
GEOPHYSICS, VOL. 66, NO. 1 (JANUARY-FEBRUARY 2001); P. 174–187, 7 FIGS., 4 TABLES.

Nonlinear conjugate gradients algorithm
for 2-D magnetotelluric inversion

William Rodi∗ and Randall L. Mackie‡

ABSTRACT

We investigate a new algorithm for computing reg-
ularized solutions of the 2-D magnetotelluric inverse
problem. The algorithm employs a nonlinear conju-
gate gradients (NLCG) scheme to minimize an objec-
tive function that penalizes data residuals and second
spatial derivatives of resistivity. We compare this al-
gorithm theoretically and numerically to two previous
algorithms for constructing such “minimum-structure”
models: the Gauss-Newton method, which solves a se-
quence of linearized inverse problems and has been
the standard approach to nonlinear inversion in geo-
physics, and an algorithm due to Mackie and Madden,
which solves a sequence of linearized inverse prob-
lems incompletely using a (linear) conjugate gradients
technique. Numerical experiments involving synthetic
and field data indicate that the two algorithms based
on conjugate gradients (NLCG and Mackie-Madden)

are more efficient than the Gauss-Newton algorithm
in terms of both computer memory requirements and
CPU time needed to find accurate solutions to problems
of realistic size. This owes largely to the fact that the
conjugate gradients-based algorithms avoid two com-
putationally intensive tasks that are performed at each
step of a Gauss-Newton iteration: calculation of the
full Jacobian matrix of the forward modeling operator,
and complete solution of a linear system on the model
space. The numerical tests also show that the Mackie-
Madden algorithm reduces the objective function more
quickly than our new NLCG algorithm in the early stages
of minimization, but NLCG is more effective in the
later computations. To help understand these results,
we describe the Mackie-Madden and new NLCG algo-
rithms in detail and couch each as a special case of a
more general conjugate gradients scheme for nonlinear
inversion.

INTRODUCTION

The standard approach to solving nonlinear inverse prob-
lems in geophysics has been iterated, linearized inversion. That
is, the forward function (for predicting error-free data) is ap-
proximated with its first-order Taylor expansion about some
reference model; a solution of the resulting linear inverse prob-
lem is computed; the solution is then taken as a new reference
model, and the process is repeated. Such schemes are generally
some form of Newton’s method (typically Gauss-Newton or
Levenberg-Marquardt). When run to convergence, they min-
imize an objective function over the space of models and, in
this sense, produce an optimal solution of the nonlinear in-
verse problem. Most inversion algorithms for magnetotelluric
(MT) data have been iterated, linearized methods. For 1-D
earth models, these include the algorithms of Wu (1968) and
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Jupp and Vozoff (1975), which obtain nonlinear least-squares
solutions, and those of Smith and Booker (1988) and Constable
et al. (1987), which find nonlinear least-squares solutions sub-
ject to a smoothness constraint (“regularized” solutions). Jupp
and Vozoff extended their algorithm to the case of 2-D models
(Jupp and Vozoff, 1977), and algorithms for finding regular-
ized solutions of the 2-D MT problem have been presented by
Jiracek et al. (1987), Madden and Mackie (1989), Rodi (1989),
deGroot-Hedlin and Constable (1990), and Smith and Booker
(1991). Mackie and Madden (1993) implemented an iterated,
linearized inversion algorithm for 3-D MT data, as did Newman
(1995) and Newman and Alumbaugh (1997) for the related
problem of crosswell electromagnetic data. However, the use-
fulness of such algorithms in 3-D electromagnetic inverse prob-
lems has been hampered by severe computational difficulties,
which we now discuss.
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Compared to global optimization methods like grid search,
Monte-Carlo search, and genetic algorithms, inversion meth-
ods that make use of the Jacobian (first-order derivative) of the
forward function, like those cited in the previous paragraph,
generally require the testing of many fewer models to obtain
an optimal solution of an inverse problem. This fact is of critical
importance in 2-D and 3-D electromagnetic inverse problems
where the forward function entails the numerical solution of
Maxwell’s equations, and is the reason that iterated, linearized
methods have occupied center stage in electromagnetic inver-
sion despite their greater susceptibility to finding locally rather
than globally optimal solutions. On the other hand, generation
of the Jacobian in these same problems multiplies the com-
putational burden many times over that of evaluating the for-
ward function alone, even when efficient reciprocity techniques
(Madden, 1972; Rodi, 1976; McGillivray and Oldenburg, 1990)
are exploited. Moreover, iterated, linearized inversion meth-
ods, done to prescription, have the additional computational
chore of solving a linear system on the model space at each
iteration step. These two tasks—generating the Jacobian and
linear inversion—dominate the computations in 2-D and 3-D
MT inversion, where the number of data and model parameters
are typically in the hundreds or thousands. The computation of
optimal solutions to the 2-D MT inverse problem can require
several hours of CPU time on a modern workstation, whereas
computing optimal solutions of the 3-D problem is impractical
on the computers widely available today.

This computational challenge has motivated various algo-
rithmic shortcuts in 2-D and 3-D MT inversion. One approach
has been to approximate the Jacobian based on electromag-
netic fields computed for homogeneous or 1-D earth mod-
els, which has been used in 2-D MT inversion by Smith and
Booker (1991) in their “rapid relaxation inverse” (RRI) and
by Farquharson and Oldenburg (1996) for more general 2-D
and 3-D electromagnetic problems. Other workers have sought
approximate solutions of the linearized inverse problem. In this
category is the method of Mackie and Madden (1993), which
solves each step of a Gauss-Newton iteration incompletely us-
ing a truncated conjugate gradients technique. In addition to
bypassing the complete solution of a large linear system, the al-
gorithm avoids computation of the full Jacobian matrix in favor
of computing only its action on specific vectors. Although not
as fast as RRI, the Mackie-Madden algorithm does not em-
ploy approximations to the Jacobian and requires much less
computer time and memory than the traditional iterated, lin-
earized inversion methods (as we will demonstrate in this pa-
per). Also in this category is the “subspace method,” applied by
Oldenburg et al. (1993) to dc resistivity inversion and by oth-
ers to various other geophysical inverse problems. This method
reduces the computational burden by solving each linearized
inverse problem on a small set of judiciously calculated “search
directions” in the model space.

In their use of incomplete solutions of the linearized inverse
problem, the subspace and Mackie-Madden inversion methods
depart from the strict schema of iterated, linearized inversion,
with an accompanying reduction in the computer resources
needed to solve large, nonlinear inverse problems. In this pa-
per we investigate an approach to electromagnetic inversion
that is a further departure from the geophysical tradition: non-
linear conjugate gradients (NLCG), or conjugate gradients ap-
plied directly to the minimization of the objective function pre-

scribed for the nonlinear inverse problem. The use of conjugate
gradients for function minimization is a well-established opti-
mization technique (Fletcher and Reeves, 1959; Polak, 1971)
and was suggested for nonlinear geophysical inverse prob-
lems by Tarantola (1987). It has been applied to varied geo-
physical problems, including crosswell traveltime tomography
(Matarese and Rodi, 1991; Matarese, 1993), crosswell wave-
form tomography (Thompson, 1993; Reiter and Rodi, 1996),
and dc resistivity (Ellis and Oldenburg, 1994; Shi et al., 1996).

