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THE INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDlNGt 

FRANCIS T. WU* 

Based on the model of a flat layered earth, a nonlinear, least-squares method is used to invert magnetotelluric 
sounding curves to obtain the layer resistivities and thicknesses. Partial derivatives of the apparent resistivity wi@ 
respect to laver parameters show the manner in which the layer parameters are contributing to the apparent resis- 
tivities. Uniqueness of the inversion is not guaranteed, but when the partial derivatives are linearly independent 
and the relative magnitudes of the layer resistivities of the initial guess are not too far from the correct ones, the 
convergence of the method to the correct values seems to be ensured. 

INTRODUCTION 

The magnetotelluric sounding (MTS) method 
has been used extensively in exploration geophys- 
ics for a number of years in this country and in 
Europe (Vozoff et al, 1964). This same method, 
though in a different frequency range, has been 
used to deduce subsurface geophysical informa- 
tion in addition to that obtained by seismic, 
gravity, and/or heat flow surveys (Cantwell and 
Madden, 1960; Swift, 1967). The MTS results, 
being of somewhat different nature from those of 
seismic, gravity, and heat flow, would certainly 
reveal more about the crust and the upper mantle. 
In particular, as the earth material consists 
mainly of semiconductors, the electrical conduc- 
tivity would have a strong dependence on temper- 
ature; we can thus gain one more control over the 
temperature in the earth. 

Interpretation of MTS data in the past was 
mostly done by trial and error or master-curve 
matching. Two-layer and three-layer master 
curves were published by Cagniard (1953) and 
Yungul (1961). The trial and error method could 
be very painstaking, especially when a large 
number of parameters are involved, and the 
curve-matching technique is very limited in 
resolution. With the general availability of elec- 
tronic computers and better matched recording 
equipment, it is possible and desirable to invert 
the data automatically to save time and to attain 
maximum use of the data. 

MTS interpretation is complicated mainly by 

two factors: the source of the electromagnetic 
wave and the geological comlitions. The source 
may be of finite horizontal dimension so that for 
different frequencies the nature of the incident 
EM wave would be dissimilar. The problem has 
been investigated by Wait (1954) and Price 
(1962). However, the assumptions made by 
Cagniard in his classical paptpcr are valid in many 
cases (Madden and Nelson, 1964). Geologically, 
the lateral variation might bc so severe that the 
situation cannot be adequately described by a 
system of parallel layers in the case of a flat 
earth approximation, or by concentric layers in 
the case of a spherical earth. The crust of the 
earth is expected to be ver!’ nonhomogeneous; 
with increasing depth, the lateral variation is 
expected to diminish. In order to avoid this com- 
plication, we have to choose the recording sites 
carefully. 

In this paper we will use the flat-layered half- 
space ior our model. This mo~iel is justified when 
the skin-depth effect of the waves is small com- 
pared to the radius of the earth. When the neces- 
sity arises, one has only to change to a spherical 
model. The inversion method is quite general. 

Under the assumption of a plane-wave incident 
upon a layered half-space, the calculation by ap- 
parent resistivity as a function of layer resistivity 
and thickness can easily be achieved (Cagniard, 
1953; Vozoff, 1958). For computer calculation 
one can easily apply the Thomson-Haskell 
matrix method (Haskell, 195.1). The definition of 

t Contribution No. 1514, Division of Geological Sciences, California Institute of Technology. Pasadena, California. 
Manuscript received by the Editor January 29, 1968; revised manuscript received July 22, 1968. 

* California Institute of Technology, Pasadena, California; now with Weston Observatory, Boston College, Chest- 
nut Hill, Massachusetts. 

972 



Inverse Problem of Magnetotelluric Sounding 973 

various parameters and the general geometry are 
included in Figure 1. In this paper we assume 
that p is expressed in ohm meters and h in kilo- 
meters. 

