PRELIMINARY RESULTS OF THE FIRST SCIENTIFIC DRILLING ON LAKE BAIKAL, BUGULDEIKA SITE, SOUTHEASTERN SIBERIA

BDP-93 Baikal Drilling Project Members*†

The BDP-93 Drilling Project (BDP) is a multinational effort to investigate the paleoclimatic history and tectonic evolution of the Baikal sedimentary basin during the Late Neogene. In March 1993 the BDP drilling system was successfully deployed from a barge frozen into position over a topographic high, termed the Buguldeika saddle, in the southern basin of Lake Baikal. The BDP-93 scientific team, made up of Russian, American and Japanese scientists, successfully recovered the first long (>100 m) hydraulic piston cores from two holes in 354 m of water. High quality cores of 98 m (Hole 1) and 102 m (Hole 2), representing sedimentation over the last 500,000 years, were collected in 78 mm diameter plastic liners with an average recovery of 72% and 90%, respectively. Magnetic susceptibility logging reveals an excellent hole-to-hole correlation. In this report the scientific team describes the preliminary analytical results from BDP-93 hole 1 cores. Radiocarbon dating by accelerator mass spectrometry provides an accurate chronology for the upper portion of Hole 1. Detailed lithologic characteristics, rock magnetic properties and inorganic element distributions show a significant change to the depositional environment occurring at 50 m subbottom depth, approximately 250,000 BP. This change may be due to uplift and rotation of the horst block in the Buguldeika saddle. The sedimentary section above 50 m is pelitic with varve-like laminae, whereas the section below 50 m contains a high proportion of sand and gravel horizons often organized into turbidite sequences. Accordingly, high resolution seismic records reveal a change in sonic velocity at this depth. It is inferred that sedimentation prior to 250 ka BP was from the west via the Buguldeika river system. After 250 ka BP the Buguldeika saddle reflects an increase in hemipelagic sediments admixed with fine-grained material from the Selenga River drainage basin, east of Lake Baikal. Variations in the spore-pollen assemblage, diatoms, biogenic silica content, rock magnetic properties, clay mineralogy and organic carbon in the upper 50 m of BDP-93-1 reveal a detailed record of climate change over approximately the last 250,000 years. These variables alternate in a pattern characteristic of glacial/interglacial climatic fluctuations. The present age model suggests that the climate signal recorded in Lake Baikal sediments is similar to Late Quaternary signals recorded in Chinese loess sections and in marine sediments. Copyright © 1996 INQUA/Elsevier Science Ltd

INTRODUCTION

Scientific Goals

The Baikal Drilling Project is a multinational investigation of the paleoclimatic history and tectonic evolution of the Lake Baikal sedimentary basin. Lake Baikal occupies the largest basin in the Baikal Rift Zone (BRZ), one of the two major continental rift zones in the world. The BRZ system stretches 2000 km and scoured much of the sediments of Europe, northwestern Siberia and North America (Grosswald, 1980). The Baikal watershed was and is sensitive to past and present climate change processes. For example, during the last glacial maximum glaciers existed in the mountains surrounding the northern shores of Lake Baikal.

Today the Baikal region is strongly affected by two atmospheric centers of the northern hemisphere, the Siberian high which dominates the winter climate of the Baikal region and the Asian low which strongly influences the summer climate (Lydolph, 1977). The seasonal interplay of these centers of action significantly influences global climate and produces the highest degree of continentality (seasonal contrast) observed on Earth. Comprehensive studies of Baikal sediments therefore provide an opportunity to understand how the global climate system has influenced long-term climatic change in central Asia, including such phenomena as the

*Please direct correspondence to Douglas F. Williams, Baikal Drilling Project, Department of Geological Sciences, University of South Carolina, SC 29208, U.S.A.

†Coordination and planning (S. Colman, M. Grachev, P. Hearn, S. Horie, T. Kawai, M. Kuzmin, N. Logachov, D. Williams); logistics (V. Antipin, A. Bardardinov, A. Bucharov, V. Fialkov, A. Gorigljad, B. Tomilov); drilling (B. Khakhaev, S. Kochikov, V. Lykov, L. Pevzner); geological framework (A. Bucharov, E. Karabanov, N. Logachev, V. Mats); seismic stratigraphy (A. Bardardinov, S. Colman, E. Karabanov); visual core descriptions (E. Baranova, E. Karabanov, O. Khlystov, V. Fialkov, A. Gorigljad, B. Horie, T. Kawai, M. Kuzanin, N. Logachov, D. Williams); major/trace/rare element analysis (V. Bobrov, P. Dolgikh, R. Ishiwatari, F. Likhoshvai, E. Stoermer); biogenic silica (S. Colman, L. Granina, O. Kashik, T. Khramtsova, I. Kalashnikova, T. Khrachenko, M. Shimaraeva, E. Stolbova); smear slides (E. Komakova, P. Shanks); geothermal parameters (R. Dorofeeva, A. Duchkov).
intensification of northern hemisphere glaciation during the Plio-Pleistocene and the influences of Tibetan Plateau uplift on the Siberian atmospheric high and climate of southeastern Siberia (Molnar and Tapponnier, 1975; Zhongli et al., 1992). In addition, Baikal sediments contain a record of the recent evolution of one of the most important active intracontinental rifts of the world. Tectonic signals should be preserved in the sedimentary record as changes in turbidite frequency, mineralogy and other parameters influenced by characteristics of the watershed drainage pattern.