Our investigation compares the numerical performance of
three algorithms for 2-D magnetotelluric inversion: a Gauss-
Newton algorithm, the Mackie-Madden algorithm, and a new
NLCG algorithm. In tests involving synthetic and real data, the
algorithms are applied to the minimization of a common objec-
tive function so that algorithm efficiency and accuracy can be
compared directly. Rather than implement a published NLCG
algorithm (e.g., Press et al., 1992), we designed our NLCG al-
gorithm to avoid excessive evaluations of the forward problem
and to fully exploit the computational techniques for Jacobian
operations used in the Mackie-Madden algorithm. Conversely,
we modified the original Mackie-Madden algorithm to include
a preconditioner that we developed for NLCG. Given this, we
can state two objectives of our study: to demonstrate quanti-
tatively the computational advantages of the two algorithms
that use conjugate gradients (Mackie-Madden and NLCG)
over a traditional iterated, linearized inversion scheme (Gauss-
Newton); and to determine whether the NLCG framework
offers improvements over the Mackie-Madden approach as
a conjugate gradients technique. Towards the latter end and
as a prelude to future research on the conjugate-gradients
approach to nonlinear inversion, we describe the Mackie-
Madden and our new NLCG algorithms in common terms and
in detail in an attempt to isolate the precise differences between
them.

PROBLEM FORMULATION

Forward model for 2-D magnetotellurics

As is customary in 2-D magnetotellurics, we model the solid
earth as a conductive halfspace, z≥ 0, underlying a perfectly re-
sistive atmosphere. The electromagnetic source is modeled as a
plane current sheet at some height z=−h. Given that the phys-
ical parameters of the earth are independent of one cartesian
coordinate (x), Maxwell’s equations decouple into transverse
electric (TE) and transverse magnetic (TM) polarizations. For
the purpose of calculating MT data at low frequency, it suffices
to solve (see, for example, Swift, 1971)
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for the TM polarization, where Ex (Hx) is the x component of
the electric (magnetic induction) field, ω is angular frequency,
µ is the magnetic permeability (assumed to be that of free
space), σ is the electrical conductivity, and ρ is the inverse of
conductivity, or resistivity.

MT data are electric-to-magnetic-field ratios in the fre-
quency domain, which can be expressed as complex apparent
resistivities. For the TE polarization, the complex apparent re-
sistivity is defined as

ρapp = i

ωµ

( 〈Ex〉
〈Hy〉

)2

. (5)

〈Ex〉 denotes the value of Ex at an observation site, which is
usually taken to be Ex at a point but, more generally, can be a
spatial average of the Ex field. 〈Hy〉 is an analogous functional
of the Hy field. We note that Maxwell’s equations imply

Hy = 1
iωµ

∂Ex

∂z
. (6)

For the TM polarization, we have

ρapp = i

ωµ

( 〈Ey〉
〈Hx〉

)2

(7)

and

Ey = ρ ∂Hx

∂z
. (8)

We point out that the traditional real apparent resistivity is the
modulus of ρapp .

Numerical modeling

To solve equations (1)–(8) approximately for a broad class
of resistivity functions, the inversion algorithms in this paper
employ the numerical forward modeling algorithm described
by Mackie et al. (1988). In this algorithm, the halfspace z≥ 0 is
segmented into 2-D rectangular blocks of varying dimensions,
each having a constant resistivity. Spatially heterogeneous re-
sistivity models ensue from varying the resistivities among the
blocks. The blocks abutting and outside a finite region are
semi-infinite. Maxwell’s equations are approximated by finite-
difference equations derived using the transmission-network
analog of Madden (1972).

For each polarization and frequency, the finite-difference
equations can be expressed as a complex system of linear
equations,

Kv = s. (9)

In the case of the TE polarization, this linear system represents
equations (1) and (2) with the vector v comprising samples of
the Ex field on a grid. The complex symmetric matrix K and
right-hand-side vector s are functions of frequency and the di-
mensions and resistivities of the model blocks. For a given ob-
servation site, the quantity 〈Ex〉 in equation (5) is calculated as
a linear combination of the elements of v, representing some
sort of linear interpolation and/or averaging of the Ex field.
Likewise, 〈Hy〉 is calculated as a (different) linear function of
v, in this case representing also numerical differentiation in
accordance with equation (6). Thus, the complex apparent re-

sistivity for one site is given by the formula

ρapp = i

ωµ

(
aTv
bTv

)2

(10)

where a and b are given vectors. An analogous discussion ap-
plies to the TM polarization, with v being a discretization of
the Hx field and with different choices of K, s, a, and b.

Inversion method

We can write the inverse problem as

d = F(m)+ e

where d is a data vector, m is a model vector, e is an er-
ror vector, and F is a forward modeling function. We take
d= [d1 d2 · · · dN]T with each di being either the log amplitude
or phase ofρapp for a particular polarization (TE or TM), obser-
vation site, and frequency (ω). We take m= [m1 m2 · · · mM ]T

to be a vector of parameters that define the resistivity function.
Being consistent with the numerical forward modeling scheme,
we let M be the number of model blocks and each mj be the
logarithm of resistivity (log ρ) for a unique block. Given these
definitions of d and m, the function F is defined implicitly by
equations (9) and (10).

We solve the inverse problem in the sense of Tikhonov and
Arsenin (1977), taking a “regularized solution” to be a model
minimizing an objective function, 9, defined by

9(m) = (d− F(m))TV−1(d− F(m))+λmTLTLm (11)

for given λ, V, and L. The regularization parameter, λ, is a pos-
itive number. The positive-definite matrix V plays the role of
the variance of the error vector e. The second term of 9 de-
fines a stabilizing functional on the model space. In this study
we choose the matrix L to be a simple, second-difference op-
erator such that, when the grid of model blocks is uniform, Lm
approximates the Laplacian of log ρ.

The remainder of this paper deals with numerical algorithms
for minimizing 9.

MINIMIZATION ALGORITHMS

We will consider three numerical algorithms for minimiz-
ing the objective function 9 with respect to m: the Gauss-
Newton method, the method of Mackie and Madden (1993),
and nonlinear conjugate gradients. For the remainder of this
paper, we will label our particular implementation of these al-
gorithms as GN, MM, and NLCG, respectively. Each algorithm
generates a sequence of models m0,m1, . . , with the hope that
9(m`)→ minm 9(m) as `→∞.

To describe the three algorithms in detail, we introduce the
following notations. The gradient and Hessian of the objective
function are the M-dimensional vector g and M ×M symmetric
matrix H defined by

gj (m) = ∂ j9(m)

H jk(m) = ∂ j ∂k9(m), j, k = 1, . . . ,M

where ∂ j signifies partial differentiation with respect to the j th
argument of a function [reading 9(m) as 9(m1,m2, . . . ,mM )].
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Let A denote the Jacobian matrix of the forward function F :

Ai j (m) = ∂ j F
i (m), i = 1, . . . , N; j = 1, . . . ,M.

Given equation (11), we have

g(m) = −2A(m)TV−1(d− F(m))+ 2λLTLm (12)

H(m) = 2A(m)TV−1A(m)+ 2λLTL− 2
N∑

i=1

qi Bi (m)

(13)

where Bi is the Hessian of Fi and q=V−1(d− F(m)).
We also define an approximate objective function and its gra-

dient and Hessian based on linearization of F . For linearization
about a model mref , define

F̃(m;mref ) = F(mref )+A(mref )(m−mref )

9̃(m;mref ) = (d− F̃(m;mref ))TV−1(d− F̃(m;mref ))

+ λmTLTLm.

