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An efficient data-subspace inversion method
for 2-D magnetotelluric data

Weerachai Siripunvaraporn∗ and Gary Egbert‡

ABSTRACT

There are currently three types of algorithms in use for
regularized 2-D inversion of magnetotelluric (MT) data.
All seek to minimize some functional which penalizes
data misfit and model structure. With the most straight-
forward approach (exemplified by OCCAM), the min-
imization is accomplished using some variant on a lin-
earized Gauss-Newton approach. A second approach
is to use a descent method [e.g., nonlinear conjugate
gradients (NLCG)] to avoid the expense of construct-
ing large matrices (e.g., the sensitivity matrix). Finally,
approximate methods [e.g., rapid relaxation inversion
(RRI)] have been developed which use cheaply com-
puted approximations to the sensitivity matrix to search
for a minimum of the penalty functional. Approximate
approaches can be very fast, but in practice often fail
to converge without significant expert user intervention.
On the other hand, the more straightforward methods
can be prohibitively expensive to use for even moderate-
size data sets. Here, we present a new and much more
efficient variant on the OCCAM scheme. By express-
ing the solution as a linear combination of rows of the
sensitivity matrix smoothed by the model covariance
(the “representers”), we transform the linearized inverse

problem from the M-dimensional model space to the N -
dimensional data space. This method is referred to as
DASOCC, the data space OCCAM’s inversion. Since
generally N � M , this transformation by itself can re-
sult in significant computational saving. More impor-
tantly the data space formulation suggests a simple ap-
proximate method for constructing the inverse solution.
Since MT data are smooth and “redundant,” a subset of
the representers is typically sufficient to form the model
without significant loss of detail. Computations required
for constructing sensitivities and the size of matrices to
be inverted can be significantly reduced by this approx-
imation. We refer to this inversion as REBOCC, the
reduced basis OCCAM’s inversion. Numerical experi-
ments on synthetic and real data sets with REBOCC,
DASOCC, NLCG, RRI, and OCCAM show that RE-
BOCC is faster than both DASOCC and NLCG, which
are comparable in speed. All of these methods are sig-
nificantly faster than OCCAM, but are not competitive
with RRI. However, even with a simple synthetic data
set, we could not always get RRI to converge to a reason-
able solution. The basic idea behind REBOCC should
be more broadly applicable, in particular to 3-D MT
inversion.

INTRODUCTION

The magnetotelluric (MT) method for imaging crustal and
upper mantle electrical conductivity has found increasing use
in both geophysical exploration application (Orange, 1989;
Vozoff, 1972) and in fundamental studies of large-scale tec-
tonics (Jones, 1992; Wannamaker et al., 1994; Chen et al., 1996;
Unsworth et al., 1999). Initial applications of MT were based
on local 1-D interpretations, for which theories (Weidelt, 1972;
Parker, 1980) and inversion methods (Jupp and Vozoff, 1975;
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Constable et al., 1987; and Smith and Booker, 1988) are well
developed. It is now clear that 2-D or even 3-D interpretation
is essential for most real MT data sets. Over the past decade,
very substantial progress has been made on the development of
2-D inversion methods. These have included straight-forward
extensions of linearized search methods developed previously
for 1-D regularized inversion (deGroot-Hedlin and Consta-
ble, 1990; Uchida, 1993), efficient approximate methods (Smith
and Booker, 1991; Farquharson and Oldenburg, 1996), the sub-
space method (Oldenburg et al., 1993) and methods based on

791



792 Siripunvaraporn and Egbert

direct iterative minimization of a regularized penalty func-
tional (Rodi and Mackie, 2000). These programs are freely
available and are widely used for interpretation of MT surveys.
However, the available inversion algorithms are not without
flaws. The fastest [e.g., rapid relaxation inversion (RRI)] in-
trinsically limit the model space search and can fail to converge
(without substantial user intervention). The most general and
flexible (e.g., OCCAM) run very slowly and require consider-
able computer memory.

We begin our discussion with a review of 2-D MT inversion
methods, including a data space variant on OCCAM which we
refer to as DASOCC, the data space Occam’s inversion. We
then describe the REBOCC (reduced basis Occam’s inversion)
algorithm, and demonstrate the stability and efficiency of the
approach by inverting synthetic MT data. We use the synthetic
data to compare the performance of the new scheme to some of
the other methods, including RRI (Smith and Booker, 1991),
the nonlinear conjugate gradient method (NLCG) (Rodi and
Mackie, 2000), and the original Occam’s inversion (OCCAM)
(deGroot-Hedlin and Constable, 1990). Finally, we briefly con-
sider an example application to field data from a dense MT
profile across the San Andreas fault near Parkfield, California
(Unsworth et al., 1997).

OVERVIEW OF INVERSION METHODS

We begin with a broad overview of previously developed
2-D MT inversion methods. To be explicit, we consider the
earth as discretized into a series of M constant resistivity
blocks, m = [m1, m2, . . . , mM ]. There are N observed data d =
[d1, d2, . . . , dN ], with estimated uncertainties e = [e1, e2, . . . ,

eN ]. The fit of the theoretical model responses F[m] to the
observational data can be expressed as

X2
d = (d − F[m])T C−1

d (d − F[m]), (1)

where the superscript T represents matrix transpose, and Cd is
the data covariance matrix, which in practice is diagonal.

Because of the nonuniqueness of the inverse problem, an
infinite number of models can produce the same misfit. Most
modern MT inversion schemes resolve this nonuniqueness by
seeking models that have minimum possible structure (in some
sense) for a given level of misfit (Parker, 1994). This makes the
inversion stable, with resulting models less likely to contain
spurious features.

To quantify “model structure,” we consider a model norm of
the general form

X2
m = (m − m0)T C−1

m (m − m0), (2)

where m0 is a base (or prior) model, and Cm is a model covari-
ance matrix which characterizes the expected magnitude and
smoothness of resistivity variations relative to m0. Other ap-
proaches to minimum structure inversion are similar, though in
some cases C−1

m is replaced by a model roughness operator. The
minimum structure inverse problem is to minimize X 2

m subject
to X 2

d = X 2
∗, where X 2

∗ is the desired level of misfit.
To solve this minimization problem, a Lagrange multiplier

λ−1 can be introduced, resulting in an unconstrained func-

tional U(m, λ),

U(m, λ) = (m − m0)T C−1
m (m − m0)

+ λ−1{(d − F[m])T C−1
d (d − F[m]) − X2

∗
}
, (3)

for which we seek stationary points (with respect to both m
and λ). Alternatively, we may consider the penalty functional
Wλ(m),

Wλ(m) = (m − m0)T C−1
m (m − m0)

+ λ−1{(d − F[m])T C−1
d (d − F[m])

}
. (4)

In equation (4), λ acts to “trade off” between minimizing the
norm of data misfit and the norm of the model (Tikhonov and
Arsenin, 1977; Parker, 1994). When λ is large, the data misfit
is de-emphasized, leading to a smoother model. In contrast,
as λ → 0, the inverse problem becomes closer to the ill condi-
tioned least-squares inversion problem, resulting in an erratic
model (see Parker, 1980).

Note that both U and Wλ have the same stationary points
with respect to variations of the model, i.e., ∂U/∂m = ∂Wλ/∂m,
where λ is fixed. Parker (1994) uses this to show that stationary
points of equation (3) can be found by minimizing equation (4)
for a series of λ values, and then choosing λ so that the misfit
satisfies the constraint X 2

d = X 2
∗.

