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Abstract The very first computational and most referred in the literature algorithm of Talwani and
Heirtzler (1964) for calculating of the magnetic anomaly caused by two‐dimensional irregular shape
subsurface structure has particular fundamental and educational significance in geophysics theory. We
re‐derive this algorithm from first principles and discuss previous derivation omissions. Our resulting
solution differs from the original publication. Based on our new solution we present the two‐dimensional
forward magnetic modeling software and associated tutorials which are available for download from the
website www.ualberta.ca/~vadim/software.htm. Additionally, we include the computation of the remnant
magnetization which can be found using already published apparent polar wonder paths.

1. Introduction

Talwani and Heirtzler (1964) were first to examine a nonmagnetic space containing a uniformly magnetized
two‐dimensional structure approximated by a polygonal prism and to suggest a numerical and
computational technique of the forward modeling. A magnetic anomaly above the magnetized body was
calculated by analytical formulae using summation of the anomalies due to semiinfinite prisms limited on
one side by a segment of the polygon. The derivation of the mathematical expression for the magnetic
anomaly over a two‐dimensional body of polygonal cross section was first done in Talwani and Heirtzler
(1962). Certainly, it was not the first approach to the problem; a comprehensive review of algorithms and
approaches previous to 1962 is given in Talwani and Heirtzler (1962). The algorithm was, however, derived
specifically for the computation using digital computers and therefore was the first algorithm of such kind.

Since 1964, for the past more than five decades, forward calculations of magnetic anomalies caused by
two‐dimensional (2‐D) and three‐dimensional (3‐D) bodies have progressed significantly. Talwani (1965)
developed a new algorithm to compute a three‐dimensional magnetic anomaly for geological bodies of
arbitrary shape. Since, both 2‐ and 3‐D forward problems have been developed in various alternative ways.
A comprehensive overview of the progress and approaches of the 2‐D modeling since 1964 is provided in
introductions from Kostrov (2007) and Jeshvaghani and Darijani (2014).

Our initial motivation was to create a Matlab software for educational purposes and for rapid interpretation
of magnetic data. The algorithm of Talwani and Heirtzler (1964) would provide a stable 2‐D solution for
variety of geological situations. This algorithm is a very effective for small‐scale magnetic surveys, and the
publication is the most cited among all existing magnetic forward modeling methods. The first version of
our software, however, produced some unfitting anomalies in a number of theoretically modeled situations.
Therefore, in this study, we reappraise the derivation that leads us to a different from Talwani and Heirtzler
(1964) solution. Both solutions are compared and discussed below. Further we develop aMatlab p‐coded and
executable software that has user‐friendly GUI. The software is a freeware for research and education
purposes and can be redistributed among users. Any use of the software should refer to this publication.
The software can be downloaded from www.ualberta.ca/vadim/software.htm.

2. Important Concepts

Here we introduce the important concepts and notation used for the derivation:

1. Magnetic susceptibility (X)—dimensionless. An object's magnetic susceptibility is the constant that
indicates how much a material is magnetized in response to the local magnetic field.
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2. Magnetization (M)—units = A/m. Magnetic fields can align the mag-
netic moments of individual atoms within a material based on that
material's magnetic susceptibility. The net magnetic moment of the
material per unit volume is magnetization.

3. Induced magnetization (MI) is the magnetization associated with the
proportion of the material that is aligned with the Earth's magnetic
field according to its current inclination and declination.

4. Induced inclination/declination. Inclination is the angle the Earth's
magnetic field makes with respect with the horizontal. Positive angles
are defined as angles that are directed below the horizon. Declination
is the difference in angle between true north and horizontal projection
of Earth's present‐day magnetic field. Values increase in the clockwise
direction (0° for north, 90° for east, etc.).

5. Remnant magnetization (MR) is any preserved magnetization not
associated with induced magnetization. Often this is magnetization
associated with the formation of the rock/sediment, or may be asso-
ciated with recrystalization events (e.g., metamorphism); it is depen-
dent on the direction of the Earth's magnetic field at the time of its
acquisition.

6. Remnant inclination/declination. Remnant inclination is the angle
the source of the remnant magnetization, makes with respect with
the horizontal. Positive angles are defined as angles that are directed
below the horizon. Remnant declination is the difference in angle
between true north and horizontal projection of Earth's ancient mag-
netic field. Values increase in the clockwise direction (0° for north,
90° for east, etc.).

The values for remnant inclination and declination vary through time and
location but can be estimated if a paleomagnetic pole (paleopole) is
known for the object(s) in question. The paleopole latitude and paleopole
longitude can be converted into inclination (I) and declination (D) using
MagMod and is based on the following formulas:

P ¼ sin−1 sin lats½ � sin latp
� �þ cos latp

� �
cos longs−longp

��� ���h ih i
I ¼ tan−1 2 tan P½ �½ �

D ¼ sin−1 sin longs−longp

��� ���h i cos latp
� �

cos P½ �
� �

where P is the paleolatitude, lats is the latitude of the site, lons is the longitude of the site, latp is the latitude of
the paleopole, and lonp is the longitude of the paleopole.

7. Total magnetization of the subsurface structure or small element is a superposition of the induced and
remnant magnetizations:

8. A magnetic anomaly is the magnetic field associated with unknown bodies within the subsurface nor-
malized against the local magnetic field (i.e., Earth's magnetic field).

3. Calculating Anomalies

Consider that there exists an elemental volume contained within an irregularly shaped body. This elemental
volume extends from negative to positive infinity in the y direction. Bodies of irregular shapes can be
approximated by a polygon, which can be and reduced to solving semiinfinite two‐dimensional polygons
(Talwani & Heirtzler, 1962). Now consider a small‐volume element with dimensions dx, dy, and dz
(Figure 1a) located in the geomagnetic field. The total magnetization of the volume is a superposition of both
induced and remnant magnetizations which coexist.

Figure 1. (a) A volume element with dimension dx, dy, dz within an irregu-
lar‐shaped body. (b) AFGBA is a semiinfinite prism containing a rod
(KLMNK) that extends to positive infinity. ABCDEA is an arbitrary polygon
defined along the edge of AB. Modified from Talwani (1965).
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The magnetic potential, Ω, at the origin is given by

Ω ¼ m!⋅R
!

4π R3 (1)

where m is the magnetic moment of the volume element and R is the distance from the origin (Figure 1a).