It is easy to show that the gradient and Hessian of 9̃ are given
by the expressions

g̃(m;mref ) = −2A(mref )TV−1(d− F̃(m;mref ))

+ 2λLTLm

H̃(mref ) = 2A(mref )TV−1A(mref )+ 2λLTL. (14)

9̃ is quadratic in m (its first argument), g̃ is linear in m, and H̃
is independent of m. In fact,

9̃(m;mref ) = 9(mref )+ g(mref )T(m−mref )

+ 1
2

(m−mref )TH̃(mref )(m−mref ) (15)

g̃(m;mref ) = g(mref )+ H̃(mref )(m−mref ). (16)

Clearly F̃(mref ;mref )= F(mref ), 9̃(mref ;mref )=9(mref )
and g̃(mref ;mref )= g(mref ), but H̃(mref ) is only an approx-
imation to H(mref ) obtained by dropping the last term in
equation (13).

Gauss-Newton algorithm (GN)

One can describe the Gauss-Newton iteration as recursive
minimization of 9̃, i.e. the model sequence satisfies

m0 = given

9̃(m`+1;m`) = min
m
9̃(m;m`), ` = 0, 1, 2, . . . . (17)

A consequence of equation (17) is that the gradient vector,
g̃(m`+1;m`), is zero. In light of equation (16), m`+1 satisfies the
linear vector equation

H̃`(m`+1 −m`) = −g`, (18)

where we make the abbreviations

g` ≡ g(m`)

H̃` ≡ H̃(m`).

Presuming H̃` to be nonsingular, this necessary condition is
also sufficient and we can write the Gauss-Newton iteration as
m`+1=m`− H̃−1

` g`.
Levenberg (1944) and Marquardt (1963) proposed a modi-

fication of the Gauss-Newton method in which the model in-
crement at each step is damped. The rationale for damping
is to prevent unproductive movements through the solution
space caused by the nonquadratic behavior of 9 or poor con-
ditioning of H̃. In algorithm GN, we employ a simple version
of Levenberg-Marquardt damping and replace equation (18)
with (

H̃` + ε`I
)
(m`+1 −m`) = −g`. (19)

Here, I is the identity matrix and ε` is a positive damping pa-
rameter allowed to vary with iteration step. Since the objec-
tive function we are minimizing includes its own damping in
the form of the stabilizing (last) term in equation (11), and
since this term is a quadratic function of m, a large amount of
Levenberg-Marquardt damping is not needed in our problem.
Algorithm GN chooses ε` to be quite small after the first few
iteration steps and is therefore not a significant departure from
the Gauss-Newton method.

Our implementation of the Gauss-Newton algorithm solves
equation (19) using a linear, symmetric system solver from
the Linpack software library (Dongarra et al., 1979). First, the
damped Hessian matrix, H̃` + ε`I, is factored using Gaussian
elimination with symmetric pivoting. The factored system is
then solved with−g` as the right-hand side vector. The Jacobian
matrix, A(m`), is needed to compute g` and H̃` in accordance
with equations (12) and (14). GN generates the Jacobian us-
ing the reciprocity method of Rodi (1976), which translates
the task to that of solving a set of “pseudoforward” problems
having the same structure as equation (9) (see Appendix). The
memory requirements of GN are dominated by storage of the
Jacobian (NM real numbers) and the Hessian (M2 real num-
bers). We note that the memory needed for forward modeling
and evaluating 9 scales linearly with N and M .

Convergence of the Gauss-Newton, or Levenberg-
Marquardt, iteration implies that the sequence g` converges
to zero and thus that the solution is a stationary point of 9.
Whether the stationary point corresponds to a minimum or
otherwise depends on how strongly nonquadratic 9 is. When
the method does find a minimum of 9, there is no assurance
that it is a global minimum.

Mackie-Madden algorithm (MM)

The second minimization algorithm we study is the algo-
rithm first introduced by Madden and Mackie (1989) and fully
implemented and more completely described by Mackie and
Madden (1993). As adapted to 3-D dc resistivity inversion, the
algorithm is also described by Zhang et al. (1995).

Mackie and Madden (1993) presented their algorithm as
iterated, linearized inversion. Solution of the linear inverse
problem at each iteration step was formulated in terms of
a maximum-likelihood criterion. It is informative and well
serves our purpose to recast the Mackie-Madden algorithm
as a modification of the Gauss-Newton method which, like
Gauss-Newton, performs a minimization of the nonquadratic
objective function 9.
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That is, algorithm MM is a Gauss-Newton iteration in which
the linear system (18) is solved incompletely by a conjugate
gradients (CG) technique. The incompleteness results from
halting the conjugate gradients iteration prematurely after a
prescribed number of steps, K . Thus, for each `, the updated
model, m`+1, is generated as a sequence:

m`,0 = m`

m`,k+1 = m`,k + α`,kp`,k, k = 0, 1, . . . , K − 1

m`+1 = m`,K .

For each k, the vector p`,k is a search direction in model space
and the scalar α`,k is a step size. Let us make the additional
abbreviation

g̃`,k ≡ g̃(m`,k;m`).

In accordance with the CG algorithm (Hestenes and Stiefel,
1952), the step size is given by the formula

α`,k = −
g̃T
`,kp`,k

pT
`,kH̃`p`,k

, (20)

which, we point out, solves the univariate minimization prob-
lem,

9̃(m`,k + α`,kp`,k;m`) = min
α
9̃(m`,k + αp`,k;m`).

The search directions are iterated as

p`,0 = −C`g`

p`,k = −C`g̃`,k + β`,kp`,k−1, k = 1, 2, . . . , K − 1 (21)

where the M ×M positive-definite matrix C` is known as a
preconditioner, and where the scalars β`,k are calculated as

β`,k =
g̃T
`,kC`g̃`,k

g̃T
`,k−1C`g̃`,k−1

.

The first term of equation (21) is a preconditioned steepest de-
scent direction, which minimizes pTg̃`,k, the directional deriva-
tive of 9̃(m;m`) at m=m`,k, with pTC−1

` p fixed. The second
term modifies the search direction so that it is conjugate to
previous search directions, meaning

pT
`,kH̃`p`,k′ = 0, k′ < k. (22)

The final ingredient of the conjugate gradients algorithm is
iteration of the gradient vectors:

g̃`,0 = g`

g̃`,k+1 = g̃`,k + α`,kH̃`p`,k, k = 0, 1, . . . , K − 2,

which follows from equation (16).
The main computations entailed in algorithm MM are in-

volved in the evaluation of the forward function, F(m`), for
each ` [needed to compute 9(m`) and g`], and operation with
the Jacobian matrix and its transpose for each k and `. Regard-
ing the latter, let

A` ≡ A(m`)

and define

f`,k = A`p`,k, k = 0, 1, . . . , K − 1. (23)

Then the denominator of equation (20) can be written

pT
`,kH̃`p`,k = 2fT

`,kV−1f`,k + 2λpT
`,kLTLp`,k,

and the iteration for gradient vectors becomes

g̃`,0 = −2AT
` V−1(d− F(m`))+ 2λLTLm` (24)

g̃`,k+1 = g̃`,k + 2α`,kAT
` V−1f`,k + 2α`,kλLTLp`,k,

k = 0, 1, . . . , K − 2. (25)

From equations (23)–(25), we see that A` and AT
` each operate

on K vectors, or one each per CG step. Mackie and Madden
(1993) showed that operations with the Jacobian and its trans-
pose can be accomplished without computing the Jacobian
itself. Instead, the vector resulting from either of these op-
erations can be found as the solution of a single pseudofor-
ward problem requiring the same amount of computation as
the actual forward problem, F . (We define one forward prob-
lem to include all frequencies and polarizations involved in
the data vector.) The algorithms for operating with A` and
AT
` are detailed in the Appendix. The main memory used by

MM comprises several vectors of length N (e.g. f`,k) and M
(e.g. p`,k, g̃`,k, and C`g̃`,k). Our preconditioner (C`) requires
no storage (see the section “Preconditioning” below). Thus,
the memory needed by MM scales linearly with the number of
data and model parameters, compared to the quadratic scaling
for GN.