For linear F[m], this is straightforward, since in this case (for
fixed λ) ∂U/∂m = 0 is a linear system of equations which may
be solved for m. Because F[m] is nonlinear for the MT inverse
problem, iterative solution methods are required. We briefly
consider some of the approaches which have been taken by
previous workers and then outline our approach.

Rodi and Mackie (1999) provide a good review of several
approaches, including a straightforward Gauss-Newton (GN)
method. This approach is based on linearizing F[m] with a Tay-
lor series expansion,

F[mk+1] = F[mk + δm] = F[mk] + Jk(mk+1 − mk), (5)

where k denotes iteration number, and Jk = (∂F/∂m)|mk is the
N × M sensitivity matrix calculated at mk . Calculation of Jk ,
which describes the perturbations in the data due to changes
in the model, is described in detail by Rodi and Mackie (2000),
Mackie and Madden (1993), and Rodi (1976). Substituting
equation (5) in equation (4), we obtain

W̃ = (mk+1 − m0)T C−1
m (mk+1 − m0)

+ λ−1{(d̂k − Jk(mk+1 − m0))T

× C−1
d (d̂k − Jk(mk+1 − m0))

}
, (6)

where d̂k = d − F[mk] + Jk(mk − m0). This W̃ is then quadratic
in mk + 1 and thus can be minimized exactly (for fixed λ). For
numerical stability (Marquardt, 1963), damping is generally
required to control step size for each iteration. The system of
equations to be solved for each iteration then becomes

mk+1 − mk=
[
λC−1

m + Γm
k + εkI

]−1[JT
k C−1

d (dk − F[mk])

− λC−1
m (mk − m0)

]
, (7)

where the “model space cross-product” matrix Γm
k = JT

k C−1
d Jk

is an M × M positive semidefinite symmetric matrix, I is the



REBOCC Inversion for 2-D MT Data 793

identity matrix, and εk is a damping parameter. Note that with
the GN approach λ is fixed. Therefore, the algorithm will con-
verge to a stationary point of equation (4), not equation (3).
To achieve the stationary point of equation (3) (with respect
to both λ and m), the process would have to be repeated with
different values of λ until the constraint X 2

d = X 2
∗ was satisfied.

The OCCAM approach, first proposed by Constable et al.
(1987) (see also deGroot-Hedlin and Constable, 1993; Uchida,
1993; Parker, 1994), is also based on linearizing F[m] and then
solving for the stationary points of equation (6). Differentiating
equation (6) with respect to m and setting the result to zero
leads to an iterative sequence of approximate solutions:

mk+1(λ) = [
λC−1

m + Γm
k

]−1JT
k C−1

d d̂k + m0. (8)

The unique feature of the OCCAM approach is that the pa-
rameter λ is used in each iteration both as a step length con-
trol and a smoothing parameter. That is, equation (8) is solved
for a series of trial values of λ and the misfit X 2

d (mk+1(λ))
for each λ is evaluated by solving the 2-D forward prob-
lem. As for the linear problem, λ should be chosen so that
the condition X 2

d = X 2
∗ is met. Usually, in the early iterations,

the true misfit X 2
d is higher than the desired X 2

∗ for all possi-
ble λ. The OCCAM process thus chooses the model with the
minimum misfit as the basis for the next iteration. The pro-
cess is then repeated until the misfit reaches the desired level.
Parker (1994) called this process of bringing the misfit down
to the target level phase I. Once the misfit reaches the de-
sired level, phase II begins by keeping the misfit at the desired
level, but varying λ to search for the model with smallest norm.
Since the problem is nonlinear, the desired misfit may never
be reached. However, in practice, improvement of the misfit
from iteration to iteration can be expected, until a minimum is
achieved.

Both GN and OCCAM share similar computational steps.
For each iteration, Jk must be calculated, and an M × M sys-
tem of equations [equation (7) for GN and equation (8) for
OCCAM] must be solved. These methods are thus very time-
consuming (e.g. Smith and Booker, 1991; Rodi and Mackie,
2000). Furthermore, these methods require much memory to
store the sensitivity and cross-product matrices. These compu-
tational inefficiencies are the result of strong dependence on
the model space dimension M .

Several approaches have been proposed to avoid the heavy
computational burden of the direct linearized search schemes.
One approach is to use approximate sensitivities to eliminate
calculation of the full sensitivity matrix. A good example in this
category is the RRI introduced by Smith and Booker (1991).
RRI turns the 2-D inverse problem into a series of 1-D inverse
problems, by computing the approximate sensitivity of data
at each site to variations of resistivity directly below the site.
The model is updated by solving a series of 1-D inverse prob-
lems and interpolating horizontally to form the 2-D resistivity
model. Fit to the data is tested with a full 2-D forward calcula-
tion, and step length is adjusted if necessary. The process is re-
peated until the misfit condition is met. Note that this approach
eliminates both the 2-D sensitivity calculation and the need to
solve a large M × M system of equations. Generally, RRI re-
quires many iterations, but overall is very fast. RRI can handle
very large 2-D data sets and has been applied to interpretation
of many MT data sets (e.g., Unsworth et al., 1999). Oldenburg

and Ellis (1991) suggested a very similar approach based on
using a series of 1-D inversions as an approximate inverse map-
ping (AIM) to map the data back to model space, followed by
full calculation of the 2-D forward problem to assess model fit.

The efficiency of approximate inversion schemes comes at
a price. Because of the incomplete search of the model space,
schemes based on 1-D inversions can be insensitive to features
that are not directly beneath the locations of measurement
(Farquharson and Oldenburg, 1996). For example, if the data
are dominated by a significant feature outside of the profile, the
inversion may have difficulty finding any models which actually
fit the data (e.g., Unsworth et al., 1999), or the inversion may
insert a geologically unreasonable feature beneath the profile.
In addition, inversion of vertical magnetic transfer functions
is difficult with this approach, since vertical magnetic fields
are sensitive to nearby structures, rather than features directly
beneath the sites.

Farquharson and Oldenburg (1996) proposed a somewhat
different approximate approach based on using 2-D sensitiv-
ities of a homogeneous or layered half-space, instead of the
exact sensitivities. This scheme eliminates the need for calcu-
lation of Jk but still requires inversion of large (M × M) ma-
trices. However, in many cases these simple approximations to
the sensitivities are good enough to allow convergence of the
inversion to an acceptable level of misfit. The effectiveness of
this scheme depends on many factors: the complexity of struc-
ture of the true model, the closeness of the structure to the data
sites, and the magnitude of the resistivity contrasts.

Another way to reduce the computational burden in 2-D MT
inversion is provided by the subspace approach of Oldenburg
et al. (1993): the inverse solution is sought in a low-dimensional
subspace of the original M-dimensional model space. The suc-
cess of this approach depends greatly on the choice of subspace
basis vectors. Unfortunately, the proper choice is often not ob-
vious, and a bad selection can lead to a poor solution. A combi-
nation of both approximate sensitivities and the subspace ap-
proach has been used by Oldenburg and Ellis (1993). Current
implementation of OCCAM also allows for a simple sort of
subspace approach, since the resistivity can be parameterized
on a grid coarser than that used for numerical computations.

