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mplementation of 2D explicit depth extrapolation FIR digital filters
or 3D seismic volumes using singular value decomposition
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ABSTRACT

We propose a new scheme for implementing predesigned
2D complex-valued wavefield extrapolation finite impulse
response �FIR� digital filters, which are used for extrapolat-
ing 3D seismic wavefields. The implementation is based on
singular value decomposition �SVD� of quadrantally sym-
metric 2D FIR filters �extrapolators�. To simplify the SVD
computations for such a filter impulse response structure, we
apply a special matrix transformation on the extrapolation
FIR filter impulse responses where we guarantee the reten-
tion of their wavenumber phase response. Unlike the existing
2D FIR filter implementation methods that are used for this
geophysical application such as the McClellan transforma-
tion or its improved version, this implementation via SVD re-
sults in perfect circularly symmetrical magnitude and phase
wavenumber responses. In this paper, we also demonstrate
that the SVD method can save �depending on the filter size�
more than 23% of the number of multiplications per output
sample and approximately 62% of the number of additions
per output sample when compared to direct implementation
with quadrantal symmetry via true 2D convolution. Finally,
an application to extrapolation of a seismic impulse is shown
to prove our theoretical conclusions.

INTRODUCTION

The frequency-space �or frequency-inline-crossline� �� �x�y�
xplicit depth wavefield extrapolation method is considered to be
ne of the most attractive techniques for performing 3D wavefield
xtrapolation �Holberg, 1988; Hale, 1991b; Karam and McClellan,
997; Thorbecke, 1997;Yilmaz, 2001�. The most important feature
f such a technique is that it can be used for accurate migration of

Manuscript received by the Editor 3 November 2008; revised manuscript r
1King Fahd University of Petroleum and Minerals, Department of Electric
2Newcastle University, School of Electrical, Electronic and Computer Eng
3The University of Leeds, School of Electronic & Electrical Engineering, L
4The University of Leeds, School of Earth and Environment, Leeds, U. K. E
2010 Society of Exploration Geophysicists.All rights reserved.
V1

Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
ne-way wavefields through heterogeneous media. It also results in
table extrapolated wavefields because of new improvements in the
esign of these finite impulse response �FIR� digital filters, like the
nes reported in Hale �1991b�; Karam and McClellan �1995�;
oubaras �1996�; Thorbecke et al. �2004�; and Mousa et al. �2005,
006�.

D wavefield extrapolation finite impulse response
FIR) filters for extrapolating 3D seismic wavefields

Assuming that �x��y, where �x and �y are respectively the in-
ine and crossline spatial sampling intervals, the frequency-wave-
umber response of the 3D extrapolation filter is given by �Yilmaz,
001; Hale, 1991b; Karam and McClellan, 1997�:

Hd�kx,ky,���exp� j
�z

�x
��x2

�t2

�2

co
2 � �kx

2�ky
2��, �1�

here kx and ky are the normalized inline and the crossline wave-
umbers, �z is the extrapolation depth step size, �t is the time-sam-
ling interval, � � ��� ,�� is the normalized angular frequency, co

s the propagation velocity related to the geological material, and j
��1. The explicit depth wavefield extrapolation for 3D seismic

ata sets is performed one frequency ��� at a time using 2D migra-
ion filters Hd�kx,ky�:

d�kx,ky,���Hd�kx,ky��exp�jb�kcp

2 � �kx
2�ky

2��, �2�

here b��z /�x and kcp
�

�x
�t

�

co
is the cutoff wavenumber. Equa-

ion 2 represents the desired 2D wavenumber response of our spatial
lter where the magnitude and phase responses are of circular sym-
etry.
The � �x�y extrapolation of a spatially sampled seismic wave-

eld u�xi,yj,�,zk� from depth say zk to zk�1�zk��z is performed
ndependently for each frequency by a direct 2D spatial convolution
ith a designed 2D FIR filter impulse response h�n1,n2� �approxi-
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V2 Mousa et al.
ating equation 2� using �Holberg, 1988; Hale, 1991b; Thorbecke,
997�:

u�xi,yj,��,zk�1�� �
n1���N�1�/2

�N�1�/2

�
n2���N�1�/2

�N�1�/2

h�n1,n2�

�u�xi�n1
,yj�n2

,��,zk�, �3�

here n1 and n2 stand for the inline and crossline spatial indices, and
�n1,n2� is a quadrantally symmetric N�N �N odd� complex-valued
D FIR impulse response, i.e.,

