursion to get
a fully recursive construction of a system of correlators satisfying the linear and quadratic loop
equations.

Remark 4.6. In Section 3.5 we pointed out that for x− y invariance to hold in general, one needs
to add corrections to the topological recursion formula. The resulting formula (which is still
recursive) is now known as log TR [ABDKS24b]. From the point of view of loop equations, log
TR still provides a solution to the linear and quadratic loop equations; that is, the correlators still
satisfy blobbed topological recursion. What changes is the projection property; the correlators
produced by log TR do not satisfy the usual projection property. In other words, what log TR
does is propose an alternative condition on the correlators that uniquely fixes the holomorphic
blobs at each step of blobbed topological recursion. The result is a different set of correlators,
uniquely constructed by log TR, that satisfy the linear and quadratic loop equations.

4.2. Loop equations as differential constraints

We are now ready to connect topological recursion from Section 3 with the differential con-
straints provided by Airy ideal in Section 2. What we will show is that topological recursion
can be recast as an example of Airy ideals.

The idea is simple; we reformulate the loop equations as differential constraints on a partition
function Z. To do so, we proceed in three steps. We give a rough sketch of the idea below,
which was carried out in full generality in [BBCCN24].
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Let {ωg,n}g∈N,n∈N∗ be a system of correlators on a simple admissible spectral curve S =

(Σ, x,ω0,1,ω0,2). For simplicity of notation, let us assume that the ramification set Ram consists
of a single pointa. (The general case is not much harder, but the notation becomes cumbersome.)

(1) We first impose the projection property on the correlators. This means that, for 2g− 2+
n > 0, we have a finite expansion in terms of the basis of one-forms ξ−k at a of the form
(we omit the superscript (a) for simplicity):

ωg,n(z1, . . . , zn) =
∑

k1,...,kn∈N∗

Fg,n[k1, . . . , kn]ξ−k1
(z1) · · · ξ−kn

(zn). (4.3)

For the unstable correlators ω0,1 and ω0,2, we can also expand near a. As ω0,1 is
holomorphic at a, we get

ω0,1(z) =
∑
k∈N∗

F0,1[k]ξk(z), (4.4)

where we introduced the locally defined one-forms ξk(z) = ζk−1(z)dζ(z) in a local
coordinate ζ centered at z = a. For ω0,2, one can check that, near a, we can write an
expansion of the form

ω0,2(z1, z2) =
∑
k∈N∗

kξk(z1)ξ−k(z2). (4.5)

(2) Next, we reformulate the loop equations as residue conditions. The linear loop equation
can be restated as the condition that, for all k ∈ N∗,

Res
z=a

ξk(z)

dx(z)
(ωg,n(z, z2, . . . , zn) +ωg,n(σa(z), z2, . . . , zn)) = 0. (4.6)

Similarly, the quadratic loop equation can be restated as the condition that, for all k ∈ N∗

if a is of Airy-type, and for all k ⩾ 3 if a is of Bessel-type,

Res
z=a

ξk(z)

dx(z)2

(
ωg−1,n+1(z, σa(z), z2, . . . , zn) (4.7)

+
∑

g1+g2=g
I∪J={z2,...,zn}

ωg1,|I|+1(z, I)ωg2,|J|+1(σa(z), J)
)
= 0. (4.8)

Inserting the expansions (4.3), (4.4) and (4.5) in these residue formula, we get an infinite
set of relations between the Fg,n[k1, . . . , kn], with coefficients given by residues of one-
forms obtained by taking products of ξk’s (and dividing by dx’s).

(3) We construct a partition function

Z = exp

 ∑
g∈N,n∈N∗

2g−2+n>0

 h2g−2+n

n!
∑

k1,...,kn∈N∗

Fg,n[k1, . . . , kn]xk1
· · · xkn

 , (4.9)

and show that the infinite set of relations between the Fg,n[k1, . . . , kn] can be naturally
obtained by imposing an infinite set of differential constraints HkZ = 0, k ∈ N∗. The
differential operators Hk can be constructed explicitly; after diagonalization if needed,
they take the form

Ha =  h∂a −  h2
(
1

2
Aabcxbxc + Babcxb∂C +

1

2
Cabc∂b∂c +Da

)
, (4.10)

where the tensors Aabc, Babc, Cabc and Da are constructed by taking residues of one-
forms obtained by taking products of dξk’s (and dividing by dx’s). The data of the
spectral curve is therefore encapsulated in these tensors.
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This procedure turns the loop equations into differential constraints for the partition function
Z. But do these Ha generate an Airy ideal in the Weyl algebra D

 h
A with A = N∗? To prove this,

we would need to check condition (2) of Definition 2.8, namely [I, I] ⊆  h2I.