Rather than approximate the sensitivities, or impose prior
restrictions on the model space, Mackie and Madden (1993)
considered an approach based on a conjugate gradient (CG)
relaxation solution of the linearized normal equations derived
from equation (6). With the relaxation method, the actual com-
putation of the sensitivity matrix can be avoided by using the
fact that evaluating the gradient of the linearized penalty func-
tional requires only one forward solution (per period) with a
distributed set of sources either in the volume or on the sur-
face. CG thus significantly reduces the computational require-
ments (both CPU time and memory) for each iteration, mak-
ing attempts at even 3-D MT inversion feasible (Mackie and
Madden, 1993). The model is updated for each iteration, and
the CG relaxation solution process is repeated until the sta-
tionary point of equation (4) is reached. Note, however, that
since CG is a descent method which does not directly use any
information about curvature of the penalty functional, many
iterations may be required compared to GN or OCCAM. Also,
as for the GN approach, the entire process must be repeated
for different values of λ to find a true minimum structure model
which achieves a specified misfit X 2

∗.
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Rodi and Mackie (2000) considered a variant on this CG ap-
proach. These authors applied NLCG directly to minimization
of equation (4), with λ fixed. Similar to the CG method (Mackie
and Madden, 1993), NLCG requires only a few forward solu-
tions (per period) in each line minimization step. To improve
the convergence rate, a simple preconditioner is used. Again,
to obtain a norm minimizing solution with minimum structure
at the desired misfit, one needs to minimize equation (4) for
various values of λ. Rodi and Mackie (2000) show that the two
descent methods (CG and NLCG) are comparable, and both
are much more efficient than the GN method in terms of CPU
time and memory requirements.

Here, we develop a variant on the OCCAM approach which
is significantly more efficient than previously proposed meth-
ods. We begin by transforming the inverse problem from the
model space into the data space, by expressing the solution as a
linear combination of rows of the sensitivity matrix smoothed
by the model covariance. This transformation reduces the size
of the system of equations to be solved from M × M to N × N .
Since the number of model parameters M is often much larger
than the number of data N , a significant decrease in both CPU
time and memory can be achieved with this approach. More
importantly, the data space formulation leads naturally to a
simple approximation which can result in very significant com-
putational savings in most cases.

Generally, MT data are smooth (in period, and for closely
spaced sites, in space) and “redundant.” Therefore, in the data
space approach, there is no need to use all of the sensitivities as
basis functions. A subset is typically sufficient to construct the
model without significantly loss of detail. With this approxima-
tion, it is unnecessary to compute all sensitivities, and the size of
the system of equations that must be solved can be significantly
reduced. We call this approach the REduced Basis OCCam’s
(REBOCC) inversion. Note that even though we construct the
solution from subset of the smoothed sensitivities, the goal of
the inversion remains to find the norm minimizing model sub-
ject to fitting all of the data well enough. As we shall discuss in
more detail below, in the data space the choice of basis func-
tions is very natural and is dictated by what features can be
resolved by the available data. This is in contrast to the choice
of a model subspace (Oldenburg et al., 1993), where the choice
of subspace is rather arbitrary.

With careful implementation of forward modeling and sen-
sitivity calculations, REBOCC runs in a fraction of the time
required by methods such as GN or OCCAM and is also faster
than DASOCC and NLCG. In addition, memory requirements
are significantly reduced so that large data sets can be inverted
with REBOCC on a standard workstation. The basic idea be-
hind REBOCC generalizes readily to the 3-D case.

THE DATA SPACE OCCAM METHOD (DASOCC)

Parker (1994) shows that the minimizer of equation (6) for
iteration k can be expressed as a linear combination of rows of
the smoothed sensitivity matrix CmJT

k ,

mk+1 − m0 = CmJT
k βk+1, (9)

where βk+1 is an unknown expansion coefficient vector of the
basis functions [CmJT

k ] j ; j = 1, . . . , N , which are sometimes re-
ferred to as the “representers” of the linearized data function-
als for iteration k (e.g., Parker, 1994). Substituting equation (9)

into equation (6), we obtain

W̃ = βT
k+1Γ

n
kβk+1 + λ−1{(d̂k − Γn

kβk+1

)T

× C−1
d

(
d̂k − Γn

kβk+1

)}
. (10)

HereΓn
k = JkCmJT

k is the N × N “data space cross-product” ma-
trix, which is again symmetric and positive semidefinite. Dif-
ferentiating equation (10) with respect to β and rearranging,
the unknown expansion coefficients can be obtained as

βk+1 = (
λCd + Γn

k

)−1d̂k . (11)

The inverse problem thus becomes a search for the N real ex-
pansion coefficientsβk+1, instead of the M-dimensional model,
mk+1. Exactly as for the standard OCCAM, we can solve for
βk+1, update the model, and then check the misfit for various
values of λ. We again choose λ to achieve the minimum mis-
fit if this exceeds the desired level X 2

∗ (phase I) and use this
model as the basis for the next iteration. Once the desired mis-
fit is achieved, phase II begins to wipe out unnecessary features
while keeping the misfit at the desired level.

We emphasize here that we have only transformed the in-
verse problem solution method from the model space to the
data space. Solutions obtained in both spaces will be identical if
we choose all parameters (i.e., λ and Cm) the same. For brevity
we refer to this variant on OCCAM as the Data Space OCCam
(DASOCC) inversion. Note that a data space approach was
also used by Smith and Booker (1988) in their treatment of the
1-D MT inverse problem.

The data space formulation offers several advantages. The
most obvious is the reduction in the dimension of the system
of equations which must be solved (N × N in the data space
instead of M × M in the model space); Generally, N � M . This
will be particularly true for the 3-D case.

Also, calculation in the model space requires C−1
m . Since

it is not practical to specify a full M × M model covariance
matrix Cm and then compute the inverse, C−1

m is replaced by
the first derivative roughness penalty in deGroot-Hedlin and
Constable (1990). In the data space approach, Cm is required,
not its inverse. This offers some advantages since the model
covariance can be readily used to include prior information
such as an ocean or faults which should be fixed in the model.
We discuss these issues in more detail in the model covariance
section and in Appendix A.

REDUCED DATA SPACE OCCAM APPROACHES (REBOCC)

The data space formulation clearly shows that the solution is
a linear combination of natural basis functions or representers.
Each representer corresponds to a single data element (at a
particular period, station, response, and mode). Just as the MT
data should be smooth and redundant, the representers vary
slowly with period and site location for a given response and
mode. These basis functions are thus highly redundant, so that
an excellent approximation to the solution can be found in a
subspace of much lower dimension (Parker and Shure, 1982;
see also Parker, 1994). This simple but critical concept of data
redundancy can significantly speed up the inversion while also
substantially decreasing memory requirements.

Prior to solving the inverse problem, we will select a subset
of L (out of N) data for which representers will be calculated at
each iteration. As a simple example, we could choose all data
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for every other period (so L = N/2). Note that L can typically
be considerably smaller than this, as we shall show later. For
iteration k + 1, we seek solutions of the form

mk+1 = CmGT
k αk+1 + m0, (12)

where αk+1 is the L-dimensional unknown coefficient vector
for the reduced basis, and Gk is the L × M subset sensitivity
matrix.