THE INVERSE PROBLEM 

When the source and geological conditions 
permit the Cagniard model to be a valid repre- 
sentation, it is desirable to find the parameters 
rapidly, usually the resistivities and the thick- 
nesses, of the layers and obtain some assessment 
as to the accuracy of the estimate. Even with the 
high-speed computers now available, the preva- 
lent trial and error method of finding the set of 
parameters which yields the best fitting curve is 
a tedious and sometimes arbitrary process. In 
fact, at present, most of the data interpretation 
involves matching of master curves based on two- 
layered or three-layered models. We can however 
use the combination of a least-squares method 
and an iteration scheme to perform the modifica- 
tion of initial model automatically. Thus it is 
possible to use models with many layers to ob- 
tain faster and better solutions. 

The basic principles of least-square methods 
can be found in Margenau and Murphy (1943). 
We shall outline the method as applied to magne- 
totelluric sounding. Let pc; be the calculated 
apparent resistivity and poi be the observed re- 
sistivity at period Ti. We wish to satisfy the 
least-squares condition 

@ = C (pci - p0J2 = a minimum. 

We can write PC< as 

Pci = f(Pl, Pz . . . Pn, hl, hz * . . h,; Ti). 

For a small change in one of the parameters, 
‘there will be a corresponding change of pei. We 
use the approximation 

aPci Apci 1 
-N- - 
dPi Api 

= dp-.f(PI’PZ> . * * , Pi 
I (1) 

+ Apj, ’ . . y pnj hi, hz * . * hrz; T;). 

Similar relations exist for ?$s. Then we can write, 
to first order, 

(jp = poi - pci = dp,i dp1 + . . . 2 dp, 
dP 

dP1 ah 
(2) 

CURRENT SHEET 

1;~. 1. Geometry of the problem. 

for each i. If we define 

D = (&I, . . . ) dp,, dhl * ’ . dh,), 

‘aPA dPc1 
-. .._ 

8Pl ah, 
1 

p=. . 
+ck adcn I 

I 

~. . ._ 

dP1 dhn 1 

(3) 

R = (P 01 - Prl, PO2 - PC?, . . . , PO/c - Pckd ; 

we have 

PD = R. 

We can then solve for D from 

D = (PTP)-'PTR, (4) 
where the superscript T denotes the transpose 
operation. These are the normal equations cor- 
responding to the condition 

However, j is nonlinear in p and h and neglect- 
ing higher order derivatives may not ensure the 
achievement of a least-squares condition if the 
magnitude of vector D is large. Several iterations 
are generally needed for convergence of @ to a 
limit. 

For our numerical calculations, we have chosen 
to use a procedure, devised by Marquardt (1963), 
in which the step size and the direction of the 
correction vector are determined simultaneously 
to insure proper convergence. 

Uniqueness is not guaranteed in this method. 
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FIG. 2. Apparent resistivity and partial derivative 
curves for model (1). The signs of the partial derivative 
are indicated by the + and - signs adjacent to the 
curves. 

PARTIAL DERIVATIVES 

Partial derivatives are used in the inversion 
scheme we described in the last section. Because 
of the finite conductivity of the earth, EM waves 
at different periods suffer different degrees of 
attenuation. At very short periods with corre- 
sponding skin depth smaller than layer thickness, 
the energy is almost guided~ along Hre surface; 
hence only a change in uppermost layer conduc- 
tivity would affect wave amplitude, i.e., 8p&p1 
= 1 and apA/dhl, +A/&% and SO on would all be 
zero. At longer periods, the energy is distributed 
in different layers in different amounts; the way 
in which the partial derivatives behave depends 
on the skin depth and layer thicknesses. Calcula- 
tion of these derivatives can either be done by 
analytical differentiation or a numerical, finite- 
difference method. We found that in the case of 
MTS the second method is faster, and if the incre- 
ment is small enough, the accuracy is very good. 
In Figures 2, 3, and 4 we have presented the 
partial derivatives for three typical cases: (1) de- 
creasing resistivity downward (Figure 2), (2) in- 

creasing resistivity downward (Figure 3), and 
(3) with a layer of low resistivity in between 
(Figure 4). These demonstrate clearly the general 
characteristics of the partial curves. The ap- 
parent resistivity at a certain period can be 
viewed as a weighted average of the layer resis- 
tivity. In this respect it resembles the dispersion 
curve of surface waves when* the velocity at a 
certain period is a weighted average of the layer 
compressional and shear velocities. The partial 
derivatives have been used successfully to in- 
terpret the surface wave dispersion data (An- 
derson, 1966), and inversion of such data has 
been attempted by Dorman and Ewing (1962), 
Archambeau and Anderson (1963), and more re- 
cently Backus and Gilbert (1967). 