Organization of BDP

Initial discussions included the Soviet Academy of Sciences (SAS) and Ministry of Geology (MINGEO), the U.S. Geological Survey (USGS), a number of U.S. universities and the University of Kyoto (Japan; Williams, 1993). In 1990 BDP became an important part of the Baikal International Center for Ecological Research (BICER) headquartered in the Limnological Institute, Irkutsk. Most recently, components of the BDP objectives became part of the IGB.P. program of Past Global Changes (PAGES).

Prior to the first BDP drilling at Buguldeika in 1993, several piston coring and high resolution seismic expeditions were sponsored by the USGS, BICER and the Japan Baikal Association (JABIRP). These 1990–1992 expeditions provided (1) 3600 km of high-resolution seismic-reflection profiles to delineate the sedimentary environments and facies beneath the lake, to define how those environments have responded to climate change, and to locate and correlate appropriate sites for coring; and (2) a set of 209 cores of various types at 38 sites that provide the raw materials for analyses aimed at detailed reconstructions of paleoenvironmental conditions (Bezrukova et al., 1991; Lake Baikal Paleoclimate Project Members, 1992; Kuzmin and Williams, 1993).

During 1992–1993, participation in BDP has expanded to include a large, multidisciplinary team of Russian, American and Japanese scientists who study the geochronological, geochemical, micropaleontological, and sedimentological characteristics of Baikal sediments. Costs for the site-selection surveys, drilling/coring and subsequent analytical work are borne equally among the BDP partners. Planning, financing and scientific objectives are determined by BDP Steering, Technology, and Scientific Advisory committees.

Technological Requirements

Due to Baikal’s great depth, intense weather changes and high level of tectonic activity, certain technical problems of drilling lacustrine sediments in Baikal needed solving in order to realize the scientific tasks posed. To accomplish the objectives of BDP, a specialized lightweight drilling system, using aluminum drill pipe to reduce the overall weight of the system, was developed by the Nedra Drilling Enterprise based in Yaroslavl, Russia. To maximize recovery of undisturbed sediment, Nedra engineers developed a hydraulic piston coring system based on the design of the advanced hydraulic piston corer (APC) of the Ocean Drilling Program. In addition to the Baikal APC, the Nedra drilling team also had a hydrostriker, vibracorer and rotary corer for use under different conditions. In 1992, this drilling rig was tested by the NEDRA enterprise from the surface of Slyudinsky Lake, a small nearshore lagoon in the coastal zone of Northern Baikal. These tests confirmed that the equipment would perform within the designed specifications in full-scale drilling scheduled for the following year. In January 1993 the Baikal drilling system was deployed from a 15×30 m barge frozen into position using two ships, satellite navigation and the aid of high resolution seismic (see next section on site selection).

With the Baikal coring system, high quality cores of 98 and 102 m were collected in March 1993 from the Buguldeika site in 354 m of water (Fig. 1). The cores were recovered in 78 mm diameter plastic liners with an average recovery of 72% and 90% in Holes 1 and 2, respectively. Magnetic susceptibility and thermal conductivity measurements were made prior to splitting of the BDP-93-1 cores, and core descriptions and photographs were taken prior to sampling. From Hole 1 a suite of approximately 200 reconnaissance samples were taken and distributed among Russian, Japanese, and U.S. scientists. Following ODP protocols, a BDP sampling protocol identified the analytical teams to be involved in the reconnaissance BW-931 cores. The key properties to be measured included radiocarbon dating by accelerator mass spectrometry, rock magnetic parameters, organic constituents (biogenic silica and total C, H, N, S), diatom and spore/pollen contents, major and trace element chemistry, clay mineralogy, porosity/water contents and grain size. The results of these analyses are reported here and are being used to design a more comprehensive and detailed sampling program that will utilize samples from both boreholes. Cores from both boreholes are archived in a refrigerated (~4°C) core storage facility at the Institute of the Earth’s Crust in Irkutsk.

CHARACTERISTICS OF THE BDP-93 DRILLING SITE

General Geologic and Tectonic Setting of the Buguldeika Site

The latest phase of rifting in the Baikal Rift Zone began at about 30–35 Ma, after almost 150 Ma of tectonic quiescence (Zonenshain and Savostin, 1981; Lipman et al., 1989). Lake Baikal occupies the deepest part of the Baikal Rift Zone. The Baikal depression is divided into the northern, central and southern basins (Zorin, 1966; Zorin et al., 1977). The Buguldeika Site lies on the western margin between the central and southern depressions, offshore of the Buguldeika River and directly across from the Selenga Delta (Fig. 1). The Buguldeika River basin drains territory comprised of
different tectonic blocks of different geological structure which are separated by faults (Fig. 1; Logachov, 1968; Logachov et al., 1974; Mats, 1993). Deposition at the Buguldeika site was likely influenced by the erosional-tectonic stages (Manzurka, Neobaikalian) that are related to formation of the Baikal rift depression. In the Manzurka stage the valley of pre-Manzurka River was the outlet when Baikal water flowed into the Lena River (Logachov et al., 1974; Kononov and Mats, 1986). In the Neobaikalian stage (Late Pleistocene–Recent time) the Buguldeika River developed its thalweg towards Baikal in two parts. The first phase was one of downcutting and transportation of coarser material. The second phase from the end of the Middle Pleistocene to recent time is characterized by quieter stream-like flow and transfer of fine-grained material into Baikal. Although the primary objectives involved the paleoclimate record, it was hoped that the BDP-93 drilling of the Buguldeika site would also reveal the development of the Buguldeika erosional-tectonic regime.