�n1,n2��h��n1,n2��h�n1,�n2��h��n1,�n2� . �4�

n this case, the extrapolation �filtering� process is carried over all
requencies ��, where ��0,. . .,M �1 and M is the number of fre-
uency samples. A typical � �x�y wavefield extrapolation pro-
ess requires a set of 2D frequency-velocity-dependent complex-
alued FIR filters that are designed and stored in a table for reuse to
xtrapolate the seismic wavefield from one depth level u�xi,yj,��,zk�
o the next u�xi,yj,��,zk�1�. Let us assume that the number of sam-
les in both spatial directions �say nx and ny� are equal to each other
nx�ny �ns�. Then for each frequency sample we require ns

2 convo-
utions because the convolution extrapolation is performed at each
patial sample location. If, for example, we have 1000 frequency
amples, then this results in performing 1000�ns

2 2D convolution
rocesses to get only one depth slice of the final 3D extrapolated
avefield. So if one needs 500 depth slices, 500,000�ns

2 2D convo-
utions are required. Using direct convolution of these 2D complex-
alued N�N impulse responses, the computational cost will be
00,000�ns

2 �N2, where N2 is the FIR filter size in the spatial direc-
ions’indices n1 and n2. In this application, even by taking advantage
f the quadrantally symmetric property of such 2D impulse respons-
s, the computational effort will still be high �Reshef and Kessler,
989; Yilmaz, 2001�.

tate of the art

Different approaches have been proposed to mitigate such a com-
utationally expensive 3D extrapolation process that relies so heavi-
y on direct convolution with a 2D complex-valued FIR filter im-
ulse response �Thorbecke and Berkhout, 1994�. One way to miti-
ate this problem is to design those 2D FIR extrapolators with small
izes �Soubaras, 1996; Thorbecke et al., 2004; Mousa et al., 2009�.
he other way is by finding means of implementing predesigned 1D
r 2D FIR filters. The first approach, in the latter case, �known in the
eophysics literature as splitting� is where the extrapolating is per-
ormed by splitting the process to alternately extrapolate along the
nline and crossline directions, independently �Hale, 1991a�, i.e., as-
uming that the 2D extrapolation FIR filters are separable. This
ethod is cheap in the sense that its computational complexity is

roportional to the used FIR filter length N and is based on the 2D
ourier transform approximation of the desired extrapolation wave-
umber response. It will also result in stable extrapolated images.
owever, it results in large errors for wavenumber cutoffs in which

x 	ky�0. This corresponds to steep dipping at 45° azimuth be-
ween the inline and crossline directions �Hale, 1991a�.

The second approach relies on the popular McClellan transforma-
ions where it uses Chebychev structures and is very suitable for 2D
IR filters with a quadrantal symmetry property, like our extrapola-

ion filters �Mecklenbräuker and Mersereau, 1976; McClellan and
Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
han, 1977; Kayran and King, 1983; Dudgeon and Mersereau,
984; Hale, 1991a; Lu and Antoniou, 1992; Karam and McClellan,
997�. Their cost is proportional to the filter length N, and 1D filters
re needed to obtain the 2D FIR impulse response, based on a trans-
ormation filter �Hale, 1991a�. The transformation will result in sta-
le extrapolated images and is best for small wavenumbers — it is
xact for kx�ky �0 — but exhibits increasing error with increasing
avenumbers where kx 	ky. An improved McClellan transforma-

ion filter was proposed by Hale �1991a� to overcome such wave-
umber response errors where the transformation filter �matrix� is
arger than the original one �see, for example, McClellan and Chan,
977; Dudgeon and Mersereau, 1984�, such that it results in a better
pproximation of the circularly symmetric property of the 2D migra-
ion wavenumber response as shown in equation 2. The computa-
ional complexity of this improved McClellan transformation filter
s higher than the previous McClellan transformation, but it is still
roportional to N �Hale, 1991a�. None of these transformations,
owever, yield exactly circularly symmetric extrapolation wave-
umber responses.

roblem definition: Revisited

Thus, there is a need for extrapolating 3D seismic data sets with
rue 2D extrapolation FIR filters that are cheap to implement, result
n stable extrapolated wavefields, and better approximate circular
ymmetry with respect to their wavenumber responses. Digital FIR
lter implementation techniques based on singular value decompo-
ition �SVD� have been proposed for implementing 2D zero-phase
eal-valued FIR digital filters �Lu et al., 1990, 1991� and, more re-
ently, for 2D linear-phase real-valued FIR digital filters �Zhu et al.,
999�. In both papers, 2D FIR filters were predesigned and then im-
lemented using the SVD technique for general FIR filters, includ-
ng symmetrical and antisymmetrical ones. The SVD implementa-
ion structure has the following advantages:

It is suitable for parallel processing such as the case for � �x
�y extrapolation.
It is flexible in the sense that we can select the number of parallel
sections that correspond to the most significant singular values.
Hence, this results in savings in computational complexity at the
expense of introducing small errors in the wavenumber response.
Depending on the number of parallel sections used in the imple-
mentation, its computational complexity is proportional to the
FIR filter’s impulse response length N.