To fit all of the data and to derive equations for αk+1 analo-
gous to equations (10) and (11), we require the linearized rela-
tionship between δm and d̂k . In fact, we do not strictly have this
relationship, unless we calculate all of the sensitivities. How-
ever, the data vary smoothly, and so a data value would be well
approximated by interpolation of “nearby” data (e.g., adjacent
frequencies from the same site). In the same way, sensitivities
vary smoothly with frequency and/or site location and can be
interpolated from nearby sensitivities. We thus express the ap-
proximation to the full sensitivity matrix Jk in terms of the
subset sensitivity matrix Gk using an interpolation matrix, B,
of size N × L , i.e.,

Jk ≈ BGk . (13)
The interpolation matrix does not need to be very sophis-

ticated. Recall that Farquharson and Oldenburg (1996) had
success in 2-D MT inversion using a very simple sensitivity
matrix generated from either a homogeneous or layered half-
spaced, and RRI uses only 1-D approximate sensitivities. By
comparison, the approximate sensitivity matrix generated by
even a crude interpolation of a sparse subset of representers
will actually be quite close to the exact sensitivity matrix Jk

(Siripunvaraporn, 1999).
Substituting equations (12) and (13) into equation (6), we

find

W̃ = αT
k+1Γ

l
kαk+1 + λ−1{(d̂k − BΓl

kαk+1
)T

× C−1
d

(
d̂k − BΓl

kαk+1
)}

, (14)
where Γl

k = GkCmGT
k is the L × L “data subspace cross-

product” matrix. To give the system of equation to be solved
a form similar to equation (11), we follow Egbert et al. (1994)
by decomposing C−1/2

d B into the N × N orthonormal matrix Q,
where QT = Q−1, and the N × L matrix R, i.e., C−1/2

d B = QR,

where Q = [Q̄ | Q̄0], and RT = [R̄ | 0]. Matrices Q̄ and Q̄0 have
dimensions N × L and N × N − L respectively. Matrix R̄ is the
square L × L upper triangular matrix, and 0 is the N − L × L
zero matrix, i.e., all elements are zeros.

Equation (14) becomes

W̃ = ᾱT
k+1Γ̄

l
kᾱk + 1 + λ−1

{(
Cd

− 1
2 d̂k − QΓ̄l

kᾱk+1

)T

×
(

C
− 1

2
d d̂k − QΓ̄l

k ᾱk + 1

)}
(15)

where

ᾱk+1 = (R̄−1)Tαk+1 (16)
and

Γ̄l
k = R̄Γl

kR̄T . (17)

Inserting QQT = I in between Γ̄l
k and ᾱk + 1 on the right side of

equation (15) and rearranging, this can be rewritten as

W̃ = ᾱT
k+1Γ̄

l
kᾱk+1 + λ−1{X2

min

+ (
d̄k − Γ̄l

kᾱk+1
)T (

d̄k − Γ̄l
kᾱk+1

)}
, (18)

where d̄k = Q̄T C−1/2
d d̂k , and X 2

min = ‖Q̄0C−1/2
d d̂k‖2 = ‖C−1/2

d d̂k‖2

− ‖Q̄T C−1/2
d d̂k‖2 is the approximate minimum achievable total

square misfit for the selected basis. If we use all representers
(i.e., B = I), then X 2

min = 0. This corresponds to the fact that for
a linear problem, we can fit the data exactly if we use all rep-
resenters. This will not be true for the nonlinear MT problem.
Thus X 2

min only provides a very rough estimate of the mag-
nitude of data misfit that might be achieved with the chosen
reduced basis. In general, X 2

min is high in the early iterations,
and decreases to a constant in the later iterations.

Differentiating equation (18) with respect to ᾱ and setting
the result to zero, the unknown expansion coefficients can be
obtained in a form similar to equation (11) ,

ᾱk+1 = (
λI + Γ̄l

k

)−1d̄k . (19)

Again, just as in the model and the data space methods, after
solving equation (19), we update the model using equations
(12) and (16), then solve the forward problem to evaluate X 2

d .
The procedure is repeated to find the appropriate λ. The outer
loop of the iterative minimization of equation (4) proceeds
exactly as for OCCAM or for DASOCC.

Representer subsets for REBOCC

The success of the data subspace approach depends to some
extent on the selection of data points which determine the
representers used in the model expansion. Clearly it is nec-
essary to select the basis to uniformly cover the full data set,
so that the simple interpolation scheme used here is effective.
Beyond this basic criteria, the optimal choice of data subsets is
an issue that needs further study. Here, we offer some simple
schemes based on our experience so far.

Two classes of data subsets which generally seem to work
well are shown in Figure 1. In the first example, every pth period
is chosen for all sites (“pth-stripe” pattern). This pattern is safe
to apply in almost all cases, since for physical consistency the

FIG. 1. Examples of subsets of data used to calculate the rep-
resenters. Representers are calculated for data corresponding
to the filled squares; the open squares represent the remaining
data. (a) First example: “pth-stripe” pattern where every pth
period is selected for all sites (here p = 6). (b) Second exam-
ple: “pth:sth-checker” (with p = 4 and s = 2) pattern where the
selected data form a checker pattern.
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data must be a smooth function of period (e.g., Weidelt, 1972).
Selecting at least one period per decade is our recommendation
for this stripe pattern. Test runs with additional periods should
be made (if feasible, given available computer resources) to
verify that the data space has been adequately resolved.

This pattern offers a significant computation advantage: cal-
culations for the sensitivity matrix need only be done for a
reduced set of periods. For the 2-D problem, these sensitivi-
ties can be calculated by direct factorization of the coefficient
matrix (see forward modeling section). With the pth-stripe pat-
tern, this factorization need only be done for a small subset of
periods. This idea is clearly directly transferable to the 3-D
case.

In the second example every pth period and every sth station
are selected in a staggered pattern to build the basis (“pth:
sth-checker” pattern). As noted above, because of the way we
compute sensitivities, it is generally most efficient to use as
many sites as possible (i.e. small s). However, this pattern can
be used to reduce storage requirements for very large data sets.

Comparison of computational resource requirements

In this section, we summarize the computer resources re-
quired by each method (OCCAM, DASOCC, and REBOCC).
In all three methods, most of the major computational costs
lie in first calculating the sensitivity matrices. This cost should
be equal for OCCAM and DASOCC (if the same method is
used; see the forward modeling and sensitivity calculation sec-
tion), and less for REBOCC, depending on the number of pe-
riods used. Second, computing the cross-product matrices re-
quires about NM 2, MN 2, and ML2 operations, respectively, for
OCCAM, DASOCC, and REBOCC. Third, about M3/6, N 3/6,
and L3/6 flops are required (for each λ) to solve equations (8),
(11), and (19), respectively. In addition, extra calculations are
required for REBOCC to factor B (but this only has to be done
once at the start of the inversion), and for computing the inner
products of equation (17) about L3 once every iteration.

Similarly, the memory required by each method is domi-
nated by storage of two matrices: the sensitivity matrices (about
NM, NM, and LM for OCCAM, DASOCC, REBOCC, respec-
tively) and the cross-product matrices (about M2/2, N 2/2, and
L2/2 for OCCAM, DASOCC, and REBOCC, respectively).
For REBOCC, extra memory is required to store the N × L
interpolation matrix B.

As L approaches N, the extra calculations and memory re-
quired with the REBOCC method become significant. How-
ever, our experience shows that L need only be 10–30% of N to
ensure convergence of REBOCC. Thus REBOCC can reduce
memory requirements by at least 60% and CPU time by more
than 80% compared to DASOCC.

REBOCC AND DASOCC : ALGORITHM DETAILS

The overall stability and efficiency of the DASOCC and
REBOCC schemes depends on many details including forward
modeling, the model covariance, the 1-D line search for the La-
grange multiplier λ, and static shift corrections. In this section
we briefly describe our implementations of these parts of the
inversion algorithms. Further details are provided in Appendix
A and in Siripunvaraporn (1999).

Forward modeling and sensitivity calculation

Forward modeling is the heart of the inversion and thus must
be reliable, fast, and accurate. It is used in two parts of the
inversion—to compute the sensitivity matrix, and to compute
responses for calculating the misfit.

