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ABSTRACT

Random and coherent noise exists in microseismic and
seismic data, and suppressing noise is a crucial step in
seismic processing. We have developed a novel seismic
denoising method, based on ensemble empirical mode de-
composition (EEMD) combined with adaptive thresholding.
A signal was decomposed into individual components called
intrinsic mode functions (IMFs). Each decomposed signal
was then compared with those IMFs resulting from a
white-noise realization to determine if the original signal
contained structural features or white noise only. A thresh-
olding scheme then removed all nonstructured portions. Our
scheme is very flexible, and it is applicable in a variety of
domains or in a diverse set of data. For instance, it can serve
as an alternative for random noise removal by band-pass fil-
tering in the time domain or spatial prediction filtering in the
frequency-offset domain to enhance the lateral coherence of
seismic sections. We have determined its potential for micro-
seismic and reflection seismic denoising by comparing its
performance on synthetic and field data using a variety of
methods including band-pass filtering, basis pursuit denois-
ing, frequency-offset deconvolution, and frequency-offset
empirical mode decomposition.

INTRODUCTION

Empirical mode decomposition (EMD) developed by Huang et al.
(1998) is a powerful signal analysis technique to split nonstationary
and nonlinear signal systems, such as seismic data. Through the
extraction of intrinsic mode functions (IMFs), EMD captures the
nonstationary features of the input signal. EMD has several inter-
esting properties that make it an attractive tool for signal analysis: It

results in complete signal decomposition; i.e., the original signal is
reconstructed by summing all IMFs. No loss of information is in-
curred. The EMD is a quasi-orthogonal decomposition in that the
crosscorrelation coefficients between the different IMFs are always
close to zero. This minimizes energy leakage between the IMFs
(Bekara and Van der Baan, 2009). Based on these promising char-
acteristics, Magrin-Chagnolleau and Baraniuk (1999) and Han and
Van der Baan (2011) apply EMD for robust seismic attribute analy-
sis, Battista et al. (2007) exploit EMD to remove cable strum noise,
Bekara and Van der Baan (2009) propose the frequency-offset (f-x)
EMD technique to suppress the seismic random and coherent noise,
Xue et al. (2014) use EMD with the Teager-Kaiser method for hy-
drocarbon detection, and recently Chen and Ma (2014) combine f-x
EMD and autoregressive (AR) model to deal with complex subsur-
face structures.
Even though EMD offers several promising properties, some fea-

tures encumber its direct applications, namely, mode mixing and
splitting, aliasing, and end-point artifacts (Mandic et al., 2013; Tary
et al., 2014). Two variants were recently introduced to overcome
some of the negative features associated with EMD, namely ensem-
ble EMD (EEMD) (Wu and Huang, 2009) and complete ensemble
EMD (CEEMD) (Torres et al., 2011). Tong et al. (2012) compare
the superiority of EEMD over EMD on seismic time-frequency
analysis, Song et al. (2012) extend the EEMD to seismic oceanog-
raphy for analyzing ocean internal waves. Recently, Han and Van
der Baan (2013) successfully combine CEEMD with instantaneous
spectra for seismic spectral decomposition.
Denoising via EMD started from examining the properties of

IMFs resulting from white Gaussian noise (Flandrin et al.,
2004b). The first attempt is detrending and denoising electrocardio-
gram signals by partial reconstructions with the selected IMFs
(Flandrin et al., 2004a). However, this approach has the disadvant-
age that even if the appropriate IMFs are selected, they still may be
noise contaminated. Boudraa and Cexus (2006) improve the denois-
ing scheme by using adaptive thresholding and a Savitzky-Golay
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filter for each IMF, respectively. Inspired by translation-invariant
wavelet thresholding, Kopsinis and McLaughlin (2009) propose
an iterative EMD denoising method to enhance the original method.
Recently, hybrid EMD denoising methods, based on higher order
statistics and the curvelet transform, have also been proposed (Tso-
lis and Xenos, 2011; Dong et al., 2013).
In seismic processing, the f-x domain plays a significant role be-

cause linear or quasilinear events in the time-offset (t-x) domain
manifest themselves as a superposition of harmonics in the f-x do-
main. Canales (1984) first proposes prediction error filtering, based
on an AR model in the f-x domain to attenuate random noise, which
is widely known as f-x deconvolution. However, the AR model as-
sumes that the error is an innovation sequence rather than additive
noise. Soubaras (1994) introduces f-x projection filtering to circum-
vent this problem by using the AR-moving average (ARMA) model
instead of the AR model. Sacchi and Kuehl (2001) further discuss
the ARMA formulation in the f-x domain and discover that the
ARMA coefficients can be computed by solving an eigenvalue
problem. Integration of EMD into the f-x domain is first investigated
by Bekara and Van der Baan (2009). They find that eliminating the
first IMF component in each frequency slice corresponds to an au-
toadaptive wavenumber filter. This process reduces the random and
steeply dipping coherent noise in the seismic data. Instead of di-
rectly deleting the first IMF in the f-x domain, Chen and Ma
(2014) apply the AR model on the first IMF to enhance the original
f-x EMD performance.
In this paper, we first propose a novel method for suppressing

random noise based on the EEMD principle. Next, we test the pro-
posed EEMD thresholding on low- and high-signal-to-noise-ratio
(S/N) synthetic and microseismic examples. Finally, we extend
the proposed method into the f-x domain to suppress random
and coherent noise in seismic data.

THEORY

Empirical mode decomposition and ensemble empirical
mode decomposition

EMD is a fully data-driven separation of a data series into fast and
slow oscillation components, and these decomposed components
are called IMFs. The IMFs are computed recursively, starting with
the most oscillatory one. The decomposition method uses the enve-
lopes defined by the local maxima and the local minimum of the
data series. Once the maxima of the original signal are identified,
cubic splines are used to interpolate all the local maxima and con-
struct the upper envelope. The same procedure is used for the local
minimum to obtain the lower envelope. Next, one calculates the
average of the upper and lower envelopes and subtracts it from
the initial signal. This interpolation process is continued on the re-
mainder. This sifting process terminates when the mean envelope is
reasonably zero everywhere, and the resultant signal is designated
as the first IMF. The first IMF is subtracted from the data, and the
difference is treated as a new signal on which the same sifting pro-
cedure is applied to obtain the next IMF. The decomposition is
stopped when the last IMF has a small amplitude or becomes mon-
otonic. The sifting procedure ensures the first IMFs contain the de-
tailed components of the input signal; the last one solely describes
the signal trend (Huang et al., 1998; Bekara and Van der Baan,
2009; Han and Van der Baan, 2013).

