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We have developed an efficient iterative inversion method applicable to both two-dimensional (2D) and 
three-dimensional magnetotelluric data. The method approximates horizontal derivative terms with their values 
calculated from the fields of the previous iteration. The equations at each horizontal coordinate then become 
uncoupled. At each iteration this allows separate inversions for the improved conductivity profile beneath each 
measurement site. Resultant profiles are interpolated to form a new multidimensional model for which the fields 
for the next iteration are calculated. The method is extremely fast, and tests with 2D data show very promising 
results. 

INTRODUCTION TI-IEORY 

Exploiting the full potential of magnetotellurics (MT) will TE Mode 
require inversion of large quantities of data at many sites for 
structure which varies in three dimensions. Traditional multidi- 

mensional inversions (which we will call "standard") proceed 
as follows: The conductivity of the Earth is parametrized by 
values at a number of nodes or in a number of predefined ele- 
ments. A starting model is guessed and a matrix, F, of partial 
derivatives of the data with respect to small changes in the 
parameters is calculated. This involves solutions of multiple for- 
ward problems. Singular value decomposition (SVD) or some 
other damped generalized inverse of FF T is then used to predict 
the conductivity perturbations that should best improve the fit to 
the data. These perturbations are added to the initial guess to 
produce a new starting model. The forward problem is solved 
one more time to calculate new data residuals, and the whole 

process is repeated until a satisfactory fit to the data has been 
obtained. The computer resources necessary to generate and 
store F and to predict the model perturbations grow rapidly with 
the size of the model and the data set. 

We have developed a different type of iterative scheme, which 
is applicable in beth two and three dimensions and have imple- 
mented it for the two-dimensional (2D) case. The crucial step in 
this new method is to approximate the lateral gradients of the 
electric and magnetic fields in the model by their values from 
the previous iteration. One can then calculate a conductivity per- 
turbation beneath each measurement site by solving an inverse 
problem that is closely related to the one-dimensional (1D) 
inverse problem. One need only solve one forward problem to 
calculate the data residuals and the fields inside the model for 

the next iteration. This forward problem can be very efficiently 
solved using an iterative method because the fields from the pre- 
vious iteration are a good approximation to the new fields. 
Furthermore, the primary memory required is to store the model 
and the fields at each node. This will always be much less than 
required to store F. As long as our method converges in a rea- 
sonable number of iterations, it will be much more efficient than 
a standard method and its superiority will increase as data sets 
and models become larger. The next section presents a brief 
overview of the theoretical background for both two and three 
dimensions. This is followed by a discussion of numerical 
implementation and synthetic examples. 
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We consider first the transverse electric (TE) mode in which 
the electric field is parallel to the strike of the structure. 
Maxwell's equations in a good isotropic conductor assuming a 
time dependence of e 4•t, no ferromagnetism and ignoring dis- 
placement currents reduce to 

VxH = oE VxE = imgoH 

where E and H are the electric and magnetic fields, c• is the con- 
ductivity and Ix0 is the magnetic permeability of free space. For 
2D c•, with x aligned with strike, y perpendicular to strike and z 
positive downward, these equations become 

VeE• = -icol. too(y,z) E,, (1) 

= i0•t0 Hy (2) 
az 

To simplify the remainder of this discussion, all variables, such 
as x, y, z or 0• will be shown only when needed for clarity. 

In order to solve the inverse problem, it is first necessary to 
determine the sensitivity of the data to changes in the conduc- 
tivity. This can be done by a perturbation analysis closely 
related to that used for the 1D MT problem [Oldenburg, 1978]. 
Equation (1) can be conveniently rewritten 

+ • az 2 •j + io•o o = 0 (3) 
Without the term in braces, this would be the equation for induc- 
tion in a 1D model. The data are defined to be the surface 

(z = 0) values of the variable 

1 OE = i0•t0 Hy V= E O z '• 
Note that V is closely related to the MT impedance 
(Z,,• = EdH•). From this definition it is easy to show that 

1 . •2E •V 
) = + 

and that (3) becomes 

az + I/2 + '•y2j + io•o o = 0 (4) 
Note that the lateral gradients of the fields are confined to the 
term in braces. 

39O5 
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Now suppose that V0 and E0 satisfy equation (4) when (5 = (50. differential equations, and we have therefore dubbed the method 
Let (5 = (50 + So and V = V0 + $V. Since vertical field gradients the "Rapid Relaxation Inverse" or more simply RRI. 
are generally larger than horizontal gradients due to the skin 
depth effect, we make the approximation TM Mode 

1 32E 1 32E0 Using the same coordinate system as the TE mode and the 
= resistivity p = 1/cL the relevant equations for the transverse mag- 

E 3y 2 E0 3y 2 netic (TM) mode, in which the electric currents flow perpendicu- 
Substituting in equation (4), subtracting the zeroth-order equa- lar to the strike (i.e., in the y- z plane), become 

tion reduces this to a Ricatti equation for $V. Neglecting V2H,` + V p.VH,` =-/cog0H,, second-order terms gives the first-order linear differential equa- 
tion 

•z •JV + 2VoõV + iCOgo &5 = 0 
which can be made an exact differential using an integrating fac- 
tor. Vertical integration at each site Yi and use of the definition 
of V finally yields 

icogo 

) I Eo%,z) o(z) dz (5) 
The limits of integration are the surface and a depth which is 
sufficiently large that the electric field has effectively decayed to 
zero. This expression is complex and thus represents two equa- 
tions at each frequency at each site. 

The above expression is easily modified if one wants to use 
In (5(z) as the model, because, for infinitesimal variations, 
õ(5 = (50õ(ln (5). Another useful modification is to redefine the 
data as 

because 

= In (-iCOgo) (6) 

Re [d,,] =-In Pa lm [d,,] = 3m2-2(• 

where p,, and q• are the apparent resistivity and impedance phase 
commonly reported for MT measurements. By differentiating (6) 
one can easily conclude that 

(1') 

P-z = œ' (2') 
Equation (1') can be be rewritten 

",` az P'•-z + '•y P••+ icogo = 0 (Y) 
If we ag• &op •e subscript on H• •d de•e •e new datum 

H •z 

the calculation of •e approximate pseudo-Frechet derivative 
closely pmallels •e TE mode. We omit the derails. •e final 
result is 

bU = 1 • E•(y•,z) • dz (5') 
where Eo is dete•ined us•g (2') •d •e field Ho safis•ing (1') 
wi• p = P0. Re-defin•g the TM data as 

= u2 ) (6') 
we obt•n the TM •alog of •e pseudo-Frechet derivative (7) 

-2Oo(Z) Eo2(&,z) õ(ln (5)dz (7') õd•,` = 2 õU = I' Eo(y•,O)Ho(y•,O) U(y.O) 

2Oo(z)Eo2(yi,z) 
•2 õV = I Eo(y.O)Ho(y.O) õ(ln (5) dz (7) = V(y,O) 

where Ho(Yi, O) is calculated from Eo(yi, z) using (2). 
If the residuals on the left side of equations (5) or (7) are the 

difference between the measured data at each frequency and that 
predicted by (50, these equations can be inverted for a conduc- 
tivity perturbation directly beneath the site. We will call these 
site inversions "pseudo-lD", because these "pseudo-Frechet" 
derivatives differ from the Frechet derivatives for the 1D case 

only because the field Eo(,yi, z) used to compute them must 
satisfy the 2D equation (1) with (5 = (50(y,z). 