pplication to wavefield extrapolation

In this work, we present the mathematical development of imple-
enting 2D complex-valued quadrantally symmetric extrapolation
IR filters �for the � �x�y 3D extrapolation� using SVD. To sim-
lify the SVD computations for such an FIR filter impulse response
tructure �i.e., quadrantal symmetry�, we apply a special matrix
ransformation similar to the one reported by Zhu et al., �1999� on
he extrapolation filter impulse response, which guarantees that no
istortion of the wavenumber phase response occurs and the magni-
ude responses will result in stable extrapolation.Also, this results in
ess numerical SVD computational errors. Additionally, we exploit
he existence of insignificant singular values and discard them so we
educe the computational complexity of the expensive 3D � �x

y extrapolation problem. As a result, our proposed implementa-
EG license or copyright; see Terms of Use at http://segdl.org/
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Extrapolation filters using SVD V3
ion method for such application overcomes the problems of other
reviously reported and heavily used implementation schemes in
erms of computational cost, stable extrapolated wavefields, and cir-
ularly symmetrical wavenumber response.

This paper is organized as follows. We start by introducing the
oncept of SVD implementation for 2D FIR digital filters. Also, we
resent the SVD implementation of 2D quadrantally symmetric
omplex-valued extrapolation FIR digital filters. Then, we elaborate
n error analysis, relating to the SVD implementation of extrapola-
ion filters. After that, we perform simulation results to evaluate the
ccuracy of the 2D extrapolation FIR filters implemented using our
roposed SVD scheme. We also show impulse responses of our pro-
osed method. We give a brief discussion afterward. Finally, we
ighlight the major contributions of this paper in the conclusion sec-
ion.

SVD IMPLEMENTATION FOR 2D
COMPLEX-VALUED EXTRAPOLATION

FIR IMPULSE RESPONSE

Let h�n1,n2� be an already designed N�N quadrantally symmet-
ic 2D extrapolation FIR impulse response in the spatial domain,
here h�n1,n2��CN�N for n1,n2���N�1� /2,. . .,�N�1� /2 and
is an odd number. Define A to be an N�N matrix whose elements

epresent the quadrantally symmetric 2D extrapolation FIR impulse
esponse as given by

A� 
h�n1,n2��, for �n1,n2�� �N�1�/2. �5�

VD and FIR implementation

In general, the SVD of A can be written as

A�U�V*, �6�

here U and V are unitary matrices, * denotes the complex conju-
ate transpose, and � is a diagonal matrix whose diagonal elements
epresent the singular values of A, i.e.,

��diag�� 1,� 2,. . .,� N� �7�

nd � 1 �� 2 � ¯ �� N �0 �Trefethen and Bau, 1997�. Let the rank
f A be r�N. Hence, � r�1�� r�2� ¯ �� N�0 and equation 6
an be rewritten as

A� �
k�1

r

� kukvk
*� �

k�1

r

fkgk
*, �8�

here uk and vk represent the kth column vectors of U and V, respec-
ively, and fk��� kuk and gk��� kvk. Equation 8 suggests that a 2D
omplex-valued FIR digital filter can be implemented using r paral-
el 2D subfilters where each 2D subfilter is composed of a cascade of
wo N-length 1D complex-valued FIR digital filters. These 1D filters
ave FIR impulse responses given by fk�n1� and gk�n2�. Figure 1
emonstrates the SVD-based implementation structure for the �ex-
rapolation� filtering process where the implementation cost de-
ends on the value of rank r. For a complete representation, the rank
is always equal to �N�1� /2 in the case of quadrantally symmetric

mpulse responses.
Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
VD implementation of 2D extrapolation FIR filters

For the analysis given below, we will follow Zhu et al. �1999�. De-
ne J to be an �N�1� /2� �N�1� /2 contra-identity matrix where

he contra-diagonal elements are equal to 1 and the remaining ele-
ents are zeros �N is an odd positive integer�. That is,

J�
0 1

·

·

·

1 0
� . �9�

ecause A�CN�N possesses quadrantal symmetry, then A can be
ritten as

A� A1 a1 A1J

a2
* c a2

*J

JA1 Ja1 JA1J
�, �10�

here A1 is an �N�1� /2� �N�1� /2 matrix, a1 and a2 are �N
1� /2D column vectors, and c is a complex scalar. The matrix Q
CN�N given by

Q�
1

2I� jI 0 J� jJ

0 �2� j�2 0

I� jI 0 �J� jJ
� �11�

s a unitary matrix where j���1, I is the identity matrix with the
ame dimension of J, and 0 is a row/column vector of dimension �N