The IMFs satisfy two conditions: (1) the number of extrema and
the number of zero crossings either equal or differ by one and (2) at
any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minimums is zero.
These conditions are necessary to make each IMF after decompo-
sition a symmetric, narrowband waveform, which ensures that the
instantaneous frequency is smooth and positive.
However, EMD suffers from several drawbacks (Mandic et al.,

2013). The most severe one is mode mixing, which is defined as
a single IMF consisting of signals of widely disparate scales or
a signal of a similar scale residing in different IMF components
(Huang andWu, 2008). The EEMD, briefly speaking, is EMD com-
bined with noise stabilization. Using the injection of controlled zero
mean, Gaussian white noise, EEMD effectively reduces mode mix-
ing (Wu and Huang, 2009; Mandic et al., 2013). Adding white
Gaussian noise helps perturb the signal and enables the EMD algo-
rithm to visit all possible solutions in the finite neighborhood of the
final answer, and it also takes advantage of the zero mean of the
noise to cancel aliasing (Wu and Huang, 2009). The implementation
procedure for EEMD is simple and is as follows:

1) Add a fixed percentage of Gaussian white noise onto the target
signal.

2) Decompose the resulting signal into IMFs.
3) Repeat steps (1) and (2) several times, using different noise real-

izations.
4) Obtain the ensemble averages of the corresponding individ-

ual IMFs.

The EEMD is a noise injection technique, and the added Gaus-
sian white noises are zero mean with a constant flat-frequency spec-
trum. Their contribution thus cancels out and does not introduce
signal components that are not already present in the original data.
The ensemble-averaged IMFs therefore maintain their natural
dyadic properties and effectively reduce the chance of mode mixing
(Han and Van der Baan, 2013).

Ensemble empirical mode decomposition thresholding

The first attempt at using EMD as a denoising tool emerged from
the need to know whether a specific IMF contains useful informa-
tion or primarily noise. Thus, Flandrin et al. (2004b) and Wu and
Huang (2004) nearly simultaneously investigate the EMD feature
for Gaussian noise, and they conclude that EMD acts essentially
as a dyadic filter bank resembling those involved in wavelet decom-
position. Therefore, the energy of each IMF from white Gaussian
noise follows an exponential relationship, and Kopsinis and
McLaughlin (2009) refine this relationship as

E2
k ¼ E2

1∕0.719 × 2.01−k; (1)

where E2
k is the energy of the kth IMF, and the parameters 0.719 and

2.01 are empirically calculated from numerical tests. Because the IMFs
resemble the wavelet decomposition component, the energy of the first
IMF E2

1 can be estimated using a robust estimator based on the com-
ponent’s median (Donoho and Johnstone, 1994; Herrera et al., 2014):

E2
1 ¼ ðmedianðjIMF1ðiÞjÞ∕0.6755Þ2; i ¼ 1; : : : ; n; (2)

where n is the length of the input signal. Then, we can set the adaptive
threshold Tk in each IMF for suppressing the random noise as
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Tk ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 × lnðnÞÞ

p
× Ek; (3)

where σ is themain parameter to be set. The combination of equations 2
and 3 is a universal threshold for removing the white Gaussian noise in
the wavelet domain (Donoho and Johnstone, 1994; Donoho, 1995).
Followed by the above procedures, the reconstructed signal ŝ is

expressed as

ŝ ¼
XM−m2

k¼m1

Tk½IMFk� þ
XM

k¼M−m2þ1

IMFk; (4)

thresholding is only applied between the m1 − th and ðM −m2Þth
IMFs, and the first ðm1 − 1Þth IMFs are removed, where IMFk is
the kth IMF andM is the total number of IMFs of the input signal. If
m2 is set to 0, we apply the thresholding from the m1th IMF to the
last IMF. The implemented threshold method is IMF interval thresh-
olding (Kopsinis and McLaughlin, 2009), which is presented in the
next section.
Due to the mode mixing of EMD, direct application of the above

procedure may not achieve the best effect. Kopsinis and McLaugh-
lin (2009) try to alter the input signal by circle shifting its IMF1
component and adding the circle-shifted IMF1 back to create a dif-
ferent noisy version of the signal. This works if IMF1 only contains
noise when the input signal S/N is low, and the circle shifting does
not change the embedded useful signal information. Averaging of
the denoised outputs of different triggered signals can enhance the
final result. However, when the input signal’s S/N is high, directly
altering IMF1 of the input signal would adversely affect the results.
Considering the different S/N cases, we use the EEMD principle

to improve the EMD denoising performance. The procedure of
EEMD denoising is as below:

1) Create white Gaussian noise.
2) Calculate the IMF1 of the white Gaussian noise and add it onto

the target signal using a predefined S/N.
3) Decompose the resulting signal into IMFs.
4) Apply the EMD denoising principle to the resulting IMFs.
5) Repeat steps (1–4) several times with different noise realiza-

tions, and
6) Compute the ensemble denoising average as the final output.

Although not adding the whole white Gaussian noise sequence
onto the target signal does not exactly respect the EEMD principle,
it shows better results in our synthetic and real data examples rather
than a denoising procedure exactly based on EEMD. Due to the
dyadic filter feature of EMD, the IMF1 of white Gaussian noise
corresponds to the high-frequency noise. It helps to relieve the
mode mixing of EMD to some extent and only affects the high-fre-
quency information of the input signal, which can be compensated
by a band-pass filter after the proposed EEMD denoising.