The complete iterative cycle is as follows: An initial guess is 
made for (50(y,z) and equation (1) is solved for Eo(y,z). These 
fields are used to estimate the pseudo-Frechet kernels and the 
data residuals at each site. Equations (5) or (7) are then inverted 
using a smoothness criterion that guards against introducing 
superfluous structure. Next, (5o(Yi, Z) is updated (usually with only 
a percentage of õ(5 or •J(ln (5) and interpolated between sims to 
produce a new (5(y,z). Equation (1) is then solved again for new 
estimates of the 2D fields using a finite difference approximation 
and a fast, sparse matrix method. The cycle is repeated until the 
data residuals become sufficiently small. This scheme, where 
one holds one part of the problem fixed while operating on 
another, is reminiscent of relaxation techniques for solving 

The approximate pseudo-Frechet derivatives (5') or (7') can be 
inverted independently from the TE mode or can be combined 
with the TE mode pseudo-Frechet derivatives and data for a 
simultaneous inversion. 

Extension to Three Dimensions 

The same approach may be applied in three dimensions. The 
x and y components of (1) can be written 

• Oz2 + (7 - [ OxOy + '•z 1) + icog0 (5 = 0 (8) 

E, az 2 + ' ax 2 - [ axa• ayaz ]) + icog0 o = 0 (9) 
If the terms in braces are approximated using the field from the 
previous iteration, equations (8) and (9) have the same structure 
as equation (3) and can be perturbed and integrated in exactly 
the same way. This leads to two pseudo-Frechet derivatives, 
which both have the same form as equation (5), but involve 
different polarizations of the electric field. Magnetic field analo- 
gues of equations (8) and (9) also exist. There are thus four 
pseudo-Frechet derivatives that can be used independently or 
simultaneously for pseudo-lD inversions. After obtaining con- 
ductivity perturbations under each site, the three-dimensional 
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(3D) model is updated by interpolation and improved fields com- 
puted with a 3D forward calculation. 

Alternatively, at least two approaches can be formulated using 
2D inversions corrected for 3D effects along slices through a 3D 
structure. The numerical experiments of Wannamaker et al. 
[ 1984] suggest that a proper choice of strike and polarization can 
significantly reduce 3D effects on a 2D slice. Specifically, the 
source polarization with currents perpendicular to the long axis 
of a 3D body has impedances very close to TM mode 
impedances calculated for a 2D structure that is the same as the 
cross section of the 3D model. Thus slice approaches may have 
better convergence properties than the fully 3D approach using 
pseudo- 1D inversions. 

One slice method is to divide the iterative process into two 
levels. In the inner iteration, the terms in equations (8) or (9) (or 
their magnetic analogues) involving derivatives perpendicular to 
a 2D slice (the terms in square brackets) are held fixed, while a 
relaxation inversion of the type already discussed is performed 
for the slice. (Note, however, that the cross-slice derivative 
terms in square brackets must be treated as source terms in solv- 
ing the 2D forward problems.) These "pseudo-2D" inversions 
are made for several slices which are then interpolated to form a 
3D model. In the outer iteration, the cross-slice derivatives are 

updated using fields computed with a fully 3D forward calcula- 
tion. 

A second slice approach can be constructed by analogy to the 
2D problem in which the pseudo-lD pseudo-Frechet derivatives 
are algebraically identical to 1D derivatives, but use 2D fields in 
place of the 1D fields. For three dimensions, standard 2D partial 
derivatives are calculated for each slice, with the 2D fields along 
the slice replaced by 3D fields. The details are left to Appendix 
A. These pseudo-2D partial derivatives are used to invert for a 
2D perturbation along each slice and the improved 3D model is 
obtained by interpolating between slices. This method involves 
only one level of iteration. 

COMPUTATIONAL CONSIDERATIONS 

Pseudo-One-Dimensional Inversions 

Our philosophy for this nonlinear inverse problem is to find 
models which are globally extreme in some sense. In principle, 
any 1D inversion could be used for the pseudo-lD inverses. 
However, the MT inverse problem is known for generating 
structure which is either unlikely or not required by the data 
[Parker, 1980; Oldenburg et al., 1984]. Structure not required 
by the data can be misinterpreted and could make our 2D algo- 
rithm unstable. We therefore choose to look for models with 
minimum structure. 

In 1D work it has been found that models which minimize 

mean-square derivatives of In ((•) for a given misfit to the data 
[Constable et al., 1987; Smith and Booker, 1988] are quite use- 
ful. For accurate synthetic data these inversions appear to con- 
verge to the actual structure as the misfit decreases, although no 
proof of convergence currently exists. For data with noise, these 
inversions produce models which look like smoothed versions of 
the actual structure as long as the data are not overfit (i.e., as 
long as the required misfit is greater than or equal to the 
expected misfit based on the noise in the data). If the data are 
overfit, the models tend toward Parker's D+ model, consisting of 
a series of positive delta functions. We shall refer to this as D+ 
behavior. It is a property of any 1D inversion of noisy data 
[Parker, 1980]. 

Appendix B generalizes a functional for measuring structure, 

found successful in one dimension, to incorporate a penalty for 
rapid horizontal variations. The specific form used here is the 
norm of a scaled Laplacian of the model m, 

Q(y,) = l(Z+Zo)3 [ •}2m + g(z).•y 2 [ 2 az 
where the (z+z0) 3 factor arises from taking derivatives and 
integrating with respect to log depth, and the g(z) factor allows 
for txading-off between penalizing horizontal and vertical struc- 
tures. When approximated with finite differences and a quadra- 
ture rule, this can be written in the form 

Qi = (Rmi- ci)r(Rmi- ci) 

where m• is the discretely sampled model beneath the site Yi; R 
is a "toughening" operator which essentially performs a numer- 
ical vertical second derivative on mi; ci is a vector that arises 
from penalizing the horizontal second derivative, it expresses our 
bias that structure under Yi must be similar to that beneath adja- 
cent sites; and T indicates the matrix transpose. 

Since the measured data are in error, we do not want the 

model minimizing Qi that exactly fits the data. Instead, we want 
to minimize 

Wi = Qi+ [51 • (11) 

The variances of the measurement errors have been used to scale 

the data and pseudo-Frechet derivatives so that the squared 
misfit Ze/2 is the standard •2 statistic. The constant [li is a trade- 
off parameter between model structure and misfit. For the linear 
inverse problem, Appendix C presents an efficient and stable 
method for choosing [li and finding rni such that • takes on a 
prescribed level. Since the actual inverse problem is nonlinear, 
it is necessary to reduce e• 2 to its ultimate goal in a series of 
steps, small enough that the linearization inherent in (5) and (7), 
or (5') and (7') remains valid. In our work on the 1D inverse 
problem [Smith and Booker, 1988] we found that to keep the 
step size small, it is deskable to reduce the goal for • in steps 
rather than always aiming for the final desired misfit. This 
results in a series of [li variables increasing initially as the misfit 
gets smaller, and then settling down as the final desired misfit is 
approached. This behavior is also be seen in an example 
presented by Constable et al. [1987] which shows the optimal 
sequence of damping parameter 1/[5 for a specific 1D inversion. 

However, a complication arises in two dimensions because Wi 
can increase due to a conductivity change under another site. 
This is a more serious problem for the TM mode, where electric 
currents flow along the profile than it is for the TE mode, where 
they flow across the profile. The success of a step must therefore 
be judged on a more global measure than the behavior of Wi at 
the single site. The single site objective functions can be com- 
bined to form a global measure in many different ways. The 
global measure of acceptability we prefer is 

%il•s 
(12) 

This scales the single site objective functions so that the 
coefficient multiplying the squared misfit e/2 is of order 1, and 
Wa avoids being dominated by sites with very large or very 
small Ill. Since [5i and [l,,•a• change with iteration, the value of 
Wa for a candidate model is compared to its value for the last 
accepted model calculated using the Ill variables and [1• from 
the current iteration. This makes the functional measuring 
acceptability identical for both models. Experience indicates 
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that accepting a step only when Wc does not increase, rejects 
fewer steps and leads the iterative process astray no more often 
than any other global measure we have tried. 