Fortunately, we do not have to do much here. Proceeding with the calculation above ex-
plicitly, one can show that the resulting operators Ha form a representation of a subalgebra
of the Virasoro algebra! Roughly speaking, if a is of Airy-type, we obtain a conjugation of
the Kontsevich-Witten representation from Section 2.6.1. If a is of Bessel-type, we obtain a
conjugation of the BGW representation from Section 2.6.2.8 As a result, we know that those
generate an Airy ideal. Neat!

Let us recap what we have seen in this section, for simple admissible spectral curves.

• The data of a system of correlators that satisfies the projection property can be encapsu-
lated in the coefficients Fg,n of their expansions at the ramification points in the “good”
basis of one-forms.

• The correlators satisfy topological recursion if and only if they satisfy the projection
property and the loop equations.

• The loop equations can be recast as a set of differential constraints for a partition function
Z constructed out of the coefficients Fg,n.

• These differential constraints generate an Airy ideal, and hence uniquely fix the partition
function Z.

As a result, we see that topological recursion can be reformulated as a particular example of
Airy ideals!

4.3. Examples

4.3.1. Airy spectral curve

It is a good exercise to carry out the procedure outlined in the previous section by hand for the
Airy and Bessel spectral curves. For these spectral curves, everything is very explicit, and the
procedure can be carried out in detail. The tensors Aabc, Babc, Cabc and Da for the resulting
differential operators can be calculated explicitly.

Let us introduce the following operators:

W1
k = hJ2k,

W2
k =−  h2

1
2

∑
m1+m2=2k

: Jm1
Jm2

: +
1

8
δk,0

 , (4.11)

where, form ⩾ 1,
Jm = ∂m, J−m = mxm, J0 = 0 (4.12)

and : :denotes normal ordering. This is a representation for the modes of the strong generators
of the W(gl2)-algebra at self-dual level. This particular representation is obtained by first
embedding the W(gl2)-algebra in the Heisenberg algebra of two free bosons, and then the
representation is obtained via restriction of a Z2-twisted representation for the Heisenberg
algebra, see [BBCCN24].

8To be precise, what we obtain is a representation of a subalgebra of the W(gl2)-algebra at self-dual level, see
[BBCCN24]. But after reduction, one can recast it as either the Kontsevich-Witten or BGW representation.
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To get the resulting differential constraints for the Airy spectral curve, we conjugate these
operators as follows:

H1
k =e−

1
 h

J3
3 W1

ke
1
 h

J3
3 =  hJ2k,

H2
k =e−

1
 h

J3
3 W2

ke
1
 h

J3
3 =  hJ2k+3 −  h2

1
2

∑
m1+m2=2k

: Jm1
Jm2

: +
1

8
δk,0

 . (4.13)

Conjugating doesn’t change the commutation relations, so this is still a representation ofW(gl2)-
algebra at self-dual level. The differential constraints are H1

kZ = 0 for k ⩾ 0 and H2
kZ = 0 for

k ⩾ −1. Those operators generate an Airy ideal.

Those are not quite the Kontsevich-Witten constraints from Section 2.6.1. However, notice
that the constraints H1

kZ = 0 impose that Z does not depend on the even variables x2k, k ⩾ 1 .
Therefore, we can reduce the constraints by removing all terms with derivatives ∂2k with k ⩾ 0,
and the differential constraints reduce precisely to the Kontsevich-Witten Virasoro constraints
of Section 2.6.1.