In cases (1) and (3), dpA/+l are severely at- 
tenuated toward zero for long periods reflecting 
the condition that the top layer is relatively 
transparent to EM waves at longer periods at 
which the energy concentrales in the lower 
layers. For model (2), however, ap&3pI increases 
with increasing period until 2(X% set; f-ram tl~re 
on, it decreases very gradually: the curve follows 
fairly closely the trend of the pA curve. This 
phenomenon means that the first layer is rather 
translucent, and when pl is increased, it becomes 
more transparent, thus enabling us to see the 
lower layers at shorter periods. 

The general features of apll !ap2 are that there 
are places where dpA/dpt has zeros and changes 
signs across the zeros, and at very long periods 
and very short periods it tentls to zero. Whereas 
dp,4/apl has as a rule a value of 1 for T+o, 
apA/+ has diverse values tlepending on the 
layer resistivity: the higher the layer resistivity, 
the smaller apJdpp. These properties are in fact 
common for all the internal layers as shown in 

FIG. 3. Apparent resistivity and layer resistivity 
partial derivative curves for model (2). 

FIG. 4. Apparent resistivity and layer resistivity 
partial derivative curves for model (3). 
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Figure 5. The parameters of the layered medium 
are quoted from a paper by Vozoff et al (1964). 
8p_@p4 is in the numerical noise of the computa- 
tation and is omitted. Flp~/?lp~ and dPA/apa have 
similar shapes; although apA/&% is more than an 
order of magnitude larger than dp_&?& It be- 
comes clear at this point that a layer of high re- 
sistivity in a system of low resistivity layers 
will be very difficult to detect. 

dpAjdpB curves in Figures 2, 3, and 4 show the 
tendency to approach 1 as T becomes very large. 
This is the result of the very large penetration 
depth of signals of very long periods at which 
pA+ps and +A/dp3’i. This conclusion is true 
for the half-space in any layered system (cf. 
Figure 5). 

dpA/ah curves presented in Figures 6 and 7 
have much the same character as apA,&& for 
the internal layers. For small 7’ and large T, +A/ 

dh tends to 0, for the same reason that dpA/ap2 

tends to 0. Namely very short-period waves 
would not “feel” the effect of the changes in the 
layer thickness because of small skin depth, on 
the other hand, at extremely long periods, the 
half-space resistivity is the only deciding factor. 

For the problem of uniqueness of inversion 
mentioned in the last section, the partial deriva- 
tives seem to offer a necessary condition: if the 
partial derivatives are not linearly independent 
of each other, the inversion could not be unique. 
We would also expect the uniqueness to be rather 
local, i.e., if the initial guesses, or at least their 
relative magnitudes, are not too far off from the 

T. ret 

FIG. 3. Apparent resistivity and layer resistivity par- 
tial derivative curves for the five layer model of Vozoff 
et al (see text). 

FIG. 6. Apparent resistivity and layer thickness 
partial derivative curves for model (1). 

correct values. And insofar as we are using nu- 
merical methods to invert, we would further 
expect the resistivity of the layc,rs with very 
small partial derivatives to be badly determined, 
since the effect of these layers mighl be buried in 
the numerical noise. 

EXAMPLE OF INVERSION 

In this section we will discuss s~rnie results of 
inversion of the theoretical appar(,nt resistivity 
to demonstrate the power and the limitations of 
this scheme. They are shown in Figures 8-12 and 
Tables 1-5. In each figure the “ol)served” curve 
is calculated by using the models for which we 
have computed partials or their variations as in- 
dicated. We have also plotted the a1)parent resis- 
tivity curve for the initial trial motlel and for the 
first and second iterations. For the later itera- 
tions, the points are invariably hard to distin- 
guish from the “observed” ones. These results 
are copied from the IBM 7094 computer on-line 
plots having an accuracy of 1 part in 100. For 
the successive iterations, the revischtl parameters 
are listed in the tables. Notice that i he horizontal 
coordinates are unequally spaced, therefore the 
odd shapes of some of the curves. 

