Geophysics 699 - Magnotelluric data processing

Assignment 2 : 2-D magnetotellurics

(1) Papers to read

d'Erceville, I., G. Kunetz, The effect of a fault on the Earth's electromagnetic field, *Geophysics*, **27**, 651-665, 1962.

Rankin, D., The magnetotelluric effect on a dike, *Geophysics*, 666-676, 1962.

(2) Finite difference approximation in 2-D

In this question we will develop the equations for a 2-D finite difference solution for the TE mode. You will solve :

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} + i\omega\mu\sigma(y,z)E_x = 0\dots(1)$$

for $E_x(y,z)$. To keep things simple, we will start by considering a single frequency, and an Earth model with uniform conductivity (halfspace).

Set up a rectangular mesh with constant spacing in the y-direction (Δy) and z-direction (Δz).

Let the grid have *ny* points in the y-direction and *nz* in the z-direction.

Total number of nodes, N = ny x nz

Number the nodes from top left to bottom right (i = 1 to N). Note that this is different to the way we did this in class with 2 indices.

Write a finite difference form of equation (1) for the electric field (E_x^i) at the ith node. This will include the electric fields at the surrounding 4 nodes.

Will need to add a special case for nodes on each boundary.

Assemble the matrix A, where

$\mathbf{A} \cdot \mathbf{E} = \mathbf{B}$

and **E** is a vector of the electric fields at each node.

Plot the matrix in MATLAB using the **pcolor** function. It should have a banded form. Can you explain the width of the band?

We will continue with this numerical solution in later assignments.

(3) Computation

In this question, we will use a 2D forward modelling code to investigate the accuracy of the quarter space model of d'Erceville and Kunetz (1962).

- (a) Design the mesh in Winglink. Use skin depth arguments to select size of smallest elements and overall mesh size. Consider both the highest and lowest frequencies.
- (b) Export the inversion files from Winglink. Perform a forward calculation using the external NLCG6 inversion (request 0 iterations).
- (c) Compare your apparent resistivity and phase values with those computed by d'Erceville and Kunetz (1962), Table 2 and which are listed on the next page. Note that these numbers are for two quarter spaces i.e. the contact between ρ_1 and ρ_2 extends to infinite depth.

In tables below, quarter space resistivities are ρ_1 and ρ_2 and $R = \frac{\rho_2}{\rho_1}$

 $d_1 = \sqrt{\frac{\rho_1}{2\pi\omega}}$ (skin depth in medium ρ_1); x = distance from fault

rho_ratio_4.mat				
$\frac{x}{d_1\sqrt{2}}$	$ ho_a$	Φ		
-2.0	0.50483	0.81004		
-1.0	0.48314	0.85925		
-0.6	0.45301	0.8839		
-0.4	0.42683	0.89145		
-0.2	0.3866	0.88425		
0.0	0.3075	0.785		
0.0	1.2299	0.785		
0.1	1.182	0.76155		
0.2	1.1531	0.75131		
0.4	1.1127	0.74154		
0.6	1.0847	0.73839		
1.0	1.0483	0.74034		

rho_ratio_9.mat				
$\frac{x}{d_1\sqrt{2}}$	$ ho_a$	Φ		
-2.0	0.33814	0.82926		
-1.0	0.31367	0.90847		
-0.6	0.28226	0.94939		
-0.4	0.25573	0.96439		
-0.2	0.21563	0.95836		
0.0	0.14361	0.785		
0.0	1.2545	0.785		
0.1	1.2134	0.76288		
0.2	1.1858	0.75259		
0.4	1.146	0.74141		
0.6	1.1173	0.73629		
1.0	1.0777	0.73423		
2.0	1.0277	0.74438		

rho_ratio_39.mat

$\frac{x}{d_1\sqrt{2}}$	$ ho_a$	Φ
-2.0	0.16312	0.85944
-1.0	0.14462	0.97873
-0.6	0.12301	1.0449
-0.4	0.1054	1.0767
-0.2	0.07959	1.0917
0.0	0.03103	0.783
0.0	1.21234	0.785
0.2	1.1672	0.76345
0.4	1.1416	0.75513
0.6	1.1222	0.75041
1.0	1.094	0.74611

$\frac{x}{d_1\sqrt{2}}$	$ ho_a$	Φ
-2.0	0.102	0.8728
-1.0	0.08879	1.0085
-0.6	0.07387	1.0867
-0.4	0.06187	1.1286
-0.2	0.04441	1.1619
0.0	0.01656	0.795
0.0	1.1615	0.785
0.1	1.1467	0.77454
0.2	1.1355	0.76989
0.4	1.1183	0.764
0.6	1.1051	0.76044
1.0	1.0854	0.75674
2.0	1.0553	0.75512

rho_ratio_100.mat

(4) Optional reading for the enthusiasts

Rankin, D., G. D. Garland, K. Vozoff, An Analog Model for the Magnetotelluric Effect, *JGR*, **70**, 1939-1945, 1965.

Jones, F.W., A. Price, The perturbations of alternating geomagnetic fields by conductivity anomalies, *Geophys. J.R.A.S.*, **20**, 317-334, 1970.

Jones, F.W., A. Price, Geomagnetic effects of sloping and shelving discontinuities of Earth conductivity, *Geophysics*, **36**, 58-66, 1971.

Also see the discussion of the above paper in *Geophysics* **37**, 541, 1972.

L.R. Lines and F.W. Jones, The perturbation of Alternating geomagnetic fields by an island near a coastline, *Can. J. Earth Sci.*, 10, 510-518, 1973