Assuming that this volume element contains a uniform intensity of magnetization, J, the magnetic moment
of a body can be represented as

m!¼ J
!
dxdydz (2)

The magnetic moment in terms of Cartesian coordinates x, y, z can be written as

Ω ¼ Jxx þ Jyyþ Jzz

4π x2 þ y2 þ z2ð Þ3=2
dx dy dz (3)

Using the assumption that the body extends from negative infinity to positive infinity in the y direction and
then integrating equation (3) with respect to y, the magnetic potential has the form

Ω ¼ ∫
∞

−∞

Jxx þ Jyyþ Jzz

4π x2 þ y2 þ z2ð Þ3=2
dy ¼ Jxx þ Jzzð Þ

2π x2 þ z2ð Þ dxdz (4)

The vertical (V) and horizontal (H) components of the magnetic strength can be derived by differentiating
equation (4) with respect to z and x, respectively, and results in the following equations:

V ¼ −
∂Ω
∂z

¼ 2Jxxz−Jz x2−z2ð Þ
2π x2 þ z2ð Þ2 dxdz (5)

H ¼ −
∂Ω
∂x

¼ 2Jzxz þ Jx x2−z2ð Þ
2π x2 þ z2ð Þ2 dxdz (6)

Assuming that the body extents to positive infinity in the x direction we can simplify equations (5) and (6) by
integrating from x to positive infinity, which results in

V ¼ ∫
∞
x

2Jxxz−Jz x2−z2ð Þ
2π x2 þ z2ð Þ2 dxdz ¼ Jxz−Jzx

2π x2 þ z2ð Þ dz (7)

H ¼ ∫
∞
x

2Jzxz þ Jx x2−z2ð Þ
2π x2 þ z2ð Þ2 dxdz ¼ Jxx−Jzz

2π x2 þ z2ð Þ dz (8)

Equations (7) and (8) are the components produced by the rod KLMNK in Figure 1b. The resulting integrat-
ing these equations from z1 to z2, the magnetic field strength for the prism AFGBA in Figure 1b produces
equations that can be expressed in the simplified form as shown below (see detailed step by step derivation
in the supporting information):

V ¼ 1
2π

JxQ−JzPð Þ (9)

H ¼ 1
2π

JzQþ JxPð Þ (10)

where

Q ¼ γ2z ln
r2
r1

� �
−δγzγx α2−α1ð Þ

P ¼ γzγx ln
r2
r1

� �
þ δγ2z α2−α1ð Þ

γz ¼
z21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x221 þ z221
p
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γx ¼
x21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x221 þ z221
p

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ z21

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ z22

q

α1 ¼ tan−1 δ z1 þ gx1ð Þ
x1−gz1

� �

α2 ¼ tan−1 δ z2 þ gx2ð Þ
x2−gz2

� �

g ¼ x2−x1
z2−z1

¼ x21
z21

δ ¼ 1 if x1>gz1

δ ¼ −1 if x1<gz1

Note that these equations differ from Talwani and Heirtzler (1962, 1964).

For an arbitrarily shaped polygon a point xi, zi represents a corner of the polygon and a point xi + 1, zi + 1

to be the next corner of the polygon. Equations (9) and (10) represent the magnetic strength of the rec-
tangular region AFGBA for only one side of the polygon. For a polygon with n sides there are a n num-
ber of prisms of the same form as AFGBA. Calculation for a positive anomaly requires calculation of the
polygon clockwise with reference to the origin as depicted in Figure 2 and summing the contribution of
each side.

To evaluate the total intensity anomaly, T, we need to sum the projection
of H and V along the direction of the total field. This can be done by
manipulating the magnetization vectors associated with total magnetiza-
tion (J) while using the convention shown in Figure 3. In general, total
magnetization is a superposition of induced (Ji) and remnant magnetiza-
tion (Jr) which are given by

J
!

i ¼ Ji cosI cosD bnþ cosI sinD beþ sinI bvð Þ (11)

J
!

r ¼ Jr cosIr cosDr bnþ cosIr sinDr beþ sinIr bvð Þ (12)

where bn is north,be is east,bv is vertical, I is the induced inclination, D is the
induced declination, Ir is the remnant inclination, and Dr is the remnant
declination. Using equations (11) and (12) the angle (Δ) between the
two vectors can be determined as follows:

Δ ¼ cos−1
J
!

i⋅ J
!

r

Ji Jr

 !
Δ ¼ cos−1 bJi⋅bJr
 �
Δ ¼ cos−1 cosI cosD cosIr cosDr þ cosI sinD cosIr sinDr þ sinI sinIrð Þ

Figure 3. Visualization of the order of calculation of the magnetic field for a
square ABCDA. Sides DA and CB provide no contribution as z2 – z1 = 0.
(a) AB provides a positive contribution in the direction of the line integral
with the horizontal lines shading the area of the semiinfinite prism. (b) CD
provides a negative contribution in the direction of the line integral with
the vertical lines shading the area of the semiinfinite prism. (c) Summation
of the contributions from all sides results in only the magnetic field from
the space enclosed in ABCDA, the area that has both horizontal and vertical
lines cancel out.

Figure 2. A is the angle that defines the horizontal projection of magnetic
vector J. B is the angle measured from the geographic north clockwise
toward the horizontal projection of J. C is the angle between geographic
north and the positive x axis. Modified from Talwani (1965).
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This angle Δ can be used to calculate the magnitude of the total magnetization (J) as well as its inclination
(A) and declination (B). Using the cosine law the total magnetization J is defined as

J2 ¼ J2i þ J2r−2Ji Jr cosΔ

To determine the inclination (A) and declination (B) of J we split Ji and Jr into their horizontal (JiH and JrH,
respectively) and vertical components (JiV and JrV, respectively). Inclination is then derived as follows:

JV ¼ JiV þ JrV

JV ¼ Ji sinI þ Jr sinIr
J sinA ¼ Ji sinI þ Jr sinIr

sinA ¼ Ji sinI þ Jr sinIr
J

A ¼ sin−1 Ji sinI þ Jr sinIr
J

� �

Similarly, declination is derived as follows:

JH ¼ J cosA

JH ¼ JiH þ JrH

JH ¼ Ji cosI þ Jr cosIr
JHbn ¼ JH cosB

JH cosB ¼ JiHbnþ JrHbn
JH cosB ¼ JiH cosDþ JrH cosDr

JH cosB ¼ Ji cosI cosDþ Jr cosIr cosDr

cosB ¼ Ji cosI cosDþ Jr cosIr cosDr

JH

B ¼ cos−1
Ji cosI cosDþ Jr cosIr cosDr

J cosA

� �

The intensity of magnetization of magnetization in the x and z directions in the terms of total magnetization,
J, in terms of A, B, and C, can be defined as

Jx ¼ J cos Að Þ cos C−Bð Þ
Jz ¼ J sin Að Þ

The total intensity anomaly (T) can then be defined as

T ¼ V sin Að Þ þ H cos Að Þ cos C−Bð Þ (13)