Intrinsic mode function interval thresholding

Each IMF is a fundamental element of the input signal. The local
extrema and zero crossings are the basic elements for each IMF due
to its symmetric feature. Kopsinis and McLaughlin (2008a) propose
IMF interval thresholding, which preserves the smooth feature of
each IMF. The idea of IMF interval thresholding is maintaining
the whole interval between two zero crossings in each IMF, when
the absolute value of local extrema in this interval is larger than the

threshold. Taking hard thresholding as an example, the expression
of direct hard thresholding is

ĥðtÞ ¼
�
hðtÞ; jhðtÞj > T
0; jhðtÞj ≤ T;

(5)

where hðtÞ is the input signal, T is the universal threshold, and ĥðtÞ
is the thresholded signal. The interval hard thresholding is ex-
pressed as

ĥðzjÞ ¼
�
hðzjÞ; jhðrjÞj > T
0; jhðrjÞj ≤ T; (6)

where hðzjÞ indicates the sample interval between adjacent zeros
crossings of the input signal, hðrjÞ is the local extrema correspond-
ing to this interval, and ĥðzjÞ is the thresholded output. Due to the
conditions of each IMF, this guarantees that there is one and only
one local extrema hðrjÞ in the interval of hðzjÞ.
Figure 1 illustrates the difference between the interval and direct

hard thresholding. Figure 1a is an IMF from a microseismic event.
Direct thresholding (Figure 1c) creates needless discontinuities, and
therefore it can have adverse consequences for the continuity of the
reconstructed signal. Luckily, these discontinuities can be effec-
tively reduced by IMF interval thresholding (Figure 1b). The
new thresholding method retains the smooth features of each
IMF. The portion in the red box highlights the advantages on
the IMF interval thresholding.
The above example is for hard interval thresholding, and soft in-

terval thresholding is also based on the same idea. For detailed in-
formation about soft interval thresholding, refer to Kopsinis and
McLaughlin (2008b).

0.05 0.1 0.15 0.2 0.25
−0.02

0

0.02

Orignal trace

0.05 0.1 0.15 0.2 0.25
−0.02

0

0.02

Interval thresholding

0.05 0.1 0.15 0.2 0.25
−0.02

0

0.02

Direct thresholding

Time (s)

c)

b)

a)

Figure 1. The difference between IMF interval thresholding and
direct thresholding. (a) An IMF from a microseismic event.
(b) The IMF interval thresholding result. (c) Direct thresholding re-
sult. The IMF interval thresholding keeps the smooth features of the
IMF, whereas the direct thresholding creates needless discontinu-
ities. The portion in the red box highlights the advantages of
IMF interval thresholding.
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f-x-domain ensemble empirical mode decomposition
thresholding

For the seismic data, one option is applying the proposed EEMD
thresholding for each trace for suppressing the random noise. The
disadvantage of this approach is not considering the lateral coher-
ence of the seismic reflections. A convenient approach is applying
the EEMD thresholding in the f-x domain. To process a whole seis-
mic section, f-x EEMD thresholding is implemented in a similar
way to f-x EMD (Bekara and Van der Baan, 2009) and f-x decon-
volution using the following scheme:

1) Select a time window, and transform the data to the f-x domain.
2) For every frequency, separate the real and imaginary parts in the

offset sequence.
3) Perform EEMD thresholding on the real and imaginary parts,

respectively.
4) Combine to create the filtered complex signal.
5) Transform the data back to the t-x domain.
6) Repeat for the next time window.

Bekara and Van der Baan (2009) first propose the f-x EMD filter,
and they find that IMF1 contains the largest wavenumber compo-
nents in a constant frequency slice in the f-x domain. Therefore, S/N
enhancement can be achieved by subtracting IMF1 from the data. In
the f-x EEMD thresholding implementation, the parameters m1 and
m2 control the threshold range of the IMF order, and parameter σ is
related to the noise level. The f-x EMD filter is a special case of f-x
EEMD thresholding with parameters as σ ¼ 0, m1 ¼ 2, and
m2 ¼ 0. Unlike the f-x deconvolution, which uses a fixed filter
length for all frequencies, EMD adaptively matches its decompo-
sition to the smoothness of the data. Directly eliminating the
IMF1 of a signal means removing its most oscillatory element,
and the residual receives a smoother feature. However, only sub-
tracting IMF1 in each constant frequency slice seems to be not
enough or too harsh for some seismic data (Chen and Ma,
2014); f-x EEMD thresholding thus improves its performance.

EXAMPLES

Synthetic example

Figure 2a shows one trace comprised of several events with 30-
and 40-Hz Ricker wavelets. Figure 2b is the noise-contaminated
version with an S/N equal to 1. This is a low-S/N case to test
our proposed method. Because the proposed method is a single-
trace technique, we first compare with an appropriately set band-
pass filter (Figure 2c). Because the random noise pollutes the whole
frequency domain, a band-pass filter is not an effective method here.
Our proposed method with σ ¼ 0.35, m1 ¼ 3, and m2 ¼ 0 (Fig-
ure 2d) suppresses most of the random noise and better enhances
the events, and hence, it drastically improves the S/N of the test
data. Note that the same band-pass filter as Figure 2c is applied after
the proposed denoising method. Another technique we compare
here is the basis pursuit approach (Chen et al., 2001), which has
been shown to be an effective tool for suppressing random noise
in microseismic and seismic processing (Vera Rodriguez et al.,
2012; Han et al., 2014). Basis pursuit with regularization parameter
0.1 (Figure 2e) eliminates most of the random noise. Because the
S/N of each trace equals 1, the random noise affects the waveforms
severely. Compared with band-pass filtering, the EEMD denoising
and basis pursuit techniques effectively eliminate the random noise
and protect the useful waveform to the maximum extent.
Figures 3–5 illustrate the principle of EEMD thresholding. The

solid line (Figure 3) is the theoretical IMF energy of white Gaussian
noise based on equation 3 when σ ¼ 1, and the dashed line repre-
sents the IMF energy of the noisy trace (Figure 2b). The slope of
first two IMFs’ energy matches the theoretical line the most, which
indicates that they are the most similar to the noise characteristic.
On the other hand, the other IMFs contain less noise because their
energy distribution deviates from the theoretical line. Figure 4
shows the nine IMFs of the noisy trace using EEMD. The first
two IMFs contain the highest frequency information, and the least
signal information can be found. This agrees with Figure 3. The
parameters m1 ¼ 3 and m2 ¼ 0 indicate that the thresholding is
only applied from IMF3 to the last IMF, and it sets the reconstructed