We apply algorithm MM using relatively few CG steps per
Gauss-Newton step. The main purpose in doing so is to keep
the computational effort needed for Jacobian operations un-
der that which would be needed to generate the full Jacobian
matrix. The Jacobian operations performed in K CG steps of
MM require computations equivalent to solving 2K forward
problems, as indicated above. The computational effort needed
to generate the full Jacobian matrix is harder to characterize
in general but, in the usual situation where the station set
is common for all frequencies and polarizations, amounts to
one forward problem per station. Therefore, MM will do less
computation (related to the Jacobian) per Gauss-Newton step
than GN when K is less than half the number of stations. Ad-
ditonally, algorithm MM avoids the factorization of H̃. Trun-
cating the CG iteration also effects a kind of damping of the
Gauss-Newton updates, achieving similar goals as Levenberg-
Marquardt damping. It is for this reason that algorithm MM
solves the undamped system (18), rather than system (19).

Nonlinear conjugate gradients (NLCG)

In algorithm MM, the method of conjugate gradients was
applied inside a Gauss-Newton–style iteration to incompletely
solve a linear system or, equivalently, to incompletely minimize
a quadratic approximation to the objective function. Nonlin-
ear conjugate gradients (see, for example, Luenberger, 1984)
directly solve minimization problems that are not quadratic,
abandoning the framework of iterated, linearized inversion.
Algorithm NLCG employs the Polak-Ribiere variant of non-
linear conjugate gradients (Polak, 1971) to minimize the objec-
tive function 9 of equation (11).



NLCG Algorithm for 2-D MT Inversion 179

The model sequence for nonlinear CG is determined by a
sequence of univariate minimizations, or line searches, along
computed search directions:

m0 = given

9(m` + α`p`) = min
α
9(m` + αp`) (26)

m`+1 = m` + α`p`, ` = 0, 1, 2, . . . .

The search directions are iterated similarly to linear CG:

p0 = −C0g0

p` = −C`g` + β`p`−1, ` = 1, 2, . . . (27)

where, in the Polak-Ribiere technique,

β` = gT
` C`(g` − g`−1)
gT
`−1C`−1g`−1

.

The quantity −C`g` is again the (preconditioned) steepest de-
scent direction, minimizing the directional derivative of9 eval-
uated at m`. Unlike linear CG, the search directions are not
necessarily conjugate with respect to some fixed matrix, as in
equation (22), but they do satisfy the weaker condition

pT
` (g` − g`−1) = 0, ` > 0. (28)

The minimization problem, equation (26), is not quadratic
and requires some iterative technique to solve. Since it involves
only a single unknown, it is tempting to attack the problem as
one of global optimization, i.e., finding a global minimum of
9 with respect to α. Doing so would gain one advantage over
the Gauss-Newton method, which makes no attempt to dis-
tinguish local from global minima. However, global optimiza-
tion potentially leads to many forward problem calculations
per NLCG step. Given the computational intensity of the MT
forward problem, algorithm NLCG does not attempt global
line minimization but approaches equation (26) with compu-
tational parsimony as a primary consideration.

Our line search algorithm is a univariate version of the
Gauss-Newton method, with certain modifications. To describe
it efficiently, we denote the univariate function to be minimized
as 8` and its Gauss-Newton approximation as 8̃`:

8`(α) ≡ 9(m` + αp`)

8̃`(α;mref ) ≡ 9̃(m` + αp`;mref ).

Our line search generates a sequence of models

m`,k = m` + α`,kp`, k = 0, 1, 2, . . . ,

where

α`,0 = 0
(29)

8̃`(α`,k+1;m`,k) = min
α
8̃`(α;m`,k), k = 0, 1, 2, . . . .

Since 9̃(m;m`,k) is quadratic in m, 8̃`(α;m`,k) is quadratic in
α and it is easy to show that the minimization in equation (29)
is solved by

α`,k+1 = α`,k −
gT
`,kp`

pT
` H̃`,kp`

. (30)

Here we define

g`,k ≡ g(m`,k)

H̃`,k ≡ H̃(m`,k).

Our modifications of this Gauss-Newton scheme are

1) We keep track of the best (smallest 9) model encoun-
tered in the line search. Let us denote this as m`,best ≡
m`+α`,best p`.

2) If 8` increases during the iteration (8`(α`,k)>
8`(α`,k−1)), we calculate the next step-size by bisection:

α`,k+1 = 1
2

(α`,k + α`,best). (31)

3) On the second or later steps of a line search, if the current
and previous best models bracket a minimum, in the sense
that (prime denotes derivative)

8′`(α`,best)8′`(α`,k) < 0,

then, instead of equation (30), α`,k+1 is calculated so as
to yield the local minimum of a cubic approximation to
8`(α). The cubic approximation matches 8` and 8′` at
α=α`,k and α=α`,best .

The line search is deemed to converge when the estimated
value of the objective function for α`,k+1, predicted by the
quadratic or cubic approximation as appropriate, agrees with
8`(α`,k+1) within some prescribed tolerance. In the usual case
of a Gauss-Newton update, the convergence condition is

|8`(α`,k+1)− 8̃`(α`,k+1;m`,k)| ≤ τ8`(α`,k+1)

where τ¿ 1 is the tolerance. The line search is deemed to fail
if it does not converge within a prescribed maximum number
of steps, or if8`(α`,k+1)> 1.58`(α`,best ) occurs. In any case, the
final result of the `th line search is taken as the best model
found:

m`+1 = m`,best .

If the line search converged, the new search direction, p`+1, is
computed with equation (27). If it failed, p`+1 is taken as the
steepest descent direction [first term of equation (27)], break-
ing the conjugacy with previous search directions.

The main computations of algorithm NLCG are similar to
those of MM. To evaluate g`,k and pT

` H̃`,kp` in equation (30)
entails the computation of vectors AT

`,kV−1(d − F(m`,k)) and
A`,kp` [where A`,k≡A(m`,k)]. Computing α`,k+1 by cubic inter-
polation, however, does not require the second derivative of
8̃`, in which case A`,kp` is not done. The same pseudoforward
algorithms as in MM are used in NLCG to perform Jacobian
operations (see Appendix). NLCG, unlike MM, evaluates the
forward function for each model update. Therefore, each line
search step in NLCG solves the equivalent of two or three for-
ward problems. The memory requirements of NLCG are also
similar to MM, scaling linearly with N and M .

We close our description of NLCG by pointing out a po-
tential pitfall and related computational benefit of the line
search stopping condition. Our condition compares 9 at the
newest model, m`,k+1, to the quadratic or cubic approximation
extrapolated from the previous model, m`,k. The pitfall is that
agreement between these does not guarantee that 9 is near
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a minimum with respect to α, so the line search might stop
prematurely. The benefit ensues when F is approximately lin-
ear between m`,k and the minimizing model. In this case, the
stopping condition will be met and m`,k+1 will be an accurate
result of the line search, even though 9 and its gradient may
have changed greatly from their values at m`,k. The search stops
without additional, unnecessary computations such as an ad-
ditional update (m`,k+2) or second derivative information at
the new model (requiring A`,k+1p`). Consequently, when the
nonlinear CG iteration has progressed to the point where F
behaves linearly in all search directions, each line minimiza-
tion will require only one step (m`+1=m`,1) and the remaining
computations will be essentially the same as the linear CG com-
putations in MM, with the exception that the forward function
F is evaluated each time the model is updated.