4. Discussion

Upon a rederivation of the original Talwani and Heirtzler (1964) algorithm we found three explicit differ-
ences and errors in Talwani and Heirtzler's (1964) derivation. The first error began in the definition of x.
Figure 4 demonstrates the resultant difference between the two expressions for a polygon. Continuing deri-
vation of the magnetic fields using Talwani and Heirtzler (1964) definition for x, it was evident that the defi-
nition for θ1 and θ2 are not equivalent to the angle the corners of the side make with the origin as depicted in
Figure 1a. The final issue found in derivation was the definition of a δ term. In Talwani and Heirtzler (1964)
this term was assumed to value 1, indicating that they did not account for the impact of the absolute value in
the derivation.
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Due to the many different shapes and sizes of polygons the resultant error is not broadly quantifiable but
dependant on shape of the polygon, and inclination/declination of the induced magnetic field. To demon-
strate the potential differences produced by different derivations, we have calculated the induced magnetic
field produced from a diamond with three different inclinations. Figure 5 illustrates the comparison of the
magnetic anomalies computed using the six different algorithms: (i) Talwani and Heirtzler (1964), (ii) our
rederivation using Talwani and Heirtzler's (1964) definition of x and accounting for corrected δ, (iii) defini-
tion of x and corrected θ, (iv) definition of x and accounting for the corrected δ and θ term, (v) robust deriva-
tion from first principles, and (vi) Won and Bevis (1987). We find that the results for (i), (v), and (iv) are very
similar. The errors inherent in the original derivation of Talwani and Heirtzler (1964), particularly the defi-
nitions of θ1, θ2, and δ, by removal compensate for each other to produce results that approximately agree
with the properly derived solution provided by our derivation. However, when the corrections for θ1, θ2,
and δ are applied independently they produce the same incorrect anomaly, which indicates that these errors
had to be made dependently; otherwise, it would produce incorrect anomalies. We recommend the solution
produced by Talwani and Heirtzler (1964) be avoided, as it cannot be guaranteed to work for all possible
shapes and cases. It is, however, clear that the errors were fundamental and that when corrected the original
algorithm of Talwani and Heirtzler (1964) produced significant differences in the modeled magnetic field
(see supporting information).

Figure 4. Depiction of a simple polygon shape (top) and (a) the resulting values of cot(ϕ) in our derivation and (b) in
Talwani and Heirtzler (1964) definition of cot(ϕ) for each side, respectively. The figure demonstrates that the correct
calculation for cot(ϕ) has an opposite sign of Talwani and Heirtzler's (1964) definition for this object.
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5. Conclusion

The resulting expressions for the components of the magnetic field (equations (9) and (10)) are not equal to
the expressions derived by Talwani and Heirtzler (1964). The discrepancy between our derivation and
Talwani and Heirtzler (1964) lies in the definition of the variable x, definition of the angles θ1 and θ2, and
the dismissal of an absolute value. Talwani and Heirtzler (1964) have erroneous definitions. Detailed reder-
ivation of Talwani and Heirtzler formulas to calculate magnetic anomalies caused by two‐dimensional struc-
tures of arbitrary shape is given in the supporting information. The rederived final solution is different from
the original published formulas of Talwani and Heirtzler (1964) and produces incorrect anomalies
(Figure 5); therefore, we strongly recommend to use our derived in this study robust formulas from first prin-
ciples to avoid any fundamental errors in calculating the anomalies.

Software and Data Availability

The free software and example data are available for download from www.ualberta.ca/~vadim/software.
htm. This publication has to be referred with any use of the software.
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Detailed derivation of the formulas to calculate magnetic anomalies caused by 22 

two dimensional structures of arbitrary shape 23 

 24 

Consider that there exists an elemental volume contained within an irregularly 25 

shaped body. This elemental volume extends from negative to positive infinity in the 26 

y-direction.  Bodies of irregular shapes can be approximated by a polygon, which 27 

can be and reduced to solving semi-infinite two dimensional polygons (Talwani and 28 

Heirtzler, 1964). Now consider a small volume element with dimensions 𝑑𝑥,𝑑𝑦,𝑑𝑧 29 

(Fig. 1A) and its properties.  30 

 31 

The magnetic potential, Ω, at the origin is given by: 32 

 33 

34 R
Rm

π


⋅

=Ω  (1) 34 

 35 

where m is the magnetic moment of the volume element and R is the distance from 36 

the origin (Fig. 1A). 37 

 38 

Assuming that this volume element contains a uniform intensity of magnetization, 𝐽, 39 

the magnetic moment of a body can be represented as: 40 

 41 

dxdydzJm


=  (2) 42 

 43 

The magnetic moment in terms of Cartesian coordinates 𝑥,𝑦, 𝑧, can then be written 44 

as: 45 

 46 

dxdydz
zyx

zJyJxJ zyx

2
3)(4 222 ++

++
=Ω

π
  (3) 47 

 48 
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Using the assumption that the body extends from negative infinity to positive 49 

infinity in the y-direction and then integrating equation 3 with respect to y, the 50 

magnetic potential has the form 51 

 52 

dxdz
zx
zJxJdy

zyx
zJyJxJ zxzyx

)(2
)(

)(4 22222 2
3 +

+
=

++
++

=Ω ∫
∞

∞− ππ
  (4) 53 

 54 

The vertical (V) and horizontal (H) components of the magnetic strength can be 55 

derived by differentiating equation (4) with respect to z and x respectively, and 56 

results in the following equations: 57 

 58 

dxdz
zx

zxJxzJ
z

V zx
222

22

)(2
)(2

+
−−

=
∂
Ω∂

−=
π

 (5) 59 

dxdz
zx

zxJxzJ
x

H xz
222

22

)(2
)(2

+
−+

=
∂
Ω∂

−=
π

 (6) 60 

 61 

Assuming that the body extents to positive infinity in the x-direction we can simplify 62 

equations (5) and (6) by integrating from x to positive infinity, which results in: 63 

 64 

dz
zx
xJzJdxdz

zx
zxJxzJV zx

x
zx

)(2)(2
)(2

22222

22

+
−

=
+

−−
= ∫

∞

ππ
 (7) 65 

dz
zx
zJxJdxdz

zx
zxJxzJH zx

x
xz

)(2)(2
)(2

22222

22

+
−

=
+

−+
= ∫

∞

ππ
 (8) 66 

 67 

Equations (7) and (8) are the components produced by the rod KLMNK in Fig. 1B. 68 

Integrating these equations from z1 to z2, the magnetic field strength for the prism 69 

AFGBA in Fig. 1B can be calculated. 70 

 71 

∫ +
−

=
2

1 22 )(2
z

z
zx dz
zx
xJzJV

π
 (9) 72 

 73 
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In order to compute this integral, consider taking a point on the side of a polygon 74 

(ABCDEA) that makes up the region of interest (AFGBA). This enables us to find 𝑥 as 75 

a function of the coordinates of the corners and 𝑧. 76 

 77 

Let
1

1

12

12

zz
xx

xx
zzg

−
−

=
−
−

=    (10) 78 

 79 

Equation (10) can then be rearranged into,  80 

 81 

11)( xzzgx +−=   (11) 82 

 83 

and then inserted into equation (9), which results in the following sets of equations, 84 