0 0.2 0.4 0.6 0.8 1

b)

a)

c)

e)

d)

Time (s)

Figure 2. Low-S/N synthetic example. (a) Noise-free trace,
(b) noisy trace with S∕N ¼ 1, (c) trace after band-pass filtering,
(d) trace after EEMD thresholding, and (e) trace after basis pursuit.
EEMD thresholding and the basis pursuit suppress more random
noise than does band-pass filtering.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

lo
g 2(E

ne
rg

y)

IMF number 

Theoretical white noise IMF energy
Signal IMF energy

Figure 3. IMF energy distribution of the noisy trace (Figure 2b) and
the theoretical IMF energy distribution of white Gaussian noise
based on equation 1.
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IMF1 and IMF2 to zero. Figure 5 shows the nine thresholded IMFs.
The IMF interval thresholding makes the reconstructed IMFs keep
the smooth features, meanwhile getting rid of most of the noise.
Note that we apply soft thresholding in this synthetic example.
A high-S/N case to test EEMD thresholding is shown in Figure 6.

In this test, the S/N for each trace is 2.5 (Figure 6b). The results
from band-pass filtering, EEMD thresholding with σ ¼ 0.3,
m1 ¼ 2, and m2 ¼ 0, and the basis pursuit with regularization
parameter 0.05 are shown in the same sequence as Figure 2. All
three methods improve the input noisy data (Figure 6b). Like the
low S/N case, the EEMD thresholding (Figure 6d) and basis pursuit
(Figure 6e) approaches show clearer outputs than the band-pass fil-
ter (Figure 6c) because they reduce random noise from the whole
frequency band. Compared with the other two methods, EEMD
thresholding (Figure 6d) shows the most proximal result to the
noise-free one (Figure 6a).

Microseismic example

In this section, we show two microseismic cases to verify the
proposed technique. Figure 7a is 1 of 66 microseismic events from
a hydraulic fracturing treatment in Canada. Unlike the synthetic ex-
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Figure 4. IMFs of the noisy trace: IMF1 and IMF2 contain the
highest frequency information, which are out of the interested fre-
quency band.
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Figure 5. Thresholded IMFs. The reconstructed IMF1 and IMF2
are set as 0. IMF interval thresholding is applied from IMF3 to
the last IMF.
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Figure 6. High S/N synthetic example: (a) noise-free trace, (b) noisy
trace with S=N ¼ 2.5, (c) trace after band-pass filter, (d) trace after
EEMD thresholding, and (e) trace after basis pursuit. EEMD thresh-
olding obtains the smoothest output.
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amples, the quality of these microseismic events is much better. The
traditional denoising method for microseismic data is band-pass fil-
tering. However, due to the diversity of microseismic data, a fixed
frequency range may remove some useful signal. Figure 7b shows
the result of a fixed band-pass filter with corner frequencies [1 10
125 180] Hz. Note that this band-pass filter works well for most of
the microseismic events in these data, but it removes some of the
low-frequency components approximately 0.56 s. Furthermore,
there is still some noise before the P-wave arrives.
The proposed EEMD thresholding with σ ¼ 0.6, m1 ¼ 2, and

m2 ¼ 1, and basis pursuit with regularization parameter 0.005 out-
puts are shown in Figure 7c and 7d. Like the band-pass filter, they
both suppress most of the random noise. Furthermore, these two
techniques well preserve the waveform information because they
can distinguish the noise and useful information in their own do-
main. The denoising performance is also confirmed in their spectra
(Figure 8). All three methods remove all of the higher frequency
noise. The proposed method (Figure 8c) and basis pursuit (Fig-
ure 8d) preserve the low-frequency information better than the
band-pass filter (Figure 8b). Only EEMD thresholding keeps the

components approximately 300 Hz, which probably contains some
signal information.
A challenging microseismic test (Castellanos and van der Baan,

2013) is shown in Figure 9, which comes from Saskatchewan in
Canada. The raw data (Figure 9a) quality is bad because it not only
contains random noise, but also strong electronic noise. High-en-
ergy 30-, 60-, and 120-Hz noise components exist in its spectra
(Figure 10a). Directly applying the EEMD thresholding and basis
pursuit to the raw data would fail because they are only valid for
suppressing random noise. A preprocessing step must be accom-
plished before further processing. Figure 9b is the output after a
band-pass filter and notch process of 30 and 60 Hz. The 120-Hz
energy is not notched down because it is not visible in the other
microseismic events of this experiment.
Even though the preprocessing improves the quality of the raw

data, Figure 9b still suffers from severe random noise. The EEMD
thresholding (Figure 9c) with σ ¼ 0.25, m1 ¼ 1, and m2 ¼ 1 re-
duces more random noise than the basis pursuit (Figure 9d), and
it more effectively (Figure 10c) drops down the 120-Hz energy than
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Figure 7. High S/N microseismic event example. (a) Raw micro-
seismic event, (b) band-pass filter output, (c) EEMD thresholding
output, and (d) basis pursuit output. The band-pass filter removes
some of the low-frequency components at approximately 0.56 s.
The proposed method and basis pursuit preserve the waveform
better.
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Figure 8. The spectra of Figure 7. (a) Spectra of the original micro-
seismic event, (b) spectra after band-pass filtering, (c) spectra after
the proposed method, and (d) spectra after the basis pursuit. Due to
the diversity of microseismic data, a fixed frequency range may re-
move some of the useful signal. EEMD thresholding and the basis
pursuit preserve the low-frequency information better than the
band-pass filter. Furthermore, EEMD thresholding maintains the
components at approximately 300 Hz.
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does the basis pursuit method (Figure 10d). Note that the regulari-
zation parameter is 35 for basis pursuit implementation. On the
other hand, both techniques significantly improve the S/N of the
microseismic event, and this is also confirmed in the enlarged part
from 0.2 to 0.8 s (Figure 11). The denoising (Figure 11c and 11d)
makes the first-arrival pick much easier than on the original micro-
seismic event or after preprocessing. The arrows indicate the first-
arrival pick at 0.498 s, which is difficult to detect in Figure 11a and
11b. Denoising of microseismic events can facilitate picking of the
first-arrival times and their polarities, which is a crucial step in mi-
croseismic processing.