Use of Geophysical Profiles for Site Selection at the Buguldeika Site

An array of high-resolution water-gun and 3.5 kHz seismic-reflection profiles were used in the selection of the Buguldeika Drill Site on top of a tilted fault block that forms a small horst within the Baikal Rift Zone (Figs 2 and 3). Foremost in the selection was the continuous, subparallel reflections in the upper 50 m of sediment which suggested a thick hemipelagic sequence of
FIG. 2. Seismic-reflection profile (15 cubic inch water gun) from northwest to southeast, perpendicular to the axis of the rift and parallel to the slope of the Selenga Delta.

FIG. 3. Seismic-reflection profile (15 cubic inch water gun) from northeast to southwest, parallel to the axis of the rift.

sediments suitable for paleoclimatic studies. Other considerations were technological and scientific. For example, the drilling system at that time was limited to waters less than 400 m. An additional consideration was the opportunity to recover the palynological and mineralogical signals originating from the most important part of the Baikal watershed (the Selenga). We also chose the site to avoid direct influence from deposits of the Buguldeika subaqueous fan which, just south of the drill site, are marked by irregular reflections and mounded surface morphology that appear to interfinger with the hemipelagic sediments. The fault block on which the drill site was located is tilted to the southwest and is raised above the slope of the adjacent Selenga Delta.

A major change in the lithologic character of the sediments in BDP-93 Hole 1 occurs at a depth of about 50 m and is marked by a prominent reflection. Other reflection characteristics generally correlate with lithologic variations in the core. Below 100 m depth at the drill site, several prominent reflections and a distinct unconformity may be related to changes in tectonic activity. In addition, one of these horizons may relate to a diversion of the take outlet from the Buguldeika River (and thence to the Lena River) to the Angara River. A gradual reversal in dip direction upsection implies changes in the rate of tectonic movement on several faults which bound the Buguldeika block.

RESULTS

Lithological Characteristics of BDP-93 Hole 1

Over 900 smear slides have been examined to characterize the major lithological parameters of the BDP-93 Hole 1. Figure 4 depicts the sedimentary record of the BDP-93 borehole based on the primary core description. The sediments of this core primarily have a silt-pelitic composition. Lenses and interbeds of sand and silt increase in abundance downcore, as does the proportion of fine gravel. Based on a smear slide calculation the diatom content of some silt or sand
shows two sequences. The first, from the top to 50 m, is more fine-grained, contains a large amount of diatom material and displays a pronounced rhythmic structure. This upper sequence apparently formed under relatively quiet conditions of facustrine-pelagic sedimentation. The lower sequence, below 50 m, is more coarse-grained with abundant turbidites interspersed with pelite material and more interbeds of sand and silt relative to the upper 50 m. The lower sequence was apparently formed by input of river material brought from the coast, possibly by discharge through the Buguldeika River.

Figure 4 illustrates the variation in effective porosity of bottom sediments throughout the core. The porosity steadily diminishes from 0.855 at 0.03 m depth to 0.428 in the borehole shaft (102.5 m). In the upper part of the cross-section (0–10 m) the variation in porosity is well correlated with observed changes in bottom sediment porosity from 10 m piston cores. Thus, it can be inferred that this pattern of porosity variation in the upper (100 m) layer of sediments at the Buguldeika saddle is common for Baikal. As seen on the plot, the porosity values that deviate from the average curve are related to changes in the lithologic composition of individual beds.

Mineralogy and Grain Size Characteristics

Granulometric analysis of the BDP-93-1 core showed that 80% of the core was comprised of fine-grained (<62.5 μm), silty-clay ooze. Only at 39, 61 and 66 m, where sand interbeds of a few tens of centimeters occur, do coarser-grained fractions dominate. The sand and silt grains are poorly rounded and sorted. These granulometric characteristics suggest that the bulk of the suspended material was transported into a sedimentary basin that had an average depth comparable to the present average.

Over 90% of the light minerals in the core are quartz, plagioclase, K-feldspar, K-feldspar, micas (biotite, muscovite) and clay aggregates. Clay aggregates consist of poorly cemented quartz, K-feldspar and clay minerals, mainly smectites. Plagioclase is more abundant than K-feldspar. Biotite mica is several times more abundant than muscovite. The fight fraction also contains lesser amounts of chlorite, graphite, rock fragments, carbonized plant remains and diatoms.

Heavy minerals constitute a small fraction of the composition (a few grams per ton of sediment). Only in a few horizons do the concentration of heavy fractions reach as high as 30 gm to 76 gm per ton. Thirty heavy minerals were identified, but only ilmenite, magnetite, garnets, spherules, pyroxenes, minerals of the amphibole group, pyroxene and epidote are found in all samples. These minerals, as a rule, accommodate about 50% of the total weight of the heavy fraction. Authigenic minerals pyrite and marcasite are also present.