1� /2.Aunitary matrix B�CN�N, which is mathematically similar
o A, exists and is given by

igure 1. SVD-based implementation structure for a predesigned 2D
omplex-valued extrapolation FIR digital filter. Each branch repre-
ents a 2D subfilter composed of two cascaded 1D extrapolation FIR
igital filters.
EG license or copyright; see Terms of Use at http://segdl.org/
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V4 Mousa et al.
B�QAQ* �12�

�A1�JA1J
�2

2
a1�

�2

2
Ja1 0

�2a2
* 2c 0

0 0 0
� �13�

��B1 0

0 0
�, �14�

here B1 is an �N�1� /2� �N�1� /2 matrix. Note that A*A is also
nitary, which is similar to B*B with respect to Q. This implies that
*A and B*B have the same eigenvalues and, consequently, the

ame singular values, i.e., the matrices A and B are unitary equiva-
ent �Trefethen and Bau, 1997�. Now, let the SVD of B be given by

B�UB�BVB
*, �15�

here UB and VB are unitary and �B is a diagonal matrix with singu-
ar values in decreasing order. From equation 14, we can rewrite
quation 15 as

B��U1 0

0 0
���1 0

0 0
��V1 0

0 0
�*

�16�

nd this implies that we can determine the SVD of B, by only com-
uting the SVD of

B1�U1�1V1
* �17�

��U11 b1

b2
* U0

���11 0

0 �0
��V11 c1

c2
* V0

�*
. �18�

hus, A can be expressed as:

A�Q*BQ �19�

�Q*UB�BVB
*Q, �20�

�Û�BV̂* �21�

here

Û�Q*UB �22�

�
1

2 �I� jI�U11 �I� jI�b1 0

��2� j�2�b2
* ��2� j�2�U0 0

�J� jJ�U11 �J� jJ�b1 0
� �23�

nd
Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
V̂�Q*VB �24�

�
1

2 �I� jI�V11 �I� jI�c1 0

��2� j�2�c2
* ��2� j�2�V0 0

�J� jJ�V11 �J� jJ�c1 0
� . �25�

s expected, only the first �N�1� /2 columns of equation 23 and
quation 25 are nonzero and they are symmetric. Because Û and V̂
re unitary and A and B have identical singular values, equation 21
ives an SVD of A. In other words, the SVD of A can be represented
ased on equation 21, where the uk’s and vk’s in equation 8 are re-
laced with the first �N�1� /2 columns of Û �ûk’s� and V̂ �v̂k’s�, re-
pectively. By doing so, the SVD computations are much simplified
nd result in less SVD numerical errors.

We now want to discard insignificant singular values and, there-
ore, reduce the number of parallel sections required to implement
ur 2D extrapolation FIR filters, that is, we want to approximate A
y

AK� �
k�1

K

� kûkv̂k
*� �

k�1

K

f̂kĝk
*, �26�

here K 	 �N�1� /2 �K is the number of used parallel sections�. In
his case, the number of parallel sections in Figure 1 is reduced and
his results in significant savings in terms of the computational com-
lexity for obtaining a final 3D image, whereas according to equa-
ion 23 and equation 25 we guarantee the even symmetry of the 1D
onstituent filters to result in an overall desired wavenumber re-
ponse. Clearly, because the 1D subfilters are of even symmetry, the
umber of multiplications per output sample required to implement
he 2D complex-valued extrapolation FIR filter using the SVD im-
lementation scheme is K�N�1�, where K 	 �N�1� /2. We will
ave in the number of multiplications per output sample when com-
ared to extrapolation performed via direct convolution taking into
onsideration that such FIR filters are of quadrantal symmetry as far
s

K�N�1�	
�N�1�2

4
. �27�

imilarly, the number of additions per output sample based on the
roposed SVD scheme is 2K�N�1� because we have K parallel
ections and each section is composed of two 1D, even symmetrical
IR filters. The savings in this case are significant compared with the
umber of additions per output sample when using true 2D convolu-
ion �no advantage for the quadrantal symmetry with respect to the
umber of additions per output sample�.