Remark 4.7. We remark that the conjugation in (4.13) was not arbitrary. For the Airy spectral
curve,ω0,1 = z2 dz. If we expand in the basis ξk(z) = zk−1 dz, withω0,1 =

∑
k∈N∗ F0,1[k]ξk(z),

we get that the only non-zero F0,1[k] is F0,1[3] = 1. To get the differential constraints, we
conjugated by the operator

T = e
1
 h

∑
k∈N∗ F0,1[k]

Jk
k = e

1
 h

J3
3 . (4.14)

This is in fact the general recipe, see [BBCCN24]. It essentially corresponds to the action of
the Givental translation operator on the differential constraints for the partition function of the
cohomological field theory .

4.3.2. Bessel spectral curve

For the Bessel spectral curve, we start with the same representation of W(gl2) (4.11), but since
ω0,1 = dz, we now conjugate by the operator

T = e
1
 h

∑
k∈N∗ F0,1[k]

Jk
k = e

1
 hJ1 . (4.15)

The resulting differential constraints take the form H1
kZ = 0 for k ⩾ 0 and H2

kZ = 0 for k ⩾ 0

with

H1
k = hJ2k, (4.16)

H2
k = hJ2k+1 −  h2

1
2

∑
m1+m2=2k

: Jm1
Jm2

: +
1

8
δk,0

 . (4.17)

Those operators generate an Airy ideal. Furthermore, after reduction with respect to even
variables, we obtain precisely the BGW Virasoro constraints of Section 2.6.2.

Remark 4.8. Note that for the Bessel case the quadratic constraints (H2
kZ = 0) start at k ⩾ 0

(which is essential to get an Airy structure), instead of k ⩾ −1 in the Airy case. In other
words, we have “less” constraints in the Bessel case, which is consistent with the fact that the
requirement for the quadratic loop equation is weaker, since (4.2) can have double poles.
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4.3.3. Generating function for ψ and κ classes

It is easy to generalize the result from the previous question to the case studied in Remark 3.25.
Recall that the spectral curve is

Σ = C, x =
1

2
z2, ω0,1 =

(
z2 +

∞∑
k=1

gkz
2k+2

)
dz, ω0,2 =

dz1dz2
(z1 − z2)2

. (4.18)

Rewriting the loop equations as differential constraints for this curve, we get the same operators
(4.11) but now conjugated by

T = e
1
 h

∑
k∈N∗ F0,1[k]

Jk
k = e

1
 h

∑
k∈N gk

J2k+3
2k+3 (4.19)

where we set g0 = 1. The resulting differential constraints are H1
kZ = 0 for k ⩾ 0 and H2

kZ = 0

for k ⩾ −1, with

H1
k = hJ2k,

H2
k = h

(∑
n∈N

gnJ2k+2n+3

)
−  h2

1
2

∑
m1+m2=2k

: Jm1
Jm2

: +
1

8
δk,0

 . (4.20)

This is not quite in the form of an Airy structure, but one can find (infinite) linear combinations
of the H2

k that take the right form for the O( h) term. This means that the ideal is an Airy ideal.
We see that we obtain the “same” Virasoro constraints again, but appropriately conjugated
(which is where the geometry of the spectral curve comes in via ω0,1). This conjugation is
essentially the action of the Givental translation operator on the Virasoro constraints satisfied
by the partition function of the trivial cohomological field theory.

4.3.4. The (r, s) spectral curves

If we go beyond simple ramification, a similar procedure can be carried out (see [BBCCN24]).
While the details are more complicated, the result is quite simple. For the (r, s) spectral curve,
topological recursion can be recast as a set of differential constraints that form a representation
of a subalgebra of the W(glr)-algebra at self-dual level. This representation is obtained from a
Zr-twisted representation of the Heisenberg algebra of r free bosons. The particular subalgebra
and representation also depends on the local parameter s.

In particular, for the s = r + 1 curve, the resulting differential constraints match with the
known W-constraints for r-spin intersection numbers . For the case s = r − 1, the resulting
constraints provide W-constraints for the intersection numbers defined in [CGG23] .