Details on the second-order Maxwell’s equations that must
be solved can be found in many previous publications on the
MT method (e.g., Rodi, 1976). As in Smith and Booker (1991),
we apply the finite difference (FD) method to these equations
to form the discrete system Ax = b, where b contains the terms
associated with the known boundary values and the source
fields, and x represents the unknown electric or magnetic fields.
Boundary conditions for the model domain are as in Smith and
Booker (1991). The accuracy of the solution is controlled by
the quality of the mesh. The reader is referred to Rodi (1976),
deGroot-Hedlin and Constable (1990), and Smith and Booker
(1991) for discussion of these issues.

Sensitivities for MT data (e.g., the apparent resistivity or
phase) can be readily calculated in terms of sensitivities of the
electric and magnetic field components at the surface (Mackie
and Madden, 1993; Rodi, 1976). The surface field components
in turn can always be expressed in the general form aT x (Rodi,
1976), where aT may depend upon m, and x is the discrete
electric or magnetic field solution. These sensitivities may be
calculated from

∂(aT x)
∂m j

= ∂aT

∂m j
x − aT A−1

[
∂A
∂m j

x
]

j = 1, . . . , M.

(20)
The second term of the right side in equation (20) can be com-
puted by solving the same system of equations required for the
forward problem, but with a different right side, (∂A/∂m j )x.

Rodi (1976) shows that there are two ways to calculate the
field component sensitivities of equation (20). One requires
solving the forward problem M times per period, once for each
m j . The other uses the reciprocity property of the forward prob-
lem and requires Ns (number of stations) forward solutions
per period. Good reviews of the sensitivity calculations can be
found in Rodi (1976), Mackie and Madden (1993), Rodi and
Mackie (2000). Since Ns � M , the second approach is gener-
ally much more efficient. We use this approach for REBOCC
and DASOCC.

The sparse system of linear equations Ax = b can be solved
in two general ways: by a direct method using the LU decom-
position or with an iterative method (Press et al., 1992), such as
preconditioned conjugate gradients (PCG). Both approaches
have advantages. With a direct method, after A is decomposed
into lower (L) and upper (U) triangular matrices, solution (by
forward and back substitution) is extremely fast. In REBOCC,
the direct approach is thus used for constructing the sensitiv-
ity matrix where the same system of equations must be solved
for multiple right sides. To solve for a single right side (e.g.,
when calculating the misfit during search for λ) an iterative
method which takes advantage of sparseness is more efficient.
We use an iterative approach in these circumstances. To use
the classical PCG on the complex symmetric system (which is
non-Hermitian), the conjugate transpose is not applied when
computing the inner product, i.e., we use 〈x, y〉 = xT y (Barrett
et al., 1994). To speed up convergence, we use the incomplete
LU decomposition level 3, ILU(3), (Kershaw, 1978; Smith and
Booker, 1991) as a preconditioner.
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Model covariance Cm

In the penalty functional (4), the inverse of the model covari-
ance is required to evaluate the norm mT C−1

m m. Inversion of a
nondiagonal M × M model covariance would not be computa-
tionally practical. Thus, for model space inversion approaches
it is conventional to formulate the model norm in terms of a
“roughness penalty” instead of the inverse of a covariance ma-
trix [for example, deGroot-Hedlin and Constable (1990) used
the first derivative roughness penalty in our equation (2)]. The
relationship of some common roughness penalties to a gener-
alized sort of model covariance is discussed by Wahba (1990).

With a data space approach, inversion of Cm is not required
[see equation (9)]. This gives us a great deal of freedom to de-
fine a model covariance which can include prior information
of various sorts. However, it is not practical to even form an
arbitrary full (nondiagonal) M × M model covariance matrix
for typical 2-D problems. We thus develop a fairly general class
of model covariance functions which allows reasonable flexi-
bility for including prior information and, at the same time,
allows for efficient computation of the matrix product CT

m JT

needed in equations (9) and (12) without actually computing
Cm explicitly. The approach is based on solving the 1-D dif-
fusion equation, alternating between vertical and horizontal
directions. See Appendix A for more technical details.

With this approach, it is not necessary to use a constant cor-
relation length scale (or variances) throughout the model. Dif-
ferent length scales can be used in vertical and horizontal di-
rections and in different parts of the model domain. The model
covariance approach is thus very flexible, and allows rather gen-
eral statistical specification of prior information. For example,
geologic structures such as faults can be incorporated into the
model by letting the smoothing length scale go to zero at the
fault location, or part of the resistivity structure can be frozen
by letting variances go to zero.

The choice of proper correlation length scale is important,
but difficult to justify rigorously. Making length scales too large
can result in difficulties in finding any models that fit the data.
Choosing length scales too small can also result in problems
(e.g., confusion of static shifts with deep lateral structure). In-
evitably some experimentation with correlation length scales
will be required. As a default strategy we make the vertical cor-
relation length scale of each layer proportional to the depth
of that layer, with the horizontal correlation length scale set
to the maximum of the depth and the gap between stations.
On the edges of the model domain, the length scale is set equal
to the distance from sides of the model to the edge stations. This
choice of correlation length scales coincides with the loss of the
resolving power of the data at depth and near the boundaries
of the model.

Line search for λ

At every iteration, we search for the λ that gives the model
[defined by equations (12) and (19)] with the minimum misfit
(phase I) or at the desired misfit (phase II). For each trial value
of λ, the system of equations (19) must be solved, the model
updated, and the misfit computed by solving the forward prob-
lem. Therefore, minimizing the number of λs tried can help us
to further reduce computational costs.

We use a relatively simple search method which takes ad-
vantage of several facts: (1) the misfit is a smooth function of λ,

(2) the range of log10 λ is generally within the interval [0, 6] (for
our default model covariance; see Appendix A for details), and
(3) the optimal choice of λ changes little between iterations.

For the first iteration, we start with three different equally
spaced λs covering one decade of λ. Misfits computed for these
initial λs will tell us whether we should go left or right, or
stop if a minimum has already been bracketed. Usually, this
scheme requires about 3–8 trial values of λ, about half of the
8–12 values of λ per iteration reported for the 2-D Occam’s
inversion by deGroot-Hedlin and Constable (1990). With the
prior knowledge of the previous iteration, the previous three
bracketing points can be used as a starting point for the next
iteration, and the process is repeated. Generally, the optimal
λ does not change much between iterations, so only a small
number of trial values of λ (but at least three) are required.

Once the desired misfit is achieved within the range of trial λs
bracketing the minimum, parabolic interpolation (Press et al.,
1992) is used to locate λ providing the desired level of misfit.
If two or more values of λ bracketing the minimum have the
same (desired) misfit, we choose the larger λ, which usually
corresponds to a smaller model norm.

In general, the desired misfit may never be reached, so that
the smoothing process is not performed. The model with the
minimum misfit (higher than the desired misfit) might contain
some unnecessary features inserted by the inversion to make
the fit better. In this case, we thus recommend an additional
run with a higher target misfit to find the minimum norm model
corresponding to a larger (and this time achievable) misfit.

Static shift correction

Shallow local inhomogeneities can distort the regional elec-
tric field, and cause a frequency-independent shift in the log
apparent resistivity while leaving the phase unaffected. For
REBOCC and DASOCC, static shifts can be incorporated
as additional model parameters, which are automatically es-
timated by the inversion (if requested by the user). For each
iteration static shifts for each site are estimated using the me-
dian residual [observed minus (undistorted) calculated] log10
apparent resistivity. Then, the misfits are recalculated using
the (distorted) calculated responses. More sophisticated ap-
proaches can be used to obtain the static shift factors (e.g.,
deGroot-Hedlin and Constable, 1993; Wu et al., 1993; Ogawa
and Uchida, 1996), but tests with synthetic distorted data indi-
cate that this simple scheme is effective.

