A new Late Cretaceous paleomagnetic pole for the west of Amuria block (Khurmen Uul, Mongolia)

Fatim Hankarda,*, Jean-Pascal Cogne, Vadim Kravchinsky

Abstract

We present new paleomagnetic results obtained at ten sampling sites from six Upper Cretaceous (92 ± 4 Ma) basaltic lava flows from the westernmost part of Amuria block. The samples were collected in 1999 in the Khurmen Uul region (44.08°N, 103.08°E), Gobi desert (S. Mongolia). Stepwise thermal demagnetization isolated a high temperature component (HTC) carried by magnetite. Five out of ten sites exhibit anomalously high Koenigsberger ratios and low inclinations, which likely resulted from lightning remagnetization. However, three of these sites were only partially remagnetized, allowing us to use remagnetization great-circles to help determine a characteristic magnetization direction for this formation. HTC directions of the eight remaining sites from six distinct flows all possess normal polarity and exhibit better clustering after tilt correction of the flows (ks/kg = 129.3/s 36.6, n = 6). This clustering is ascertained by a positive fold test at the specimen scale within a single flow. We therefore propose that the tilt-corrected HTC represents a primary magnetization. The paleopole computed from the six lava flows HTC mean directions lies at λ = 71.5°N, φ = 227.2°E (dp/dm = 5.6°/8.2°). We discuss the possibility that our pole might not have completely averaged paleosecular variation, because it is based on only 6 independent flows. Finally, this pole is far-sided with respect to the 90 Ma reference pole of Eurasia APWP (Δλ = 10.2° ± 6.1°), but it is consistent, albeit somewhat far-sided too, with other coeval paleopoles from Amuria, and east China.

© 2005 Elsevier B.V. All rights reserved.

Keywords: paleomagnetism; tectonics; Central Asia; Mongolia; Gobi Desert; Cretaceous effusives

1. Introduction

Central Asia consists of a mosaic of blocks, which began accreting in the Early Paleozoic. The configur-

* Corresponding author. Tel.: +33 1 44 27 68 70; fax: +33 44 27 74 63.
E-mail address: hankard@ipgp.jussieu.fr (F. Hankard).

0012-821X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsl.2005.05.033
continental collision. In effect, because all the blocks constituting the Asian continent are thought to have been accreted by the Cretaceous, except for India, rocks of Cretaceous age have been the main focus of most studies. Therefore, the Cretaceous is the period for which the most reliable and consistent paleomagnetic database exists for almost each block (North China block or NCB, South China block or SCB, Tibetan blocks, Tarim, Jungar, Qaidam, Amuria, Siberia) [5–10]. Analyses and interpretations of this database have allowed several authors [5,11–14] to propose paleogeographic reconstructions of the Asian mosaic prior to the collision.

Concerning Amuria, NCB, SCB and Siberia, numerous paleomagnetic studies were undertaken in the region [6–8,15–21]. They show that (1) NCB accreted to Amuria by the Late Carboniferous, (2) SCB then sutured with NCB around the Middle to Late Jurassic, and (3) finally, the Mongol–Okhotsk Ocean between Amuria and Siberia closed by the Late Jurassic. These studies also demonstrated the lack of significant post-Cretaceous latitudinal relative changes of this assemblage since then. On the other hand, there was significant northward convergence of Tarim Block with respect to Siberia since the Cretaceous, which led Enkin et al. [5] and Chen et al. [10] to propose the possible existence of a tectonic discontinuity between Tarim and NCB which could be located near 95–100° E longitude, between NCB, SCB, Amuria to the east and Tarim to the west. Yet, there is no geological evidence for such a major tectonic discontinuity.

In order to better constrain the paleolatitude of Amuria and hopefully the location of the tectonic discontinuity zone, we have acquired new paleomagnetic data from an Upper Cretaceous basaltic formation from Khurmen Uul (44.0° N, 103.0° E), in the Gobi Desert (Mongolia). Samples were collected during a field trip in 1999. In effect, the bulk of paleomagnetic data available so far come from the stable NCB and SCB, located east of the discontinuity, and Tarim to the west of it. This is why we selected a sampling area in Amuria, which is located near the northward extension of the potential NS trending discontinuity zone.