Step size control involves several interrelated issues and is the 
most difficult practical problem facing any implementation of 
RRI. We have adopted an ad hoc approach to step size control, 
which, although not rigorously proven to lead to convergence, 
works well in practice. The technique that we will outline may 
seem unnecessarily involved. It is important to remember, how- 
ever, that the time for RRI is dominated by the forward problem. 
It is worth going to considerable effort to avoid a failed step. 
Our method is entirely automatic and has proven quite com- 
petent, making progress reasonably rapidly and seldom resulting 
in a failed step until we get close to the best model that can be 
achieved. 

The most important issue is that the misfit at any iteration is 
due partly to statistical measurement errors and partly to inaccu- 
racy of the pseudo-Frechet derivatives. Attempting to decrease e/2 
to its ultimate goal prior to buildup of essentially correct 2D 
structure and, hence, reasonably accurate pseudo-Frechet deriva- 
tives, results in very rough pseudo-lD inversions, i.e., D+ 
behavior. If the D+ spikes occur at different depths under adja- 
cent sites, horizontal model gradients will also be large, with bad 
effects on both the roughness matrix R and bias vector c and 
also on the accuracy of the forward calculation for the 2D fields 
used for the pseudo-Frechet derivatives. Once excessive struc- 
ture of this kind has been introduced, it is very difficult to get 
rid of in subsequent iterations. 

We control step size by controlling the factor by which the 
present misfit e02 at site i is to be reduced at the current step, 
calling this factor vt. At the most fundamental level, we control 
step size by never trying to reduce the misfit by more than 50% 
in a single step (0.5<1.), and by never allowing vi to be less than 
(e2m.m/4) t )], where e2mi,, is the smallest misfit that can be achieved 
by the linear inversion (see Appendix C). (We use • = 1/3 in 
this paper, but have found values from 1/4 to 1/2 to be useful.) 
Within this range, v• is adjusted according to the success of the 
previous iterations. Whenever there are two successful 2D for- 
ward steps in a row v• is allowed to decrease toward its lower 
limit (0.5). The vi is increased only on certain failed 2D forward 
steps (see discussion of how to deal with failed steps, below). 

After we have have found [5• at all the sites, we calculate their 
median •m,,a•-,• excluding sites where [5 = 0. ([5i becomes zero 
whenever smoothing the structure in from adjacent sims would 
result in a misfit less than the current goal at a site.) Sites with 
[5t greater than •ai• are reinverted, setting [5t to the geometric 
mean of the original [5i and •m•U•- This roll-back of the large 
variables is limited to the value [5• øt•'t that results when we 
minimize (11) keeping the misfit at e02. This prevents making a 
step for which the misfit is predicted to be worse, although it re- 
quires doing yet another pseudo-lD inversion. 

The roll-back of large [5 variables just described causes 2D 
structure in the model to grow more slowly and more evenly and 
in a sense couples the sims together. We have generally found it 
useful to couple the sims additionally in a more explicit way. 
We horizontally smOOth the residuals, using a centrally peaked 
window extending over five sites. This has the effect of fitting 
the long horizontal wavelengths in the data in early iterations 
and shorter wavelengths in later iterations. 

The remedy for a failed step depends on what caused the 
failure. We compare the new model beneath each site to the the 
model associated with [5[ •øøth*'t to determine if the step is pri- 
marily trying to improve the misfit or to smooth the structure. 

(See Smith and Booker [1988] for further discussion of how this 
comparison is made.) If the former is the case, we try a less am- 
bitious step with vi increased by taking its square root. If the 
latter is the case, or we have already tried the less ambitious 
step, we halve the mixing coefficient • in m = m0 + •fiSm. For 
the TE mode, •i < 1, but we have found that progress for the 
TM mode and for both modes together has fewer failures if its 
maximum is 0.8. The mixing coefficient is not increased again 
until at least two 2D forward steps in a row have been success- 
ful, and even then, we only increase it by a factor of 

Interpolation 

Our horizontal interpolation of I3 between the pseudo-lD 
inversion step and the 2D forward calculation employs cubic po- 
lynomials using four points (two on each side) flanking the re- 
gion of interest. The polynomials are constrained so that when 
pieced together the first derivative is continuous everywhere. 
These have most of the benefits of ordinary cubic splines but are 
determined more locally. The time spent on interpolation is 
negligible. 

Forward Problem 

We solve the forward problem with a finite difference method. 
One could also implement RRI using a finite element method. 
The important point is not how the forward problem is solved 
but that the method be both fast and accurate. This is because 

the time involved in RRI is dominated by the forward problem 
and inaccuracies may lead to structure not required by the data, 
or worse, prevent convergence of the iterative algorithm. 

Accurate finite difference approximations (FDA) have caused 
some difficulty for forward calculations when the model consists 
of discrete blocks separated by discontinuities. The interpolation 
scheme just described guarantees that both o and its gradient are 
continuous everywhere in our model except at the air-Earth in- 
terface (and there only for the TE mode). This greatly simplifies 
finding an accurate FDA. The 2D Laplacian operator on the left 
side of (1) is approximated in the standard way using centered 
second differences computed from the central and four surround- 
ing nodes, and the right side is approximated with the conduc- 
tivity and electric field at the central node. The TM mode must 
also approximate the term in (3') involving Vp using centered 
first differences of the field and the resistivities at the adjacent 
nodes. In the TE mode the discontinuity at the Earth surface is 
handled in the way suggested by Brewitt-Taylor and Weaver 
[1978] and rigorously justified by Smith [1988]. This simply in- 
volves replacing the interface values of o with o/2, but other- 
wise treating the model as if it were continuous. 

At the side edges of our model, we require that E and B be 
equal to their values in (potentially different) 1D models. An al- 
ternate condition on the horizontal gradients could easily be im- 
plemented. At the bottom of the model, z = Zm•,, we use an im- 
pedance boundary condition 

3E,, = •/-icogoo 
When the bottom of the model is one dimensional and 

sufficiently far below any 2D structure, this extends the model to 
in_finite depth. In the more general case with o(y) at the bottom, 
this condition has no simple physical analogy, but it should be 
better than demanding an infinitely conducting half-space with 
E = 0 at z = Zm•. For forward calculations in which o is con- 
starit in the deep portion of the model, we have found that this 
boundary condition can be applied at surprisingly shallow depths 
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without significantly degrading the accuracy. For instance, for 
the "diamond model" described later, making the 10-ohm-m 
basal half-space only 1 km thick and containing only two nodes, 
perturbs TE or TM data at all periods by less than 1% over a 
model in which the half-space is well discretized to a depth of 
200 km. However, for inversion the bottom of the model should 
be placed fairly deep as large, deep, lateral gradients may result 
in significant inaccuracies. 

The top of the model is at the ground surface for the TM 
mode and at the top of an air layer for the TE mode. For both 
modes we make the horizontal magnetic field constant at the top 
of the model. In the TE mode, this implies 

-- --ic0•to H• •z 

at z = z ..... This condition is simple, consistent with our verti- 
cal edge conditions and geophysically reasonable. 

The FDA plus the boundary conditions lead to a matrix equa- 
tion Ax = b in which A has only five nonzero diagonals. We 
solve this very sparse system iteratively using incomplete LU 
factorization (iLU) with orthomin acceleration [Behie and Vin- 
some, 1982]. Other methods such as mulfigridding [Brandt, 
1977] and conjugate gradient methods [Kershaw, 1978] exist 
which may have advantages. Undoubtedly, further improve- 
ments, particularly on machines capable of large-scale parallel 
processing will become available and can be installed in the al- 
gorithm simply. 

For each new RRI forward step, we initialize the fields with 
their values from the previous step. This considerably reduces 
the number of orthomin iterations required for a given accuracy, 
because these fields are a good approximation to the fields in the 
new model. We routinely use a maximum of only six or eight 
ILU iterations per RRI step. 

Particularly for the TM mode, we have found it desirable to 
use 64 bit arithmetic in order to achieve adequate accuracy in 
the solution of the forward problem. This actually yields a speed 
improvement in many modem computers, whose floating point 
hardware is optimized for double precision. It does necessitate 
more storage, however. One may be able improve the accuracy 
of single precision forward calculations by reformulating them in 
terms of deviations from some average 1D model as exploited 
by Wannamaker et al. [1986]. 