In the BDP-93-1 drill core the relative proportions of illite, smectite, chlorite and kaolinite in the <2 um size fraction vary with depth. Previous work on clay minerals in the 1990–1992 piston cores showed little differentia-
tion of these clays geographically, implying that they should be sensitive to changes in weathering conditions in the sediment source area. Although the smectite abundance varies considerably in BDP-93-1, two patterns are evident (Fig. 5). First, a noticeable and persistent decrease in smectite abundance occurs below about 50 m. This agrees with most of the lithologic evidence (e.g., quartz to plagioclase ratio, clay minerals, the amount of rock fragments and plant remains, etc.) which also shows that BDP93-1 may be divided into two parts: above and below 45–50 m. Secondly, in the upper 50 m there are several high-amplitude changes in smectite abundance that will be investigated for climatic significance.

Kaolinite abundance (not shown) fluctuates around a slightly increasing mean to a depth of approximately 35 m, after which it undergoes a large decrease and remains relatively constant to the bottom of the core. Chlorite (not shown) tends to increase gradually down-core. A comprehensive environmental interpretation of this data await correlation with other climate proxy data. However, a preliminary examination of piston cores 305 (Selenga Delta) and 333 (Academician Ridge) demonstrate a distinct correlation between the abundance of smectite and biogenic silica. This suggests that, in some instances, smectite may have been produced in soils around Lake Baikal during the same (warmer?) episodes which stimulated the productivity of siliceous microorganisms.

Inorganic Geochemical Parameters

Inorganic geochemical data, primarily the distribution of Al₂O₃, TiO₂, K₂O, MnO, Zr, Sr, Co, V, Zn, Pb, Ni, Cu, and S indicates that the sedimentary sequence of BDP-93-1 borehole is divided into an upper (<50 m) and lower (>50 m) section. We have chosen to illustrate this geochemical division in Fig. 6, using the distribution of Ti, Zr, and Sr. The top section of the core displays an asymmetric distribution of TiO₂. This implies that marked changes to the geological setting must have occurred such as changes in the level of erosion and the amount runoff to the Buguldeika river; both of which could affect sedimentation in the vicinity of the drill site. In addition the chemical composition of the upper and lower parts of the core differ from the average composition of bottom sediments of Baikal and stream sediments of river tributaries (Pampura et al., 1993). Further research may make it possible to identify fluctuations in element abundance that are related to climate change. Finally, elements such as Si, P, Fe, Cd, and Mg which experience diagenetic migration or biogenic accumulation do not differ significantly between the upper and lower parts of the core.
Radiocarbon Dating

A total of 21 samples from the upper part of the BDP-93-1 drill hole have been dated using standard accelerator mass spectrometry (AMS) methods at the Woods Hole AMS Facility and the tandetron AMS facility at Nagoya University. All of the samples are total organic carbon except for one wood sample at a depth of 25 cm. There is good agreement among the ages in the upper 500 cm (Fig. 7), spanning the last 25,000 years and giving a linear, constant sedimentation rate of approximately 20 cm per thousand years. A regression line for the uppermost 15 ages provides an extremely good linear fit ($r^2=0.97$). The lowest age is infinite.

Below 500 cm, the data appear to indicate a change to a more rapid sedimentation rate. However, a variety of evidence suggests that this apparent increase is spurious, due to slight contamination of the samples, probably by modern bacteria. First, the samples below 500 cm have very low organic carbon contents and are thus easily contaminated. Contamination by one to two percent of modern carbon is enough to explain the deviation of these samples from the regression line. Second, a change in sedimentation at 25,000 BP in the midst of a glacial period is unlikely comparable to the change at 13,000 BP during the transition from glacial to interglacial conditions. Finally, initial ages from the second drill core at the Buguldeika site fall almost exactly on the regression line to an age of 35,000 BP. Thus, it appears that the net sedimentation rate at the Buguldeika site was nearly constant throughout the period covered by radiocarbon dating. Radiocarbon data from other sites in the lake suggest that the comparison between glacial and interglacial sedimentation rates depends on a balance between biogenic and terrigenous flux, the former being greater during interglacials and the latter being greater during glacial periods.

The ages for the upper part of BDP-93-1 are consistent with the spatial pattern of late Quaternary (Holocene–last glacial maximum) sedimentation rates determined from more than 80 AMS radiocarbon ages of box cores, gravity cores, and piston cores throughout the lake (Lake Baikal Paleoclimate Project Members, 1992; Colman et al., 1993). For example, AMS radiocarbon ages from core PC2 site 339, less than one km away from the BDP-93-1 core, are remarkably consistent with those from depths correlated by means of magnetic susceptibility for the two sites.

Whole-Core Magnetic Susceptibility Logging of BDP-93 Holes 1 and 2

Low-field, whole-core magnetic susceptibility (K) of all cores from both BDP-93 holes were measured at 3 cm intervals, rapidly and non-destructively, using a susceptibility meter with a pass through loop sensor (King et al., 1983, 1993). Magnetic susceptibility is primarily a measure of the magnetic mineral concentration in the sediment (higher values indicate increased magnetic mineral concentration). Whole-core measurements can be used in several ways. First, magnetic susceptibility provides accurate core correlation between the two holes to a depth of 84 m (Fig. 8). This correlation enables a more complete composite section to be obtained because gaps in one core can be filled with correlative sediment recovered in the other core.