ERROR ANALYSIS

In wavefield extrapolation, the magnitude and phase responses
ust satisfy certain conditions as described by Thorbecke �1997�

nd Mousa et al. �2005�. So, it is important to quantify the error be-
ause of the reduction of the number of parallel sections used to im-
lement our extrapolation FIR digital filters via the SVD method
iven in equation 26, i.e., via discarded singular values. The follow-
ng analysis states an upper bound for the SVD implementation of
uch filtering application with respect to the matrix � -norm and the
2

EG license or copyright; see Terms of Use at http://segdl.org/
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Extrapolation filters using SVD V5
robenius norms of matrices. The error in the wavenumber response
f the implemented filter, which is caused by neglecting ��N�1� /2

K� smallest singular values, can be written as

E�kx,ky��H�kx,ky��HK�kx,ky�

� �
n2���N�1�/2

�N�1�/2

�
n1���N�1�/2

�N�1�/2

e�n1,n2�e�j�kxn1�kyn2�

��*�kx�E��ky�, �28�

here H�kx,ky� is the wavenumber response of the predesigned ex-
rapolation filter, HK�kx,ky� is the wavenumber response of AK


hK�n1,n2�� for �n1,n2�� �N�1� /2 �see equation 26�, e�n1,n2� is
he error in the FIR impulse response for all values of n1 and n2, i.e.,

e�n1,n2��h�n1,n2��hK�n1,n2� �29�

nd E� 
e�n1,n2�� is its impulse response error matrix, and

��kx��
e�jkx�N�1�/2

]

e�jkx

1

ejkx

]

ejkx�N�1�/2

� �30�

nd similarly,

��ky�� �e�jky�N�1�/2,¯ ,e�jky,1,ejky,¯ ,ejky�N�1�/2�*.

�31�

e can now rewrite E as:

E�A�AK� �
k�1

�N�1�/2

� kûkv̂k
*� �

k�1

K

� kûkv̂k
*

� �
k�K�1

�N�1�/2

� kûkv̂k
*�UE�EVE

*, �32�

here �E�diag�� K�1,. . .,� �N�1�/2,0,. . .,0� and UE and VE are com-
lex-valued unitary matrices of dimension N�N. By substituting
quation 32 for equation 28 and taking the absolute value of the re-
ult, we obtain

�E�kx,ky��� ��*�kx�UE�EVE
*��ky�� . �33�

ow, using the Cauchy-Schwartz inequality and because UE and VE

re unitary, we can show that the upper bound of the absolute wave-
umber response error with respect to the matrix Frobenius norm is:

max
���kx,ky��

�E�kx,ky���N� �
k�K�1

�N�1�/2

� k
2�1/2

. �34�

much tighter bound can be found based on the matrix �2-norm and
s given by

max
���kx,ky��

�E�kx,ky���N� K�1. �35�
Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
or this application, equations 34 and 35 quantify the magnitude
avenumber response error introduced using the proposed SVD im-
lementation method with K 	 �N�1� /2.

It is difficult, however, to analytically find an upper bound for the
rror incurred by the phase response of the SVD-implemented ex-
rapolation filter. However, based on empirical results, the circular
ymmetry of the wavenumber phase response is always achieved
hen discarding insignificant singular values. As we are going to

how in simulations, one possible way to relate the phase error with
he singular values is by plotting the relationship between the num-
er of parallel sections used, the total energy used per number of
sed parallel sections, and the corresponding phase response error.

SIMULATION RESULTS

The following simulations are divided into two subsections. The
rst subsection deals with the accuracy of implementing 2D com-
lex-valued extrapolation FIR filters using the SVD implementation
ethod presented previously and given by equation 26. Also, this

mplementation is compared with the original and the improved Mc-
lellan transformation implementation schemes �Hale, 1991a� in

erms of the implemented filters’ wavenumber responses, the pass-
and and stopband maximum and mean absolute wavenumber er-
ors, and the computational cost. The second subsection is con-
erned with applying the implemented 2D complex-valued extrapo-
ation FIR filters using our proposed SVD implementation scheme
or seismic impulse response wavefields and again comparing with
hose extrapolated sections using the original and the improved Mc-
lellan transformations �Hale, 1991a�.

ccuracy of the 2D extrapolation FIR digital filters
mplemented via SVD

The main focus of this section is to subjectively and objectively
valuate our proposed implementation scheme for the extrapolation
lters and to compare it with the benchmark implementations used

n practice in terms of the wavenumber responses and the computa-
ional complexity. For this, a 25�25 complex-valued extrapolation
IR filter was designed using the modified projections onto convex
ets �POCS� method �Mousa et al., 2005, 2006� for �z�2 m, �x

�y�10 m, �t�0.004 s, � �0.4� rad /s, and a velocity co

1000 m /s, to give a normalized cutoff wavenumber of kcp
�0.25.