Effort and Storage 
A major reason for the relative slowness of a standard inver- 

sion method is that the partial derivative matrix F cannot be 
computed analytically. Conceptually, the simplest way to obtain 
F numerically is to place a small perturbation successively at 
each cell and solve the forward problems. However, the recipro- 
city of the Green's functions allows the necessary derivatives to 
be extracted if the perturbations are placed at the measurement 
sites rather than in the model cells [Weidelt, 1975]. This is im- 
plied by Rodi's [1976] derivation of the 2D partial derivatives 
although he did not specifically state the result in this manner. 
Since there are typically more model parameters than sites, this 
organization of the calculation will usually be more efficient. 
Thus one must solve one forward problem for each site at each 
period. Application of a toughening matrix R, which is required 
if one is to minimize a spatial derivative rather than the mean 
square size of the perturbation doubles the number of forward 
problems to solve. 

There are two ways to solve the multiple forward problems 
for the standard method. If the forward problem is initially 

solved using a complete LU decomposition of Ax, the additional 
forward problems necessary for Rodi's formulation and roughen- 
ing require considerably less calculation than the initial decom- 
position, because only the right-hand side of the system Ax = b 
needs to be changed. On the other hand, if the forward problem 
is solved with an iterative technique such as ILU, one has to 
completely solve the forward problem twice for each site. As 
model size increases, the efficiency of an iterative forward solu- 
tion should eventually win out over complete decomposition, 
especially if fields from a previous iteration are used to start the 
ILU. Furthermore, the storage necessary for the complete 
decomposition of Ax exceeds that required for an iterative 
solver, so that ILU or its relatives may be desirable for standard 
inversions even when it is slower. 

Table 1 compares the operation counts and memory for the 
various portions of one iteration in a 2D inversion. The "actual 
problem" is the "rift" example to be described later. The 
"large problem" is motivated by the largest MT data sets that 
presently exist and probably represents the size of problem that 
one should expect to routinely handle in the near future. The 
operation counts reported for ILU assume eight iterations. We 
have found that the iterative solution typically converges in less 
than eight iterations in the later RRI steps where the field 
changes are small and we have obtained good results when the 
number of ILU iterations is limited to as few as four for all RRI 

steps. Thus the operation counts in the table are conservative. 
The most obvious conclusion for the standard 2D inversions is 

that the time is dominated by forming F and by forming and fac- 
toring HH r and the storage is dominated by the partials F. Cl'he 
matrix H is a matrix obtained by reparfifioning the unroughened 
partial derivative matrix Fgl 4. H and [l are defined in Appendix 
C.) For the large problem, time for forming and factoring HH r 
dominates that needed to calculate F. Thus the efficiency of an 
iterative solution to the forward problem has little effect for 
standard 2D inversions. RRI, on the other hand, is completely 
dominated by the time and storage for the forward problem. RRI 
for the actual problem is predicted to be about 70 times faster 
than a standard inversion and require 5% of the storage. 
Corresponding figures for the large problem are more than 1000 
and 1%. 

On a workstation taking 3.0 s per double precision Mflop (1 
Mflop = 106 multiplications plus 106 additions plus 106 assign- 
ments plus loop overhead), the iterative forward algorithm for 
the actual problem is predicted to take about 123 s for 12 fre- 
quencies. The observed time is 72 s, which is substantially less 
than predicted because the average RRI step required about four 
ILU iterations. 

It is important to remember that the inverse problem is non- 
linear and that the times in Table la are for calculation of a per- 
turbation to a starting model. This perturbation must then be ad- 
ded to the starting model and the cycle repeated until a satisfac- 
tory fit to the data has been obtained and the global measure of 
acceptability (12) is small. A comparison of standard inversions 
with RRI is incomplete without considering the number of these 
outer iterations required. Figure 1 shows the rms misfit as a 
function of RRI iterations for the TM mode inversions of the 

"Prism" example described in detail in the next section. Plots 
for the other inversion examples of this paper are all very simi- 
hr. The log misfit decreases approximately linearly until it 
reaches its specified goal, where it almost immediately levels 
out. The rate of decrease is independent of the noise in the data. 
Thus noisy data can be fit more rapidly than accurate data. 

One would expect that fewer outer iterations are likely to be 
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TABLE la. Multiplications (Real Numbers) for Major Steps of a 2D Inversion 

Forward Problem"Forward" Problems Rou•[hening Forming and Factoring 
Ax -- b for Partials F FR -l* HH r* Total 

General Form 

Standard (LU) 4nynz3nf 12nyn•2nln, n•n•3+6nf•2nln, 2 2 3 3 
S•n•rd •LU) U2+l l•i)%ntn / (72+112ni)%n•f s (3•56ni)%n•n•s 2 2 3 3 •f]ns•n]ns 

Act•l Problemt 

Smn&rd •U) 3.8 1• 7.4 1• 3.8 1• 1.2 1• 
Standard •LU) 4.0 107 1.2 109 6.2 1• 1.2 1• 
•I 4.0 107 .... 6.4 1• 

2.7 109 
3.1 l0 • 

4.1 10 7 

Large Problem• 

Standard (LU) 1.7 10 TM 5.0 10 TM 2.5 10 lø 3.6 l0 ll 4.5 l0 ll 
Standard (ILU) 4.1 10 s 4.1 10 TM 2.0 10 lø 3.6 l0 ll 4.2 l0 ll 
RRI 4.1 10 s .... 2.9 107 4.4 10 s 

*See Appendix C. 
lGrid is ny = 72 by n t = 48 with nf= 12 frequencies at n s = 31 sites; orthomin iterations n i = 8. 
:•Grid is n• = 140 by n z = 100 with nf= 30 frequencies at n s = 100 sites; orthomin iterations n i = 8. 

required by a standard method. However, deGroot-Hedlin and tially rises as structure is added to the very smooth starting 
Constable [1990] report needing 10 outer iterations to fit data model (a half-space). It reaches a maximum and then declines. 
with an accuracy of 3% and 5 more iterations to remove remain- The highest value in the early iterations occurs for the noisiest 
ing structure for a minimum structure 2D standard inversion. data. This is due to local graininess of the structure associated 
Thus the speed superiority of RRI is largely realizable. Further- with the noise. As convergence approaches, Qa decreases with 
more, the standard method envisioned in Table 1 is the most increasing noise, because less structure is required to fit noiser 
efficient we can visualize. It does not actually exist. Implementa- data within their errors. Qa levels out at an iteration number 
tions of the standard 2D inverse such as deGroot-Hedlin and somewhat higher than the convergence of the rms misfit. This 
Constable [1990] (see Appendix C) and Jupp and Vozoff [1977] reflects the fact that the algorithm continues to remove unneces- 
are much slower. sary structure after it has fit the data. One can continue the pro- 

Madden and MacMe [1989] sketch a conjugate gradient ap- cess of removing very minor details in the structure for many 
proach to solving the MT inverse problem which does not re- tens of iterations. As a practical matter, the slxucture changes 
quire solving for the partial derivative matrix F. They report very little after 20 iterations for all levels of error, even when 
good results with five conjugate gradient iterations per inversion the global measure continues to change slowly. 
iteration requiring the solution of 11 forward problems per itera- One must note that Qa does not always continue to decrease 
tion (plus an unspecified mount of additional calculation), so monotonically on approaching convergence, as can be seen in 
their method should be substantially more efficient than the stan- Figure 1. This is because the data at each site are inverted to 
dard method of Table 1, but still slower than RRI. minimize only a single Qi and not Qa: smoothing the model 

Figure 1 also plots a global structure functional below one site may require making it rougher below an adjacent 
•,nsi•s Qa = ,.,•=l Q • against RRI iteration number. This functional ini- site to continue fitting the data at the adjacent site. One could 