FIG. 7. Apparent resistivity and layer thickness 
partial derivative curves for model (3). 



FIG. 8. Inversion of apparent resistivity curve. The 
“observed” curve is calculated formodel (1). See Tabie 
1 for detail of the convergence of the inversion scheme. 

In Figures 8, 9, and 10 the “observed” curve 
was calculated by using the same model. (1) In 
Figure 8 the data used was from 0.01 to 10,000 
set; virtually all the features for an apparent 
curve were present. In this case, the convergence 
is seen to be very fast (Table l), recovering 
within lo-” of the original parameters after five 
iterations, even with initial parameters 20-50 
percent off the correct ones. _ Lc ._ A+ path iteration, the 

curve swings from one side to another at different 
periods. (2) For the next case (Figure 9, Table 2), 
we have discarded the data for T <8 sec. We 

can see the difficulty for the program to find 
the topmost layer resistivity since we did not 
supply the short-period information to the pro- 
gram. Although the initial convergence is rapid, 
the subsequent refinement was very slow; when 
the first layer resistivity is sufficiently close to 
the correct value, the convergence becomes fast 

I25 I 

I:rc. 9. Inversion of the same “observed” resistivity E‘IG. 11. Inversion of apparent resistivity curve. The 
curve as in Figure g, but the information for periods “observed” curve is calculated for model (3). See Table 
smaller than 8.5 set 1s discarded (cf. Table 2). 4 for detail. 

FIG. 10. Inversion of the “observed” same curve as 
in Figure 8. The- triai model ‘has four layers instead of 
three (cf. Table 3). 

again. (3) We then tried to invert the same data 
as in (1) by using a four-layered model (Figure 
10, Table 4) with the first layer resistivity pegged 
at the correct value. The convergence is more 
rapid than the second case, and it is interesting 
that pl=p2= 1.0 and hl+hz= 1 .OY6, very close to 

the original parameters, when the time allowed 
(two minutes) for this computation was exceeded. 

The next inversion we attempted was for the 
model with a low resistivity layer in the middle 
(Figure 11). The parameters chosen for this par- 
ticular model render the layer rather opaque to 
the layers below for the periods considered. At 
10,000 set, the parameter reGstivity was only 
35 percent of the half-space resistivity We have 
tried to perturb the five parameters and when the 
half-space resistivity was only 45 percent of the 
correct value, and hz was 100 percent off, the 
method failed to converge, 1 lowever, when we 

1.2: 
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“0 

layers. (2) A strategy for better fitting would be 
the use of large numbers of layers for the trial 
model. The inversion process would merely make 
the layer resistivity the same. If there are fewer 
layers than needed, the process may not con- 

d 

L 

+ m-0 p . . f. I:!,, Oa verge to the limit desired. 
i :- 

r “‘%.U 
2-L 

As in other branches of geophysics, the in- 
0. 
d terpretation would improve greatly in accuracy 

. OblCrvCd 

: 
0 Trm model and speed if we had auxiliary data such as seis- 
. I” Ileloflc.” mic information; laboratory resistivity measure- 

,. s-5.. .*@ 
. .?“d IfCrDtlon 

ments of common rocks; and for deep sounding, - 
CO! T, S8C 7.CJ.000 measurements under high temperature and pres- 

FIG. 12. Inversion of apparent resistivity curve. The sure to delimit our initial guesses. 

“observed” curve is calculated for the five layer model 
of Vozoff et al (see text). CONCLUSION 

peg the half-space resistivity, the rest of the The inversion method used in this work is 
parameters quite readily attain the correct value. sufficiently general. Most of the layered media 
This phenomenon can be predicted by looking at problems in electrical or electromagnetic sound- 
the partial derivative curve (Figure 4). At 10,000 ing can be inverted in this manner. This method 
set, dpJ+ is increasing rapidly but is still much eliminates part of the labor in finding the param- 
less than 1, and apA/apn still dominates; the ap- eters of a model that yield the best fit and en- 
parent resistivity curve does not contain enough ables us to use more layers, hence to extract the 
information for the half-space. maximum information from the data. Master 

Table 1. Convergence of the inversion for model (I) 

Trial 
1st 
2nd 
3rd 
4th 
Final 

PI b ps It2 Pa SE. 