mplementation of 2D extrapolation FIR digital filters via
VD

Figures 2a and 3a, respectively, show the magnitude response and
he phase response in the wavenumber domain of the predesigned
D extrapolation FIR filter with the above-mentioned parameters.
he 2D FIR filter impulse response matrix is then transformed to be

n the form of equation 14 and then decomposed to give the resultant
1 matrix based on equation 16. The rank of the impulse response
atrix of this filter is of full rank, i.e., rank�B1��13, that is, the

umber of parallel sections that can be used to correctly implement
uch filters is equal to thirteen sections. However, Figure 4 suggests
hat we can implement such a filter matrix with a reduced number of
arallel sections �see Figure 1� by discarding the insignificant singu-
ar values according to equation 26 �where we can see that four or
ve parallel sections are sufficient to implement our filter�. This is
ecause more than 99% of the energy is concentrated in the first four
r five singular values according to the singular values displayed in
EG license or copyright; see Terms of Use at http://segdl.org/
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igure 2. A 25�25 2D extrapolation FIR digital
lter �with a normalized wavenumber cutoff kcp

0.25� showing plots of the magnitude spectrum
or the �a� predesigned, �b� SVD implemented with
�3, �c� SVD implemented with K�4, �d� SVD

mplemented with K�5, �e� original McClellan
ransformation method, and �f� improved McClel-
an transformation method.
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igure 3. A 25�25 2D extrapolation FIR digital
lter �with a normalized wavenumber cutoff kcp

0.25� showing plots of the passband phase spec-
rum �in radians� for the �a� predesigned, �b� SVD
mplemented with K�3, �c� SVD implemented
ith K�4, �d� SVD implemented with K�5, �e�
riginal McClellan transformation method, and �f�
mproved McClellan transformation method.
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Extrapolation filters using SVD V7
igure 4. The selection can be quantitatively dependent upon a
hreshold 
 in accordance with either equations 35 or 34.

In Figure 5, the passband and stopband maximum absolute wave-
umber errors are plotted versus the number of parallel sections used
or the number of used singular values�.As expected, both curves are
lways less than the matrix �2-norm bound curve as given by equa-
ion 35, as well as less than the matrix Frobenius norm bound curve
s given by equation 34.Also, we can clearly see that as we use more
arallel sections �incorporate more singular values in the approxi-
ation�, then the approximation error will decrease. However, this
ill be at the expense of increasing the number of multiplications

nd additions per output sample. The passband and stopband errors
hen using five parallel sections are less by 15 dB on average when

ompared to the errors introduced through using four parallel sec-
ions. Now, to quantify the passband phase error incurred because of
he use of equation 26, we calculated the maximum as well as the
oot-mean-squared �RMS� passband phase errors �for different
umber of used parallel sections and total used energy per imple-
entation� for our SVD-implemented filter as shown in Figure 6. It

s evident from this figure that both errors will approach zero as we
se more parallel sections. For K�5, the maximum and RMS pass-
and phase errors are almost identical and close to zero. This also
grees with Figure 4 where it is shown that most of the energy �more
han 99%� is concentrated within the first five singular values.

Furthermore, the magnitude and the phase spectrum responses are
f circular symmetry. This can be seen more clearly with plots that
re given for the magnitude and phase spectra using the SVD imple-
entation schemes in Figure 2b for K�3, c for K�4, and d for K
5, and Figure 3b for K�3, c for K�4, and d for K�5, respec-

ively. For the SVD implementations with K�3, K�4, and K�5,
he phase response plots indicate no deviation in the circularity of the
hase responses. On the other hand, the magnitude response in Fig-
re 2d for K�5 is subjectively better �circular symmetry� when
ompared to Figure 2b �for K�3� and c �for K�4�. Hence, overall,
sing five parallel sections in this case is the best choice among oth-
rs. Therefore, we implemented our 2D extrapolation FIR filters
ith only five parallel sections out of thirteen.
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igure 4. Singular values of the matrix B1 �see equation 18� for the
redesigned 25�25 2D extrapolation FIR digital filter.
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omparisons with the McClellan transformations

To compare the SVD implementation with the standard imple-
entations used for this application, a 1D complex-valued extrapo-

ation FIR filter was predesigned using the method of modified
OCS �Mousa et al., 2005� with the same filter parameters described
arlier. This 1D filter is then transformed into a 2D filter by the Mc-
lellan transformation and its improved version �Hale, 1991a�. Fig-
re 2e and Figure 3e show plots of McClellan transformed filter
agnitude and phase response, whereas Figure 2f and Figure 3f

how the magnitude and phase response plots for the improved Mc-
lellan transformed filter. In both cases, the circularity of the magni-

ude and the phase responses for both McClellan transformation re-
ults deteriorate rapidly as kx and ky increase, although the improved

igure 5. Maximum absolute wavenumber error bounds and within
he passband and the stopband for the SVD-implemented prede-
igned 25�25 2D extrapolation FIR digital filter with respect to the
umber of parallel sections used �i.e., the number of singular val-
es�.
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igure 6. Maximum and root-mean-squared phase errors within the
assband for the SVD-implemented predesigned 25�25 2D extrap-
lation FIR digital filter with respect to the number of parallel sec-
ions used �i.e., the number of singular values� as well as the total
sed energy.
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V8 Mousa et al.
esults possess less errors when compared to the original McClellan
ransformation. This is unlike our proposed SVD implementation

ethod where we do obtain an almost perfect circular symmetry in
he magnitude and the phase responses as seen, for example, in Fig-
re 2d and Figure 3d.