TABLE lb. Storage Requirements (Real Numbers) for Major Arrays of a 2D Inversion 

Forward Problem Starting Fields Partials 
Ax = b x 0 F HH r Total 

General Form 

Standard (LU) 6n•n• 2 2n•nznjn s 2 2 -- 4njnj 
Standard OLU) 30nyn z 2nyn•n/ 2nynznlns 2 2 4n•ns 
•I 305n• 2n•n•/ 2n•/ 4n• 

Act•l Problem 

Standard (LU) 1.0 10 • -- 2.6 10 • 5.5 10 • 
Standard (ILU) 1.0 10 • 8.3 10 • 2.6 ] 0 6 5.5 10 • 
RRI 1.0 l0 5 8.3 1• 1.2 l• 5.8 10 2 

Large Problem 

Standard (LU) 8.4 10 a -- 8.4 107 3.6 107 
Standard (ILU) 4.2 105 8.4 105 8.4 107 3.6 107 
RRI 4.2 10 s 8.4 l0 s 6.0 103 3.6 103 

4.1 10 a 

3.3 10 a 

1.9 105 

1.3 10 s 

1.2 10 8 

1.3 10 • 
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Fig. 1. (Top) The rms percent misfit as a function of iteration for TM 
mode inversions of Prism example of Figure 3. (Bottom) Global sum of in- 
dividual site roughness norms (B 1) •a-- i=l Qi as a function of iteration, 
for the same inversions. 

explicitly minimize Qa by inverting all the sites together in a 
simultaneous inversion. This would, undoubtably, weight the 
data and the model roughness somewhat differenfiy. It is ques- 
tionable whether this would often be merited since computation 

The relative effort spent on the different steps is somewhat 
different in the 3D case. Estimates of multiplications and storage 
for 3D inversions of a single polarization are shown in Table 2. 
Even with a modest 40 x 40 x 40 nodal mesh, the forward time 
now dominates the standard inverse with LU decomposition. 
Thus an iterative solution of the forward problem is warranted 
for all cases. Iterative solution of the 3D forward problem re- 
quires more storage and multiplications than for a 2D problem 
with the same number of nodes, because the number of diago- 
nals in A increases to 12. For this larger number of diagonals, 
incomplete Cholesky decomposition with conjugate gradient 
preconditioning (ICCG) [Kershaw, 1978] requires fewer opera- 
tions. Table 2 therefore assumes ICCG. Table 2 also assumes 

that twice as many iterations will be needed for the 3D forward 
problem than were required in two dimensions. We feel that this 
is a conservative position, but it remains to be demonstrated. 
With these assumptions, the standard inverse with the iterative 
forward method is expected to be 17 times faster and require 
one fifth the memory of complete LU decomposition. 

RRI appears to offer speed increases of about 200 over the 
iterative standard method with ICCG and 4000 over LU. The 

order of magnitude decrease in memory is also important, be- 
cause the standard inversions would be difficult to implement 
even on a supercomputer. Comparison of the pseudo-lD and 
pseudo-2D versions of RRI is not straightforward, despite the 
rough equality of the total times in Table 2a. Since the time 
needed for an iteration is of the order of the 3D forward time, 
the best method may be the one that results in the smallest 
number of 3D outer iterations. As noted earlier, there are good 
reasons to believe that this will be a 2D slice method. Using the 
pseudo-2D kernels of Appendix A is equivalent to doing a 2D 
standard inversion for each slice. The other slice method 

described earlier is equivalent to a 2D RRI inversion for the 
slice. It would produce the slice structure much more rapidly, 
but this increase efficiency would be illusory if it resulted in 
many more 3D outer iterations. 

RESULTS FOR SYNTHETIC DATA 

We present inversions of synthetic data for three different 2D 
time for the linearized inversion increases as the third power of models. The structures used to generate the data are shown in Fig- 
the number of data inverted simultaneously. ure 2. We shall refer to them as the Prism, Diamond and Rift 

TABLE 2a. Multiplications (Real Numbers) for Major Steps of a 3D Inversion 

Forward Problem "Forward" Problems Roug•hening Forming and Factoring 
Ax = b for partials F FR -l* HH T* Total 

General Form 

Standard (LU) 4nxn•n•3 nf 12ndn•2nln s nxn•n•3+6nxny2n•2nlns 2nxnynzn•ns2+4n•ns 3 
Standard (ICCG) (224+186ni)nxnynzn f (224+186ni)nxnyn•n./n s (37+3 lni)nxnyntn./n s 2n•,nyn•nfn•+4n•n• 
RRI (pseudo-1 D) (224+ 186nl)n•yn•n.f .... 2nznf%+4n•n • 

2nnnn n +4nn n RRI (slice)t (224+186ni)n,,ny%n f 4nyn•3n/ns•+12nyn•n/n• nynt3+tnynt•nin• 2 2 3 2 
Sample Problems 

Standard (LU) 6.6 10 lz 1.2 10 lz 7.8 l0 ll 1.3 10 l• 
Standard (ICCG) 2.0 109 2.0 l0 ll 3.4 10 lø 1.3 10 l• 
RRI (pseudo-lD) 2.0 109 .... 1.2 106 
RRI (slice) 2.0 109 1.8 109 3.9 10 s 3.6 108 

8.7 10 •2 

3.7 10 •l 

2.0 10 9 

4.6 10 9 

*See Appendix C. 
tWith 2D partials; see Appendix A. 
SGrid is nx= 40 by n• = 40 by n t = 40 with nl.= 10 frequencies at ns= 100 total sites in n• = 10 lines of 

n s = 10 sites; ICCG iterations n i = 16 
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TABLE 2b. Storage Requirements (Real Numbers) for Major Arrays of a 3D Inversion 

Forward Problem Starthug Fields Partials 
Ax = b x 9 F HH r Total 

General Form 

Standard (LU) 6nxn•n • -- 2nxnynznlns 4n•ns • 
Standard (ICCG) 46nxnyn z 6nxnynzn f 2nxn•nznlns 4n•ns • 
RRI (pseudo- l-D) 46nxnyn • 6nxnyntnf 2ntn/ 4nf 
RRI (slice) 46nxn•n • 6nxnynzn • 2n•n•nlns+6nyn • 4n•ns • 

Sample Problem 

Standard (LU) 6.1 108 -- 1.3 108 4.0 106 7.5 108 
Standard (ICCG) 2.9 106 3.8 106 1.3 108 4.0 106 1.4 108 
RRI (pseudo-lD) 2.9 106 3.8 106 8.0 102 4.0 102 6.8 106 
RRI (slice) 2.9 106 3.8 106 3.6 106 4.0 10 4 1.0 10 7 

models. We generated synthetic data for all models using the between the sites only makes a significant difference if the sites 
finite element program of Wannartmker et al. [ 1986]. We decided are very far apart or quite uneven. 
to use a completely different forward algorithm in generating and We have started our inversions from a wide variety of models. 
inverting the synthetic data to help reveal any major systematic There is some tendency for the final result to depend on the start- 
problems with our forward calculations. The 12 periods from 5 to ing model, especially if it contains significant 2D structure that is 
800 s are equally spaced logarithmically. In each case the not required by the data. We have found that a 1D minimum 
bandwidth of the data is such that the skin depth at the shortest structure inversion of the horizontally averaged data makes an 
period is less than the scale of the surface smacture while the skin extremely effective starting model. (We average TE data 6 for TE 
depth of the longest period is much larger than the large scale 2D mode inversions or TM data (6') for TM mode inversions, weight- 
structure. The sims are spaced more closely than the scale lengths ing the individual data by their attributed errors, so that the 1D 
of the anomalies to ensure adequate sampling. The models for starting model will be the smooth 1D model that best fits the 2D 
generating the data are all very well discretized, and the errors are data.) The inversions of the Diamond and Rift data were started 
judged to be about 1%, with the TE data being somewhat more this way. The Prism model was started from a 50-ohm-m half- 
accurate than the TM data. space. 