2. Geology and paleomagnetic sampling

Following Zonenshain [22], the Amuria microcontinent consists of a number of lithospheric blocks (Hangai, Hentei, Central Mongolia, Argun, Khingan-Bureya), which accreted together in the early Paleozoic. The Amuria Block constitutes the eastern part of the Asian continent, together with Siberia, NCB and SCB. Its topography results from the India–Eurasia collision in the Eocene [2,23]. It is characterized both by the Mongolian plateau, consisting of the Hangai and Hentei Domes [23,24], and the Gobi Altai and Gobi Desert which bound Amuria to the south (Fig. 1a). The Mongolian plateau (2500 × 700 km), with an average altitude of 2000 m, occupies most of Mongolia and is bounded to the north by the Transbaikal–Amur region of southeast Siberia.

The Gobi Altai is an extension of the Altai mountain ranges to the southeast (Fig. 1a). This region consists of topographically discontinuous ranges, with peaks averaging 2000–3000 m in elevation [23,25–28]. To the east of Gobi Altai and Gobi Tien Shan, the Gobi Desert extends along the border of southern Mongolia.

The basement rocks of the eastern Gobi Altai consist of discontinuously exposed Paleozoic low-grade metasedimentary rocks, volcaniclastic sedimentary rocks, carbonates and isolated felsic intrusions, which are thought to represent arc basement, arc-derived sediment and continental platform material [29,30]. Several authors [31–33] have reported that Late Jurassic and Cretaceous continent-derived clastic and local volcanic rocks, deposited during a period of intraplate extension and volcanism, lie unconformably on deformed Paleozoic and early Mesozoic rocks. To the southeast of Gobi Altai begins the domain of the Gobi Desert, where Cretaceous and Paleocene rocks
are widely distributed (Fig. 1a). Cretaceous volcanism is limited to distinct and widely separated localities where thin andesitic to basaltic lava flows and some locally thick tuffs and volcaniclastics outcrop [34].

Our sampling sites are located at the southeasternmost end of the Gobi Altai, on the Khurmen Uul ridges (44.0°N–103.0°E; Fig. 1a). Ten Upper Cretaceous sites were sampled from a basaltic formation made of ~2–3 m thick flows. A radiometric K/Ar age of 92 ± 4 Ma has been obtained [35]. According to field observations, and despite discontinuous outcropping conditions, we think we have sampled six distinct flows. The relationships between sites and flows are schematically illustrated in Fig. 1b. Sites 25 and 29 were drilled in the lowermost flow and sites 26, 27 and 28 from the immediately overlying flow. They are followed by a series of 3 flows sampled as sites 30, 31 and 32. Site 33 was sampled in the same flow as site 31. Finally, site 34 was sampled in an isolated flow. Its relative position is difficult to ascertain, but we assume that it is a different flow. The tilt of the flows was measured in the field, however poor outcrop conditions did not allow clarifying the stratigraphic contact between the flows and the underlying sediments. Eight to ten cores per site were collected with a gasoline powered portable drill. Because of rainy weather, all the cores were oriented using only magnetic compass. Accordingly, field measurements were corrected for local magnetic declination (−1.6°) using the IGRF 1995 coefficients and their time derivatives.

3. Paleomagnetic analysis and results

Magnetic measurements and demagnetization procedures were performed in the magnetically shielded room of the Paleomagnetic laboratory at the Institut de Physique du Globe (IPG) in Paris and St. Maur. Remanent magnetization measurements were carried out using an Agico JR5 spinner magnetometer. All samples were thermally demagnetized over 19 temperature steps up to 590–600 °C within a nearly zero field laboratory built-furnace. During thermal demagnetization, sample orientation was successively inverted about the z-axis in order to detect any systematic magnetization that could have resulted from the small ~10 nT residual magnetic field in the furnace.

In order to identify of the magnetic carriers, acquisition of isothermal remanent magnetization (IRM) was measured on one specimen per site. Hysteresis loops were also determined on a few specimens, using a laboratory-made translation inductometer. Curie points were determined using an Agico Kappa-bridge KLY-3 and a CS-2 high temperature susceptibility meters. Demagnetization results were plotted on orthogonal vector diagrams, [36] and also on equal-area projections. Magnetization components were determined by principal component analysis [37]. Site-mean directions were calculated using Fisher statistics [38], or using the statistics of McFadden and McElhinny [39] for combined great-circle and vector populations. Finally, we attempted to better define the tilt of flows by measuring the anisotropy of magnetic susceptibility (AMS) of a few specimens. Unfortunately, AMS appeared very weak, with k1/k3 ratios of ~1.005–1.015, precluding any such determination. All interpretations and data processing were carried out using the PaleoMac software [40].