4.3.5. The general picture

In general, for an admissible spectral curve, topological recursion can be recast as a set of
differential constraints attached to each ramification point. If the ramifiction point is simple,
those constraints form an appropriately conjugated representation of the Virasoro algebra,
either of Kontsevich-Witten or BGW type. If the ramification is of higher order, then those
constraints from a representation of a subalgebra of the W(glr)-algebra at self-dual level; the
particular representation depend on the (r, s) type of the ramification point. The geometry of
the spectral curve is encoded in the particular conjugations that need to be done to obtain the
differential constraints.
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As a result, we can think of topological recursion as a fancy geometric way of encoding
W-constraints attached to the ramification points of a spectral curve!

Remark 4.9. An important consequence of the reformulation of topological recursion in terms of
Airy structures is a proof of symmetry. Recall that the fact that the topological recursion formula
(3.23) produces symmetric correlators is far from obvious. For simple admissible spectral curves,
this was proven by direct calculation in [EO07a]. However, for arbitrary admissible spectral
curves, such a direct calculation is rather technical and difficult.

Symmetry now directly follows from the reformulation. Indeed, once topological recursion
has been shown to be equivalent to differential constraints that generate an Airy ideal, by The-
orem 2.11 we know that there exists a unique partition function Z that satisfies the constraints
IZ = 0. The coefficients Fg,n[k1, . . . , kn] in the partition function Z are necessarily symmetric
by construction, and hence the correlators reconstructed from these coefficients are also sym-
metric. As a result, it follows that for all spectral curves such that topological recursion can
be reformulated as differential constraints that generate an Airy ideal, topological recursion
produces symmetric correlators.

This is in fact the origin of the admissibility condition in Definition 3.2. It was shown in
[BBCCN24] that only when this admissibility condition is satisfied do the resulting differential
constraints generate an Airy ideal. In particular, the local condition r = ±1 mod s was rather
surprising and unexpected. But indeed, it can be shown that when this condition is not satisfied,
topological recursion does not produce symmetric correlators.

5. A web of connections

So far in this note we focused on the details of topological recursion itself. We first studied
when a partition function Z can be uniquely reconstructed recursively by solving differential
constraints, which led us to the notion of Airy ideals. We then independently studied a recursion
that originated from matrix models, and is formulated in terms of residues on a spectral curve.
We showed that, ultimately, both are are faces of the same coin; topological recursion can be
recast as a set of differential constraints that generate an Airy ideal.

What we did not do so far is explore the plethora of connections between topological recur-
sion, Airy ideals, and the rest of the world. In the end, this is what makes this research area
fascinating. Topological recursion has deep connections with integrability, enumerative geome-
try, cohomological field theory, matrix models, quantum curves, WKB analysis and resurgence.
Whenever topological recursion applies to a particular area of interest, all these connections
come into play and shed new light on the problem at hand.

It is beyond the scope of these lecture notes to review this web of connections. Instead, I will
briefly explore two connections: with enumerative geometry and quantum curves. This is only
the tip of the iceberg however, there are many more interesting connections that unfortunately
I cannot cover in only a few lectures on the subject.

5.1. Enumerative geometry

Ultimately, topological recursion is interesting if it calculates something interesting.

We already saw in Remark 3.25 that for any genus zero spectral curve of the form x = 1
2z

2 and
ω0,1 of Airy-type, the expansion of the correlators at the ramification point (z = 0) produces
intersection numbers ofψ and κ classes over Mg,n. In fact, it follows from the direct connection
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between topological recursion and cohomological field theory that a similar interpretation in
terms of intersection numbers can be done for arbitrary simple spectral curves with only rami-
fication points of Airy-type [Eyn11; DOSS14]. This is not surprising, as topological recursion in
this case can be recast as a collection of (appropriately conjugated) Kontsevich-Witten Virasoro
constraints.

For simple spectral curves that have some ramification points of both Airy- and Bessel-type, a
similar interpretation in terms of intersection numbers involving the Norbury class is expected,
since topological recursion can be understood as a collection of (appropriately conjugated)
Kontsevich-Wittten and BGW Virasoro constraints.

For spectral curves with ramification points of higher order, it is expected that one should be
able to write similar expressions for the coefficients of the expansion of the correlators at the
ramification points in terms of integrals over the moduli space of curves with r-spin structure.
However, at the moment such formulae have not been obtained yet.