Normally distributed noise at various levels was generated and The Prism model is about as simple a test case as one can de- 
added to the accurate synthetic data. As might be expected, the in- vise. The conductive and resistive prisms are embedded in a half- 
dividual sims' variances vary somewhat from the overall variance. space and are far enough apart that their anomalies have little in- 
If we assumed that each site had the overall variance, the pseudo- teraction. Figure 3 shows the TM results for added noise levels of 
1D inversions tended to overfit the sims with high noise and 1, 4 and 16%. The figure is made by filling boxes centered on 
underfit the sites with low noise. This led to D+ behavior at the each node with the appropriate gray level. Thus the distribution of 
overfit sites. We therefore calculated the actual variances at each boxes give direct information about the grid. As one would hope, 
site and used these to set the ultimate misfit goals for the individu- the structure fades as the noise level increases, but little extrane- 
al sims. We rather quickly found that trying to reduce the misfit to ous smacture appears. 
e/2c,,•,ct•a = na,t• at each site led to unnecessarily rough models. Figure 4 compares inversions with 1% added noise for TE, TM 
Backing off on the ultimate goal to 1.5 •c,w,c•, which and TE joint with TM. The TE mode images the conductive prism 
corresponds to the 95% confidence level and an rms misfit only well but is barely sensitive to the resistive prism. The TM mode 
1.2 times the expected misfit, usually produced models which images both prisms about equally well in the horizontal direction 
were much smoother and had little or no extraneous details. but tends to stretch them out vertically. This vertical stretching 

The grids used to invert the data are different from those used can be decreased by reducing the parameter TI that controls the 
to generate them. For generating synthetic data it is necessary to depth dependence of the horizontal structure penalty in the norm 
ensure that node spacing is sufficiently small to properly (see Appendix B). However, it becomes difficult to fit the data to 
parameterize rapid field variations near boundaries of the discrete high accuracy if TI<I. The joint inversion appears to image both 
model elements. For inverting the data, vertical node spacing at prisms somewhat better than either mode alone. However, the 
the surface is made less than one tenth of the skin depth deduced joint inversion could not attain its ultimate misfit goal, and the 
from the lowest observed p• at the shortest period. The spacing side lobes below the conductive prism suggest that we are 
of the rest of the vertical nodes is designed to keep the grid as un- overfitting systematic errors. Systematic biases of order 1% are 
iform as possible to take advantage of the higher accuracy of the quite likely in the forward algorithms used to generate the data 
FDA on a uniform grid, yet sparse enough to avoid ill- and to invert them, and there is considerable reason to expect 
conditioning the system Ax = b and consequent poor convergence these biases to be different for the two modes. 
of the ILU solution. We know that the horizontal conductivity The Diamond model reduces the high symmetry of the Prism 
variations must be quite smooth. The horizontal nodes are there- model. It also places the anomalous bodies close enough to in- 
fore made uniform where there are sims and grow logarithmically teract with one another and, by introducing a conductive base- 
outside of the region with data. We have found that spacing corn- ment, it has significant 2D anomalous currents flowing at some 
parable to the site spacing usually works well. Adding nodes distance from the 2D structure. Figure 5 shows inversions with 
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Fig. 2. The modds used to generate synthetic data. The finite element meshes for each model are Prisms - 97 horizontal x 58 vert- 
ical + 8 air, 400 km wide x 300 km deep; Diamonds - 117x73+8, 400x200 km; Rift - 122x78+9,600x200 km. The sawtooth edge 
of the Diamonds was actually modeled by a straight edge with the triangular elements of the finite element program. The resistivi- 
ties of the elements are black - 10 ohm-m; gray - 100 ohm-m; white - 1000 ohm-m. Note the different scale for the third model. 
These pictures have the same scales as the inversions in the other figures. 
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Fig. 3. Inversion of synthetic TM mode data for the Prisms model with increasing added noise. There are 30 sites mostly spaced 3 
km apart. Another inversion with 6-kin site spacing produced a result with slightly less focus. The forward modeling grid has 
44x35+8 nodes, is 400 km wide and extends to 100 km depth. The vertical node spacing is 500 m at the surface and 10 km at the 
bottom. The display uses boxes centered on the nodes. 
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Fig. 4. Inversion of synthetic TE, TM and TE joint with TM mode data for the Prisms model with 1% added noise. 
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Fig. 5. Inversion of synthetic TE, TM and TE joint with TM mode data for the Diamonds model with 4% added noise. There are 
27 sites mostly spaced 4 km apart. The forward modeling grid has 42x40+8 nodes, is 400 km wide and extends to 100 km depth. 
The vertical node spacing is 500 m at the surface and 5 km at the bottom. The display differs from Figures 3 and 4 in having boxes 
on a 1-km grid that are interpolated using the same algorithm that interpolates the pseudo-lD inversions. 
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4% added noise for TE, TM and TE joint with TM. This figure wrong place. In fact, its position appears to be controlled by the 
was made by interpolating the pseudo-lD inversions onto a 1-km valley. We have tried a variety of experiments to try to understand 
grid using the same algorithm that we use to interpolate them onto what is happening. One was to start the TM mode from the TE 
the grid for the forward problem. The results are presented with results for accurate data. The algorithm rather quickly converged 
q = 1.25 (all other results use q = 1.5), which suppresses some to a model almost identical to the top panel of Figure 7. This 
unwanted, small-scale horizontal variations in the basement. makes it unlikely that we have simply found a local minimum. 
Further decrease of q made accurate fits difficult and led to step Another experiment, in which we removed the valley, is shown in 
failure without further improvement in fidelity of the model. All the middle panel of Figure 7. Now the basement upwelling has 
models show evidence of the tilt of the conductive diamond and about the fight horizontal and vertical scales, but it is centered on 
clearly detect the existence of the resistive diamond. There is the position of the middepth conductor. This is clearly seen by 
essentially no evidence in Figure 5 of the flit of the resistive dia- comparing it with the TE inversion for highly accurate data 
mond. Thus despite the impression gained from the Prisms model, without the valley, shown in the lower panel. The individual TM 
both modes have lower resolution of resistive structure. Once data residuals are quite interesting. With the valley, they are 
again, the achievable misfit for the joint inversion is 3% higher dominated by the two sites that straddle the left end of the mid- 
than for either mode alone but produces a model which appears depth conductor. Furthermore, the only unusual residuals at these 
more focussed than either mode alone. sites are for In (p•) at periods longer than 50 s. The same is true 

The final model is a structure that one might find near a con- for the model without a valley except now the anomalous sites are 
tinental rift. There is a widespread shallow crust of moderate above the left step of the basement upwelling. It appears in each 
resistivity over a resistive basement. A sediment-filled rift valley case that our functional has found a very smooth model which is 
overlies a horizontal magma chamber at middepth and an upwarp- in strong disagreement with only 2% of the data. This appears to 
ing of a deeper asthenosphefic conductor. The three elements of be further evidence that we are not trapped in a local minimum of 
the model are horizontally offset to make it easier to understand the object function. We think that what is actually happening is 
their interaction. To make the problem more difficult, the conduc- that the 2D structure at middepth and below has small TM 
tance of the valley (conductivity times depth) is the same as the response relative to the shallow structure. Two kinds of models 
middepth feature. Furthermore, the thickness of the valley and the have this property: the smooth ones of Figure 7 and thin, horizon- 
magma chamber is only slightly larger than the skin depth at the 
shortest period. Conventional wisdom would say that one would 
have difficulty imaging the resistive region under the valley and 
one could not image the middepth feature under the valley. This is 
because fields whose skin depths are comparable to the thickness 
of the middepth feature will be strongly attenuated by the surface 
structure. 