NRM intensities of the basaltic lava flows (Tables 1 and 2) fall into two distinct groups. In the first group (sites 25, 30, 31, 33 and 34), NRM ranges from 0.08 A/?

<table>
<thead>
<tr>
<th>Sites</th>
<th>Strike/Dip (°)</th>
<th>n/N</th>
<th>Dg (°)</th>
<th>Ig (°)</th>
<th>Ds (°)</th>
<th>Is (°)</th>
<th>k</th>
<th>a05 (°)</th>
<th>NRM</th>
<th>Q</th>
<th>(n*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>353.4/12.0</td>
<td>10/10</td>
<td>144.2</td>
<td>-19.5</td>
<td>148.5</td>
<td>-25.3</td>
<td>252.2</td>
<td>3.5</td>
<td>30.0 ± 14.0</td>
<td>176.7</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>358.4/17.0</td>
<td>9/10</td>
<td>7.4</td>
<td>16.1</td>
<td>11.9</td>
<td>13.2</td>
<td>15.1</td>
<td>13.7</td>
<td>14.0 ± 13.0</td>
<td>91.7</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>358.4/17.0</td>
<td>8/10</td>
<td>165.6</td>
<td>6.7</td>
<td>164.3</td>
<td>2.3</td>
<td>7.8</td>
<td>21.1</td>
<td>13.6 ± 11.8</td>
<td>51.0</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>358.4/17.0</td>
<td>8/10</td>
<td>318.1</td>
<td>-2.8</td>
<td>318.7</td>
<td>8.6</td>
<td>22.9</td>
<td>11.8</td>
<td>78.0 ± 35.0</td>
<td>337.0</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>310.8/23.0</td>
<td>9/12</td>
<td>336.3</td>
<td>25.6</td>
<td>343.9</td>
<td>14.8</td>
<td>24.7</td>
<td>10.6</td>
<td>4.2 ± 1.8</td>
<td>21.0</td>
<td>6</td>
</tr>
</tbody>
</table>

Strike/Dip of the flows; n/N: number of samples used in the statistics/number of demagnetized specimens; Dg/Ig (Ds/Is): declination and inclination in geographic coordinates, in situ (stratigraphic coordinates, after tilt-correction); k, a05: parameters of Fisher [38] statistics; NRM: mean NRM intensities for each sampling site; Q: Koenigsberger ratios [41]; (n*): number of specimens used in the Koenigsberger ratios.
Table 2
Site-mean paleomagnetic directions for the high temperature component (HTC) from Khurmen Uul Upper Cretaceous basalts

<table>
<thead>
<tr>
<th>Flows</th>
<th>Sites</th>
<th>Strike/Dip (°)</th>
<th>Type</th>
<th>n/N</th>
<th>Dg (°)</th>
<th>Ig (°)</th>
<th>Ds (°)</th>
<th>Is (°)</th>
<th>k</th>
<th>α95(°)</th>
<th>NRM</th>
<th>Q (n*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>353.4/12</td>
<td>HT</td>
<td>10/10</td>
<td>4.1</td>
<td>55.7</td>
<td>19.7</td>
<td>51.8</td>
<td>165.4</td>
<td>4</td>
<td>0.15 ± 0.05</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>26–27</td>
<td>35.4/17</td>
<td>GC</td>
<td>5/20</td>
<td>7.1</td>
<td>59.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.4</td>
<td>30.0 ± 14.0</td>
<td>176.7 (26)</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>310.8/23</td>
<td>HT</td>
<td>8/8</td>
<td>6.8</td>
<td>71.2</td>
<td>25.3</td>
<td>50.3</td>
<td>46.4</td>
<td>8.2</td>
<td>0.4 ± 0.05</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>31:310.8/23</td>
<td>HT</td>
<td>15/15</td>
<td>338.8</td>
<td>52.4</td>
<td>–</td>
<td>–</td>
<td>38.1</td>
<td>6.3</td>
<td>0.78 ± 10</td>
<td>5.3 (31)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>31–33</td>
<td>33:8.4/19</td>
<td>HT</td>
<td>15/15</td>
<td>–</td>
<td>0.8</td>
<td>47.9</td>
<td>204.8</td>
<td>2.7</td>
<td>0.55 ± 0.07</td>
<td>2.8 (33)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>310.8/23</td>
<td>GC</td>
<td>9/12</td>
<td>61.9</td>
<td>–8.4</td>
<td>64.8</td>
<td>–29.9</td>
<td>α95 = 1.3</td>
<td>α95y = 3.7</td>
<td>4.2 ± 1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>173.4/12</td>
<td>HT</td>
<td>10/10</td>
<td>27.5</td>
<td>48.9</td>
<td>14</td>
<td>54.4</td>
<td>398</td>
<td>2.4</td>
<td>0.87 ± 0.07</td>
<td>4.0</td>
</tr>
<tr>
<td>Mean</td>
<td>6/6</td>
<td>3.9 60.5</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>51.4</td>
<td>129.3</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