Preconditioning

We recall that algorithms MM and NLCG each provide for
the use of a preconditioner, C`, in their respective implemen-
tations of conjugate gradients. The preconditioner can have a
big impact on efficiency in conjugate gradients. Two compet-
ing considerations in its choice are the computational cost of
applying the preconditioner, and its effectiveness in “steering”
the gradient vector into a productive search direction.

This study compares two versions of each of algorithms
MM and NLCG: one without preconditioning (C`= I) and one
using

C` =
(
γ`I+ λLTL

)−1
, (32)

where γ` is a specified scalar. In the latter case, we apply the
preconditioner to a vector g by solving the linear system for h,(

γ`I+ λLTL
)
h = g.

We solve this system using a (linear) conjugate gradients
technique.

The rationale for equation (32) is to have an operator that
can be applied efficiently and that in some sense acts like the
inverse of H̃`, the approximate Hessian matrix. The efficiency
of applying C` stems from the simplicity and sparseness of the
above linear system for h. The amount of computation needed
to solve the system is less than one forward function evalua-
tion and, thus, adds little overhead to either algorithm MM or
NLCG. The approximation to the inverse Hessian arises from
the second term of C−1

` , but we also attempt to choose γ` so
that the first term is of comparable size to the matrix AT

` V−1A`.
In our later examples, we took γ` to be a constant (indepen-
dent of `) based on the Jacobian matrix of a homogeneous
medium.

Theoretical comparison of MM and NLCG

In the three main applications of NLCG presented below
(“Numerical Experiments”), updating of the step size, α`, by
cubic interpolation occurred nine times, updating by bisection
[formula (31)] occurred zero times, and Gauss-Newton updat-
ing [formula (30)] occurred 211 times (for a total of 220 line
search steps among the three examples). Moreover, none of
the line searches failed to converge within the tolerance given.
The line search algorithm in NLCG is thus primarily a univari-
ate Gauss-Newton algorithm, and it is informative to compare

a simplified NLCG, in which the line search enhancements (cu-
bic interpolation and bisection) are ignored, to MM.

Algorithms MM and NLCG both generate a doubly indexed
sequence of models, m`,k. In MM, the slower index (`) indexes
a Gauss-Newton iteration while the faster index (k) indexes
a conjugate gradients loop. In our simplified NLCG, the op-
posite is the case, with ` a conjugate gradients counter and
k a Gauss-Newton counter. However, the algorithms perform
similar calculations at each step of their respective inner loops.
The difference between the algorithms can be identified with
the frequency with which the following events occur: calculat-
ing the forward function (F); changing the search direction (p)
used in conjugate gradients; and resetting the search direction
to be the steepest descent direction.

To demonstrate this, we sketch a simple algorithm having a
single loop that subsumes MM and NLCG with the restricted
line search. The input is a starting model, m0:

Algorithm CGI (m0)
m:=m0;
for `= 0, 1, 2, . . .

if new ref
mref :=m;
e:= d− F(mref );

else
e:= e−αf;

end
g:=− 2A(mref )TV−1e+ 2λLTLm;
9:=eTV−1e+ λmTLTLm;
if new dir

h:=C(mref )g;
if steep
β:= 0;

else
β:= hT(g− glast )/γlast ;

end
p:=−h+βp;
glast := g;
γlast := hTg;

end
f:=A(mref )p;
α:=−pTg/(fTV−1f+ λpTLTLp);
m:=m+αp;

next `

The reader can verify that this algorithm corresponds to our
mathematical descriptions of MM and NLCG. To help, we point
out that the formula for α above corresponds to that for α`,k
in equation (20) (used in MM) but with that for α`,k+1−α`,k in
equation (30) (used in the NLCG line search). Further, CGI
replaces iteration of the gradient vector, in equation (25), with
iteration of an error vector, e.

Algorithm CGI has three flags: new ref, new dir, and steep.
The flag new ref is set to 1 (true) if the current model is to be
used as a reference model for linearization. The flag new dir
is 1 if the search direction is to be changed. Flag steep is 1
if the newly computed search direction is to be reset to the
steepest descent direction, thus breaking the conjugacy condi-
tion [equation (28)]. All three flags are initialized to 1. We can
characterize algorithms MM and NLCG by how these flags are
changed thereafter, as shown in Table 1. Algorithm CGI above
does not show tests for line search convergence or failure, but
these could be the same as in NLCG.
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The main computations in CGI are taken up in the evaluation
of the three quantities F(mref ), A(mref )p and A(mref )TV−1e.
Each of these quantities requires the same computational ef-
fort (see Appendix). The latter two quantities (operations with
A and AT) are done on each pass through the loop uncondition-
ally, while the forward function is done only when new ref is 1.
Therefore, each model update in CGI requires computations
equal to two or three forward function evaluations, depending
on how new ref is determined.

NUMERICAL EXPERIMENTS

This section presents results of testing the three MT inversion
algorithms described above on synthetic and field data. In each
test, algorithms GN, MM and NLCG were applied to the min-
imization of a common objective function 9 [equation (11)]
with a given data vector d, variance matrix V, regularization
parameter λ, and regularization operator L. The data vector
and error variance matrix are described below with each ex-
ample. The regularization operator for each example was the
second-order finite-difference operator described earlier. To
choose the regularization parameter, we ran preliminary in-
versions with a few values of λ and then subjectively chose one
that gave reasonable data residuals and model smoothness.
We point out that none of the three inversion algorithms being
tested determines λ as an output. Various other parameters
specific to the inversion algorithms were selected as follows:

1) In GN, the Levenberg-Marquardt damping parameter
was set to 0.001 times the current value of the objective
function: ε`= 0.0019(m`).

2) In NLCG, the tolerance for deciding convergence of the
line minimization, τ , was set to 0.003.

3) In MM and NLCG, the preconditioner was either that de-
fined by equation (32) or, in one experiment, the identity
(no preconditioning).

4) In MM, the number of conjugate gradient steps per
Gauss-Newton step, K , was set to 3.

All results were computed on a 400-MHz Pentium II PC run-
ning the Linux operating system. The CPU times stated below
are intended to reflect only the relative performance of the al-
gorithms. We emphasize that the intent of these tests was to
compare the speed and accuracy of GN, MM and NLCG as
minimization algorithms, not the quality of the inversion mod-
els in a geophysical sense.

Examples with synthetic data

We generated synthetic data by applying a 2-D MT forward
modeling algorithm to specified models of the earth’s resistiv-
ity and perturbing the results with random noise. The forward
modeling algorithm we used for this purpose was intention-
ally different from that used in our inversion algorithms. Syn-

Table 1. How flags are set in algorithms MM and NLCG.

Event MM NLCG

new ref=1 Every K th update Every update
new dir=1 Every update When line search

converges or fails
steep=1 Every K th update When line search fails

thetic data were calculated using the finite-element algorithm
of Wannamaker et al. (1986), whereas our inversion algorithms
employ the transmission-network algorithm of Mackie et al.
(1988). Each synthetic data set comprises complex apparent
resistivities at multiple station locations, frequencies, and po-
larizations. Noise was included by adding an error to the com-
plex logarithm of each apparent resistivity: log ρapp + er + iei ,
where er and ei are uncorrelated samples from a Gaussian dis-
tribution having zero mean and 0.05 standard deviation (5%
noise). The noise was uncorrelated between frequencies, sta-
tions, and polarizations. For comparison, the accuracy of our
forward modeling algorithm is approximately 1–3% for the
range of parameters (grid dimensions, frequencies, and resistiv-
ities) involved in the test problems below (Madden and Mackie,
1989).