Seismic example

In this section, we verify the performance of f-x EEMD thresh-
olding. Figure 12 is a stacked section from Alaska (Geological Sur-
vey, 1981). Although the events become continuous after stacking,
random, coherent, and background scattered noise still exist,

thereby reducing the S/N of the seismic data. We implement EEMD
thresholding in the f-x domain, mainly because of linear or quasi-
linear events in the t-x domain manifest as a superposition of har-
monics in the f-x domain. Therefore, we compare the result with the
classic f-x deconvolution (Canales, 1984) and f-x EMD (Bekara and
Van der Baan, 2009).
All three methods are implemented between 0 Hz and 60% of the

Nyquist frequency, and frequencies beyond 60% of the Nyquist fre-
quency are damped to zero. The f-x EMD only eliminates the IMF1
component in each frequency slice, which makes it a parameter-free
technique; f-x deconvolution uses the length of the AR operator as
20, prewhitening as 0.1; f-x EEMD denoising uses σ ¼ 0.3,
m1 ¼ 3, and m2 ¼ 0. The outputs of the three methods are shown
in Figure 13. All of the techniques enhance the quality of the input
data by making the events clearer, especially in the deep part. From
the difference sections (Figure 14), neither method loses the reflec-
tion information. The f-x deconvolution (Figure 14b) and f-x EEMD
denoising (Figure 14c) seem to eliminate more random noise than
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Figure 9. A low-S/N microseismic event example. (a) Raw micro-
seismic event, (b) output after preprocessing, (c) EEMD threshold-
ing output on panel (b), and (d) basis pursuit output on panel (b).
The raw microseismic event contains the random noise and elec-
tronic noise. The output after preprocessing gets rid of most of
the electronic noise. EEMD thresholding and the basis pursuit sup-
press most of the random noise.
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Figure 10. The spectra of Figure 9. (a) Spectra of the raw micro-
seismic event, (b) spectra after preprocessing, (c) spectra after the
proposed method in panel (b), and (d) spectra after the basis pursuit
in panel (b). There are 30-, 60-, and 120-Hz of electronic noise in
the raw microseismic event. The preprocessing reduces the elec-
tronic noise at 30 and 60 Hz. The EEMD thresholding and basis
pursuit eliminate most of the random noise. The proposed method
drops the 120-Hz energy down more effectively than does the basis
pursuit approach.
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does f-x EMD (Figure 17a). The advantage of our proposed method
and f-x EMD over f-x deconvolution is that, except for the random
noise, they can eliminate the linear dipping energy as well. Note that
all figures are shown on the same amplitude scale.
Figure 15 is the enlarged part of the original data from time 2–

3.6 s and CMP number is 1000–3500. It clearly shows that the
Alaska data do not contain only random but also coherent noise,
such as high-energy linear dipping events. The same enlarged parts
of three denoising outputs are shown in Figure 16. The f-x EEMD
thresholding (Figure 16c) obtains the most satisfactory output, and
the events become much clearer. There are still some random and
coherent noise in the results of f-x EMD (Figure 16a) and f-x de-
convolution (Figure 16b) in varying degrees. The f-x EMD, which
eliminates only IMF1 component in each frequency, does not seem
to have great impact in the data. The proposed method with param-
eters m1 ¼ 3, m2 ¼ 0, and σ ¼ 0.3 means deleting the first two
IMFs and also applying the IMF interval thresholding from
IMF3 to the last IMF. This explains why the difference section
of the f-x EMD (Figure 17a) contains only a portion of noise com-

pared with the one of the proposed methods (Figure 17c). On the
other side, because f-x deconvolution is only valid for random noise
suppression, no dipping noise is shown in its difference profile
(Figure 17b).

DISCUSSION

Empirical mode decomposition is a fully data-driven technique,
and no a priori decomposition basis is chosen such as sines and
cosines for the Fourier transform or a mother wavelet for the wave-
let transform. The EMD denoising foundation, equation 1, is an
average result from Monte Carlo simulation of EMD on white
Gaussian noise. Kopsinis and McLaughlin (2008b, 2009) first in-
vestigate iterative EMD denoising and discover that the averaging
of different noisy versions by altering the IMF1 of the input signal
can increase the S/N of the final output. Although this approach
improves the original EMD denoising, it assumes only IMF1 of
the input signal is noisy (low S/N case). They further propose
the clear iterative EMD denoising technique to handle the high
S/N case. Our proposed EEMD denoising method is effective
for high- and low-S/N cases. We create the noisy versions of the
target signal by adding the IMF1 of white noise. Based on the
dyadic filter structure of EMD (Flandrin et al., 2004b), the IMF1
of white Gaussian noise contains information in the bandwidth from
half-Nyquist to Nyquist frequency, and the added noise can be
easily removed using a final band-pass filter.
There are three main parameters in the EEMD thresholding

namely, m1, m2, and σ. Based on the dyadic filter property of each
IMF, m1 and m2 determine approximately the frequency range for
thresholding, and the IMFs outside of this range are either removed
or untouched. Figure 18 indicates the influence of the thresholding
parameter σ on the reference line based on equation 3. It is related to
the noise level in the processing and controls the slope of the refer-
ence line for denoising. The red, black, and blue solid lines (Fig-
ure 18) correspond to σ ¼ 1.2, 1 and 0.8, respectively. The severity
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Figure 11. Enlarged part of Figure 9. (a) Original raw microseismic
event, (b) output after preprocessing, (c) EEMD thresholding output
in panel (b), and (d) basis pursuit output in panel (b). The arrows in
panels (c and d) mark the first-arrival times, which are hard to pick
on the raw microseismic event (panel [a]) or after preprocessing
(panel [b]).
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Figure 12. Alaska data. There are the random and coherent noise in
the data.
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of denoising is proportional to the value of σ. Although the above is
the mathematic principle for selecting the parameters, we strongly
recommend tests to determine their optimum values for microseis-
mic and seismic processing. Like f-x EMD, the proposed f-x EEMD
denoising is applied in each predefined time window. The window
length should balance the performance and computing efficiency;