 85 

 86 

[ ]∫ ++−
+−−

=
2

1 22
11

11

)(
))((

2
1 z

z
zx dz

zxzzg
xzzgJzJV

π
  87 

 88 

∫ −+−++
−−−

=
2

1 2
1111

22
11

)()(2)1(
)()(

2
1 z

z
zzx dz

gzxzgzxgzg
gzxJzgJzJV

π
  89 

 90 

We can rewrite this in simpler terms by letting 91 

 92 

2
11

11

2

)(

)(2
1

gzxc
zgzxgb

ga

−=

−=
+=

 93 

 94 

which results in, 95 

 96 

𝑉 =
1

2𝜋
�

(𝐽𝑥 − 𝑔𝐽𝑧)𝑧 − 𝐽𝑧(𝑥1 − 𝑔𝑧1)
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑑𝑧
𝑧2

𝑧1
 

 97 
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These equations can be rewritten in terms of to 2 components, 98 

 99 

𝑉 =
1

2𝜋
�

(𝐽𝑥 − 𝑔𝐽𝑧)𝑧
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑑𝑧 −
1

2𝜋

𝑧2

𝑧1
�

𝐽𝑧(𝑥1 − 𝑔𝑧1)
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑑𝑧
𝑧2

𝑧1
 

 100 

𝑉 =
(𝐽𝑥 − 𝑔𝐽𝑧)

2𝜋
�

𝑧
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑑𝑧 −
𝑧2

𝑧1

𝐽𝑧(𝑥1 − 𝑔𝑧1)
2𝜋

�
𝑑𝑧

𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑧2

𝑧1
 

 101 

21 IIV +=  (12) 102 

 103 

where, 104 

 105 

𝐼1 =
(𝐽𝑥 − 𝑔𝐽𝑧)

2𝜋
�

𝑧
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑑𝑧
𝑧2

𝑧1
 

𝐼2 = −
𝐽𝑧(𝑥1 − 𝑔𝑧1)

2𝜋
�

𝑑𝑧
𝑎𝑧2 + 𝑏𝑧 + 𝑐

𝑧2

𝑧1
 

 106 

Equation (12) can be integrated using the following integral identities: 107 

 108 

For 
04

0
2 >−

≠

BAC
A

 109 

 110 










−

+

−
=

++










−

+

−
−++=

++

−

−

∫

∫

2
1

22

2
1

2
2

2

4
2tan

4
2

4
2tan

4
ln

2
1

BAC
BAx

BACCBxAx
dx

BAC
BAx

BACA
BCBxAx

ACBxAx
xdx

  (13) 111 

 112 

To use these identities we first check that the criteria are met for equation (12). 113 

First by checking that 0≠A . For the first criteria, equation (12) defines 21 gA +=  , 114 

which requires that 0>A , which implies 0≠A . 115 

 116 
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Checking 04 2 >− BAC  is done as follows: 117 

 118 

11

11 )(2
gzxC

gzxgB
−=

−=
 119 

 120 

0)(44

)1(4()(4

)4)1(4()(4

)4)1(4()(4

))(4))(1(44

))(2())(1(44

2
11

2

222
11

2

222
11

2

222
11

2

2
11

22
11

22

2
11

2
11

22

>−=−

−+−=−

−+−=−

−+−=−

−−−+=−

−−−+=−

gzxBAC
gggzxBAC

gggzxBAC
gggzxBAC

gzxggzxgBAC
gzxggzxgBAC

 121 

 122 

Since both criteria are met we use the above identities to solve for I1 and I2. 123 

 124 

 125 

 126 

 (14) 127 

 128 

where, 129 

 130 

2
1121

2
12

2
22

2
2

2
11121

2
12

22
22

2
2

2
11121

2
121

2
2

22
22

2
2

11
2
1

22
121

2
21

2
2

22
22

2
2

2
11211

2
2

2
2

2
2

)(2))((

22)(

22)2(

222

)()(2)1(

xzzgxzzgzcbzaz
xzgxzgxzzgzcbzaz

xzgxzgxzzzzgzcbzaz
zgxzgxzzgzgxzgzcbzaz

gzxzgzxgzgcbzaz

+−+−+=++

+−+−+=++

+−++−+=++

−++−++=++

−+−++=++

 131 

 132 

but, 1212 )( xxzzg −=− , which then gives, 133 

 134 
2
2

2
2

2
1121

2
12

2
22

2
2 )(2)( xzxxxxxxzcbzaz +=+−+−+=++  135 

 136 

( )






































−

+
−









−

+

−
−

++−++
−

=
−−

2
11

2
21

2

1
2
12

2
2

1

4
2tan

4
2tan

4

lnln
2
1

2
bac
baz

bac
baz

baca
b

cbzazcbzaz
agJJI zx

π
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Similarly,  137 

 138 
2
1

2
11

2
1 xzcbzaz +=++  139 

 140 

By inspection of Fig. 1B, the following relationship exists: 141 

 142 

cbzazxzr
cbzazxzr

++=+=

++=+=

2
2
2

2
2

2
2

2
2

1
2
1

2
1

2
1

2
1  (15) 143 

 144 

By inspection equation 15 is equivalent to its absolute value:  145 

 146 

2
22

2
2

2
2

2
11

2
1

2
1

rcbzazr

rcbzazr

=++=

=++=
 147 

 148 

therefore, 149 

 150 

2
2

2
22

2
2

2
1

2
11

2
1

lnlnln

lnlnln

rrcbzaz

rrcbzaz

==++

==++
 151 

 152 

The terms baz +2,12 in equation (14) can be rewritten as follows:  153 

 154 

1212
2

2

1
2

122
2

2

112
2

2

22)(22

22222

)(2)1(22

gxzzzgbaz
zggxzzgbaz

gzxgzgbaz

++−=+

−++=+

−++=+

 155 

recall 1212 )( xxzzg −=− , so that, 156 

 157 

)(222)(22 2212122 gxzgxzxxgbaz +=++−=+  (16) 158 

 159 
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similarly, 160 

 161 

)(22 111 gxzbaz +=+   (17)       162 

The term 24 bac − is rewritten as follows: 163 

 164 

11
2

2
11

2

222
11

2

2
11

2
11

22

24

)(24

)1()(44

))(2())(1(44

gzxbac

gzxbac

gggzxbac

gzxggzxgbac

−=−

−=−

−+−=−

−−−+=−

 165 

 166 

24 bac − )(2 11 gzx −= δ   (18) 167 

 168 

where, 169 

 170 

1=δ  if 11 gzx >  171 

1−=δ  if 11 gzx <  172 

 173 

Substituting equations (15), (16), (17), and (18) into equation (14), produces: 174 

recall that, 22111212
12

12 )( gzxgzxxxzzg
zz
xxg −=−⇒−=−⇒

−
−

= ,  175 

which can be substituted into the above equation to produce: 176 

 177 

( )
















