0.8 1.3 0.15 1.2 0.015 1.08X 10-l 
.993 .788 ,164 1.23 0.0126 6.00X 1OV 
.992 1.05 ,123 .9.52 0.0133 9.00x10-3 
.999 1.11 .0961 ,980 0.0104 

1.00 1.10 0.10 1.00 0.00999 ;~~“x~~r3 

1.00 1.10 0.100 1.00 0.0100 3:41x10-: 

Finally we look at the more realistic five- 
layered model. Our main aim here is to see 
whether we can determine the thickness of the 
‘high resistivity layer. We pegged five of the nine 
parameters and the result (Table 4, Figure 12) 
shows that reasonable figures were attained after 
six trials. 

The numerical experiments in this section 
show that the method we used works satisfac- 
torily with theoretically calculated “observa- 
tions.” We can make the following comments: 
(1) The short period data is needed for fast con- 
vergence of the inversion. However, we can find 
the correct structure, though slowly, using data 
beyond the point where the apparent resistivity 
curve starts to show the influence of the lower 

Table 2. Convergence of the inversion for model 
(1); information for periods shorter 

than 8.5 set discarded 

Pl h, PZ h, pa S.E. 

.800 .700 .15 1.3 ,015 0.9 X10.’ . .~ 
1.43 .956 ,119 1.k .0109 0.5 x10-2 
1.28 .971 .123 1.08 ,010s 0.18X10-e 
1.24 .983 .121 1.07 .0107 0.14x10-e 
1.22 .990 ,120 1.07 .0107 0.14x10-2 
1.20 .996 .119 1.07 .0107 0.13x10-2 
1.19 1.00 ,117 1.06 .0106 0.12X10-2 
1.17 1.01 .116 .106 .OIO6 O:12%i0-2 
1.16 1.01 .115 .105 .0105 0.11x10-~ 
1.15 1.02 .114 .10.5 .0105 0.10x10-* 
1.14 1.02 .113 ,104 .OlOS 0.95x10-3 
1.06 1.06 .107 ,102 .0103 0.89x10-~ 
.YY5 1.10 ,100 .0999 .OlCKl 0.32XlOP 

1.00 1.10 .lOO .lOO .OlOO 0.74x 10-7 
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Table 3. Convergence of the inversion for model (1) with four layer trial model 

PI 1 

Trial 
1st 
2nd 
3rd 
4th 
5th 
6th 
Final 

1.0 0.7 
1.0 0.908 
1.0 0.969 

::: 0.989 0.989 

:,x 
l:o 

0.097 0.986 
0.986 

P2 h2 

0.5 0.7 
.413 ,480 

+.516 ,224 
+.511 ,123 

1% 
+ :9a3 

,118 ,114 
,114 

+1.10 .114 

Table 4. Convergence of the inversion 
or model (3) 

PI h, P? hs P3 SE 

0.7 1.3 0.05 1.20 0.10 1.50x10- 
0.974 0.530 0.0611 4.39 0.10 1.12X10-r 
0.953 0.865 0.0291 6.83 0.10 3.56XlOW 
0.959 0.872 0.0287 5.48 0.10 3.36XlOW 
0.982 0.910 0.0243 2.23 0.10 2.30X10-* 
0.999 0.979 0.0125 1.44 0.10 5.11x10-~ 
1.00 0.999 0.0100 0.926 0.10 1.29X1O-3 
1.00 1.00 0.0100 0.996 0.10 7.13XlOW 
1.00 1.00 0.0100 1.00 0.10 3.55X1O-7 

P3 ha- 

0.15 0.8 0.015 0.7 x10-r 
,134 1.11 .0106 0.3 X10_’ 
.0985 .888 .0186 0.2 x10-r 
.lOO ,983 .OlOl 0.13x10-* 
.0993 .994 .00995 0.73x10-3 
.0999 1.00 :ZZ19 0.61XW3 
. 100 1.00 0.87x10-” 
.lOO 1.00 .OlOO 0.12x10-6 
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