HT: high temperature magnetization components; GC: remagnetization great circle; Strike/Dip of the flows; n/N: number of samples used in the statistics/number of demagnetized specimens; Dg/Ig (Ds/Is), declination and inclination in geographic coordinates, in situ (stratigraphic

m to 1 A/m with a mean value at 0.56 ± 0.28 A/m (n=43). The second group (sites 26 to 29, and 32) exhibits much higher values, ranging from 1 to 89 A/m (up to 120 A/m for 3 specimens), with a mean value at 27.0 ± 31.8 A/m (n=52). The mean Koenigsberger ratios (Q) [41] for all sites are listed in Tables 1 and 2, where the second group of sites exhibits anomalously high values.

Thermal demagnetization isolated a high temperature component (HTC) in most of the samples. In some samples, this HTC, which was removed between 250–300 °C and 590 °C (Fig. 2a), follows a low temperature component (LTC) unblocked between room temperature and 200–250 °C. In most sites, including those with high NRM and Koenigsberger ratios (Fig. 2b), HTC converges toward the origin of orthogonal plots. However such is not the case in sites 25 and 32 (Fig. 3), where LTC and HTC were poorly separated, leading to a great-circle path of points. In site 25 (Fig. 3a), the HTC was well separated in only three out of ten samples, the other ones display only great circle trajectories. For this reason, the site-mean direction of site 25 was computed using the combined average of McFadden and McElhinny [39]. In contrast, demagnetization paths never converged towards the origin in specimens from site 32 (Fig. 3b). In this site, we computed an average remagnetization great-circle, using the bivariate statistics of Le Goff [42]. Although most of the specimens from sites 26 and 27, with high Koenigsberger ratios, exhibit HTC which converge towards the origin of orthogonal plots, we isolated two remagnetization great-circles in site 26 (Fig. 4a), and three in site 27 (Fig. 4b). Their significances are discussed below.

The maximum unblocking temperature of 590 °C indicates that the HTC is carried by magnetite. This observation is confirmed by magnetic mineralogy experiments. Both IRM acquisition curves (Fig. 5a) and hysteresis loops (Fig. 5b) show that saturation is achieved by 0.3 T. The high-temperature susceptibility measurements (Fig. 5c) display a sharp drop in magnetic susceptibility at about 580 °C, the Curie point of magnetite. The same experiments were conducted on one specimen from each site, and gave similar results for all sites, including those with high NRM intensities and Koenigsberger ratios. The similarities in the magnetic mineralogy among the different sites are illustrated by the Day et al. [43] plot of Fig. 5d, where all sites cluster in the pseudo-single domain (PSD) zone with no difference between the sites with high NRM intensities and the others. The high Jrs/Js value of site 33 specimen may denote a higher (lower) volume fraction of single domain (SD) (multi-domain (MD)) magnetite [44], but is not correlated to NRM intensity (Table 2).

The interpretation of the HTC is not straightforward. In the following, we first analyse HTC site-mean directions from sites 26 to 29 and 32, which exhibit high NRM and Koenigsberger ratios. Although they are generally well-behaved during demagnetization, the within-site mean directions of HTC from this group of sites (Table 1, Fig. 6) show a large scatter, mainly in
declination, whereas inclinations are always very low, close to the horizontal plane in tilt-corrected coordinates. Altogether, strong NRM intensities, high Koenigsberger ratios, identical magnetic properties and magnetic vectors within the flow plane lead us to conclude that the HTC from these sites might be an isothermal remanent magnetization (IRM) due to lightning having struck the outcrops.