NUMERICAL EXPERIMENTS

Synthetic data

To test DASOCC and REBOCC, we generated synthetic
data from a 2-D model adapted from the COPROD2 inversion
results of Wu et al. (1993). The model (Figure 2) consists of four
layers, with three 1 ohm-m rectangular conductors embedded
(see Figure 2 for details). The grid used to form the synthetic
data was well discretized at 170 columns and 183 rows (with an
additional 10 air layers for the TE mode) to ensure accuracy
of the solution. Model responses, including apparent resistiv-
ity and phases for transverse magnetic (TM) and transverse
electric (TE) modes, and also vertical magnetic field transfer
functions (which we will refer to as tipper, or TP), were gen-
erated using the finite element forward modeling program of
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Wannamaker et al. (1986). Data for 36 stations spaced at 3-km
intervals and 31 periods increasing logarithmically from 1 s to
1000 s (about 10 periods per decade) were used for the inver-
sion test. Two-percent Gaussian noise was added to the data
prior to the inversion. Note that the three conductors are not
clearly evident in either TE or TM model responses (Figure 2).

Data space and data subspace inversion

Our first experiment is to invert the full set of synthetic data
with the data space (DASOCC) and data subspace (REBOCC)
methods with different subsets of calculated representers for
TM and combined TM+TE modes. For REBOCC, we consider
three stripe patterns and one checker pattern. All inversions

FIG. 2. (a) Model used to generate synthetic data responses.
Inside the 1000 ohm-m resistive layer, there are three 1 ohm-m
conductors: A, B, and C. Conductor A is 15 km × 15 km, buried
at 15 km depth. Conductor B is 20 km × 20 km, buried at 20 km
depth. Conductor C is 10 km × 10 km, buried at 25 km depth.
A and B are separated by 20 km, B and C are separated by
only 10 km. Apparent resistivities and phases from TM and
TE mode and tippers generated from the model are shown in
(b)–(d), computed using the finite element forward modeling
of Wannamaker et al. (1986) with 2% Gaussian noise added.

FIG. 3. (a) Memory requirements for OCCAM, DASOCC, and REBOCC for different representer subsets for
TM and TM+TE modes. Note that double precision is used. (b) and (c) rms versus CPU time required for
TM and TM+TE inversions with different representer subsets. Iteration numbers are indicated by the plotted
symbols.

are run on a Sun UltraSparc I workstation. The desired rms is
set to 1 (i.e., 2% misfit).

Due to limitations of computer resources, the model grid
used for inverting the data is necessarily coarser. Using differ-
ent forward modeling programs and grids for generating the
data will help to reveal any systematic errors occurring in the
inversion program. The model grid used for the inversion was
thus discretized at 100 columns and 31 layers, plus 10 air lay-
ers for the TE mode. A 100 ohm-m half-space was used as a
starting model for all inversions. The correlation length scales
for all runs were set as described in the model covariance sec-
tion. The horizontal smoothing length scale is set to 3 km (from
the surface to about 3 km depth), whereas the vertical length
scale is equal to the depth. At depths greater than 3 km, the
horizontal and vertical length scales are both set equal to the
depth.

Memory requirements for storing the cross-product and sen-
sitivity matrices for all three methods (OCCAM, DASOCC,
and REBOCC) and the interpolation matrix (for REBOCC
only) are shown in Figure 3a. For TM+TE inversion mem-
ory requirements of the data space (DASOCC) approach ex-
ceed those of the model space (OCCAM) approach because
N is actually larger than M for this joint inversion case. How-
ever, using the reduced basis method, memory requirements
can be significantly reduced (Figure 3a). For example, only 12
MBytes of memory are needed for a TM mode inversion us-
ing the 6th:2nd-checker pattern of calculated representers. Al-
though the memory requirements for OCCAM are comparable
to those of DASOCC, joint TM and TE inversion using this full
data set with OCCAM is not practical. Performance results for
OCCAM (deGroot-Hedlin and Constable, 1990) using a re-
duced data set will be discussed in the next section.

The convergence rates of DASOCC (dashed line) and
REBOCC (solid lines) are plotted in Figure 3b and 3c. For
both the TM and TM+TE inversions, the full basis inversion
(DASOCC) requires much longer per iteration than any of
the REBOCC inversions (by a factor of 6–35). Both the 10th-
stripe and the 6th:2nd-checker data subset patterns have com-
parable numbers of representers (L), and require about the
same amount of CPU time per iteration. However, the 6th:2nd-
checker converges while the 10th-stripe does not. Clearly rep-
resenters for more than one period per decade are required
in this case. For the TM mode, all of the inversions converge
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(except the 10th-stripe) to the desired misfit (5 iterations for
the 6th:2nd-checker subset; 3 iterations for the rest). Models re-
sulting from the different inversions are indistinguishable from
one another. Only the models from the 6th-stripe subset are
shown in Figure 4. For TM+TE inversion, none of the inver-
sions are able to find a model with an rms of 1. Except for the
10th-stripe, all converge to some minimum level, which tends
to get larger as L gets smaller. The minimum misfit is around
1.15 rms for the full basis, and 2.5 rms for the 6th:2nd-checker
subset.

We used a 6th-stripe representer subset for additional single
and joint mode inversions, using the same synthetic data with
the same starting model. Figure 4 shows the results of these
runs. The TM mode inversion reveals the layered host resis-
tivity structure with little lateral variation. In contrast, the TE
inversion reveals two conductors beneath the resistive layer.
The second conductor on the east side of the model from y = 0
to 40 km corresponds to a combination of conductors B and C
in the synthetic model. Interestingly, the tipper inversion dis-
plays the boundaries of the conductors more accurately than
either single mode MT inversion. Even the small third con-
ductor (C) can be distinguished. However, the layered host
resistivity structure is poorly resolved with the tipper inver-
sion. The joint inversion of TM and TE modes shows that the
MT data is fit adequately with only two conductors inside the
resistive layer (although the desired level of misfit is not quite
achieved). Using tipper with the TE mode, and tipper with
the TM mode, the inversions find all three conductors, which
shows that tipper helps to resolve the smallest conductor in this
synthetic case.

Finally, we inverted all data: TM, TE, and tipper (N = 6696,
M = 3100, and L = 1296). The result is shown in Figure 4g. The
inversion requires about 108 MBytes of memory and approxi-
mately 11 hours of run time (on a Sun UltraSparc 1) to obtain

FIG. 4. Models produced by the 6th-stripe REBOCC inver-
sion from various mode combination. The upper panels are
the models from single mode inversion: (a) TM alone, (b) TE
alone, (c) tipper alone. The lower panels are models from joint
inversions: (d) TM and TE, (e) TM and tipper, (f) TE and
tipper, and (g) TM, TE, and tipper.

a model with a rms of 1.05 at the 18th iteration. One can stop
the inversion after the 8th iteration (about 5 hours) to obtain
a model with an rms of about 2 (or 4% error), which is in fact
indistinguishable from the fully converged run.

Comparison with other inversions

In the synthetic data example considered above, we used 10
periods per decade. This is comparable to the spacing of fre-
quency bands obtained by most MT data processing schemes.
However, it is a common practice for at least some inversion
routines (e.g., NLCG and OCCAM) to use only 2–3 periods
per decade.