Second, magnetic susceptibility can be used to correlate the upper meter of sediment in Holes 1 and 2 to gravity cores from nearby stations 305 and 339. This correlation indicates that the drilling procedure recovered undisturbed surficial sediment in both holes because gravity cores also preserved the surficial sediment. Although Hole 2 was located only 3 m away from Hole 1, the movement of the drill casing did not greatly disturb the lakefloor because Hole 2 also recovered undisturbed surficial sediment.

Third, magnetic susceptibility can help identify con-
tamination from the drilling process. The presence of unusually high K values at the top of a core is the result of contamination from the accumulation of sediment, grease, and metal filings in the drill casing between successive hydraulic piston coring runs. This contaminated sediment fills the core catcher and core cutter of the APC prior to the actual coring stroke and is incorporated into the core top by the coring stroke. The K profiles suggest that the intervals (cm) 1959–1971, 2564–2680, 3169–3171, 3270–3324, 3871–3933, 5392–5402, 6092–6120, 6192–6214, 7510–7520, 8848–8850, and 9133–9145 cm in Hole 1 and the intervals (cm) 1224–1232, 3596–3602, 4583–4620, 5107–5116, 8526–8532, and 9336–9358 cm in Hole 2 may contain contaminated sediment. These intervals warrant close examination of lithology and sedimentary structures to corroborate the presence of contaminated sediment.

Fourth, the K profile for Hole 1 shows a high degree of correlation to the lithology of the upper 50 m. Diatomaceous sediment is characterized by low K values reflecting the dilution effect of diamagnetic biogenic silica. Clayey sediment is characterized by relatively high K values. This same relationship has been seen in previously collected cores from other parts of Lake Baikal (Lake Baikal Paleoclimate Project Members, 1992; King et al., 1993).

Initial Paleomagnetic and Rock-Magnetic Results of BDP-93 Hole 1

Oriented paleomagnetic subsamples in 5 cm³ plastic boxes were taken at 30 cm intervals from Hole 1. These samples were measured for paleomagnetic properties (declination, inclination and intensity) and a subset of samples were measured for rock-magnetic properties (concentration, grain size, and mineralogy).

Step-wise alternating field (AF) demagnetization was performed on a small subset of samples. The results indicate that the sediment contains a stable primary remanence, an extremely small secondary viscous remanence, and a relatively high intensity of magnetization. These characteristics make the Baikal sediments well suited for paleomagnetic investigation. The inclination record for BDP-93 Hole 1 indicates that the sediment record is entirely Brunhes in age (Fig. 9). The inclination record displays secular variations and excursions. Shallow or negative inclinations observed in single samples from depths of (cm) 455, 1476, 2001, 5262, 7715.5, and 9358 cm are not found in neighboring samples and are not likely to reflect excursions in the earth’s magnetic field.

Two intervals of shallow or negative inclinations are represented in multiple samples and are likely to reflect excursions in the earth’s magnetic field. The first excursion is located between 25.5 and 27 m (Fig. 9). The interpretation of the rock-magnetic parameters (see next section) indicates that this interval represents glacial conditions, possibly marine Oxygen Isotope Stage 6. This BDP Hole 1 excursion correlates to an excursion identified in core 287 K-2 from the Academician Ridge region of Lake Baikal. The excursion present in core 287 K-2 is also located within inferred stage 6 sediments (King et al., 1993). If this climatic interpretation is correct then the excursion would be approximately 180,000 ka, corresponding to the Biwa 1–Jamaica double excursion. On the other hand, if this excursion is related to the Blake excursion then the climatic interpretation is wrong. At this time we stress the need to measure additional samples from this interval. In addition, the compilation of multiple climate proxy data (e.g. biogenic silica, diatoms, pollen, clay mineralogy) is required in order to better define the climate signal and thereby confidently place this excursion within a time-frame. It is premature to identify this excursion at this time.

The deeper double excursion located between 67 and 71 m requires further investigation in order to place it within a time framework because the rock-magnetic properties indicate a major change in depositional environment at about 50 m.

Rock-magnetic measurements (concentration, grain size, and mineralogy of the magnetic component of the sediment) of the 72 American subsamples and 20 Russian subsamples indicate that in the upper 50 m of sediment, rock-magnetic parameters appear to be related to climate change. Inferred interglacial and interstadial periods are characterized by low magnetic concentrations (K, KARM, SIRM) and a composition that is predominantly low coercivity minerals (HIRM, S ratio; Fig. 10). Inferred glacial periods are characterized by higher magnetic concentrations (K, KARM, SIRM) and increased amounts of high coercivity minerals (HIRM, S ratio; Fig. 10). We infer that during warm periods increased diatomaceous sedimentation, resulting from increased lake productivity, diluted the magnetic concentration. In addition, during warm periods enhanced soil development in the Selenga and Buguldeika River catchments yielded increased amounts of low coercivity minerals. Below 50 m the magnetic concentration generally increases, low coercivity minerals predominate throughout, and increased amounts of sand and gravel are present (Fig. 10). This change in magnetic parameters and lithology suggests a
change in deposition environment at the site to one dominated by fluvial inputs below 50 m.