However, although the lightning IRM is the only magnetization component we could isolate in sites 28...
Fig. 3. (a) Orthogonal vector plot and stereonet of thermal demagnetization of a specimen from site 25 showing a great-circle path during demagnetization. (b) Left: orthogonal plot of a specimen from site 32 with an enlargement above 375 °C; albeit straight, the trend does not converge toward the origin, defining a great-circle path (right), from a shallow NNW component to a steeper one. In this example, points above 535 °C (diamonds) are excluded from the great-circle fit. Same conventions as in Fig. 2.
and 29 (e.g. specimen 29-282B, Fig. 2a), the lightning induced remagnetization did not completely overprint the entire unblocking spectra of some samples in the other sites. In effect, although specimens from site 32 exhibit a well-defined linear demagnetization path (Fig. 3b), which allows defining the IRM component, they also show a systematic great-circle evolution during demagnetization. It was also possible to recover such great-circles in a few specimens from sites 26 and 27 (Fig. 4). Assuming that these great-circles result from the evolution of magnetization between the IRM and a possibly primary magnetization during thermal demagnetization, we attempt to use them in determining the characteristic magnetization of these flows. The great-circles from sites 26 and 27, which based on field observations are two outcrops of the same flow (flow 2, see Fig. 1b), corroborate this analysis: whereas great-circles from both sites 26 and 27 carry a strong IRM, they crosscut each other at a single point (Fig. 7a), which could well be the common “pre-lightning” magnetization component of this flow. A similar analysis is not possible for the remagnetized site 32 (Fig. 7b), since it is the site representative of flow unit 5. Therefore, we will compare the average great-circle of site 32 to the average flow-mean directions from the other sites.

HTC directions from the 5 remaining sites (25, 30, 31, 33 and 34) and great-circles from sites 26, 27 and 32 have been averaged at the flow level in the following way (Table 2, Fig. 8a): flows 1, 3 and 6 (F1, F3 and F6 in Fig. 1b) are characterized by the HTC averages of sites 25, 30 and 34 respectively. The HTC direction of flow 4 (F4) is computed from site 31 and 33 data; the (hopefully) characteristic magnetization of flow 2 (F2)
is defined by the intersection of sites 26 and 27 great-circles as discussed above. Finally, flow 5 (F5) is constrained only by the average great-circle of site 32. First, we note that the average great-circle of site 32 (flow 5) consistently passes through the vector population of the other flows. We therefore computed the formation mean direction by using the combined average of McFadden and McElhinny [39], including this great-circle (Fig. 8a). Second, directions of the six distinct flows obviously cluster upon untilting (Table 2, Fig. 8a). The tilt-corrected volcanic formation combined mean direction is $D_s = 18.0^\circ$, $I_s = 51.4^\circ$ ($k_s = 129.3$, $z_{95} = 6.0^\circ$, $n = 6$ flows). The precision parameter k increases from $k_g = 36.6$ to $k_s = 129.3$ upon untilting. With $k_s/k_g = 3.533$, this increase is significant at the 95% probability level (critical value: 2.970) for $n = 6$, but not at the 99% probability level (critical value: 4.850). If we now exclude the great-circle of site 32, the fold test of McFadden [45] is inconclusive at both the 95% and 99% probability levels for $n = 5$. However, a stronger test is provided by the single flow 4, which has been sampled at two sites (31 and 33) with different tilt attitudes. In this flow, the tilt-correction undoubtedly induces a clustering of HTCs from both sites (Table 2, Fig. 8b). The precision parameter k increases from $k_g = 38.1$ to $k_s = 204.8$ ($n = 15$ specimens) and a significant positive fold test [45] at both the 95% and 99% probability levels. We finally note that all specimens exhibit normal polarity magnetizations, which is consistent with an age of the formation

Fig. 5. (a) Isothermal remanent magnetization (IRM) acquisition in fields up to 1T showing the presence of low-coercivity magnetic mineral; magnetizing field in milliTesla (mT). (b) Hysteresis loop after the correction of paramagnetic component showing the presence of low-coercivity magnetic mineral; field in Tesla (T). (c) Susceptibility curve versus temperature showing a Curie point at 580 °C. Temperatures are indicated in °C. (d) Day et al. [43] plot showing all samples plot in the pseudo-single domain (PSD) grain size area; numbers 25 to 34 are the sampling sites.
is carried by magnetite, is likely the primary Late Cretaceous magnetization of these basaltic lava flows. The failure of the fold test at the formation level is thought to arise from both the small number of flows and the weak tilt of the flows (Table 2).