The morale of the story is that for any admissible spectral curve, the coefficients of the local expansion
of the correlators at ramification points have an enumerative meaning in terms of the geometry of Mg,n.

But what if we expand the correlators at other points on the spectral curve? Are the coefficients
interesting as well?

It turns out that for many spectral curves, expanding the correlators at another point (that
is not a ramification point) is also very interesting and calculates interesting enumerative in-
variants. Furthermore, we can take full advantage of the fact that the correlators are globally
defined over the whole spectral curve and relate the expansion of the correlators at this point
to the expansion at the ramification points. This is a very powerful tool which can be used
to relate various enumerative invariants to integrals over Mg,n, yielding interesting results in
enumerative geometry.

Let me highlight this procedure with a few examples.

5.1.1. Hurwitz numbers

Hurwitz theory is a classical problem in geometry. Simple Hurwitz numbers count ramified
coveringsC→ P1, whereC is a compact connected genus g Riemann surface, with a prescribed
ramification type at ∞ and simple ramification points elsewhere (we count with weight 1/|G|,
where G is the automorphism group of the covering). A good pedagogical introduction to
Hurwitz theory is [CM16].

It turns out that simple Hurwitz numbers are computed by topological recursion. Consider
the spectral curve S = (Σ, x,ω0,1,ω0,2), with

S = C, x = ze−z, ω0,1 = (1− z) dz, ω0,2 =
dz1dz2

(z1 − z2)2
. (5.1)

One may recognize z = −W(−x), whereW is the LambertW-function.

There is a single ramification point at z = 1, which is simple and of Airy type. Topological
recursion proceeds as usual, and construct correlatorsωg,n whose expansion in a natural basis
of one-forms at z = 1 has coefficients that can be written as intersection numbers over Mg,n.
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However, if we expand the correlators near x = 0 (since x = 0 is not a branch point, this
expansion makes sense), the result is

ωg,n =
∑

k1,...,kn∈N∗

(
n∏

i=1

ki

)
Hg,n(k1, . . . , kn)x

k1−1
1 . . . , xkn−1

n dx1 · · ·dxn, (5.2)

where Hg,n(k1, . . . , kn) is the simple Hurwitz number counting ramified coverings C → P1

with C of genus g and ramification profile at ∞ specified by the positive integers (k1, . . . , kn).
Amazing! This was first conjectured in [BM08] by studying a particular limit from topological
string theory (see below), and proved in [EMS10] by relating topological recursion to the cut-
and-join equation satisfied by Hurwitz numbers.

What is particularly nice though is that we can use the fact that the correlators ωg,n are
globally defined object on the spectral curve to relate the two expansions and rewrite Hurwitz
numbers as particular combinations of integrals over Mg,n. This gives a new (and quite simple)
proof of a celebrated result in Hurwitz theory, the ELSV formula [ELSV01].

This particular example has now been generalized in a myriad of ways. One can for example
study r-orbifold Hurwitz numbers [DLN16; BSLM13; DLPS15]; the spectral curve is

S = C, x = ze−zr , ω0,1 = zr−1(1− rzr) dz, ω0,2 =
dz1dz2

(z1 − z2)2
. (5.3)

Expanding at x = 0 gives orbifold Hurwitz numbers, while expanding at the ramification
points give integrals over Mg,n. The relation between the two expansions yield the Johnson-
Pandharipande-Tseng formula [JPT08], which is the orbifold generalization of ELSV.

One could study r-spin Hurwitz numbers (also called r-completed cycles Hurwitz numbers)
[SSZ14; DKPS23]; the spectral curve is

S = C, x = ze−zr , ω0,1 = (1− rzr) dz, ω0,2 =
dz1dz2

(z1 − z2)2
. (5.4)

Relating the two expansions proves a formula (called the r-ELSV formula) relating r-spin
Hurwitz numbers in terms of intersection numbers over the moduli space of curves with r-spin
structures [DKPS23] , which was originally conjectured by Zvonkine [Zvo06].

Once can also combine the last two examples to compute q-orbifold r-spin Hurwitz numbers,
which results in a new qr-ELSV formula [DKPS23].