Table 1 compares the three implementations, namely, the McClel-
an method, the improved McClellan method, and our SVD method
ith K�5 in terms of the passband and stopband maximum and
ean absolute wavenumber errors. As we can see from Table 1, the
VD implementation with five parallel sections presents the imple-
entation with the lowest significant passband as well as stopband
aximum and mean absolute wavenumber errors and, therefore,

utperforms both McClellan implementations.
Finally, Table 2 compares the number of multiplications and addi-

ions per output sample between various implementation schemes,
ncluding our proposed SVD method. It is clear from both tables that
he original McClellan transformation is the cheapest among all of
hese schemes, including our proposed SVD �K�5� technique. In
erms of the number of multiplications per output sample, the pro-
osed SVD �K�5� technique, however, is more economical than
he true 2D convolution with quadrantal symmetry �saved more than
3%�. Also, in terms of the number of additions per output sample,
ur proposed SVD �K�5� method saved about 62% when com-
ared with the 2D direct convolution. It is worth mentioning that al-
hough our proposed SVD implementation method �depending on

able 1. Comparison of the mean and maximum absolute
rrors within passband and stopband wavenumber responses
etween the predesigned 2D extrapolation FIR filter and its

mplemented version using the original McClellan
ransformation, the improved McClellan transformation, and
ur proposed SVD implementation with N�25.

ethod �E�kx,ky�� Passband Stopband

riginal Mean 374.6E�3 100.6E�3

cClellan Max 2004.5E�3 502.2E�3

mproved Mean 374.4E�3 94.2E�3

cClellan Max 2004.6E�3 463.2E�3

VD implementation Mean 0.038E�3 0.011E�3

ith K�5 Max 0.518E�3 0.353E�3

able 2. Comparison between the number of multiplications a
omplex-valued extrapolation FIR filter using the direct 2D co
ransformation, the improved McClellan transformation, and
avings are calculated with respect to the 2D convolution with

ethod
Multiplications

per output sample

D convolution with symmetry � N�1
2 �2

�169

cClellan
5� N�1

2 ��1�61

mproved McClellan
8� N�1

2 ��1�97

VD �K�5� K�N�1��130
Downloaded 12 Feb 2010 to 70.74.214.80. Redistribution subject to S
� might be more expensive than the McClellan transformations, it
esults in much better circularly symmetric magnitude and phase re-
ponses, and comes with insignificant wavenumber errors. This con-
equently results in obtaining superior 3D migration results when
ompared to 3D migration based on both McClellan transformations
s we shall see in the next subsection.

D seismic extrapolation impulse response tests

To test our SVD-implemented extrapolation filters for 3D seismic
xtrapolation impulse responses, a synthetic seismic volume was
reated. It is basically composed of zero amplitude traces containing
ne zero-phase Ricker wavelet centered at 0.512 second and is lo-
ated at x�y�0 seismic trace. In this experiment, a set of 25�25
D extrapolation FIR digital filters were designed using the method
f modified POCS �Mousa et al., 2005, 2009� and stored with the
ame filter parameters mentioned earlier. The range of inline and
rossline sections was 1100 meters. Also, for this experiment, the
aximum normalized angular frequency used was 0.72� rad /s.
hese 2D designed filters were used to perform 3D wavefield extrap-
lation based on true 2D convolution �taking into account the qua-
rantal symmetry of such filters� and based on our SVD-derived im-
lementation scheme given by equation 26 with K�3, 4, and 5 for
he above-mentioned predesigned filters. A 2D slice of the extrapo-
ated volume at z�220 m �which corresponds to an angle of 65°� as
ell as at x�0 and y�0 all are shown in Figure 7 using true direct

onvolution, and using our SVD implementation scheme with K
3 �Figure 8�, K�4 �Figure 9�, and K�5 �Figure 10�. Subjective-

y, the slices of the extrapolated volume via SVD implementation
ith K�5 in Figure 10 is the best among the other two extrapolated
avefields with the SVD implementation with K�3 �see Figure 8�

nd with K�4 �see Figure 9�.
The same input seismic volume described above was extrapolated

sing the McClellan and the improved McClellan transformation
chemes. A set of 25-length 1D extrapolation FIR digital filters were
redesigned and stored to perform such an experiment again with the
ame filter parameters stated earlier. Figures 11 and 12 show the
ame 2D slices of the 3D extrapolated sections at z�220 m, x�0,
nd y�0. Although the improved McClellan slice given in Figure
2 has a better response when compared to the extrapolated section
lices in Figure 11 using the original McClellan method, both meth-
ds result in poor extrapolated images when compared to the SVD-
xtrapolated depth section with K�5 �Figure 10�. The differences
an be seen clearly where the McClellan transformation migration

ditions per output sample required to implement a 2D
tion with quadrantal symmetry, the original McClellan
roposed SVD implementation with N�25. Note that the

etry cost.