4. Discussion

Assuming we have recovered the primary magnetization carried by magnetite, we computed a paleopole from the combined (HTC and great circles) mean direction in tilt-corrected coordinates. This paleopole (Table 2) lies at $\lambda = 71.5^\circ$N, $\phi = 227.2^\circ$E (dp/dm = $5.6^\circ/8.2^\circ$) yielding a Late Cretaceous paleolatitude of $32.0^\circ \pm 5.6^\circ$ for the Khurmen Uul location. The Late Cretaceous Khurmen Uul pole appears far-sided with respect to the 90 Ma pole of the reference APWP for Eurasia [46] (Fig. 9a). The discrepancy between the two poles, computed following Coe et al. [47], and as underlined by the difference between the small circles centered on site location, amounts to $\Delta \lambda = 10.2 \pm 6.1^\circ$ in paleolatitude and to an insignificant local rotation of $7.6 \pm 9.6^\circ$. At face value, our result would suggest some 1130 ± 670 km of northward convergence of our sampling region with Siberia, consistent with the shortening between Tarim and Siberia, as proposed by
Chen et al. [10]. However, because average paleopoles from Amuria and China (NCB, SCB and ELKB) do not show a large offset with respect to the reference APWP, a ~1000 km convergence between Khurmen Uul area and Siberia would imply a relative movement between our sampling area (western Amuria) and the rest of Amuria and China to the east. This interpretation is hardly supported by any geological evidence north of Amuria that could have absorbed such a motion. In effect, maps of Moho depth from Zorin [48] show that crustal thickness between our sampling locality and Lake Baikal could result from a maximum 250–300 km of continental shortening. Based on the 2000 m average elevation of the Mongolian Plateau, its extent (2500 × 700 km) and isostasy, one obtains a similar amount of crustal shortening (~220 km). Finally, according to Zorin [48], this crustal thickening is likely due to Mongol–Okhotsk collision in the Middle-Late Jurassic. Altogether, this shortening is not likely to have been caused by Tertiary tectonic movements due to India collision with Eurasia, and does not solve the discrepancy of our pole with the Eurasia APWP.

Fig. 8. (a) Equal-area projections of HTC site-mean directions from sites with low Koenigsberger ratios [41] and/or remagnetization great-circles (see text), with their α_{95} circles of confidence before (left) and after (right) tilt-correction; white stars with shaded α_{95} areas: overall-mean directions (lower hemisphere); F1 to F6: flows with their corresponding sites numbers between parenthesis and in italic. (b) Equal-area projections of specimens HTC of sites 31 and 33 from Flow 4, before (left) and after (right) tilt-correction. Light grey diamond and star in (a) and (b): IGRF and axial geocentric dipole field directions. Same conventions as in Figs. 6 and 7.
Since our average paleomagnetic direction is based on only 8 independent sites from 6 flows, we have tested the angular dispersion of the virtual geomagnetic poles (VGP) computed from the 5 flows exhibiting a HTC direction, excluding the site 32 great-circle result. We obtain a VGP scatter of 8.9°, somewhat smaller than the 12–15° VGP scatter predicted by McFadden et al. [49] at 30–40° latitude for the 80–110 Ma period. This suggests that our data may not have fully averaged out secular variation at the time of flow emplacement. If we now do a comparison with other poles from Amuria (Fig. 9b), and east Chinese poles from NCB, SCB and ELKB (Fig. 9c), we note that our pole is not inconsistent with these popula-