−
+

−









−
+

−+
−

−−
+

−
=

−

−

)(2
)(2tan

)(2
)(2tan

)()1(2
)(2lnln

)1(2
1

2

11

111

11

221

11
2

112
1

2
221

gzx
gxz

gzx
gxz

gzxg
gzxgrr

g
gJJI zx

δ

δ

δπ
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 178 

where, 
)(
)(

11

11
1 gzx

gxzA
−
+

=
δ

and 
)(
)(

22

22
2 gzx

gxzA
−
+

=
δ

 179 

 180 

( )











−

+
−








+

−
= 122

2

1

2
21 )1(

ln
)1(2

1
2

ααδ
π g

g
r
r

g
gJJI zx  (19) 181 

 182 

where, )(tan 1
1

1 A−=α and )(tan 2
1

2 A−=α  (20) 183 

 184 

Now solving for I2, 185 

 186 

( )









−

+

−
=

++
−−

= −∫ 2
1

22
11

2
4
2tan

4
2

2
)( 2

1 BAC
BAx

BACcbzaz
dzgzxJI

z

z

z

π
 187 

 188 

Using equations (14), (16), (17), and (18), as well as the appropriate integral 189 

identity we define:  190 

 191 

( ) 2

1

2
1

2
11

2
4
2tan

4
2

2
)(

z

z

z

bac
baz

bac
gzxJI





















−

+

−

−−
= −

π
 192 
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−

+
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−

+

−

−−
= −−

2
11

2
21

2
11

2
4
2tan

4
2tan

4
2

2
)(

bac
baz

bac
baz

bac
gzxJI z

π
 193 

( ) ( ) ( )( )







−

−
−−

= −−
1

1
2

1

11

11
2 tantan

)(2
2

2
)( AA

gzx
gzxJI z

δπ
 194 
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+
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−
+

+
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+

−
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)(
)(tan

)(
)(tan

)1(
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)1(2
1

2 11
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221
2

2

1

2
21 gzx

gxz
gzx
gxz

g
g

r
r

g
gJJI zx δδδ
π
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+
−








+

−
= −− )(tantan

)1(
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)1(2
1

2 1
1

2
1

2

2

1

2
21 AA

g
g

r
r

g
gJJI zx δ
π
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( ) ( )







−

−
−−

= 12
11

11
2 )(

1
2

)( αα
δπ gzx

gzxJI z  195 

( )122 2
αα

πδ
−

−
= zJI  196 

( )122 2
αα

π
δ

−
−

= zJI   (21) 197 

 198 

From equation (19) and (21), we can define V as: 199 

 200 

( ) ( )12122
1

2
2

21

2)1(
ln

1
1

2
αα

π
δααδ

π
−−








−

+
−








+

−
=

+=

zzx J
g
g

r
r

g
gJJV

IIV
 201 

 202 

Recall that 
12

12

zz
xxg

−
−

= , then by letting 1221 xxx −= and 1221 zzz −= allows g to be 203 

defined as: 204 

21

21

z
xg =

 205 

 206 

which produces: 207 

 208 

( )
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+
−









+

+
=

122
21

2
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1

2
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2
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2
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1

2
2
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2
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2
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2
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2
ααδ

ααδ

π

zx
z

r
r

zx
xJ

zx
x

r
r

zx
zJ

zx
zV

z

x

 (22) 209 

 210 

Solving for the horizontal component (H) can be done in a similar manner. Starting 211 

with equation (8) we integrate with respect to z to obtain: 212 

 213 
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∫ +
+

=
2

1

222
1 z

z

zx dz
zx

zJxJH
π

  214 

 215 

Recall that we defined 11)( xgzzx +−= , so subbing in this definition yields: 216 

 217 

( )
( )∫ ++−

++−
=

2

1

22
11

11

)(
)(

2
1 z

z

zx dz
zxgzz

zJxgzzJH
π

 218 

 219 

which can then be split into two terms to create equation (23). 220 

 221 

∫∫ ++
−

+
++

+
=

2

1

2

1

2
11

2
)(

2
1)(

2
1 z

z

x
z

z

xz dz
cbzaz

gzxJdz
cbzaz
zgJJH

ππ
 (23)  222 

 223 

This can be written in short form using the following terms: 224 

 225 

 226 

 227 

HH IIH 21 +=  228 

 229 

Using the appropriate identities from (13) we can integrate equation (23). For the 230 

first term integration yields: 231 

 232 

∫

∫

∫

∫
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=

++
−

=

++
+

=
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H
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H
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H
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gzxJI

dz
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zgJJI

π

π

π
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−

+
−









−
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−
−

++−++
+

=
−−

2
11

2
21

2

1
2
12

2
2

1

4
2tan

4
2tan

4

lnln
2
1

2
bac
baz

bac
baz

baca
b

cbzazcbzaz
agJJI xz

H π
 (24) 233 

 234 

By applying the same transformations used in equations (14) and (19) we can 235 

transform equation (24) into the following expression: 236 

 237 









−

+
−








+

+
= )(

1
ln

1
1

2 122
1

2
21 ααδ

π g
g

r
r

g
gJJI xz

H  (25) 238 

The 2nd term ∫ ++
+

=
2

1

2
11

2 2
)( z

z

x
H cbzaz

dzgzxJI
π

 is a similar to equation (21) except the 239 

term that lies outside the integral, thus: 240 

 241 

)(
2 122 ααδ
π

−= x
H

JI   (26) 242 

 243 

Combining I1H and I2H yields: 244 

 245 

)(
2

)(
1

ln
1

1
2 12122

1

2
2 ααδ

π
ααδ

π
−+








−

+
−








+

+
= xxz J

g
g

r
r

g
gJJH  246 

 247 

Recalling that 1221 xxx −= and 1221 zzz −= allows g to be defined as in the following 248 

ways: 249 

 250 

2
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21
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−

=

z
xg

z
xg

zz
xxg

 251 
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 252 

Using these definitions produces: 253 

 254 
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x
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  (27) 255 

 256 

A simplified form of expressions (22) and (27) are as follows: 257 

 258 

( ) ( )

( ) ( )
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−−








=
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−








−−








=

12
1

2
12

1

2

12
1

2
12
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2

lnln
2

lnln
2

ααδγγααδγγ
π
γ

ααδγγααδγγ
π
γ

zxxxzz
z

zxzxzx
z

r
rJ

r
rJH

r
rJ

r
rJV

 259 

 260 

where, 261 

 262 

𝛾𝑧 =  
𝑧21

�𝑥212 + 𝑧212
 

𝛾𝑥 =  
𝑥21

�𝑥212 + 𝑧212
 

𝑟1 = �𝑥12 + 𝑧12 

𝑟2 = �𝑥22 + 𝑧22  263 

𝛼1 = 𝑡𝑎𝑛−1 �
𝛿(𝑧1 + 𝑔𝑥1)
𝑥1 − 𝑔𝑧1

� 

𝛼2 = 𝑡𝑎𝑛−1(
𝛿(𝑧2 + 𝑔𝑥2)
𝑥2 − 𝑔𝑧2

) 