To provide a fair comparison with these other inversions,
we thus use a decimated data set with 3 periods per decade.
This reduces the number of data to N = 720 for single mode in-
versions, and N = 1440 for joint inversion of TM+TE modes.
A comparison using the full data set is given in Siripunvara-
porn (1999). Here, we compare DASOCC and REBOCC
with several other inversion programs: OCCAM of deGroot-
Hedlin and Constable (1990), NLCG of Rodi and Mackie
(2000), and RRI of Smith and Booker (1991). The same start-
ing model (100 ohm-m half-space) and the same model mesh
(M = 100 × 31 = 3100) were used for all inversions. For timing
comparisons, we run the inversions on the same machine, a Sun
UltraSparc I. We use the 3rd-stripe subset for the REBOCC
inversion (i.e., 4 out of 10 periods were used to calculated the
representers).

Figure 5 shows the models produced by REBOCC,
OCCAM, NLCG, and RRI for TM, TE, and TM+TE data sets
(note that NLCG and RRI do not presently allow for inversion
of tippers). The results from DASOCC are indistinguishable

FIG. 5. Models obtained from the four inversions of TM, TE,
and TM+TE mode discussed in the text. RRI fails to converge
to a reasonable model for the TM+TE mode. The final result
fits poorly and is very rough.
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from REBOCC, and are thus not shown. In Figure 6, we plot
rms misfit against CPU time (and iteration number) for RRI,
REBOCC, DASOCC, NLCG, and OCCAM algorithms for
TM inversion, TE inversion, and joint inversion of TM and
TE modes. Note that the rms misfits in this section are calcu-
lated from the decimated data set. A slightly higher rms value
can be expected for the full data set.

RRI, which is incredibly fast per iteration, requires 12 itera-
tions to converge to the solution at the desired level of misfit for
TM mode (27 iterations for TE mode). However, for the joint
inversion of TM and TE, RRI fails to converge to a reasonable
model. The minimum misfit achieved is quite large (4.53), and
the final model is very rough. The small scale features between
y = −15 km and 0 km (between conductor A and B in the syn-
thetic model; Figure 2) are inserted in the early iterations and,
once there, are very difficult to get rid of in the subsequent itera-
tions (Smith and Booker, 1991). This confusion of the inversion
is perhaps the result of the 1-D sensitivity approximation used
by RRI. Beneath the sites from y = −15 to 0 km, the TM data
(which is not sensitive to the isolated conductors) suggests a
resistive structure; the TE data which is highly sensitive to the
nearby conductors, tries to place conductive features beneath
these sites.

OCCAM is the slowest method, as shown by the large misfit
(the dashed curves at the top of the RMS plots of Figure 6)
after all of other methods have converged to reasonable so-
lutions. For single mode inversions, OCCAM requires about
20 hours per iteration for TM inversion (with a total of 5 itera-
tions required to reach the desired rms) and about 22 hours per
iteration (with a total of 9 iterations required) for TE inversion.
For the joint TM+TE inversion, about 30 hours per iteration
is required, with a total of 30 iterations to reach the desired
RMS. The long run times per iteration of OCCAM result from
larger matrices in the model space and from direct calculation
of the sensitivity matrix elements, without making use of the
reciprocity theorem.

For NLCG, the convergence rate depends on λ, and the op-
timal choice of λ will in general depend on the data set. In this
synthetic data case, we found that λ = 3 resulted in the fastest
convergence rate. NLCG converges to the desired misfit in
29 iterations (about 1100 seconds) for the TM mode, and 48
iterations (about 4400 seconds) for the TE mode (Figure 6).
The same misfits of both single mode inversions can be accom-
plished at a lower CPU time with DASOCC, which requires
about 650 seconds (3 iterations) for the TM inversion, and

FIG. 6. Plots of rms versus CPU time of RRI, 6th-stripe REBOCC, and NLCG for TM, TE, and TM+TE
inversions. Iteration numbers are indicated by the symbols.

about 1200 seconds (5 iterations) for the TE inversion. Conver-
gence can be much more quickly accomplished with REBOCC
3rd-stripe, particularly for the TM mode inversion, where only
about 320 seconds (3 iterations) is required. For the TE mode
inversion, the CPU time of REBOCC is about 1000 seconds
(8 iterations) which is comparable to that of DASOCC. Fur-
thermore, recall that to find a true minimum structure solution
(as REBOCC and DASOCC do), NLCG would have to be run
with several trial values of λ (some of which might converge
more slowly).

For the joint mode inversion, NLCG requires about 11 200
seconds (84 iterations) to reach an rms of 1.7 while REBOCC
and DASOCC only need 3000 seconds (in 11 iterations) and
5000 seconds (in 7 iterations), respectively, to reach a similar
level of misfit. However, in this example NLCG can reduce the
rms to the desired rms of 1 after 157 iterations (21 000 seconds),
whereas both DASOCC and REBOCC only result in a min-
imum rms of 1.1 (after 14 iterations, 10 500 seconds) and 1.4
(after 16 iterations, 4300 seconds), respectively. The failure to
achieve the desired misfit for REBOCC and DASOCC prob-
ably is a result of the model covariance assumed. However in
this case, a model with a rms of 2 and a model with a rms of 1
are indistinguishable.

Note that the convergence times plotted in Figure 6 for
REBOCC reflect only phase I iterations where the goal is to
bring the misfit down to the desired level (1.0 rms). Since for the
joint (TM+TE) inversion the desired level cannot be reached,
one should restart the inversion so that phase II can be com-
pleted with the desired misfit level set to a higher value (e.g., 1.5
rms starting with the model from the 14th iteration of phase I).
phase II is necessary in order to obtain the minimum structure
model (Parker, 1994). At the same time, for NLCG to obtain a
model with minimum structure, several trial values of λ would
be required.

It is difficult to compare the models produced by NLCG,
RRI, OCCAM, DASOCC, and REBOCC (Figure 5) because
of the difference of the smoothing parameters (model covari-
ance). However, all of these inversions (except the joint mode
inversion for RRI) reveal the main features, and produce re-
sponses that fit the data adequately.

Example with field data

Finally, we briefly consider application of REBOCC to a real
data set—a high-density MT profile across the San Andreas
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fault (SAF) near Parkfield, California (Unsworth et al., 1997).
This is a large data set with 55 TM mode responses, 37 TE
mode responses, and 15 tippers each at 41 periods (from 0.01 s
to 100 s). We discretized the model at 200 columns and 74 lay-
ers (plus 10 air layers for the TE mode), and used a 10 ohm-m
half-space as a starting model. The static shift distortion param-
eters are set free so that the program can automatically adjust
the values. An 8th-stripe subset (L = 0.15N) is used for joint
inversion of TM, TE, and vertical magnetic transfer functions.
The results of inversion are shown on Figure 7. After the 4th
iteration (about 12 hours of CPU time on a Sun UltraSparc I),
the inversion finds a model with a misfit of about 13% (an rms
of about 2.7). A slightly better misfit can be obtained after a
few more iterations. However, the norm of the model increases
significantly when the data is fit better. Dimensionality analy-
sis of the full impedance tensor suggests that the misfit of the
model of Figure 7 is reasonable given the degree of 3-D com-
plications in this data set (Siripunvaraporn et al., 1998). Thus,
we prefer the model with the misfit at the 4th iteration. These
CPU times are large, but this is a very large data set (N = 8774)
and big model (M = 14800).