Results of Palynological Analysis of BDP-93-1 Core

Seventy-seven samples were analyzed using standard procedures to obtain a spore-pollen spectra (SPS) for the BDP-93-1 core. Fluctuations in the abundance of 74 taxa (families, genera and species) record changes in the vegetational history of the Lake Baikal area. Nearly 85% of the samples contain some portion of terrigenous material consisting predominantly of plant tissue. The pollen material exhibits variable preservation, but in general the SPS is very diverse with elements from present-day plants as well as some reworked pollen of Paleogene–Neogene age and some Jurassic species.

Palynological analysis identified three different types of SPS: 'forest', 'forest–steppe', and 'steppe'. SPS of the 'forest' type contain up to 80% arboreal pollen. They are rich in pollen material, particularly of coniferous plants: Picea, Larix, Pinus (sibirica, silvestris, pumila). Species of Abies and Tsuga occur infrequently. Pollen of small-leaved species, Betula, Alnus, Duschekia fruticosa, and Salix make up 5–29% of the pollen sum. Pollen of thermophilic genera Corylus, Carpinus, Quercus, and Ulmus are abundant.

SPS of 'forest–steppe' and 'steppe' types contain 50% and 70% non-arboreal pollen, respectively; most of which are herbs. The most abundant herb pollen is from the families Cyperaceae, Asteraceae, and Gramineae, and from the genus Artemisia. SPS of these types almost always include pollen grains of thermophilic genera: Ulmus, Corylus, Quercus, Carpinus, and sometimes llex.

As evident from the spore-pollen diagram (Fig. 11), the total composition of pollen and spores reflect intervals of SPS alternation of 'forest' type with that of 'steppe' and 'forest–steppe' types. Based on this evidence, 13 palynologic zones correlate with variations in the sedimentary environment have been distinguished (Fig. 11). The zones display an alternation of moderately dry and warm epochs with moderately cold, damp epochs throughout the core. Zones II, IV, IX, XI, and XIII contain floras dominated by elms and dark conifers like cedar and some pine. These floras are characteristic of moderately cold, damp climate conditions. Zones I, III, V, VI, and XII are characterized by floras of relatively dry climates (pollen of wood species). Zones VII, VIII, and X are considered transitional because their flora is common for damp, cool environments, and they show a low content of wood species. Shrub and herb floras are present.

Within the range 30–104 m a very interesting relationship is noted: the intervals containing moderately cold damp taxa of SPS are followed by a sharp increase of ancient reworked species. It is likely that a sharp increase in precipitation contributed to washout of ancient rocks, resulting in reworking of Mesozoic and Cenozoic pollen by waters of the Buguldeika, and Selenga rivers. This phenomenon may be explained as a result of both tectonic and climatic conditions. The combined effects of tectonic lowering of the level of erosion and climate change led to more intense washout of ancient sediments. Peaks in the concentration of spore-pollen material reflect intervals of dark-coniferous forest vegetation; high pollen productivity is characteristic of these conifers.

The core sediments are interpreted to represent a fairly high sedimentation rate. The bulk of the sediment was derived from the Buguldeika River and, to a lesser extent, from the Selenga River. SPS of zone III contain pollen of the group 'mixed oak' (Quercetum mixture). These species constitute a warmth-loving flora, which in warm periods of the Lower–Middle Pleistocene grew in the Trans-Baikal area, mid-Siberian lowland, and possibly in the Tunka depression. In our opinion, pollen of these plants were brought by the Selenga River flowing through the steppes and forest–steppe of Trans-Baikal. It is not likely that this assemblage was transported by the Buguldeika River since the Quercetum mix group was not growing in the Buguldeika River basin.

Diatom Studies

Preliminary observations of the diatom assemblages in BDP-93-1 show large changes in the abundance and type of diatoms (Fig. 12a). Some sections of the core are apparently barren of diatoms with less than one frustule per 100 mg of dry sediment. Diatoms were recovered using the technique described in Bezrukova et al. (1991). Presently, it is not clear if these zones represent periods of extreme sediment dilution, lack of diatom productivity, or both. In samples that contain diatoms, species endemic to Lake Baikal dominate the assemblages. A significant number of species, common in boreal lakes outside the Baikal region, are restricted to surficial sediments; (<300
FIG. 11. Palynological zones based on major floral compositions:

XIII — 0–0.50 m Picea, Abies, Pinus sibirica, Pinus silvestris; XII — 5.50–13.0 m — Asteraceae, Cyperaceae, Poaceae; XI — 13.0–19.0 m — Picea, Pinus sibirica; X — 19.0–23.5 m — Cyperaceae, Asteraceae, Poaceae; IX — 23.5–35.5 m — Picea, Pinus sibirica, Pinus silvestris, Betula; Cyperaceae, Artemisia, Chenopodiaceae; VIII — 35.5–40.0 m — Picea, Pinus sibirica; VII 40.0–43.0 m — Cyperaceae, Artemisia; VI — 43.0–53.0 m — Larix, Picea, Pinus sibirica, Cyperaceae; V — 53.0–64.0 m Larix, Picea, Pinus sibirica, Betula; Asteraceae, Polyopodiaceae; IV — 64.0–80.0 m Pinus sibirica, Picea, Larix; Salix; Cyperaceae; III — 80.0–86.0 m — Broad-leaved wood; Asteraceae, Poaceae, Artemisia, II — 86.0–92.0 m Larix, Picea, Pinus sibirica; I — 92.0–104.0 m — Larix, Pinus sibirica, Betula; Cyperaceae, Poaceae, Artemisia.
Although a highly endemic flora is present, it is clear that a wealth of biostratigraphic and paleoecological information is potentially available. The quantitative distribution of diatom frustules in the core correlates well with the percentage of biogenic silica. A few cases of discordance may be explained by a discrepancy in the depth of the layers analyzed in both cases. Additional subsampling and further refinement of taxonomic separation should sharpen interpretations and reveal additional detail.

