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Summary

In this paper, we purpose a blind frequency deconvolu-
tion method using higher order statistics by minimizing
the mutual information rate of the deconvolved output.
We add to the criterion a regularization term to limit
noise amplification. Then, we compare on real data
(underwater explosions and seismovolcanic phenomena)
our deconvolution algorithm with existing methods.

Introduction

In reflection seismology, the sensor antenna recordings
allow to describe the substratum using the reflection of
the short-duration wave transmitted in the earth at each
impedances changes. Under simplifying assumptions, one
such trace can be modeled as a 1-D convolution:
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Fig. 1: Setup of the convolution and deconvolution problem

The vertical earth reflectivity r(t) is convolved by the
unknown wavelet w:

d(t) = (w ∗ r)(t) + n(t) =

+∞∑

i=−∞

w(i)r(t− i) + n(t) (1)

where d(t) is the recorded signal and n(t) is the addi-
tive sensor noise signal. Some methods (Champagnat et
al., 1996; Lavielle, 1993) used in Bayesian formulation
the prior hypothesis that the reflectivity signal r(t) is a
Bernouilli-Gaussian process. The first step is a detection
of the reflectors and it follows by a magnitude estimation.
The high noise level on recordings limits the performance
of the detection step. The deconvolution problem can
be also applied to the seismovolcanic phenoma. Then,
the recording is the result of a convolution between the
excitation r(t) and the filter w, which is a resonant fil-
ter giving information about the volcano geometry. This
data can be processed with a blind deconvolution algo-
rithm, in whose only d(t) is accessible to the algorithm,
whereas r, n and w are unknown parameters. In a blind
deconvolution problem we aim at finding a deconvolution
filter g for computing the output of deconvolution process
y(t) = (g∗d)(t). Assuming the source signal r(t) is iid (In-
dependently and Identically Distributed) and non Gaus-
sian, the solution set of the blind deconvolution problem
is generated by an only solution with a delay and mag-
nitude modifications. Filter phase determination need to
use higher order statistics (HOS). Boumahdi (Boumahdi,

1996) proposes to use the simplest HOS-the kurtosis-for
estimating non-minimum phase Moving Average (MA) or
autoregressive (AR) or ARMA models. These methods
come up against the same problem of the noise. So, in
the following part, we present our criterion and our algo-
rithm using more general HOS, then in the last part we
show tests about simulated and real data.

Deconvolution algorithm

We define for a T sample stationary stochastic process
Z = {z(t)} the mutual information rate by (Cover and
Thomas, 1991):

I(Z) = H(z(τ ))−H(Z) (2)

where H denotes the entropy rate, then H(Z) is the
joint entropy rate of all samples z(t) and H(z(τ )) is the
marginal entropy rate of the sample z(τ ) which is the
same for each τ under stationary hypothesis. We shall
notice that I(Z) is always positive ans vanishes if Z is iid
process. With, the notation defined above, we can define
with the mutual information rate of the deconvolution
output signal y(t) a deconvolution criterion with respect
to the inverse filter g. In (Taleb et al., 2001), Taleb et

al. define a criterion with respect to the impulse response
g(t), then their method is dedicated to the inversion of
autoregressive model of the wavelet w. We can show that
the algorithm is equivalent to a maximum likelihood (ML)
method replacing the source distribution supposed known
in ML method by the distribution of deconvolution out-
put estimated at each iteration. We decide to use a fre-
quency criterion in order to avoid a parametric approach
like MA, AR or ARMA models. And, we note that it is
easier in frequency domain to add a regularization like the
Wiener filtering. We define the criterion with respect to
G = [G(0), . . . , G(T − 1)] the discrete frequency response
of the inverse filter g:

J(G) = H(y(τ ))−
1

T

T−1∑

ν=0

log |G(ν)|

+λ1

T−1∑

ν=0

|G(ν)−G(ν + 1)|2 + λ2

T−1∑

ν=0

|G(ν)|p (3)

The two first terms of (3) come from the mutual informa-
tion rate of y(t) expect for a constant, which equal to the
joint entropy rate of the observed process d(t). We add
two regularization terms balanced by the hyperparame-
ters λ1 and λ2. The first term constrains the frequency
response of the inverse filter to be continuous. Practi-
cally, we notice that it also improves the stability of the
minimization algorithm. The last term penalizes with the
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norm L
p the most important values of the spectrum of g.

Thus, this term is equivalent to the noise factor in the
Wiener filtering, it allows a trade-off between the decon-
volution quality and the noise amplification.