1=δ  if 11 gzx >  264 

1−=δ  if 11 gzx <  265 
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21

21

12

12

z
x

zz
xxg =

−
−

=  266 

 267 

In a more simplified form our equations can be reduced to the following: 268 

 269 

( )PJQJV zx −=
π2
1   (28) 270 

( )PJQJH xz +=
π2
1   (29) 271 

 272 

where,  273 

 274 

)(ln

)(ln

12
2

1

2

12
1

22

ααδγγγ

ααγδγγ

−+







=

−−







=

zxz

xzz

r
rP

r
rQ

 275 

 276 

Note that these equations differ from Talwani and Heirtzler (1962, 1964). 277 

 278 

For an arbitrarily shaped polygon a point xi, zi   represents a corner of the polygon 279 

and a point xi+1, zi+1 to be the next nearest corner of the polygon. Equations (28) and 280 

(29) represent the magnetic strength of the rectangular region AFGBA for only one 281 

side of the polygon. For a polygon with n-sides there are a n number of prisms of the 282 

same form as AFGBA. By choosing the proper sign for each prism that comprise the 283 

polygon and summing their contribution of the magnetic field strength at the origin 284 

we can produce the magnetic anomaly for the entire polygon (AFGBA), at that point. 285 

Calculation for a positive anomaly requires calculation of the polygon clockwise 286 

with reference to the origin as depicted in Fig. 3 and summing the contribution of 287 

each side.  288 

 289 
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To evaluate the total intensity anomaly, T, we need to sum the projection of H and V 290 

along the direction of the total field. This can be done by manipulating the 291 

magnetization vectors associated with total magnetization (J) while using the 292 

convention shown in Fig. 2. In general, total magnetization is a superposition of 293 

induced (Ji) or remnant magnetization (Jr) which are given by: 294 

 295 

( )vIeDInDIJJ ii ˆsinˆsincosˆcoscos ++=


  (30) 296 

( )vIeDInDIJJ rrrrrrr ˆsinˆsincosˆcoscos ++=


 (31) 297 

 298 

where n̂  = north, ê = east, v̂ = vertical, I = induced inclination, D = induced 299 

declination, Ir = remnant inclination, Dr = remnant declination. Using equations (30) 300 

and (31) the angle (Δ) between the two vectors can be determined as follows: 301 

 302 

( )
( )rrrrr

ri

ri

ri

IIDIDIDDCosII
JJ

JJ
JJ

sinsinsincossincoscoscoscoscos

ˆˆcos

cos

1

1

1

++=∆

⋅=∆








 ⋅
=∆

−

−

−



 303 

 304 

This angle Δ can be used to calculate the magnitude of the total magnetization (J) as 305 

well as its inclination (A) and declination (B). Using the cosine law the total 306 

magnetization J is defined as: 307 

 308 

∆−+= cos2222
riri JJJJJ  309 

 310 

To determine the inclination (A) and declination (B) of J we split Ji and Jr into their 311 

horizontal (JiH and JrH, respectively) and vertical components (JiV and JrV, 312 

respectively). Inclination is then derived as follows: 313 

 314 
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+=
+=

+=
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IJIJA
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IJIJJ

JJJ
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rriV

rViVV

sinsinsin

sinsinsin

sinsinsin
sinsin

1

 315 

 316 
Similarly, declination it derived as follows: 317 







 +

=

+
=

+=
+=

+=
=

+=
+=

=

−

AJ
DIJDIJB

J
DIJDIJB

DIJDIJBJ
DJDJBJ

nJnJBJ
BJnJ

IJIJJ
JJJ
AJJ

rrri

H

rrri

rrriH

rrHiHH

rHiHH

HH

rriH

rHiHH

H

cos
coscoscoscoscos

coscoscoscoscos

coscoscoscoscos
coscoscos

ˆˆcos
cosˆ

coscos

cos

1

 318 

The intensity of magnetization of magnetization in the x and z directions in the 319 

terms of total magnetization, J, in terms of A, B, C can be defined as:  320 

 321 

)sin(
)cos()cos(

AJJ
BCAJJ

z

x

=
−=

 322 

 323 

The total intensity anomaly (T) can then be defined as:  324 

 325 

𝑇 = 𝑉 sin(𝐴) + 𝐻 cos(𝐴) cos(𝐶 − 𝐵)                   (32) 

 326 

  327 
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Detailed derivation of Talwani and Heirtzler formulas to calculate magnetic 328 

anomalies caused by two dimensional structures of arbitrary shape 329 

 330 

Rederiving equations (3) and (4) from Talwani and Heirtzler (1964), and equations 331 

(9) and (23) from our derivation for the vertical and horizontal components of the 332 

magnetic intensity. Talwani and Heirtzler (1964) begin their derivation not by 333 

defining x and z as shown in Fig. 3, but defining x as: 334 

 335 

𝑥 = 𝑥1 + 𝑧1 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)  (33) 336 

 337 

which means  338 

𝑥 = 𝑥2 + 𝑧2 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)  (34) 339 

gives 340 

cot(𝜙) =  
𝑥1 − 𝑥2
𝑧2 − 𝑧1

               (35) 

This derivation fails as equation should be -cot(ϕ) 341 

 342 

Using the equations for the Vertical and Horizontal Magnetic field 343 

 344 

𝑉 = 2�
𝐽𝑥𝑧 −  𝐽𝑧𝑥
𝑥2  +  𝑧2

𝑑𝑧
𝑧2

𝑧1
 

 345 

𝐻 = 2�
𝐽𝑥𝑥 +  𝐽𝑧𝑧
𝑥2  +  𝑧2

𝑑𝑧
𝑧2

𝑧1
 

Subbing in for x using Equation (33) we obtain 346 

 347 

𝑉 = 2�
𝐽𝑥𝑧 −  𝐽𝑧�𝑥1 + 𝑧1 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)�

�𝑥1 + 𝑧1 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧                    (36) 

 348 

𝐻 = 2�
𝐽𝑥�𝑥1 + 𝑧1 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)� + 𝐽𝑧𝑧

�𝑥1 + 𝑧1 cot(𝜙) − 𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧                    (37) 
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 349 