Model 1.—Our first tests employ a simple resistivity model
consisting of a 10 ohm-m rectangular body embedded in a
100 ohm-m background. The anomalous body has dimensions
of 10× 10 km and its top is 2 km below the earth’s surface.
The tests use synthetic data for the TM and TE polarizations
at seven sites and five frequencies, yielding a total of 140 real-
valued data. The frequencies range from 0.01 to 100 Hz and
are evenly spaced on a logarithmic scale. The model parame-
terization for inversion divides the earth into a grid of blocks
numbering 29 in the horizontal (y) direction and 27 in the ver-
tical (z) direction, implying a total of 783 model parameters.
The variance matrix (V) was set to 0.0025 times the identity
matrix, and the regularization parameter (λ) was chosen as 30.
The starting model for each inversion was a uniform halfspace
with ρ= 30 ohm-m.

We applied inversion algorithm GN and two versions each
of MM and NLCG (with and without preconditioning) to the
synthetic data from model 1. Figure 1 shows the performance
of each algorithm in terms of the value of the objective function
(9) it achieves as a function of CPU time expended. CPU time
used to compute the objective function for the starting model
is ignored, so the first symbol plotted for each algorithm is at
zero CPU time. Following this, a symbol is plotted for each it-
eration step of an algorithm: a Gauss-Newton step for GN and
MM, a conjugate gradients step for NLCG. It is immediately
evident from Figure 1 that, in both MM and NLCG, the pre-
conditioner enhances performance significantly, especially in
the case of MM. With preconditioning, MM and NLCG effec-
tively converge to a final result in less than one minute of CPU
time, while without preconditioning, they are far from conver-
gence after a minute. We also infer from the spacing between
symbols that preconditioning does not add significantly to the
amount of computation in either algorithm. Henceforth, we
will consider MM and NLCG only with preconditioning.

Next, we compare algorithms MM, NLCG and GN. We see
from Figure 1 that GN, like MM and NLCG, effectively con-
verges in less than one minute of CPU time. However, the rates
of convergence differ amongst the algorithms. MM and NLCG
reduce the objective function in the early stages of minimiza-
tion at a noticeably faster rate than GN. This is quantified in
Table 2, which gives the amount of CPU time expended by each
algorithm to achieve various values of the objective function,
determined by interpolating between iteration steps. Values of
9 are referenced to the smallest value achieved by any of the
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algorithms (in this case GN), which is denoted 9min in the ta-
ble. It is clear that MM and NLCG achieve each level of the
objective function, down to 1.059min , much faster than GN,
with MM being slightly faster than NLCG. In the later stages
of minimization (9 < 1.059min), NLCG becomes the most ef-
ficient, reaching within 1% of the minimum in about 20% less
CPU time than GN and 40% less than MM.

Figure 2 displays one model from the model sequence gen-
erated by each of the three algorithms, i.e., the model yielding
the objective function value closest to 1.019min . The images
are truncated spatially to display the best resolved parameters;
deeper blocks and those laterally away from the station array
are not shown. The models from the different algorithms are
clearly very similar. Each model differs (block by block over the
portion shown) from the best model generated (that yielding
9 =9min) by less than a factor of 1.3 in resistivity, or difference
of 0.1 in log10 ρ. Models later in each inversion sequence are
even closer to each other and to the best model. This confirms
numerically the premise of our formulation that it is the min-
imization criterion, and not the minimization algorithm, that
determines the solution of the inverse problem.

Table 2. CPU times versus objective function: first synthetic
data set.

9/9min (9min = 443.82)

2.0 1.5 1.2 1.1 1.05 1.02 1.01

GN 23 28 33 36 41 45 46
MM 9 12 14 21 31 48 61
NLCG 11 13 18 23 27 32 36

FIG. 1. Objective function versus CPU time resulting from the
application of the following inversion algorithms to the first
synthetic data set: the Gauss-Newton algorithm (GN, filled cir-
cles), the Mackie-Madden algorithm (MM) with and without
preconditioning (up and down triangles), and nonlinear con-
jugate gradients (NLCG) with and without preconditioning
(pluses and crosses). (The label “npc” denotes “no precondi-
tioning.”)

We note that the number of steps until convergence and
the CPU time used per step differ markedly among the algo-
rithms (Figure 1). GN requires the fewest number of steps and
takes the longest for each step, whereas NLCG requires the
most steps and is fastest per step. In MM and NLCG, the time
per iteration step reflects largely the number of forward prob-
lems (and pseudoforward problems) invoked. Given our input
parameters, algorithm MM solves seven (i.e. 1+ 2K ) forward
problems per Gauss-Newton step (six devoted to operations
with the Jacobian matrix). NLCG solves three forward prob-
lems per line search step (two for Jacobian operations). Since
the stopping criterion for the line search was rather liberal
(τ = 0.003), all but the first three line minimizations converged
in one step. (The first three each required two steps.) GN solves
eight forward problems per Gauss-Newton step (seven to com-
pute the Jacobian matrix), which is only one greater than MM.
However, GN spends significant CPU time creating and fac-
toring the Hessian matrix, which explains why its CPU time
per Gauss-Newton step is so much larger than that of MM.

Also of interest in Figure 1 is the observation that MM had
a larger initial reduction in the objective function than GN.
This difference must be due to the difference between us-
ing Levenberg-Marquardt damping and truncated iteration for
modifying the Gauss-Newton model update. Since we did not
attempt to optimize the choice of ε` in GN or K in MM, we note
this difference without drawing a general conclusion about the
merits of the two damping techniques.

FIG. 2. Inversion models from the first synthetic data set, com-
puted with algorithms GN (top), MM with preconditioning
(middle), and NLCG with preconditioning (bottom). Resistiv-
ity scales (right) have units log10 ohm-meters. Station locations
are marked with triangles. Each model yields 9 = 1.019min

(see Table 2).
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Model 2.—The next experiment with synthetic data uses a
more complicated model and larger data set. The model repre-
sents a block-faulted structure with a resistive unit exposed at
the surface of the up-thrown block. The down-thrown block has
the resistive unit being overlaid by a more conductive surface
layer. The data set comprises complex TM and TE apparent
resistivities for 12 sites and ten frequencies between 0.0032 and
100 Hz, giving a total of 480 data. The inversion model has 660
parameters corresponding to a 33× 20 grid of blocks. The ini-
tial model for each algorithm was a homogeneous halfspace of
10 ohm-m. The variance matrix was the same as in the previous
example, and the regularization parameter was set to 20.

The performance of the three inversion algorithms is pre-
sented in Figure 3 and Table 3. The algorithms differ in a similar
manner as in the previous example. In the beginning, the con-
jugate gradients-based algorithms (MM and NLCG) reduce
the objective function much faster than the Gauss-Newton al-
gorithm, with MM noticeably faster than NLCG. In the later
stages of minimization, MM exhibits a slow convergence rate
and is overtaken first by NLCG and then by GN in reducing the
objective function. MM was halted after about 1000 s, at which
point9 was 2.6% larger than9min (which again was achieved
by GN); hence the dashes in the last two columns of Table 3.
We note that only six of the iterative line searches performed
by NLCG took more than a single step, five taking two steps
and one taking three.

Table 3. CPU times versus objective function: second syn-
thetic data set.

9/9min (9min = 1890.7)
2.0 1.5 1.2 1.1 1.05 1.02 1.01

GN 125 139 162 180 222 353 531
MM 47 67 114 201 404 — —
NLCG 51 61 82 109 150 229 296

FIG. 3. Objective function versus CPU time resulting from the
application of inversion algorithms GN, MM and NLCG to the
second synthetic data set. Conventions are as in Figure 1.