DISCUSSIONS AND CONCLUSIONS

The REBOCC inversion has been shown to be effective in
practice. By using a relatively small subset of the representers,
computational requirements (both memory and CPU time)
can be substantially reduced. The choice of basis functions for
REBOCC is very natural and is dictated by what features can

FIG. 7. Results from the 8th-stripe REBOCC inversion on a
real data set from a high-density profile across the SAF: (a)
the inverse model covering the whole profile; (b) a zoom of
the rectangular region near the fault. Data sites are indicated
by tick marks along the surface. (c) Measured data for TM, TE,
and tippers; (d) corresponding calculated responses.

be resolved by the available data. Even though a small sub-
set of representers is used to form the solution, we emphasize
that the goal of the inversion is to find the norm minimizing
model subject to fitting all of the data adequately. In particular
with REBOCC, it is practical to use the full data set instead
of a subset of periods, as is frequently done with OCCAM or
NLCG.

In the numerical experiments with synthetic data with the full
data set, REBOCC is significantly faster than most other in-
version methods (NLCG, DASOCC, and OCCAM), but slower
than RRI (Siripunvaraporn, 1999). However, we could not get
RRI to converge for joint mode (TM+TE) inversion of our
test data set (Siripunvaraporn, 1999). Possibly, a more expe-
rienced user of this program might be able to vary or adjust
some parameters to make the inversion work successfully.

Experiments with the decimated data set (three periods
per decade, comparable to common practice with NLCG or
OCCAM) shows that REBOCC is still faster than DASOCC
and NLCG. This is particularly true if we consider that the run
times quoted for NLCG are for a single (and optimized) value
of λ. To find a true minimum structure solution (as REBOCC
and DASOCC do), we would have to run NLCG with several
trial values of λ. Without a doubt all of these methods are sig-
nificantly faster than OCCAM, but slower than RRI. However,
as with the case of the full data set, we could not get RRI to
converge for the joint mode inversion.

CG and NLCG are descent methods which make no use
of the second derivative (Hessian) of the penalty functional.
GN and OCCAM essentially calculate the full Hessian, while
REBOCC make a very good (but not perfect) approximation.
Our results indicate that this approximate calculation is worth
the effort. This is particularly true for the 2-D case considered
here, where direct LU factorization of the differential equation
coefficient matrix is feasible, since in this case many sensitivities
can be computed quickly once the factorization is complete.

Using the decimated data set might result in significantly less
CPU time and memory. However, there is no guarantee that
the model obtained in this way will fit the data that are omitted
well enough. Models obtained by inverting a decimated data
set might sometimes depend on which data are selected. This
is much less likely to be the case for REBOCC, since we still
require the model to fit all of the data. With only 2–3 points fit
per decade, even a single bad estimate could result in significant
model errors or difficulties in convergence. Requiring that all
data be fit (as REBOCC does) should be expected to improve
stability and robustness of the inversion.

The basic idea behind the REBOCC algorithm could also
be applied to the 3-D inversion problem. We thus do not agree
with the statement made by Rodi and Mackie (2000) that any
sorts of inversion based on a sensitivity calculation will not
be practical for realistic 3-D EM problems, even allowing for
improvement of the computer hardware. A straightforward
extension of REBOCC to 3-D inversion is readily apparent,
although for calculating the sensitivity matrix the LU decom-
position would probably be impractical (except on a supercom-
puter) and have to be replaced by a relaxation method.

The possibility of adapting the reduced basis method to other
inversion approaches also deserves consideration. For exam-
ple, one could try to solve equation (19) using conjugate gra-
dients. As in the model space conjugate gradient approach
used by Mackie and Madden (1993), the matrix multiplications
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required can be reduced to solving the forward problem twice
per inner-loop iteration. Using the reduced basis idea, forward
calculations could be made for only a subset of frequencies.
Sensitivity and cross-product matrices would not have to be
constructed or stored. However, a full conjugate gradient so-
lution would be required for each λ, so a true OCCAM-type
approach would probably not be practical. A similar data space
conjugate gradient scheme has been applied to oceanographic
and meteorological inversion problems by Egbert (1997) and
Bennett et al. (1996), respectively.

In summary, we believe that REBOCC is a significant ad-
vance in practical methods for solution of 2-D MT inverse prob-
lems, and that the basic ideas of our implementation should be
highly relevant to the 3-D problem in some form.
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APPENDIX A

MODEL COVARIANCE

Initially, we consider covariances of the general form

CM(r, r′) = η2(r)�(r − r′), (A-1)

where η2(r) is a prior model variance at r in the model domain,
and �(r − r′) = exp( − [(r − r′)/re]2) is the model correlation
(with length scale re). For our initial discussion, we assume
η2(r) is a constant. Cm is the discrete representation of the co-
variance function CM(r, r′). Multiplication of a vector u in the
discrete model parameter space (e.g., u could be a column of
JT ) by Cm is a discrete representation of the integral∫

CM(r, r′)U(r′)dr′, (A-2)

in which U(r′) is smoothed by convolution with CM, and u is
the discrete representation of U .

Egbert et al. (1994) show that this integral can be computed
(up to a scalar factor) by introducing a “pseudotime” t and
solving the diffusion equation

∂U
∂t

= γ ∇2U (A-3)

with initial condition U(r′). Here ∇2 is the 2-D Laplacian op-
erator and γ is a diffusion parameter. If the pseudo diffusion
time τ is chosen so that re = √

4γ τ , the integral (A-2) is given by
U(r, t = τ ). The matrix product Cmu can thus be computed by
explicit time stepping of equation (A-3) on the model grid from
t = 0 to τ . In general, allowing for a spatially varying variance
η2(r), the scheme can be expressed as

Cm = ΣD
− 1

2
0 Dτ D

− 1
2

0 Σ, (A-4)

where Σ is the diagonal discrete model space variance matrix,
D is the sparse diffusion operator matrix, and D0 is a diagonal
normalization matrix. The normalization factors on the diago-
nal of D0 are calculated from solving equation (A-3) by replac-
ing U with a delta function as an initial condition. Therefore,
computation of this normalization matrix requires solving the

diffusion equation M times, but only once at the beginning of
the process. Note that each step (i.e., multiplication by D) rep-
resents a local smoothing of the field which requires minimal
storage or computation time.

Egbert et al. (1994) applied this general approach to an
oceanographic inverse problem. For REBOCC and DASOCC,
we consider a slightly different approach based on a simple
application of operator splitting methods (Press et al., 1992)
which is more efficient and better suited to the MT inverse
problem. With this approach, the 2-D diffusion equation is re-
placed by a series of 1-D problems alternating between vertical
and horizontal directions:

Cm = ΣD
− 1

2
0

[
D

1
2
HDVD

1
2
H

]τ

D
− 1

2
0 Σ. (A-5)

Solutions of each 1-D diffusion equation (i.e., multiplication
by DH and DV) is rapid with a fully implicit method which is
trivially implemented for a 1-D problem. This scheme is sta-
ble for arbitrarily long “time steps.” Since we do not need an
accurate solution of the diffusion equation to define a reason-
able model correlation function, we use only a small number
of pseudotime steps, τ . Different length scales can be used in
vertical and horizontal directions as described earlier.

The model covariance of equation (A-5) allows only for per-
turbations around the assumed background model, which may
in fact be grossly wrong. We can make some allowance for this
in the model covariance by adding a constant matrix K (all
elements are κ) so that the covariance matrix Cm becomes

Cm = Σ
(

K + D
− 1

2
0

[
D

1
2
HDVD

1
2
H

]τ

D
− 1

2
0

)
Σ.

The addition of K to the model covariance corresponds to al-
lowing for uncertainties in the level of a constant background
resistivity. In our experience, κ = 1 usually works well [with
η2(r) = 1]; however, the limits of this choice need to be better
understood.