besides, the overlap of the adjacent windows also mitigates the side
effects.
Treating the random noise from an inversion view became popu-

lar during the last decade in seismic processing (Kumar et al., 2011;
Yuan et al., 2012). Hence, basis pursuit obtains similar satisfactory
results in the synthetic and microseismic examples. However, it is
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Figure 13. (a) Results of f-x EMD. (b) Results of f-x deconvolution. (c) Results of f-x EEMD thresholding. All three techniques enhance the
quality of the original data, especially in the deep part.
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Figure 14. (a) Difference section of f-x EMD. (b) Difference section of f-x deconvolution. (c) Difference section of the f-x EEMD thresholding.
No reflections are lost in these methods. The f-x deconvolution and f-x EEMD thresholding eliminate more noise than does f-x EMD.
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strongly dependent on the predefined wavelet dictionary. We use the
Ricker wavelets as the predefined dictionary in both examples (Vera
Rodriguez et al., 2012; Bonar and Sacchi, 2013). The excellent
manifestation in the synthetic example is because the predefined
dictionary matches the synthetic data exactly, so it only needs a
small wavelet dictionary to process. In the microseismic example,
the basis pursuit requires a large Ricker wavelet dictionary to match
the test events; therefore, it is approximately 15 to 20 times slower
than the EEMD thresholding.

The f-x EEMD thresholding manifests its effectiveness in the
Alaska data. It combines the advantages of f-x deconvolution
and f-x EMD. The predominance of the AR model in the f-x domain
is acceptable because of its excellent noise reduction and time-ef-
ficient characteristics. However, the theory needs regular trace spac-
ing, and the results of f-x deconvolution can enhance any coherent
noise as well, such as multiples and dipping energy. Trying EMD as
an alternative operator in the f-x domain, Bekara and Van der Baan
(2009) elaborately discuss the advantages of f-x EMD in different
kinds of data sets over f-x deconvolution. They conclude that f-x
EMD acts as an autoadaptive wavenumber filter to remove the ran-
dom and steeply dipping coherence noise. The theory of proposed
f-x EEMD thresholding is similar as f-x EMD. Furthermore, it im-
proves the performance of f-x EMD by more parameter controls.
The parameter σ is related to the noise level in the seismic data.
Random noise pollutes the whole t-x domain as well as the f-x do-
main; therefore, thresholding on each IMF in each constant fre-
quency slice is more effective for suppressing random noise than
only deleting IMF1. The parametersm1 andm2 give a flexible con-
trol for the dip filter range. Chen and Ma (2014) also talk over the
EMD-based dip filter in synthetic seismic data. The Alaska data
illustrate that the dipping coherent noise is not totally limited in
the IMF1 of each frequency in the f-x domain. The proposed f-x
EEMD thresholding is more powerful in reducing the dipping co-
herent noise; therefore, it enhances the lateral coherence of the seis-
mic data.
Torres et al. (2011) propose CEEMD, which is a complete

version of EEMD. Han and Van der Baan (2013) combine CEEMD
with instantaneous spectra for seismic time-frequency analysis, and
they conclude that CEEMD solves not only the mode mixing prob-
lem, but it also leads to complete signal reconstructions. Therefore,
by raising the question, “Why not use the CEEMD thresholding
instead of EEMD thresholding?” The answer would be that the
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Figure 15. Enlarged section of the Alaska data.
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Figure 16. Enlarged section. (a) Result of f-x EMD. (b) Result of f-x deconvolution. (c) Result of the proposed method. The proposed method
obtains the most satisfactory output because the events become clearer than the f-x EMD and f-x deconvolution.
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EMD denoising foundation is based on equation 1, which needs the
decomposition of the input signal by the full EMD scheme. In this
case, CEEMD does not obey this feature, it uses different decom-
position process to obtain each IMF, which simply means that the
IMFs energy after CEEMD may not follow equation 1.

CONCLUSIONS

EEMD thresholding is a useful tool for suppressing random noise
in the signals with a different S/N because it distinguishes between
the structured signal and random noise within each IMF. It can serve

as an alternative to simple band-pass filtering with the advantage
that it acts as a nonstationary (time-varying), autoadaptive, fre-
quency filter. In this sense, it performs equally well or possibly even
better than basis pursuit denoising. If applied in the f-x domain, the
method acts as a sophisticated wavenumber filter, removing random
and dipping coherent noise. It has similar advantages to f-x EMD in
that it is less sensitive to irregularly spaced data than f-x deconvo-
lution; yet this permits for more parameter control as well as an
explicit thresholding scheme designed to remove random noise.
The synthetic, microseismic, and reflection seismic examples illus-
trate the good performance of the proposed methods.
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Figure 17. Enlarged section. (a) Difference section of f-x EMD. (b) Difference section of f-x deconvolution. (c) Difference section of the
proposed method. The f-x EMD suppresses partial random and coherence noise. The f-x deconvolution reduces most random noise without
any dipping events. The proposed method eliminates the random noise as well as the coherence noise, such as the dipping noise.
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Denoising via EEMD KS79

D
ow

nl
oa

de
d 

09
/1

5/
15

 to
 5

0.
65

.1
37

.1
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.2437700
http://dx.doi.org/10.1190/1.2437700
http://dx.doi.org/10.1190/1.2437700
http://dx.doi.org/10.1190/1.3157244
http://dx.doi.org/10.1190/1.3157244
http://dx.doi.org/10.1190/1.3157244
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01104.x
http://library.seg.org/action/showImage?doi=10.1190/geo2014-0423.1&iName=master.img-011.jpg&w=128&h=210
http://library.seg.org/action/showImage?doi=10.1190/geo2014-0423.1&iName=master.img-012.jpg&w=128&h=210
http://library.seg.org/action/showImage?doi=10.1190/geo2014-0423.1&iName=master.img-013.jpg&w=128&h=210
http://library.seg.org/action/showLinks?system=10.1190%2F1.3157244&isi=000270381400027
http://library.seg.org/action/showLinks?system=10.1190%2F1.2437700&isi=000245441200032
http://library.seg.org/action/showLinks?crossref=10.1111%2Fj.1365-2478.2012.01104.x&isi=000320136500011


Canales, L., 1984, Random noise reduction: 54th Annual International
Meeting, SEG, Expanded Abstracts, 525–527.