Biogenic Silica and Other Organic Constituents

Biogenic silica (BSi), which has been shown to correlate with diatom productivity in the lake, shows major fluctuations with depth in the Buguldeika Site core (Fig. 12b). The sediments in the upper 2 m of the core, radiocarbon dated as Holocene, have maximum BSi contents of 20–25%. The sediments that represent the last glacial maximum (2–5 m) generally have BSi contents of a few percent or less. By analogy, we infer that previous interglacial sediments had high diatom productivity, and that previous glacial periods are marked by low diatom productivity. This inference depends on the assumption that BSi has not been significantly altered by diagenetic processes.

The first subsurface maximum in BSi occurs at about 7 m, but it is relatively small, less than 15%. Extrapolation of the sedimentation rates for the first 30,000 years from the upper part of the core suggests an age of about 36,000 years for this peak. The next subsurface maximum is from about 11 to 17 m and has multiple peaks, the largest of which is more than 20% at about 14 m. This interval is the one that is most like the Holocene in the entire core. Although the similarity of this peak to that of the Holocene suggests correlation to the fast interglacial, detailed correlation of the BSi record to glacial and interglacial periods awaits better dating control.

Most of the clearly delineated peaks in BSi occur in the upper 50 m of the core, above the change in lithology and inorganic geochemistry noted earlier. However, small but significant BSi peaks also occur in the lower lithologic unit, at approximately 55, 68–71, and 90 m. Most of the peaks below 15 m are less than 10%; the reason these peaks are less than those in the Holocene and at 14 m is not known at present.

Concentrations of organic carbon and total nitrogen in sediments from BDP-93-1 range from 0.4–3.4%, and 0.06–0.3%, respectively (Fig. 13). A maximum in organic carbon, observed in the first meter of the core, corresponds to the Holocene organic carbon maximum (6000 BP) observed in piston cores throughout Lake Baikal. Numerous peaks in organic carbon are observed downcore but not all of these peaks correspond to peaks in biogenic silica. Total nitrogen concentrations downcore show a pattern generally parallel to that for organic carbon. Atomic C/N values range from 7 to 18, with a whole core average of 10, indicating aquatic productivity as the primary source of organic matter for the sediments at the Buguldeika site. Higher than average atomic C/N values occur from 44 to 80 m, suggesting a time of increased terrigenous runoff to the lake. Microscopic examination of the sediments also show increased woody debris over this depth range. Organic carbon contents and atomic C/N values are highly correlated. This may suggest that high organic carbon values are the result of increased organic input from terrigenous runoff, superimposed on a steady rain of organic matter from aquatic production.
DISCUSSION

Preliminary Evidence for Paleolimnological and Paleoclimatic Changes

The AMS radiocarbon dates in the upper part of Hole 1 yield fairly constant sedimentation rates and an excellent chronology for the last 25 to 30 BP. Age–depth relations in Hole 1 are consistent with those predicted from nearby conventional piston cores and high resolution seismic profiles. Additional stratigraphic and geochronologic control is provided by the magnetic susceptibility records of Holes 1 and 2 as compared to nearby radiometrically...
dated piston cores. The resolution of the two excursions in the inclination record between 25.5 and 27 m and at about 70 m (Fig. 9) will aid correlation. At the present time we favor the interpretation that the excursion between 25.5 and 27 m corresponds to the 180,000 ka Biwa–1 Jamaica double excursion. This chronostratigraphic interpretation would place the glacial-type sediments of Hole 1 equivalent in time to marine Oxygen Isotope Stage 6. At this point it is possible to relate the changes in biogenic silica, pollen, diatoms, clay mineralogy and variations in rock magnetic parameters in BDP-93 cores from Hole 1 to processes external to the limnological system of Baikal. As stated earlier however, this interpretation may change once additional samples are measured from this interval. Work is underway to compile multiple climate proxy data at higher resolution in order to refine the character of Baikal’s response to climate forcing over the last 250,000 years.

Patterns of biogenic silica, zonations in pollen and diatoms, clay mineralogy and variations in rock magnetic parameters in BDP-93 cores from Hole 1 show excellent evidence for paleolimnological and paleoclimatic changes at the Buguldeika site in southern Baikal (Fig. 14). Climatically driven changes are particularly evident in the upper 50 m of Hole 1. Below this depth climatic signals may also be present, but they are less apparent due to increased fluvial input of coarse materials from a Buguldeika river drainage source. Rock magnetic measurements in the upper 50 m of BDP-93 Hole 1 indicate that variations in magnetic concentration, grain size and mineralogy appear to be related to climate change. These rock magnetic variations are also consistent with those observed in the clay mineralogy suite. Low magnetic concentrations and a predominance of low coercivity minerals appear to be associated with interglacial and interstadial periods while, as would be expected, glacial periods are characterized by higher concentrations of magnetic grains and increased amounts of high coercivity minerals. During warm periods, therefore, Lake Baikal’s overall aquatic productivity became higher, resulting in increased biogenic silica and abundance of diatoms which dilute the magnetic concentration. Additional sampling of Hole 2 will supplement the existing reconnaissance data set and may lead to a better understanding of the nature of soil development in the Selenga and Buguldeika River catchments. Work on previously collected Baikal piston cores indicates that it will be relatively straightforward to date the BDP-93 cores by correlation to the SPECMAP marine record (Imbrie et al., 1984). The SPECMAP record has been tuned to Milankovitch orbital forcing frequencies (Peck et al., 1994).