Remark 5.1. The r-spin example is in fact interesting as well because one can extend topological
recursion to include contributions from the exponential singularity at ∞. In other words, if we
consider instead the spectral curve

S = P1, x = ze−zr , ω0,1 = (1− rzr) dz, ω0,2 =
dz1dz2

(z1 − z2)2
, (5.5)

with the only difference being that we include the exponential singularity in the domain of the
spectral curve, then the suitably extended topological recursion produces different correlators.
It turns out that expansion of these correlators at x = 0 generates another type of Hurwitz
numbers, known as Atlantes Hurwitz numbers [BKW23]. Atlantes Hurwitz numbers were
originally introduced in [ALS16].

The connection between topological recursion and Hurwitz numbers can be extended much
further and formulated in a very general setting. We refer the interested reader to [ACEH20;
BDKS22; BDKS24], which in particular highlights the relations with KP tau-functions.
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5.1.2. Gromov-Witten theory of P1

Gromov-Witten theory is a natural generalization of intersection theory over Mg,n, where
instead of working with the moduli space of curves, we work with the moduli space of stable
maps to a given target space. It turns out that topological recursion also has a lot to say about
Gromov-Witten theory!

Consider the spectral curve S = (Σ, x,ω0,1,ω0,2), with

S = C∗, x = z+
1

z
, ω0,1 = log(z)z

2 − 1

z2
dz, ω0,2 =

dz1dz2
(z1 − z2)2

. (5.6)

This curve has two simple ramification points at z = ±1, both of which are of Airy-type. As
usual, the coefficients of the expansion of the correlators ωg,n can be written as integrals over
Mg,n.

However, it was shown that the coefficients of the expansion of the correlators at x = ∞
are stationary Gromov-Witten invariants of P1 [NS14; DOSS14]. In this case, the relation
between the two expansions essentially reproduces Givental’s reconstruction for the semisimple
cohomological field theory [DOSS14].

This example is in fact a simple example in a large class of examples; as shown in [DOSS14],
any semisimple cohomological field theory can be reformulated as topological recursion on
simple spectral curves with ramification points of Airy type.

5.1.3. Gromov-Witten theory of toric Calabi-Yau threefolds

Another large class of examples computed by topological recursion is Gromov-Witten theory of
toric Calabi-Yau threefolds. In this case, topological recursion can be understood as an example
of mirror symmetry. Without getting into the details of the statement and the proof, let me
simply sketch the idea. I will necessarily sweep many details under the rug here.

Let X be a (non-compact) toric Calabi-Yau threefold. Gromov-Witten theory of X is a math-
ematical formulation of A-model topological string theory on X. The mirror theory is B-model
topological string theory on the mirror Calabi-Yau threefold Y. When X is a toric Calabi-Yau
threefold, the mirror is given by the equation

Y = {uv = P(x, y)} ⊂ C2 × (C∗)2, (5.7)

where P(x, y) is a polynomial that can be read off from the toric data of X. Y is a conic bundle
over (C∗)2, where the conic fiber degenerates to two lines over the curve

{P(x, y) = 0} ⊂ (C∗)2. (5.8)

It turns out that the geometry of the B-model basically boils down to the geometry of this
discriminant curve, and this is essentially the spectral curve of the problem. There is a nice way
to understand the topology of this curve; one starts with the toric graph of X, and fattens it to
get the mirror curve. This is exemplified for X = OP2(−3) in Figure 3.
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Figure 3. The toric diagram and mirror curve for X = OP2(−3).

More precisely, since x, y are C∗-coordinates, from the point of view of topological recursion
one may think of the curve as

C = {P(ex, ey) = 0} ⊂ (C)2. (5.9)

We then parametrize the curve to get two functions x and y living on a Riemann surface. It
turns out that the resulting spectral curves have simple ramification points of Airy-type, and we
proceed with topological recursion to construct correlators ωg,n. We can think of this process
as the B-model mirror to A-model topological string theory (that is, Gromov-Witten theory) on
X.