Castellanos, F., and M. van der Baan, 2013, Microseismic event
locations using the double-difference algorithm: CSEG Recorder, 38,
26–37.

Chen, S., D. Donoho, and M. Saunders, 2001, Atomic decomposition by
basis pursuit: SIAM Journal on Scientific Computing, 43, 129–159,
doi: 10.1137/S003614450037906X.

Chen, Y., and J. Ma, 2014, Random noise attenuation by fx empirical-mode
decomposition predictive filtering: Geophysics, 79, no. 3, V81–V91, doi:
10.1190/geo2013-0080.1.

Dong, L., Z. Li, and D. Wang, 2013, Curvelet threshold denoising joint with
empirical mode decomposition: 83rd Annual International Meeting, SEG,
Expanded Abstracts, 4412–4416.

Donoho, D., 1995, De-noising by soft-thresholding: IEEE Transactions on
Information Theory, 41, 613–627, doi: 10.1109/18.382009.

Donoho, D., and J. Johnstone, 1994, Ideal spatial adaptation by wavelet
shrinkage: Biometrika, 81, 425–455, doi: 10.1093/biomet/81.3.425.

Flandrin, P., P. Goncalves, and G. Rilling, 2004a, Detrending and denoising
with empirical mode decompositions: Presented at European Signal
Processing Conference, Citeseer, 1581–1584.

Flandrin, P., G. Rilling, and P. Goncalves, 2004b, Empirical mode decom-
position as a filter bank: IEEE Signal Processing Letters, 11, 112–114,
doi: 10.1109/LSP.2003.821662.

Geological Survey, U.S., 1981, http://wiki.seg.org/wiki/ALASKA_2D_
LAND_LINE_31-81, accessed 2 January 2015.

Han, J., and M. Van der Baan, 2011, Empirical mode decomposition and
robust seismic attribute analysis: Presented at 2011 CSPG CSEG CWLS
Convention.

Han, J., and M. Van der Baan, 2013, Empirical mode decomposition for
seismic time-frequency analysis: Geophysics, 78, no. 2, O9–O19, doi:
10.1190/geo2012-0199.1.

Han, L., M. Sacchi, and L. Han, 2014, Spectral decomposition and de-nois-
ing via time- frequency and space-wavenumber reassignment: Geophysi-
cal Prospecting, 62, 244–257, doi: 10.1111/1365-2478.12088.

Herrera, R., J. Han, and M. Van der Baan, 2014, Applications of the syn-
chrosqueezing transform in seismic time-frequency analysis: Geophysics,
79, no. 3, V55–V64, doi: 10.1190/geo2013-0204.1.

Huang, N., and Z. Wu, 2008, A review on Hilbert-Huang transform: Method
and its applications to geophysical studies: Reviews of Geophysics, 46,
RG2006, doi: 10.1029/2007RG000228.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C.
Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis: Proceedings A — The Royal Society, doi: 10.1098/rspa
.1998.0193.

Kopsinis, Y., and S. McLaughlin, 2008a, Empirical mode decomposition
based denoising techniques: 1st IAPR Workshop on Cognitive Informa-
tion, 42–47.

Kopsinis, Y., and S. McLaughlin, 2008b, Empirical mode decomposition
based soft-thresholding: Presented at 16th European Signal Processing
Conference — EUSIPCO, 1–5.

Kopsinis, Y., and S. McLaughlin, 2009, Development of EMD-based
denoising methods inspired by wavelet thresholding: IEEE Transactions
on Signal Processing, 57, 1351–1362, doi: 10.1109/TSP.2009.2013885.

Kumar, V., J. Oueity, R. Clowes, and F. Herrmann, 2011, Enhancing crustal
reflection data through curvelet denoising: Tectonophysics, 508, 106–
116, doi: 10.1016/j.tecto.2010.07.017.

Magrin-Chagnolleau, I., and R. Baraniuk, 1999, Empirical mode decompo-
sition based time-frequency attributes: 69th Annual International Meet-
ing, SEG, Expanded Abstracts, 1949–1952.

Mandic, D., Z. Wu, and N. E. H., 2013, Empirical mode decomposition-
based time- frequency analysis of multivariate signals: The power of adap-
tive data analysis: IEEE Signal Processing Magazine, 30, no. 6, 74–86,
doi: 10.1109/MSP.2013.2267931.

Sacchi, M., and H. Kuehl, 2001, ARMA formulation of FX prediction error
filters and projection filters: Journal of Seismic Exploration, 9, 185–197.

Song, H., Y. Bai, L. Pinheiro, C. Dong, X. Huang, and B. Liu, 2012, Analy-
sis of ocean internal waves imaged by multichannel reflection seismics,
using ensemble empirical mode decomposition: Journal of Geophysics
and Engineering, 9, 302–311, doi: 10.1088/1742-2132/9/3/302.

Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x
projection: 64th Annual International Meeting, SEG, Expanded Abstracts,
1576–1579.

Tary, J.-B., R. Herrera, J. Han, and M. Van der baan, 2014, Spectral esti-
mation — What is new? What is next?: Reviews of Geophysics, 52,
723–749, doi: 10.1002/2014RG000461.

Tong, W., M. Zhang, Q. Yu, and H. Zhang, 2012, Comparing the applica-
tions of EMD and EEMD on time-frequency analysis of seismic signal:
Journal of Applied Geophysics, 83, 29–34, doi: 10.1016/j.jappgeo.2012
.05.002.

Torres, M., M. Colominas, G. Schlotthauer, and P. Flandrin, 2011, A com-
plete ensemble empirical mode decomposition with adaptive noise: Pre-
sented at 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing, 4144–4147.

Tsolis, G., and T. Xenos, 2011, Signal denoising using empirical mode de-
composition and higher order statistics: International Journal of Signal
Processing, Image Processing and Pattern Recognition, 4, 91–106.