Rearranging gives 350 

 351 

𝑉 = 2(𝐽𝑥 + 𝐽𝑧 cot(𝜙))�
𝑧

�𝑥1 + 𝑧1 cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧

− 2𝐽𝑧(𝑥1 + 𝑧1 cot(𝜙))�
𝑑𝑧

�𝑥1 + 𝑧1 cot (𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧 

 352 

𝐻 =  2(𝐽𝑧 − 𝐽𝑥cot (𝜙))�
𝑧

�𝑥1 + 𝑧1 cot cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧

+ 2𝐽𝑥(𝑥1 + 𝑧1 cot(𝜙))�
𝑑𝑧

�𝑥1 + 𝑧1 cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧 

 353 

Setting I1 and I2 354 

 355 

𝐼1 =  �
𝑧

�𝑥1 + 𝑧1 cot cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
𝑑𝑧 

 356 

𝐼2 =  �
𝑑𝑧

�𝑥1 + 𝑧1 cot cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2

𝑧2

𝑧1
 

 357 

Solving the denominator  358 

 359 

�𝑥1 + 𝑧1 cot(𝜙) −𝑧𝑐𝑜𝑡(𝜙)�2  +  𝑧2 

�1 + 𝑐𝑜𝑡2(𝜙)�𝑧2 + �−2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙)�𝑧 +  (𝑥1 + 𝑧1 cot(𝜙))2 +  𝑐𝑜𝑡2(𝜙)) 

 360 

𝐴 =  �1 + 𝑐𝑜𝑡2(𝜙)� 

𝐵 =  −2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙) =  2cot (𝜙)(𝑥1 + 𝑧1 𝑐𝑜𝑡 (𝜙)) 

𝐶 =  (𝑥1 + 𝑧1 cot(𝜙))2 + 𝑐𝑜𝑡2(𝜙)) 

 361 
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Equation I1 becomes 362 

𝐼1 =  �
𝑧

𝐴𝑧2 + 𝐵𝑧 + 𝐶

𝑧2

𝑧1
𝑑𝑧 

Equation I2 becomes 363 

𝐼2 =  �
𝑑𝑧

𝐴𝑧2 + 𝐵𝑧 + 𝐶

𝑧2

𝑧1
 

Solving Equation I1 364 

𝐼1 =
1

2𝐴
�

2𝐴𝑧 + 𝐵
𝐴𝑧2 + 𝐵𝑧 + 𝐶

𝑧2

𝑧1
𝑑𝑧 −  

𝐵
2𝐴

�
𝑑𝑧

𝐴𝑧2 + 𝐵𝑧 + 𝐶

𝑧2

𝑧2
 

𝐼1 =
1

2𝐴
𝐼3 −  

𝐵
2𝐴

𝐼2 

Solving I3 365 

𝐼3 =  �
2𝐴𝑧 + 𝐵

𝐴𝑧2 + 𝐵𝑧 + 𝐶

𝑧2

𝑧1
𝑑𝑧 

Substituting in 366 

𝑢 =  𝐴𝑧2 + 𝐵𝑧 + 𝐶 

𝑑𝑢 = (2𝐴𝑧 + 𝐵)𝑑𝑧 

We get 367 

𝐼3 =  �
1
𝑢
𝑑𝑢 

Solved as 368 

𝐼3 = ln|𝑢| 

Subbing back in for u 369 

𝐼3 =  ln |A𝑧2 + 𝐵𝑧 + 𝐶|  |
𝑧2
𝑧1 

𝐼3 = ln|𝐴𝑧22 + 𝐵𝑧2 + 𝐶| − ln|𝐴𝑧12 + 𝐵𝑧1 + 𝐶| 

 370 

Solving 𝐴𝑧12 + 𝐵𝑧1 + 𝐶 371 

 372 

�1 +  𝑐𝑜𝑡2(𝜙)�𝑧12 + �−2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙)�𝑧1 + (𝑥1 + 𝑧1 cot(𝜙))2 

+ 𝑧12𝑐𝑜𝑡2(𝜙) − 2𝑥1𝑧1 cot(𝜙) − 2 𝑧12𝑐𝑜𝑡2(𝜙) 

+ 𝑥12 + 2𝑥1𝑧1 − 2𝑧12𝑐𝑜𝑡2(𝜙) 
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 𝑧12 + 𝑥12 

 373 

Where  𝑟12 =  𝑧12 + 𝑥12 374 

 375 

Solving 𝐴𝑧22 + 𝐵𝑧2 + 𝐶 376 

 377 

𝑥1 =  𝑥2 + (𝑧2 −  𝑧1) cot(𝜙) 

 378 

�1 +  𝑐𝑜𝑡2(𝜙)�𝑧22 + �−2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙)�𝑧2 + (𝑥1 + 𝑧1 cot(𝜙))2  379 

 380 

Rearranging 381 

(𝑧22 + 𝑧22𝑐𝑜𝑡2(𝜙))   

Becomes 382 

𝑟22 =  𝑧22 + 𝑥22 

Plugging back into  383 

𝐼3 = 2ln �
𝑟2
𝑟1
� 

Solving I2 384 

 385 

Checking A is not equal to 0 386 

𝐴 = 1 +  𝑐𝑜𝑡2(𝜙) > 0  

Checking that 4AC – B2 > 0 for I2 387 

 388 

4�1 + 𝑐𝑜𝑡2(𝜙)�(𝑥1 + 𝑧1cot (𝜙))2 − 4𝑐𝑜𝑡2(𝜙)(𝑥1 + 𝑧1 cot (𝜙))2 

�1 + 𝑐𝑜𝑡2(𝜙) −  𝑐𝑜𝑡2(𝜙)�(𝑥1 + 𝑧1 𝑐𝑜𝑡 (𝜙))2 = (𝑥1 + 𝑧1𝑐𝑜𝑡 (𝜙))2 > 0 

 389 

Completing the square for the denominator 390 

 391 

𝐴𝑧2 + 𝐵𝑧 + 𝐶 =  √𝐴𝑧 + 𝐵 + 𝐶 −  
𝐵2

𝐴
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𝐼2 =  �
𝑑𝑧

�√𝐴𝑧 + 𝐵
2√𝐴

�
2

+ 𝐶 − 𝐵2
4𝐴

𝑧2

𝑧1
 

𝑢 =  √𝐴𝑧 +
𝐵

2√𝐴
 

𝑣2 =  𝐶 −  
𝐵2

4𝐴
 

𝑑𝑢 =  √𝐴𝑑𝑧 

Subbing in u and v gives 392 

𝐼2 =  
1
√𝐴

�
𝑑𝑢

𝑢2 +  𝑣2
 

𝑢 = 𝑣𝑡𝑎𝑛(𝛽) 

𝑑𝑢 = 𝑣𝑠𝑒𝑐2(𝛽) + 𝑣2 =  𝑣2𝑠𝑒𝑐2(𝛽) 

𝐼2 =  
1

𝑣√𝐴
�𝑑𝛽 

 393 

𝐼2 =  
1

�𝑣√𝐴�
(𝛽2 − 𝛽1) 