The idea then is to expand the correlators ωg,n near a puncture of C (which is a point that
one needs to add to C to compactify the curve). The coefficients of this expansion should be
related by the so-called “mirror map” to open Gromov-Witten invariants of the mirror target
space X with a particular choice of Lagrangian brane (so-called “Aganagic-Vafa branes”). In
this context, open Gromov-Witten invariants can be understood as counts of maps from open
Riemann surfaces to the target space with the boundaries mapped to the Lagrangian subspace
(the “brane”). Furthermore, the free energies Fg = ωg,0 should be mapped to the closed (that is,
the usual) Gromov-Witten invariants of X. This claim was originally conjectured in [BKMP08],
and proved in [EO13; FLZ19a; FLZ19b].

As the spectral curve C has simple ramification points of Airy-type, as we know there
is another expansion at these points whose coefficients are intersection numbers over Mg,n.
What is the relation between these two expansions? It turns out that one can think of it as the
B-model mirror to localization in Gromov-Witten theory. Indeed, for Gromov-Witten theory on
a toric Calabi-Yau threefold, it turns out that the integrals over the moduli space of stable maps
to the target space localize with respect to the torus action and can be related to integrals over
Mg,n. This is what gives rise to the so-called “topological vertex” [AKMV04; LLLZ09; Liu09].
You will hear more about this in another lecture series at this school [Liu24].

In the end, this gives rise to a very nice picture. On the A-model side, the torus fixed points
are the vertices of the toric graph. There is a one-to-one map between these torus fixed points
and the ramification points of the mirror curve. As a result, one can think of the local expansion
of the correlators ωg,n at the ramification points as the natural localization process mirror to
localization of Gromov-Witten theory on X! This is essentially the idea that is made rigorous in
the proofs of [EO13; FLZ19a; FLZ19b] by comparing the graphical decomposition of topological
recursion to the graphical reconstruction of Gromov-Witten invariants of X via localization.
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5.2. Quantum curves

Another interesting connection between topological recursion and the rest of the world is what I
would call the “topological recursion/quantum curve correspondence” (or TR/QC correspon-
dence). The intuition is that topological recursion should provide a procedure for quantizating
the spectral curve. The origin of the statement comes from Hermitian matrix models, where
it is related to the relation between expectation values of products of traces of matrices and
the expectation value of the determinant [BE09]. As is common in topological recursion, the
intuition comes from matrix models, but the statement is now formulated abstractly without
any reference to matrix models.

The correspondence can be stated as follows. We will focus on spectral curves that are
constructed from an algebraic curve (see the paragraph around (3.1)):

C = {P(x, y) = 0} ⊂ C2. (5.10)

We will call these spectral curves “algebraic”. Let d be the degree of P in y. Note however that
the TR/QC correspondence could be stated more generally for spectral curves that do not come
from algebraic curves.

Apply topological recursion to C (with the usual fundamental bidifferential on the normal-
ization of C) to construct correlatorsωg,n. Out of those, one can construct the wave-function:

ψ(z) = exp

 ∑
g∈N,n∈N∗

 h2g−2+n

n!

(∫z
α

· · ·
∫z
α

ωg,n − δg,0δn,2
dx(z1)dx(z2)

(x(z1) − x(z2))2

) , (5.11)

where α is a base point on the normalization of C (that is not a ramification point of x) – it is
usually taken to be a pole of x. Here we are integrating the correlators ωg,n in all variables
from α to the same variable z.

To state the TR/QC correspondence, we introduce the notion of a quantum curve.

Definition 5.2. A quantum curve P̂ of an algebraic spectral curve C = {P(x, y) = 0} ⊂ C2 is an
order d linear differential operator in x, such that, after normal ordering, it takes the form

P̂

(
x,  h

d

dx
;  h
)

= P

(
x,  h

d

dx

)
+

∑
n⩾1

 hnPn

(
x,  h

d

dx

)
, (5.12)

where the leading term P is the original polynomial defining the spectral curve, and the Pn
are (normal-ordered) polynomials of degree < d. We usually impose that only finitely many
correction terms Pn are non-vanishing.

This is a quantization of the spectral curve, as it amounts to replacing (x, y) 7→
(
x,  h d

dx

)
. But

of course, this process is not unique, since the operators x and  h d
dx do not commute, and hence

the quantization may include  h corrections.