Vera Rodriguez, I., D. Bonar, and M. Sacchi, 2012, Microseismic data
denoising using a 3C group sparsity constrained time-frequency trans-
form: Geophysics, 77, no. 2, V21–V29, doi: 10.1190/geo2011-0260.1.

Wu, Z., and N. E. Huang, 2004, A study of the characteristics of white noise
using the empirical mode decomposition method: Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
460, 1597–1611, doi: 10.1098/rspa.2003.1221.

Wu, Z., and N. E. Huang, 2009, Ensemble empirical mode decomposition: A
noise-assisted data analysis method: Advances in Adaptive Data Analysis,
01, 1–41, doi: 10.1142/S1793536909000047.

Xue, Y., J. Cao, and R. Tian, 2014, EMD and Teager-Kaiser energy applied
to hydrocarbon detection in a carbonate reservoir: Geophysical Journal
International, 197, 277–291, doi: 10.1093/gji/ggt530.

Yuan, S., S. Wang, and G. Li, 2012, Random noise reduction using Bayesian
inversion: Journal of Geophysics and Engineering, 9, 60–68, doi: 10
.1088/1742-2132/9/1/007.

KS80 Han and van der Baan

D
ow

nl
oa

de
d 

09
/1

5/
15

 to
 5

0.
65

.1
37

.1
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1137/S003614450037906X
http://dx.doi.org/10.1137/S003614450037906X
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1109/LSP.2003.821662
http://dx.doi.org/10.1109/LSP.2003.821662
http://dx.doi.org/10.1109/LSP.2003.821662
http://dx.doi.org/10.1109/LSP.2003.821662
http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-81
http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-81
http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-81
http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-81
http://dx.doi.org/10.1190/geo2012-0199.1
http://dx.doi.org/10.1190/geo2012-0199.1
http://dx.doi.org/10.1190/geo2012-0199.1
http://dx.doi.org/10.1111/1365-2478.12088
http://dx.doi.org/10.1111/1365-2478.12088
http://dx.doi.org/10.1111/1365-2478.12088
http://dx.doi.org/10.1190/geo2013-0204.1
http://dx.doi.org/10.1190/geo2013-0204.1
http://dx.doi.org/10.1190/geo2013-0204.1
http://dx.doi.org/10.1029/2007RG000228
http://dx.doi.org/10.1029/2007RG000228
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/TSP.2009.2013885
http://dx.doi.org/10.1109/TSP.2009.2013885
http://dx.doi.org/10.1109/TSP.2009.2013885
http://dx.doi.org/10.1109/TSP.2009.2013885
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1016/j.tecto.2010.07.017
http://dx.doi.org/10.1109/MSP.2013.2267931
http://dx.doi.org/10.1109/MSP.2013.2267931
http://dx.doi.org/10.1109/MSP.2013.2267931
http://dx.doi.org/10.1109/MSP.2013.2267931
http://dx.doi.org/10.1088/1742-2132/9/3/302
http://dx.doi.org/10.1088/1742-2132/9/3/302
http://dx.doi.org/10.1002/2014RG000461
http://dx.doi.org/10.1002/2014RG000461
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1190/geo2011-0260.1
http://dx.doi.org/10.1190/geo2011-0260.1
http://dx.doi.org/10.1190/geo2011-0260.1
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1093/gji/ggt530
http://dx.doi.org/10.1093/gji/ggt530
http://dx.doi.org/10.1088/1742-2132/9/1/007
http://dx.doi.org/10.1088/1742-2132/9/1/007
http://library.seg.org/action/showLinks?crossref=10.1093%2Fbiomet%2F81.3.425&isi=A1994PP36700001
http://library.seg.org/action/showLinks?crossref=10.1088%2F1742-2132%2F9%2F1%2F007&isi=000299325400007
http://library.seg.org/action/showLinks?crossref=10.1088%2F1742-2132%2F9%2F3%2F302&isi=000306688100006
http://library.seg.org/action/showLinks?crossref=10.1088%2F1742-2132%2F9%2F3%2F302&isi=000306688100006
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2013-0204.1&isi=000338322900042
http://library.seg.org/action/showLinks?crossref=10.1109%2FTSP.2009.2013885&isi=000264247400011
http://library.seg.org/action/showLinks?crossref=10.1109%2FTSP.2009.2013885&isi=000264247400011
http://library.seg.org/action/showLinks?crossref=10.1109%2FLSP.2003.821662&isi=000188369600014
http://library.seg.org/action/showLinks?crossref=10.1098%2Frspa.2003.1221&isi=000221795400003
http://library.seg.org/action/showLinks?crossref=10.1098%2Frspa.2003.1221&isi=000221795400003
http://library.seg.org/action/showLinks?crossref=10.1002%2F2014RG000461&isi=000348452000004
http://library.seg.org/action/showLinks?crossref=10.1109%2F18.382009&isi=A1995QW24800001
http://library.seg.org/action/showLinks?crossref=10.1109%2F18.382009&isi=A1995QW24800001
http://library.seg.org/action/showLinks?crossref=10.1093%2Fgji%2Fggt530&isi=000334096600019
http://library.seg.org/action/showLinks?crossref=10.1093%2Fgji%2Fggt530&isi=000334096600019
http://library.seg.org/action/showLinks?isi=000168018100001
http://library.seg.org/action/showLinks?crossref=10.1111%2F1365-2478.12088&isi=000331393800004
http://library.seg.org/action/showLinks?crossref=10.1111%2F1365-2478.12088&isi=000331393800004
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2013-0080.1&isi=000338322900045
http://library.seg.org/action/showLinks?system=10.1190%2F1.1822843
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2011-0260.1&isi=000302192800040
http://library.seg.org/action/showLinks?crossref=10.1016%2Fj.tecto.2010.07.017&isi=000294877300011
http://library.seg.org/action/showLinks?system=10.1190%2F1.1894168
http://library.seg.org/action/showLinks?crossref=10.1142%2FS1793536909000047
http://library.seg.org/action/showLinks?crossref=10.1109%2FMSP.2013.2267931&isi=000328502000012
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2012-0199.1&isi=000319858000023
http://library.seg.org/action/showLinks?crossref=10.1016%2Fj.jappgeo.2012.05.002&isi=000306455000004