Fig. 9. Equal-area projections of paleomagnetic poles in the northern Earth hemisphere; (a) Late Cretaceous paleomagnetic pole from Khurmen Uul, Mongolia (solid dot with dark grey ellipse of confidence); Small dots: APWP poles for Eurasia [46]; white dot with light grey A95 area of confidence: 90 Ma reference pole from the APWP; solid lines: small-circles passing through the poles and centered on the Khurmen Uul average site locations; (b) Khurmen Uul pole compared to other Cretaceous poles from Amuria (solid triangles labelled 2 to 5); lines are the average small-circle and its 95% area of confidence passing through the Amuria poles, excluding Khurmen Uul; (c) Khurmen Uul pole compared to Cretaceous poles from NCB, SCB and Eastern Liaoning-Korea Block (ELKB) (solid triangles) and their average (white star with light grey ellipse of confidence); for clarity, ellipses of confidence of individual poles have not been drawn; (d) Mean paleomagnetic pole for Amuria (solid star with dark grey A95 area of confidence) compared to both 90 Ma reference pole from APWP (white dot with light grey ellipse of confidence) and mean paleomagnetic pole for China (white star with grey ellipse of confidence); black stars: sites location; large grey star in (b) and (d): average site locations for Amuria block. Labels 1 to 8 in (a), (b), (c) and (d) refer to pole Id of Table 3.
tions, although it is always situated on the far side of the distributions of poles. In the hypothesis of rigid continental blocks, we may propose an alternative interpretation, where our single pole is consistent with other Amuria and China poles and its far-sided position is due to an insufficient averaging of paleosecular variation.

Notwithstanding this limitation, we note that our pole is not inconsistent with the Gobi pole #14 (based on 30 specimens) of Pruner [50] and the Inner Mongolia pole (based on 6 sites) of Zhao et al. [16] (poles 4 and 5 respectively in Fig. 9b), and the Chulut Tsagan Del poles #12 and #13 (19 specimens) of Pruner [50] exhibit a significant counterclockwise rotation (poles 2 and 3 respectively in Fig. 9b). Because three of these poles are based on only a few specimens, we may also question their effectiveness in averaging paleosecular variation, a possibility not discussed by the authors. We therefore attempt to define a new average Cretaceous paleopole for Amuria, including our Khurmen Uul pole and previously published ones, thus including data from 5 distinct localities within the Amuria block. Assuming that the rotations of Chulut Tsagan Del poles #12 and #13 are due to tectonic local rotations about a vertical axis (Fig. 9b), we computed a mixed average of small-circles passing through these poles and the other fixed poles (Khurmen Uul, Inner Mongolia, and Gobi #14). This average is an extension of the combined statistics of McFadden and McElhinny [39] to the case of populations of small-circles and vectors, as proposed by Enkin [51]. This mean pole lies at $\lambda = 77.3^\circ$N, $\phi = 215.2^\circ$E ($n = 5$, $A_{95} = 7.5^\circ$). Indeed, this Amuria pole does not differ significantly from the China mean pole in terms of paleolatitudes ($\Delta \lambda = 1.2^\circ \pm 3.0^\circ$), and shows no rotation ($-4.0^\circ \pm 5.1^\circ$). Compared to the 90 Ma pole from the Eurasia APWP, this new Amuria pole exhibits an insignificant offset of $\Delta \lambda = 3.8^\circ \pm 4.2^\circ$, with no rotation ($5.2^\circ \pm 7.3^\circ$).

In conclusion, we reach two different interpretations, depending on whether or not the paleosecular variation has been efficiently averaged by our sampling. In the first hypothesis, the far-sided position of Khurmen Uul pole would indicate a c.a. ~1000 km of northward convergence of west Amuria with respect to Siberia. This hypothesis is very similar to the one advocated for Tarim block by Chen et al. [10] but hardly supported by geologic evidence and models of Asia deformation (e.g. [1–3,52]). This interpretation vanishes if paleosecular variation has not been completely averaged. In the framework of our second hypothesis, incompletely averaged paleosecular variation, our new pole could be reasonably consistent with previously published poles from Amuria and China. Indeed, if such is the case, the generally admitted assumption that SCB, NCB, ELKB and Amuria formed a single entity since their late Jurassic–Early Cretaceous accretion to Siberia remains valid.

Acknowledgements

We wish to thank O. Tamurtogoo, G. Badarch and J. Badamgarav from Geological Institute of Mongolian Academy of Sciences, for efficient organization.
and guiding in the field during 1999 expedition to Gobi Desert. We also thank V. Ivanov, from the Siberian Branch of Russian Academy of Sciences, who suggested Khurmen Uul locality, and provided geological maps. An early draft of this paper benefited from helpful comments and suggestions from S. Gilder, V. Courtillot, B. Carter-Stiglitz, F. Lagroix and two anonymous referees. This is contribution 2057 of IPGP.

References