Checking 𝛽 394 

𝜃 =  𝑡𝑎𝑛−1 �
𝑢
𝑣
� 

subbing back in u and v 395 

𝜃 =  𝑡𝑎𝑛−1

⎝

⎛
√𝐴𝑧 + 𝐵

2√𝐴

�𝐶 − 𝐵2
𝐴 ⎠

⎞ 

Solving 𝑧 =  𝑧1 396 

2𝐴𝑧1 + 𝐵 = 2�1 + 𝑐𝑜𝑡2(𝜙)�𝑧1 − 2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙)1 − 𝑥1 𝑐𝑜𝑡 (𝜙)) 

Solving 𝑧 =  𝑧2 397 

𝑥1 =  𝑥2 + (𝑧2 −  𝑧1) cot(𝜙) 

2𝐴𝑧2 + 𝐵 = 2�1 + 𝑐𝑜𝑡2(𝜙)�𝑧1 − 2𝑥1 cot(𝜙) − 2𝑧1𝑐𝑜𝑡2(𝜙)  398 

2(2(𝑧2 − 𝑥2 cot(𝜙)) 399 

 400 
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Solving the denominator 401 

 402 

�4𝐴𝐵 − 𝐶2 =  �4(𝑥1 + 𝑧1 cot(𝜙))2 

 403 

2|𝑥1 + 𝑧1 cot(𝜙)| 

 404 

Using 𝑥1 =  𝑥2 + (𝑧2 −  𝑧1) cot(𝜙) 405 

 406 

2|𝑥2 + 𝑧2 cot(𝜙)| 

 407 

which gives 408 

 409 

𝜃1 =  𝑡𝑎𝑛−1 �
𝑧1 − 𝑥1 cot(𝜙)

|𝑥1 + 𝑧1 cot(𝜙)|�      (38) 

 410 

𝜃2 =  𝑡𝑎𝑛−1 �
𝑧2 − 𝑥2 cot(𝜙)

|𝑥2 + 𝑧2 cot(𝜙)|�      (39) 

 411 

Which are not the same as defined in Fig. 1b. 412 

 413 

𝑉 =   2(𝐽𝑥 + 𝐽𝑧 cot (𝜙))𝐼1 −  2𝐽𝑧(𝑥1 + 𝑧1 cot (𝜙))𝐼2   (40) 414 

 415 

𝐻 =  2(𝐽𝑧 − 𝐽𝑥 cot(𝜙))𝐼1 + 2𝐽𝑥(𝑥1 + 𝑧1 cot(𝜙))𝐼2  (41) 416 

 417 

Subbing I1 and I2 back into V and H gives 418 

 419 

𝑉 =   2(𝐽𝑥 + 𝐽𝑧 cot (𝜙))𝐼1 −  2𝐽𝑧(𝑥1 + 𝑧1 cot(𝜙))𝐼2 

 420 

𝐻 =  2(𝐽𝑧 − 𝐽𝑥 cot(𝜙))𝐼1 + 2𝐽𝑥(𝑥1 + 𝑧1 cot(𝜙))𝐼2 

 421 
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𝑉 =  2(𝐽𝑥 + 𝐽𝑧 cot(𝜙))�
1

2𝐴
ln �

𝑟2
𝑟1
� −

𝐵

2𝐴
3
2

(𝜃2 − 𝜃1)� −
2𝐽𝑧(𝑥1 + 𝑧1 cot(𝜙))𝐵

2𝐴
3
2

(𝜃2 − 𝜃1) 

 422 

𝐻 =  2(𝐽𝑧 − 𝐽𝑥 cot(𝜙))�
1

2𝐴
ln �

𝑟2
𝑟1
� −

𝐵

2𝐴
3
2

(𝜃2 − 𝜃1)� +
2𝐽𝑥(𝑥1 + 𝑧1 cot(𝜙))𝐵

2𝐴
3
2

(𝜃2 − 𝜃1) 

 423 

Rearranging V and H and subbing in values for A, B, and C 424 

 425 

𝑉 =  2(𝐽𝑥 [𝑠𝑖𝑛2 (𝜙) ln �
𝑟2
𝑟1
� + sin(𝜙)cos (𝜙) 

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1)]

+  𝐽𝑧[−sin(𝜙) cos(𝜙) ln �
𝑟2
𝑟1
� + 𝑠𝑖𝑛2 (𝜙)

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1) ] 

 426 

𝐻 =  2(𝐽𝑥 [−sin(𝜙) cos(𝜙) ln �
𝑟2
𝑟1
� + 𝑠𝑖𝑛2 (𝜙)

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1)]

+  𝐽𝑧[𝑠𝑖𝑛2(𝜙) ln �
𝑟2
𝑟1
� +  sin(𝜙)cos (𝜙)

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)| (𝜃2 − 𝜃1)]  

 427 

Comparing to equations (3) and (4) in Talwani and Heirtzler (1964) we get the same 428 

answer with the exception of: 429 

 430 

𝛿 =  𝑥1+𝑧1cot(𝜙)
|𝑥1+𝑧1cot(𝜙)|  (42) 431 

 432 

And θ from Talwani and Heirtzler (1964) ≠ θ derived here. 433 

 434 

  435 
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Rewriting to get Q and P  436 

 437 

𝑃 = −sin(𝜙) cos(𝜙) ln �
𝑟2
𝑟1
� +  𝑠𝑖𝑛2 (𝜙)

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1)  

𝑄 =  𝑠𝑖𝑛2 (𝜙) ln �
𝑟2
𝑟1
� + sin(𝜙)cos (𝜙) 

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1) 

 438 

using Talwani and Heirtzler definition of 𝜙 gives 439 

𝑃 =  
𝑧21𝑥12
𝑧212 + 𝑥122

ln �
𝑟2
𝑟1
� −  

𝑧212

𝑧212 + 𝑥122
𝑥1 + 𝑧1 cot(𝜙)

|𝑥1 + 𝑧1 cot(𝜙)|
(𝜃2 − 𝜃1) 

𝑄 =  
𝑧212

𝑧212 + 𝑥122
ln �

𝑟2
𝑟1
� + 

𝑧21𝑥12
𝑧212 + 𝑥122

𝑥1 + 𝑧1 cot(𝜙)
|𝑥1 + 𝑧1 cot(𝜙)|

(𝜃2 − 𝜃1) 

 440 

This shows dissimilarity with our derivation of the P and Q terms due to the 441 

different definition of the angle θ and the δ term in Talwani and Heirtzler (1964). 442 
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Appendix 
 
Click here to download the open source code on GitHub. 
Click here to download the software manual. 
Click here to download the software zipped p-code. This code is verified for Matlab 2015-2021. 
Click here to go to the software web page. 
 

https://github.com/Kravchins/Magnetic-2D-modelling-in-geophysics
https://sites.ualberta.ca/~vadim/software/MagMod%20V1.01%20User%20Manual.pdf
https://sites.ualberta.ca/~vadim/software/MagModV1.01%2023Oct2020%20pcode.zip
https://sites.ualberta.ca/~vadim/software.htm
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