Figure 6 shows TE mode inversions for added noise of 0, 1 and 
4% using the forward problem grid for the display. For additional 
added noise from 8 to 32%, the model changes remarkably little 
from the 4% model. The ultimate goal for inverting the 0% data 
was 0.3% at all sites. The inversion of this high-accuracy data has 
done a remarkable job of imaging all the important features of the 
actual structure. Not only have we very clearly imaged the base 
of the valley and the top of the middepth conductor, we have 
tually imaged the base of the middepth conductor. The middepth 
conductor is still detected by the 1% data but is no longer required 
under the valley at 4%. One expects that at a given level of noise 
the required conductivity gradient at depth will be lower where 
the fields have been attenuated by shallower structure. This is 
very evident under the valley, where the high gradient at the top 
of the basement gets spread out vertically as the noise increases 
giving the impression of an apparent downward deflection of the 
basement. These results demonstrate that the conventional wis- 

dom about the resolving power of induction data is wrong. Skin 
depth does play a role in resolution, but if you have accurate 
enough data, you can image details, whose scale is much less than 
the skin depth. 

The TM mode inversion for 4% added noise is shown in the top 
panel of Figure 7. This model has imaged the valley and the mod- 
estly conducting upper crust about as well as the TE mode, but it 
has several other clearly undesirable features. To begin with, the 
structure emerged in its final form in about 10 iterations. 
Thereafter, almost 75% of all forward steps failed. Although the 

tal conductors of limited horizontal extent. The possible improve- 
ment in misfit of this second class of models (which in this case is 
the truth), while locally large, is simply too small overall to 
outweigh their much higher roughness as measured by our func- 
tional. It remains to be seen whether some modification of the 

penalty function can overcome this kind of problem. 

CONCLUSION 

We have presented a method of inverting multidimensional MT 
data which is orders of magnitude faster than standard methods 
that compute the full partial derivative of the data with respect to 
model elements. The inversion works well on noisy synthetic 2D 
data. It produces an image that in most cases appears as an out- 
of-focus view of the actual structure. The focus improves as the 
noise level decreases, and in some cases one can recover surpris- 
ing detail. An important question for RRI and probably standard 
2D minimum structure inversions is whether one can find an ap- 
propriate object function that can deal reasonably with structure 
that produces little TM response because it is vertically thin and 
of limited horizontal extent. 

APPENDIX A: PSEUIX)-PARTIAL DERIVATIVES 

FOR PSEUDO-TWo-DIMENSIONAL INVERSIONS 

ALONG SLICES OF A THREE-DIMENSIONAL MODEL 

Following Rodi [1976] and Madden [1972], the elements of the 
partial derivative matrix F at each frequency for a standard 2D 
TM mode inversion are given by 

c3(5/- u/rxo•,'•f• xø+u/rA-x x 

vrxo['Xo + via 4 (A1) 

final result is quite smooth and has an acceptable misfit, inverting where di is the complex datum (6') at the site yi, (5 i is the conduc- 
data with less noise does not result in a significantly different tivity at the jth node and T denotes the matrix transpose. The vec- 
model or a better misfit. There is also no obvious evidence of a tot x0 contains values of the magnetic field H,, at the nodes and is 
midcrustal conductor and the asthenospheric upwelling is in the the solution to the TM forward problem Ax = b for the starting 
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Fig. 6. Inversion of synthetic TE mode data for the Rift model with increasing added noise. There are 31 sites mostly spaced 4 km 
apart. Other inversions, with higher site densities in the vicinity of the ends of the valley and the midcrustal conductor, were essen- 
tially identical The forward modeling grid has 72x40+8 nodes, is 500 km wide and extends to 100 km depth. The vertical node 
spacing is 500 m at the surface and 5 km at the bottom. The display uses boxes centered on the nodes. 
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Fig. 7. (Top) Inversion of synthetic TM mode data for the Rift model with 4% noise. The sites are the same as the TE mode. In- 
creasing sight density at the ends of the valley resulted in an essentially identical model. (Middle) Inversion of synthetic TM mode 
data for the Rift model with no valley and 0.5% added noise. There is one less site, but otherwise the grid is almost identical to the 
ease with the valley. (Bottom) Inversion of synthetic TE mode data for the Rift model with no valley and 0.5% added noise. All 
the displays use boxes centered on the nodes. 
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model o0. The vi and ui are vectors such that v•x and u/rx give 
and Ey at the site Yi. For efficient computation of these derivatives 
when the number of nodes is large, the vector 

urn0 fix0 

is computed only once for each site at each frequency. 
To adapt (A1) for use in a pseudo 2D inversion along a slice of 

a 3D model, x is replaced by the vector of values of Hx computed 
at the nodes of the slice by solving the 3D forward problem; A 
and b are replaced by the matrix and source terms for solving the 
2D TM forward problem for the slice; and ui and vi are un- 
changed. 

APPENDIX B: STRUCTURE FUNCTIONAL 

A fairly general form for a functional to minimize at a site Yi, 
which penalizes both horizontal and vertical structure for a model 
mis 

Q(yi) = I 0f2(z ) +g(z) •}y2 % •}f2(z ) af(z) 

Q = (Rm - c)r(Rm - c) (B2) 

Where R is the so-called rougherting matrix for the site; m is the 
sampled model; c is a bias vector expressing the fact that mini- 
mizing the horizontal derivative pulls the model toward its values 
at the adjacent sites; and the superscript T denotes the matrix 
transpose. If qj are the coefficients in the quadrature rule, the ele- 
ments of R and c at a site Yi are 

= q),2 2 
(z•-z•_O(z•-z•_•) 

= q},2 2 
(z•-z.i)(z.i+ •-z•_, ) 

2 

(Y r-Y ,- • )(Yi+ •-Y i- • ) 

= g(y,z) q),2 (zj+Zo),2 
2 

(yi+•-yi)(y,+•-y,-•) 

This is a norm of a scaled version of the Laplacian beneath the c i = - a/nj{yi_•) - b/nj{yi+•) 
site. The function f(z) controls the scale length used for measur- 
ing structure at different depths, and g(z) allows for varying the for j = 2 to n•l. All other elements of R and c are zero. R is tri- 
relative weight placed on horizontal structure. The dz2/Oj a factor diagonal and its first and last rows are all zeros. This corresponds 
in the second term keeps the dimensions of the two terms the to the fact that the second derivative is not sensitive to the average 
same. In our 1D work [Smith and Booker, 1988] we found value or average first derivative of m. It also means that R is 
m = In (o) = -ln (p) and f= In (Z+Zo) to be particularly useful, be- singular, a problem that is dealt with in Appendix C. 
cause they tend to produce misfits that are fairly uniform across In practice, using the values of the model at adjacent sites from 
the frequency spectrum. They also guarantee a finite, nonnega- the previous iteration to approximate the horizontal derivative 
tive conductivity and apply a greater penalty on small-scale stmc- term in (B 1) appears to over-estimate changes in the derivative at 
ture as depth increases. We have therefore used the same choices depth. This is clearly the case when changes to the model at adja- 
in this 2D work. The small constant z0 keeps the criterion from cent sites are similar and large: the horizontal derivative is ap- 
diverging at the surface and is usually chosen to be the skin depth proximated as if the model at adjacent sites would remain un- 
at the highest frequency in the surface material. Using the above changed. An effect of this is that for 11=0 so much weight is 
choice for f(z) and reexpressing the integral and derivatives in placed on horizontal smOOthing at depth that the bottom of a 
terms of linear depth, it is easy to show that a nearly equivalent model does not perceivably change from a 1D starting model. 
functional is Choosing 11=3/2 seems to be a reasonable compromise between 

allowing the models to change at depth and placing a penalty on 

I •}2m - - •}2m (B 1) Q = (z+zo)3[-•z 2 + g[z)-•-y 2 dz vetting for the structure beneath all stations simultaneously. It -v would be interesting to compare the resultant models to further 
The increase in penalty with depth inherent in choosing evaluate the effectofthisapproximation. However, simultaneous 
f(z)=ln (z+zo) showns up explicitly in the (Z+Zo) • factor. A suitably inversion of the different sites would greatly increase the compu- 
general choice of g is tation time, so we have not implemented this. 