Inversion models resulting from the second data set are
shown in Figure 4. In the case of GN and NLCG, the models
are for 9 = 1.01 9min ; for MM, it is the last model generated
(9 = 1.026 9min). As in the previous example, there is great
similarity among the models, although noticeable differences
occur in the conductive overburden as well as beneath its right
edge (x≈ 5, z> 10 km). In the distance and depth range shown,
the maximum departure of the displayed GN and NLCG mod-
els from the best model computed is a factor of 2 in resistivity,
whereas for MM it is a factor of 5. For both GN and NLCG,
the departure drops to about 1.5 when 9 reaches 1.005 9min .

Example with field data

Lastly, we demonstrate the various inversion algorithms on
real MT data collected by P. Wannamaker in the Basin and
Range (Wannamaker et al., 1997). The data set comprises TM
complex apparent resistivities at 58 sites and 17 frequencies per
site, for a total of 1972 real-valued data. The inversion model
was parameterized with a 118× 25 grid of blocks, yielding 2950
model parameters. Each algorithm was applied with a homo-
geneous initial model with resistivity 100 ohm-m. The diago-
nal elements of the variance matrix (V) were set equal to the
squares of the reported standard errors and the off-diagonal
ones were set to zero. The regularization parameter was chosen
as 8. The results are presented in Figures 5–7 and Table 4.

Looking at Figure 5, it is clear that NLCG and MM perform
vastly better than GN on this real data set. NLCG achieved the

FIG. 4. Inversion models from the second synthetic data set,
computed with algorithms GN (top), MM (middle), and
NLCG (bottom). The resistivity models are displayed with the
same conventions as Figure 2. The GN and NLCG models
yield 9 = 1.019min and the MM model 9 = 1.0269min (see
Table 3).



184 Rodi and Mackie

smallest 9 among the algorithms in roughly the same amount
of time needed for one step of GN. GN took over 3 CPU hours
to reach within 10% of this value (Table 4), and reached only
within 4.4% of 9min when it was halted after about 7 hours.
These results demonstrate the poor scalability of algorithm
GN with problem size. In this problem, GN solves 59 forward
problems per Gauss-Newton step (compared to seven for MM)
and must factor a 2950× 2950 matrix (the damped Hessian).
The computer memory requirements are also extensive as the
Jacobian matrix contains 5.8 million (real) elements and the
Hessian 8.7 million elements. MM and NLCG, on the other
hand, require only several vectors of length 2950.

Figure 6 replots the MM and NLCG results on an expanded
time scale so that the performance of these conjugate gradients-
based algorithms can be compared. We see the same pattern
as in the synthetic data examples, only this time MM performs
even more favorably than NLCG in the early stages of mini-
mization. NLCG shows faster convergence at the later stages,
overtaking MM when 9 is between 1.2 and 1.1 of the mini-
mum (Table 4). All but seven of the line searches in NLCG
converged in a single step, and only the first took as many as
three steps.

The MM and NLCG inversion models in Figure 7 yield
9 = 1.01 9min , whereas the GN model yields 9 = 1.044 9min .
There are some significant differences between the GN model
and the others in a vertical band near the rightmost station

Table 4. CPU times versus objective function: Basin and
Range data set.

9/9min (9min = 9408.9)

2.0 1.5 1.2 1.1 1.05 1.02 1.01

GN 5143 6216 8245 11343 21608 — —
MM 65 111 288 501 731 1232 1751
NLCG 158 224 342 425 536 712 827

FIG. 5. Objective function versus CPU time resulting from the
application of GN, MM, and NLCG to real MT data from the
Basin and Range (Wannamaker et al., 1997). Conventions are
as in Figure 1.

(x≈ 60 km), which are difficult to see since the color scale cov-
ers almost a factor of 10 000 in resistivity. Otherwise the mod-
els are very similar. The maximum discrepancy from the model
yielding 9 =9min is about a factor of 4 for the GN model and
a factor of 2 for the others.

FIG. 6. The results of Figure 5 for algorithms MM and NLCG
shown on an expanded time scale.

FIG. 7. Inversion models from real MT data from the Basin
and Range, computed with algorithms GN (top), MM (mid-
dle), and NLCG (bottom). The models are displayed with the
same conventions as Figure 2, except that only the first and last
of 58 stations are marked. The MM and NLCG models yield
9 = 1.019min and the GN model9 = 1.0449min (see Table 4).
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DISCUSSION AND CONCLUSIONS

We have compared three minimization algorithms for com-
puting regularized solutions of the 2-D magnetotelluric inverse
problem, both theoretically and with numerical experiments
involving synthetic and real data. We conclude that the conju-
gate gradients-based algorithms, MM and NLCG, are superior
to a conventional Gauss-Newton algorithm (GN) with regard
to the computational resources needed to compute accurate so-
lutions to problems of realistic size. The explanation is that the
Gauss-Newton method entails the generation of a full Jacobian
matrix and the complete solution of a linearized inverse prob-
lem at each step of an iteration. MM and NLCG replace these
computations with ones that scale much more favorably with
problem size in both CPU and memory usage. Moreover, we
enhanced performance by employing a good preconditioner in
both CG-based algorithms and a very simple line minimization
scheme in NLCG.

Between the Mackie-Madden algorithm and nonlinear con-
jugate gradients, our numerical tests do not indicate that either
algorithm is clearly superior to the other. In all three tests, and
especially the largest one with real data, MM reduced the ob-
jective function at a faster rate (versus CPU time) than NLCG
in the early stages of minimization, whereas NLCG performed
more efficiently in the later computations. The early model
updates account for most of the reduction of the objective
function, suggesting MM is preferable, but in our examples we
found that some model parameters, well sensed by the data,
change significantly in the last stages of minimization, a fact
favoring NLCG. In the real data experiment, these changes
amounted to as much as a factor of 30 in resistivity from the
point where NLCG overtook MM in the CPU time race. (The
objective function was about 1.14 times the minimum at this
crossover point.) In the larger synthetic data test, MM took
longer than both NLCG and GN to reach within a factor of 10
of the solution model.

We attribute the slower convergence rate of MM to the fact
that it interrupts the conjugacy relation among search direc-
tions periodically, which is unnecessary near convergence when
the forward function is presumably well-approximated as lin-
ear. On the other hand, NLCG is probably wasteful in the
same situation by computing the nonlinear forward function
after every model update. The net effect, however, is faster
convergence for NLCG. It is less obvious why MM is better
than NLCG in the early computations. One possibility is that
the second and third steps of the line search in NLCG, when
they occurred, did not reduce the objective function sufficiently
to warrant doubling or tripling the CPU time of the search. Per-
haps more would have been gained by changing search direc-
tion every model update, as in MM. One motivation for doing
accurate line minimizations in the NLCG method is to enable
the conjugacy of search directions, but conjugacy amongst the
earliest search directions is not as important as for the later
ones. For this same reason, interrupting conjugacy probably
does not hinder MM significantly in the early stages. Lastly, it
might be possible for NLCG to skip some nonlinear forward
calculations even for the earlier model updates.

We recommend two topics for continued research on these
CG-based algorithms for electromagnetic inversion. For both
MM and NLCG, we showed that performance is enhanced sig-
nificantly when a preconditioner is used. In developing these
algorithms for this study, we did not put great effort into find-

ing an optimal preconditioner. Our first recommendation is
additional work on the development of an effective precondi-
tioner for conjugate gradients-based inversion. Second, since
we have seen advantages to both MM and NLCG, we recom-
mend research on hybrid algorithms that combine elements
of each. In our theoretical comparison of these algorithms, we
pointed out their similarity in structure and sketched a more
general algorithm (CGI) that is a template for both. In light of
the discussion above, avenues for an improved CGI are more
sophisticated tests for when to compute the forward function,
when to change search directions, and when to revert to the
steepest descent search direction.