Our goal is to minimize the criterion (3) with respect to
the complex coefficient vector G according to a gradient
iterative method (Brandwood, 1983; Van Den Bos, 1994).
We compute the gradient of the criterion (3) with respect
the frequency response coefficient G(ν):

∇G∗(ν)J(G) =
1

2T 2
ΨY (ν)D∗(ν)−

1

2T

1

G∗(ν)

+ λ1(2G(ν)−G(ν + 1)−G(ν − 1))

+ λ2
p

2

|G(ν)|p

G∗(ν)
(4)

where D(ν) is the spectrum of the observation d(t) and
z∗ denotes the conjugate of the complex z. We also define
the score function of the process Y by:

ψY (u) = −
d

du
log pY (u)

Then, ΨY (ν) is the discrete Fourier transform of
ψY (y(τ )), τ = 1, . . . , T . The score function is estimated
with a kernel method developed by Pham (Pham, 2003).
The computing time is reduced to 3 × T using the cu-
bic spline as kernel. The blind frequency deconvolution
(BFD) algorithm is as follows:

1. initialization of the inverse filter G(ν) and of the de-
convolution output y(t)

2. estimation of the score function ψY

3. computation of the gradient (4)

4. updating of G(ν)← G(ν)− µ∇G∗(ν)J(G)

5. computation of the deconvolution output y(t)

6. normalization step

We iterate from 2 to 6 until convergence. The normaliza-
tion step is required for taking into account scale indeter-
minacy in G(ν).

Examples

Fig.2 shows deconvolution results with simulated signals.
The source r(t) is a 400-sample Bernouilli-Gaussian
process with 50 reflectors. We use a seven order
autoregressive direct filter, whose coefficients are
[2 0.8 1 0.9 0.8 0.2 0.1], for providing d(t) (Fig.2(b)). We
see that the deconvolution output on Fig.2(c) is similar
to the source of Fig.2(a). The inverse filter modulus
and phase are compared to the theoretical inverse filter
on Fig.2(d) and Fig.2(e). The estimation errors are due
to the large number parameters optimized, and to the
standard deviation of the score function estimator.

Fig.3 shows in (a) the real data of an underwater
explosion recorded in a swimming pool. The recorded
signal is composed of the direct wave, a reflection on the

surface and on the bottom of the swimming pool. While
applying the model of Fig.1, the source signature r(t)
containing information about the reflection coefficients,
and the direct filter w represents the wave generated by
the explosion characterized to the ”bubble effect”. A
quite good model of this wave is a non causal moving
average (MA) filter. So, we compare on Fig.3 the
deconvolution results obtained with spectral egalization,
Durbin method and our BFD algorithm. We note
that the three methods provide a good positioning of
the three events. Spectral egalization and our method
realize a better trade-off between deconvolution and
noise amplification than the Durbin method in which
secondary peaks appear just after reflector. We note that
our algorithm gives the nearest to zero output between
each reflector, and the magnitude of reflectors seems to
be better preserved.

Fig.4 and 5 deal with seismogram recorded on colombian
volcano Purace and Galeras. The aim is to separate the
resonance effects to the less energetic effects such as exci-
tation and propagation. The recording (Fig.4(a)) is char-
acterized to the long period events (Lesage et al., 2002),
with an important resonance. Using the model of Fig.1,
the residual signal obtained by deconvolution contains in-
formation about the excitation of the volcano, and the res-
onant filter w gives information about the geometry of the
volcano. On Fig.4, we compare the spectral egalization,
the Yule Walker method dedicated to autoregressive fil-
ter and our frequency algorithm for the Purace recording.
We note that our algorithm separate better the excitation
to the noise. In Fig.5, we show the observation and the
deconvolution output with our method for Galeras.

Conclusion

We purpose a new algorithm of blind deconvolution based
on the mutual information rate of the deconvolution
output. We write the criterion in frequency domain and
we add a compromise between the deconvolution quality
and the noise amplification like in Wiener filtering.
Seismic deconvolution will be present. The first test
about real data give some improvement with respect to
spectral egalization or the second order blind methods as
Yule Walker and Durbin methods.
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Fig. 2: (a) Reflectivity simulated with a Bernouilli-Gaussian process with 50 reflectors, (b) Observation with a seventh order autore-
gressive wavelet, (c) Deconvolution output signal, (d) (respectively (e)) In solid line the modulus (respectively phase) of estimated
inverse filter, in dashed line the theoretical modulus (respectively phase)
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Fig. 3: (a) Observation of underwater explosion, (b) After spectral egalization, (c) After deconvolution by Durbin method, (d) Decon-
volution with BFD algorithm with µ = 0.01, λ1 = 0.1, λ2 = 0.1 and p = 3
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Fig. 4: (a) Purace volcano recording, (b) After spectral egalization, (c) After deconvolution by Yule Walker method, (d) Deconvolution
by BFD algorithm with µ = 0.01, λ1 = 0.1, λ2 = 0.1 and p = 3
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Fig. 5: (a) Galeras volcano recording, (b) Deconvolution by BFD
algorithm with µ = 0.01, λ1 = 0.1, λ2 = 0.1 and p = 3
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