A/ ]*l APPENDIX C: LINEARIZED INVERSION g(z) = Ot[ z+z0 j Sampling the continuous model at discrete points zj, j = 1 to n• beneath a site yi and approximating the integral with a quadrature 
where ot and 11 are constants. As 11 increases from 0 to 3/2, the rule, and replacing the infinitesimals &/ and •Sm with finite 
horizontal structure penalty changes from being the same as on differences, (5), (5'), (7)or (7')can be split into na separate equa- 
vertical structure to being independent of depth. Ai is the distance tions for real and imaginary parts and written as 
between the sites flanking yi and is introduced to keep the weight (d - e) - do =Fm - Fro0 (Cl) 
function nondimensional and to increase the penalty on horizontal 
structure where the sites are far apart. We have found that (z = 4 where m and m0 are n• element vectors containing the new and 
and 11 = 3/2 works well in most cases we have looked at. 

Sampling the continuous model rn at discrete points zj, j = 1 to 
n,, approximating the integral with a quadrature rule, using cen- 
tered second differences to approximate the vertical derivatives, 
and using second differences and the values of the model at the 
adjacent sites from the previous iteration to approximate the hor- 
izontal derivatives, (B 1) can be approximated by 

starting models, d and do are na element vectors containing the 
measured and calculated data and F is an n:xnd pseudo-Frechet 
derivative matrix. The measured data are in error and we only 
want to fit them within some specified tolerance ere. We assume 
that the covariances of the measured data are known and have al- 

ready been used to scale the data and pseudo-Frechet derivatives 
so that coy(e)= I, an identity matrix and ere is the standard g 2 
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misfit statistic. The equations (C1) are to be inverted separately at 
each site. Note, however, that (C1) would also hold for a standard 
2D inversion with appropriately dimensioned matrices. Thus the 
efficient inversion of (C1) to be described in this appendix is 
equally applicable to a standard inversion. 

We want to find the model satisfying (C1) which simultaneous- 
ly minimizes a structure functional like the one described in Ap- 
pendix B. We can do this by finding a constant [• such that when 
m minimizes the object function 

W = (Rm - c)r(Rm- c) + [• eTe (C2) 

the mean square misfit, ere, equals a predetermined goal (such as 
the expected value of Z2). 

If [• is known a priori and we define 

•! = d - do + Fm0 (C3) 

the model minimizing (C2) when c = 0 is 

rn = (•RrR + FrF)-•F r •i (C4) 
Constable et al. [1987] use this result in a 1D minimum structure 

F[t-• = [g• H gn•] [tm = [•] c = [c• •: cn•] 
where g• and g"z are the right and left columns of F• -• and p•, 
p¾ c• and c% are the first and last elements of Rm and c respec- 
tively. Defining G = [g• g%] and p = [p• p%], we can rewrite (C3) 
as 

i!- Hfn + Gp + e (C6) 

The problem has now been stated in the form of the mixed in- 
verse problem treated by Pavlis and Booker [1980, 1983]. The in- 
verse problem for the sampled continuous model fn is undercon- 
strained, because na,• is usually less than nz, while that for p 
would be overconstrained if fn were known. It is worth noting 
that additional constraints or parameters are easily incorporated at 
this point. For instance, the apparent resistivity commonly has an 
unknown, frequency-independent multiplier because of static dis- 
tortion of the surface electric field (see Jones [1988] for a clear 
discussion of the problem). This implies that the real part of the 
logarithmic data (6) or (6') have an unknown offset at each site. 

inversion. They choose [• by forward modelling with a series of We can incorporate simultaneous determination of this offset by 
successive guesses to [•. While this is not particularly onerous in redefining p = [p• p% s] and G = [g• g% i], where s is the static 
1D, because the forward problem can be solved very quickly, shift constant and the elements of i are 1 or 0 depending on 
deGroot-Hedlin and Constable [1990] use the same approach for 
a minimum structure 2D standard inversion. They report needing 
6 to 14 2D forward modelling steps to find [• at each iteration of 
their algorithm. This is particularly time consuming because they 
fully factor each forward problem, rather than using an iterative 
forward method which could take advantage of the similarity of 
the fields in the models for the different trial [• variables. 

Our approach, based on the linearized equations (C1), results in 
a direct relation between ere and •, which is much more efficient 
numerically and for 1D problems shows no tendency to be caught 
in the local minima reported by Constable et al. [1987]. It is 
described in detail by Smith [1988] and is a generalization of the 
case R nonsingular and c = 0 by Shure et al. [ 1982]. 

whether they correspond to an equation for the apparent resistivity 
or phase data. 

The object function (C2) can now be minimized subject to the 
na constraints (C6) by introducing na Lagrange multipliers. After 
some algebra, this yields 

fa = • + [•Hrsa (C7) 

where 

S = ([•HH r + I) -• 

a = d - HI• - Gp (C8) 

It is first necessary to transform the toughening matrix R so Note that (C7) requires factoring (inverting) an n, txna matrix 
that it is not singular. The elements of this transformed matrix iit while (C4) requires factoring an n, xn, matrix. Since the number 
are identical to R except for the four elements of model parameters will almost always substantially exceed the 

R11 = R2 2 

/•12 =-- R22 

The first and last elements of Jim - c are a scaled finite difference 

number of data, (C7) will be much faster to calculate. 
The scaled surface and bottom derivatives, p can be set to 

desired values or chosen to further minimize the object function 
(C2). In the latter case, (C7) and the definitions of p and fa are 
used to eliminate m from (C2). Then taking the partials with 
respect to the elements of p and setting the results to zero yields 

p = vr(a - m) 

where 

•r = (GTSG)-•GTS (C9) 

The new matrix to be factored is only 2><2 (or 3x3 if the static 
approximation of the vertical derivative at the top and bottom of shift constant is included). The results in this paper set p = 0 to 
the model and the sum of the squares of the other elements gives 
the roughness. 

Using (C1) and (C3) and the fact that • is not singular, we can 
write 

i! = F[i-l[•m + e (C5) 

Since • is still tridiagonal, finding F[i -1 involves a negligible 
amount of computation. The rest of the solution is simpler if we 
make the following partitions: 

allow more accurate forward modelling of the electric and mag- 
netic fields. Note that this does not mean that there are no hor- 

izontal gradients of rn at the top and bottom of the model. 
Equations (C7), (C8) and (C5) and the definitions of p and fn 

are used in (C1) to obtain 

eTe = (Sa)rSa (C10) 

Then using the definition of S and the singular value decomposi- 
tion (SVD) H = UAV, where U and V are orthogonal (unitary) 
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matrices and A is the nonnegative, diagonal matrix of the singular 
values • of H, we can write 

n d ~2 

ere = • ([3•,t + 1)2 (Cll) 

where the • are the elements of • = Ura. Note that ere and its 
derivatives are all smOOth monotonic functions of [5 for [5 posi- 
tive, so that for a given choice of ere, (C11) can be quickly solved 

T 2 
for [5 using Newton's method. Note also that (e e)m• = • •, for k 
such that )• = 0. It is important to check that the target value for 
ere in (C2) exceeds this minimum. Of course, machine precision 
usually prevents any of the singular values from being exactly 
zero, and it is necessary to establish a threshold below which the 
)• are considered zero. There is little harm in making this thres- 
hold a litfie high, because the linearization inherent in (C1) usual- 
ly breaks down for target values of ere which are much larger 
than the minimum. 

Once the SVD of H has been obtained, the matrix 

S = ([•HH r + 1) 4 = U([•AA r + l)-lU r 

used in (C7), (C9) and (C10) is trivially calculated. Finally, the 
actual model can be retrieved from the toughened model using 
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