We close by remarking that the algorithms of the type pre-
sented and tested here, while not optimal, are a clear and
needed improvement over the iterated, linearized inversion al-
gorithms in standard use. With some refinement at least, they
will allow MT practitioners to use larger model grids and data
sets (more frequencies and stations) in their studies, which in
the past have often been reduced to accommodate the limita-
tions of the computer. Further, it is quite obvious to us that
the standard methods, like Gauss-Newton, are not practical
for realistic 3-D electromagnetic problems and, even allowing
for improvements in computing hardware, will not be for some
time. Our results with 2-D MT suggest that conjugate gradi-
ents algorithms would be a much more feasible approach to
3-D electromagnetic inversion.
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APPENDIX

JACOBIAN COMPUTATIONS

The Gauss-Newton method (algorithm GN) requires the
computation of each element of the Jacobian matrix, A. The
Mackie-Madden algorithm (MM) and nonlinear conjugate gra-
dients (NLCG), in contrast, employ A only in the computation
of quantities Ap and ATq for specific vectors p and q [e.g.,
equations (23) and (25)]. This Appendix describes algorithms
for the computation of A, Ap, and ATq.

To begin, since each datum is the real or imaginary part of a
complex quantity, we will convert our problem to one involving
complex variables. Let d̂ be a complex vector such that each
element of d is the real or imaginary part of a unique element
of d̂:

d = Re Ed̂

where

Eik =


1 if di ≡ Re d̂k;
−i if di ≡ Im d̂k;
0 else.

We will denote the dimensionality of d̂ as N̂, where clearly
N̂ ≤ N in general and N= 2N̂ just in case amplitude and phase
data are included in d equally. We can now write the forward
function F as

F(m) = Re EF̂(m)

where F̂ is a complex function. It follows that

A = Re EÂ

with the complex matrix Â being the Jacobian of F̂ :

Âi j (m) = ∂ j F̂
i (m).

We also have

Ap = Re EÂp

ATq = Re ÂTETq.

Our task translates to finding Â, Âp, and ÂTq̂ where q̂=ETq.
To specify F̂ , it is convenient to consider all frequencies and

polarizations involved in the data vector d simultaneously. Let
v be a vector comprising the parameterized Ex and/or Hx fields
for all frequencies, and let the linear equation

K(m)v(m) = s(m) (A-1)

denote the finite-difference form of Maxwell’s equations for all
relevant polarizations and frequencies. K is a block-diagonal
matrix (when v is partitioned by frequencies and polarizations)
and s comprises the right-hand-side vectors for all frequencies
and polarizations. We have shown the dependence of K and s,
and hence v, on the model parameter vector m. We can now
write

F̂ i (m) = log
i

ωiµ

(
ai (m)Tv(m)
bi (m)Tv(m)

)2

(A-2)

where the vectors ai and bi are chosen to extract from v the
relevant field averages for the polarization, frequency, and ob-
servation site associated with the i th complex datum.
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Computation of Â

We consider the computation of Â using two methods de-
scribed by Rodi (1976). Differentiating equation (A-2),

Âi j = Âi j
1 + Âi j

2 , (A-3)

where

Âi j
1 =

(
2

aT
i v
∂ j ai − 2

bT
i v
∂ j bi

)T

v

and

Âi j
2 = cT

i ∂ j v, (A-4)

where the vector ci is defined by

ci = 2
aT

i v
ai − 2

bT
i v

bi .

The matrix Â1 accounts for the dependence of ρapp on m
through the vectors ai and bi . The matrix Â2 accounts for the
dependence of v on m. We assume the vectors ai and bi and
their partial derivatives can be computed with closed-form ex-
pressions so that Â1 can also be computed with such. We turn
to the more difficult task of computing Â2.

From equation (A-1), we can infer

K∂ j v = ∂ j s− (∂ j K)v, j = 1, 2, . . . ,M. (A-5)

Again, we assume that K, s, and their partial derivatives are
known analytically. The first method described by Rodi (1976)
is to solve these M “pseudoforward” problems for the vectors
∂ j v and substitute them into equation (A-4).

The second method of Rodi (1976) exploits the reciprocity
property of the forward problem, i.e., the symmetry of K. Solv-
ing equation (A-5) and plugging into equation (A-4), we get

Âi j
2 = cT

i K−1(∂ j s− (∂ j K)v). (A-6)

Let the vectors ui satisfy

Kui = ci , i = 1, 2, . . . , N̂. (A-7)

Given the symmetry of K, we can then write equation (A-6) as

Âi j
2 = uT

i (∂ j s− (∂ j K)v). (A-8)

The second method is to solve equations (A-7) and then eval-
uate equation (A-8).

The matrices ∂ j K are very sparse since K is sparse and each
of its elements depends on only a few of the mj . The vectors
∂ j s, ai , and bi are likewise sparse, or zero. Therefore, in ei-
ther method, construction of the right-hand-side vectors for
the pseudoforward problems [equations (A-5) or (A-7)] and
evaluation of the expression for Âi j

2 [equations (A-4) or (A-8)]
take relatively little computation. The major computational ef-
fort in either method is in solving the appropriate set of pseud-
oforward problems: equations (A-5) or (A-7). For this reason,
the first method [equations (A-4) and (A-5)] is more efficient
when N̂>M (more data than model parameters) while the sec-
ond, reciprocity method [equations (A-7) and (A-8)] is more
efficient when M > N̂.

However, this last statement does not take into account the
particular structure of the matrix K and vectors ai and bi for
2-D magnetotellurics. K has a block-diagonal structure with
each block corresponding to one polarization and frequency
combination. Furthermore, the nonzero elements of ai and bi ,
for any given i , are all associated with a common partition of v
(since one 2-D MT datum conventionally involves only a single
polarization and frequency). Therefore, only one block of each
pseudoforward problem in equation (A-7) needs to be solved
and, what is more, we may choose between the first and second
methods independently for each polarization/frequency pair
in computing its partition of Â2. The first (second) method
is more efficient when the number of data for that polariza-
tion/frequency is larger (smaller) than the number of model
parameters.

Computation of Âp and ÂTq̂

From equation (A-3), we have

Âp = Â1p+ Â2p

ÂTq̂ = ÂT
1 q̂+ ÂT

2 q̂.

Again, we assume the first term of each expression can be com-
puted explicitly and we turn our attention to the second terms.

The algorithm of Mackie and Madden (1993) for Â2p may
be derived as follows. From equation (A-4), we have∑

j

Âi j
2 pj = cT

i t, (A-9)

where the vector t is given by

t =
∑

j

p j ∂ j v.

From equation (A-5), it is clear that t satisfies

Kt =
∑

j

p j (∂ j s− (∂ j K)v). (A-10)

The algorithm for Â2p is to solve the single forward problem,
equation (A-10), for t and then evaluate equation (A-9).

The Mackie-Madden method for ÂT
2 q̂ can be derived simi-

larly. From equation (A-8), we have∑
i

q̂i Âi j
2 = rT(∂ j s− (∂ j K)v), (A-11)

where we define the vector r by

r =
∑

i

q̂i ui .

From equation (A-7), r satisfies

Kr =
∑

i

q̂i ci . (A-12)

The algorithm for ÂTq̂ is to solve equation (A-12) and substi-
tute into equation (A-11).

The major computation in each of these algorithms is the so-
lution of one pseudoforward problem: for r in equation (A-12)
or t in equation (A-10).