The claim of the TR/QC correspondence is the following:

Claim (TR/QC correspondence). Let C = {P(x, y) = 0} ⊂ C2 be a spectral curve, and construct
the wave-functionψ(z) as in (5.11) from the correlators obtained by topological recursion. Then
there exists a quantum curve P̂ such that

P̂ψ = 0. (5.13)

This statement should be qualified in a number of ways:
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• The construction of the wave-function depends on a choice of base pointα. Correspond-
ingly, the quantum curve, if it exists, should also depend on α. Generally speaking, the
claim is only expected to hold for α a pole of x (that is not a ramification point, otherwise
the integral of the ωg,n may diverge), but other choices of base points may also lead to
quantum curves [BE17].

• As stated, the TR/QC correspondence is only expected to hold for genus 0 spectral
curves. It can however be formulated for spectral curves of any genus; one simply needs
to replace the wave-function (5.11) by its non-perturbative counterpart, which amounts
to multiplying it by appropriate theta functions [EM11; EGMO24].

• It is probably better to state the correspondence in terms of a system of first-order linear
equations (instead of a single higher-order differential equation), which is more natural
from the point of view of integrability. For simplicity we decided not to go in this
direction in these lecture notes, but we refer the reader to [BE12b; MO20; EGMO24] for
more details.

Going back to TR/QC correspondence, the statement was first proved in various papers for
a number of specific spectral curves relevant to enumerative geometry (see for instance [BE09;
BSLM13; DDM14; DM13; DN18; DM14a; DM14b; DMNPS14; LMS13; MSS13; MS15; IKT18a;
IKT18b; MO20] – I most certainly forgot some here). It was also studied in the context of knot
theory, as it provides a constructive approach to the AJ conjecture [Gar07] – see for instance
[DFM11; BE12a; AFGS12; GS12]. In the context of mirror symmetry for A-model topological
string theory on toric Calabi-Yau threefolds, it should relate to the recent work of Mariño and
collaborators (see for instance [GM23; IM24] and many more papers); you will hear more about
this in another lecture series at this school [Mar24].

Going beyond the case-by-case approach, the correspondence was proved in [BE17] for a
class of genus zero algebraic spectral curves with arbitrary ramification (the class corresponds
to all genus zero spectral curves whose Newton polygon has no interior point and that are
smooth as affine curves). More recently, it was proved in [EGMO24] for all algebraic spectral
curves (any genus) that only have simple ramification points. We can summarize these results
in the following theorem:

Theorem 5.3 ([BE17; EGMO24]). The TR/QC correspondence holds for all genus zero algebraic spectral
curves in the class considered in [BE17], and for all algebraic spectral curves (any genus) that only have
simple ramification points.

As a generic spectral curve only has simple ramification points, and in principle spectral
curves with higher ramification can be obtained as limit points in families of curves with only
simple ramification (see [BBCKS23]), the correspondence is expected to hold in full generality
for all algebraic spectral curves.

To summarize, what this correspondence says is that topological recursion can be used to
reconstruct the WKB asymptotic solution to a quantum differential operator; as such, it can
be understood as a procedure to quantize the spectral curve. But this opens the way to more
questions: once we have an asymptotic solution, we can ask whether we can “resum” the
solution to reconstruct actual non-perturbative solutions to the differential equation. This is the
idea of Borel resummation and resurgence, which is a very active research area. Can topological
recursion be used to go beyond the perturbative, asymptotic solution to the quantum curve?

Some work in this direction appeared in [IK23; IM24]. Very recently, [EGGGL23] also obtained
new results in this direction, by studying the large genus asymptotics of the solution of the
quantum curves for the Airy and Bessel spectral curves (in other words, they are calculating large
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genus asymptotics for intersection numbers of ψ-classes with and without the Norbury class).
They also obtain large genus asymptotics for the r-spin intersection numbers (the quantum
curve for the s = r+ 1 spectral curve). It would be very interesting to continue in this direction
and study large genus asymptotics and Borel resummations for quantum curves obtained via
topological recursion in general.
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