Preliminary Evidence of a Change in Depositional Environment at the Buguldeika Site

Several independent parameters provide evidence that the sedimentary section at the Buguldeika site was gradually affected by uplift and biting of the Buguldeika block. Episodes of coarse sand deposition within some
hemipelagic sections indicate that deposition of the lower 50 m of the BDP-93 site is dominated by sedimentation from the Buguldeika River system. Deposition of the upper 50 m is dominated by hemipelagic sedimentation and fine-grained input from the Selenga River system to the east. Sedimentation rates are lower in the upper 50 m and the radiocarbon dates currently available show that sedimentation was fairly uniform.

Below 50 m the magnetic concentration generally increases, low coercivity minerals predominate throughout, and increased amounts of sand and gravel are present (Fig. 8). This change in magnetic parameters and lithology suggests that the depositional environment at the site below 50 m was dominated by fluvial input. This interpretation is corroborated by the shift in chemical elemental data as well as clay mineralogy, porosity, grain size etc. Even the carbon to nitrogen ratios of the organic matter become higher below 50 m, indicating more terrestrial input versus aquatic production. These combined results, while preliminary, clearly show the exciting potential of distinguishing climatically driven changes in Baikal sediments versus those which reflect episodes of tectonic processes. They also confirm the earlier interpretation of the Manzurka and Neobaikalian erosional-tectonic stages in the Buguldeika region by Logachov et al. (1974) and Kononov and Mats (1986). Furthermore, the present chronostratigraphy of the BDP-93 cores places the cut-off of the pre-Manzurka River valley as an outfall of Baikal water at the time when Baikal water flowed into the Lena River. Future drilling may produce a better understanding of the tectonic history of Lake Baikal and its portion of the Baikal Rift Zone, especially when combined with results from multichannel seismic and other geophysical studies (Hutchinson et al., 1992, 1993; Klitgord et al., 1993a, 1993b; Scholz et al., 1993).

SUMMARY AND CONCLUSIONS

The first successful drilling from a barge frozen in the winter ice of Lake Baikal has recovered two 100 m hydraulic piston cores from two holes in 354 m of water, approximately 5 km offshore of the Buguldeika River in southern Lake Baikal. An average recovery of 72% and 90% was obtained in Holes 1 and 2, respectively. Magnetic susceptibility logging reveals excellent core-to-core correlation of Holes 1 and 2. In this report the BDP-93 scientific team, made up of Russian, American and Japanese scientists, describes the preliminary analytical results from the cores of BDP-93 Hole 1. AMS radiocarbon dating provides an accurate chronology for the last 25,000 years of sedimentation. The core possesses a positive (normal) inclination throughout its entire length, indicating that the sediments were all deposited during the Brunhes magnetic epoch. Current estimates are that the sediments represent deposition over the last 500,000 years.

Variations in spore-pollen assemblages, diatom microflora, biogenic silica content, rock magnetic properties, clay mineralogy and organic carbon reveal a detailed record of how climate change impacted the Baikal limnological system over approximately the last 250,000 years. These independent variables alternate in a pattern characteristic of glacial/interglacial climatic fluctuations. The present age model suggests that the climatic signal recorded in the Baikal sediments at Buguldeika is similar to late Quaternary signals recorded in Chinese loess sections and in marine sediments. In addition to the climate record, detailed lithologic characteristics, rock magnetic properties and inorganic element distributions in BDP-93 Hole 1 cores all reflect a significant change in character at 50 m subbottom depth. In the upper 50 m, low values of magnetic susceptibility are coincident with diatom-rich zones, whereas higher values are found in clay-rich layers. The change in these parameters appears to be related to tectonic uplift and tilting of the Buguldeika saddle as well as a change from Buguldeika-dominated hemipelagic sediments to a more hemipelagic Selenga River source(s). This change is estimated to occur approximately 250,000 years before present.

ACKNOWLEDGEMENTS

The BDP-93 Baikal Drilling Project acknowledges the financial assistance of the Siberian Branch of the Russian Academy of Sciences, the Baikal International Center for Ecological Research (BICER), the United States National Science Foundation grant EAR9119537 and EAR-9317204, the Global Change and Climate History Program of the United States Geological Survey, the Japan Baikal Association (JABIRP), the paleolimnological group of Professor Shoji Horie, the University of South Carolina, and the Samuel Freeman Charitable Trust. We also thank the efforts of T. Bounaeva, M. Khomutova, T. Perepelova and G. Nagornaea for interpretation and translation services for the BDP-93 conference in Irkutsk and the resulting manuscripts.

REFERENCES