Savings
Additions

per output sample Savings

— N2�1�624 —

63.91%
9� N�1

2 ��2�106
83.01%

42.6%
12� N�1

2 ��2�142
77.24%

23.08% 2K�N�1��240 61.54%
nd ad
nvolu
our p
symm
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esults are not perfectly symmetrical circles and they possess more
ispersion noise. This is in agreement with the simulation results
hown in the previous subsection.

DISCUSSION

All the predesigned 2D extrapolation FIR digital filters were de-
igned using the modified POCS method �Mousa et al., 2005, 2006,
009�. However, this does not prevent the use of 2D extrapolation
IR digital filters designed using any 2D filter design method such as

hose reported by Thorbecke et al. �2004� or by Soubaras �1996�.
urthermore, the selection of the appropriate number of parallel sec-
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igure 7. Seismic extrapolation impulse response 2D slices in 3D at
a� depth z�220 m, which corresponds to 65° �b� y�0 m, and �c�
�0 m using direct convolution.
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ions, namely K, will be the choice of the designer. For example, the
esigner can automate the selection by:

considering either equation 35 or equation 34, which deal with
absolute wavenumber error bounds;
the ratio between the maximum and RMS passband phase error;
and finally
equation 27, which gives the bound for the maximum number of
multiplications per output sample compared with direct
convolution.

It is worth mentioning that the error introduced by the SVD imple-
entation approach is an additional error to the error incurred be-

ause of the approximation of the ideal extrapolators with 2D FIR
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igure 8. Seismic extrapolation impulse response 2D slices in 3D at
a� depth z�220 m, which corresponds to 65°, �b� y�0 m, and �c�
�0 m using our proposed SVD implementation scheme with K

3.
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igure 11. Seismic extrapolation impulse response 2D slices in 3D at
a� depth z�220 m, which corresponds to 65°, �b� y�0 m, and �c�

�0 m using the original McClellan transformation method. x
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V12 Mousa et al.
xtrapolation filter coefficients and, hence, the extrapolation of syn-
hetics also will help in the selection of the appropriate K value as
ell as assist in analyzing the introduced error because of the SVD

mplementation. Finally, although the extrapolation impulse re-
ponse example given in this paper was basically for poststack mi-
ration, we can use our proposed implementation scheme for
restack migration of rectangularly sampled data sets. If the
restacked data are irregularly sampled �as usually is�, it will then be
equired to rectangularly resample such data prior to applying our
roposed SVD implementation.

CONCLUSION

We have adapted the work performed by Zhu et al. �1999� to the
pplication of SVD for implementing 2D quadrantally symmetric
omplex-valued extrapolation FIR digital filters that are used for ap-
lying 3D wavefield extrapolation. To simplify the SVD computa-
ions for such an FIR filter impulse response structure, we applied a
pecial matrix transformation on the extrapolation FIR filter impulse
esponses where the wavenumber phase response is guaranteed to be
etained. For the examples given in this paper, the SVD implementa-
ion saved more than 23% of the number of multiplications per out-
ut sample when compared to direct implementation with symmetry
ia true 2D convolution. Also, the SVD implementation saved ap-
roximately 62% of the number of additions per output sample when
ompared to direct implementation with symmetry via true 2D con-
olution. We can obtain similar savings depending on the size of our
riginal 2D operator. Wavenumber magnitude and phase responses
ossess circular symmetry unlike extrapolation FIR filters imple-
ented with the McClellan and the improved McClellan transfor-
ations for such geophysical applications. Finally, we demonstrated

ur work by applying such SVD-implemented 2D extrapolation FIR
lters to test seismic impulse responses. We showed subjectively
nd objectively that wavefield extrapolation via our proposed SVD
mplementation scheme is outperforming extrapolation results via
he McClellan and the improved McClellan implementations. This
as clearly seen in terms of the wavenumber responses, and the
aximum and mean passband and stopband absolute wavenumber

rrors. The SVD approach possesses a bit higher computational cost
hen compared to the McClellan and the improved McClellan im-
lementations. Having said that, this approach gives us the advan-
age of obtaining more accurate extrapolated seismic wavefields
han those obtained using both implementations and with much low-
r complexity compared with true 2D convolution.
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