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SUMMARY 
We describe finite-difference approximations to  the equations of 2-D electromagnetic 
induction that permit discrete boundaries t o  have arbitrary geometrical relationships 
to the nodes. This allows finite-difference modelling with the flexibility normally 
ascribed to finite-element modelling. Accuracy is demonstrated by comparison with 
finite-element computations. We also show that related approximations lead to  sub- 
stantially improved accuracy in regions of steep, but not discontinuous, conductivity 
gradient. 
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1 INTRODUCTION 

The advent of large accurate magnetotelluric (MT) data sets 
(e.g. Wannamaker et al. 1989; Jones & Craven 1990; Jones 
et al. 1993; Ogawa et al. 1996; Chen et al. 1996) has accentuated 
the need to invert such data directly for electrical conductivity 
structure. A critical requirement, however, is a fast and accurate 
forward algorithm to calculate the electric and magnetic fields 
in arbitrary conductivity structures. Existing algorithms gener- 
ally fall into finite-difference and finite-element approximations 
to the governing differential equations. 

Finite elements involve assumed functional forms for the 
model and fields in small regions of specified geometry. The 
fields are then matched where the elements abut. Typically, 
the elements are triangular, the conductivities are assumed to 
be constant and the fields are assumed to vary linearly within 
each triangle (e.g. Rodi 1976; Wannamaker, Stodt & Rijo 
1987). Finite elements are generally thought to have the 
advantage of being able to model complicated structures more 
easily than finite differences when there are discontinuities. 

Finite-difference approximations ( FDAs) (Jones & Pascoe 
1971; Williamson, Hewlett & Tammemagi 1974; Jones & 
Thompson 1974; Brewitt-Taylor & Weaver 1976; Adhidjaja & 
Hohmann 19891, on the other hand, are conceptually simpler, 
and in their usual implementation lead to sparser matrix 
equations. The conductivities and fields are sampled at the 
nodes of a finite grid. The fields between the nodal points are 
locally approximated using low-degree polynomials deter- 
mined from the field values at a small number of nodal points 
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(usually five). The field derivatives are estimated by differ- 
entiating these polynomials. The conductivity model is assumed 
to behave between nodes in a way that does not impair the 
accuracy of approximating the fields by polynomials. However, 
if the model is anywhere discontinuous, the fields or their 
spatial derivatives may also be discontinuous and thus poorly 
approximated by polynomials. In such cases, maintaining 
accuracy requires special treatment. Furthermore, it is generally 
believed that discontinuities must coincide with the grid and 
hence sloping interfaces have typically been simulated using a 
series of steps. Steps obviously lead to problems for the case 
of topography, because it becomes very difficult to determine 
accurately the surface fields tangential to the slope. In this 
paper, we present FDAs that are as flexible as finite-element 
approximations in modelling model discontinuities with com- 
plex geometry, and we present results demonstrating their 
accuracy. 

We discuss only the 2-D problem. The general ideas are 
applicable in 3-D, but are complicated by the necessity of 
defining the electric and magnetic fields on staggered grids to 
enforce electric current continuity (Mackie, Madden & 
Wannamaker 1993; Mackie, Smith & Madden 1994; Smith 
1996a,b). The vector electric and magnetic fields are denoted 
by E and H and their components by appropriate subscripts. 
The forward problem for 2-D electromagnetic induction then 
separates into two distinct polarizations: the transverse electric 
(TE) mode (sometimes called E-parallel, H-perpendicular or 
E-polarization), in which the electric currents flow perpendicular 
to the 2-D profile (along strike); and the transverse magnetic 
(TM ) mode (sometimes called E-perpendicular, H-parallel or 
H-polarization), in which the currents flow along the 2-D 
profile (perpendicular to strike). We define the strike direction 
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to be x and the 3-D conductivity to be o(y, 2) .  Its reciprocal, 
the 2-D resistivity, is p(y, z ) .  The 2-D profile direction, y ,  is 
horizontal and increases to the right; z is vertical and increases 
downwards. For the TE mode, and a time dependence 
exp(-iwt), Maxwell’s equations in a good conductor plus 
Ohm’s Law reduce to 

SZE, d 2 E ,  (y x v x E), = v . V  E,  = V ~ E ,  = - + - = -hap,$,, 
ay2  s z 2  

where V and Vz are the 2-D gradient and Laplacian. For the 
TM mode, the equivalent equations are 

(v x pv x H ) , = v . ~ v H , = ~ v ~ H , + v ~ . v H ,  

SZH, 

= - iwp, H, , ( 34 

The problem is to find accurate approximations to eqs ( la )  
and (2a) when the fields are known only on a finite grid. 
Difficulties arise when CT or p are discontinuous, because the 
second derivatives of the fields in eqs ( la )  and (2a) may be 
discontinuous and then Laplacian terms in the above equations 
are not well defined. The TM-mode approximation at a discrete 
boundary is somewhat more difficult than the TE, because the 
unbounded first derivative of p enters directly in eq. (2a). 

Eqs (lb,  c) or (2b, c) are used only to calculate the auxiliary 
fields H, and H, or E,  and E ,  once the primary fields E,  or 
H ,  have been determined by solving the approximations to 
eqs (la) and (2a) with appropriate boundary conditions. These 
auxiliary fields are easier to measure in the field than are the 
spatial derivatives of the primary fields. For instance, 2-D MT 
assumes that the measured horizontal electric and magnetic 
fields at the Earth-air interface in the frequency domain are 
related by 

The off-diagonal impedances, Z,, = E x  JH, and Z,, = E,  JH, 
correspond to the TE and TM modes. These are commonly 
transformed to the MT responses: 

Apparent Resistivity 

Impedance Phase dij = arg[Zij]. 

2 FDA FOR T H E  T E  MODE 

When the electric field and its derivatives are continuous, one 
can accurately approximate the field locally from its values at 

nodal points using an interpolating polynomial. The degree of 
this polynomial must be at least as high as the derivatives in 
the equations to be approximated and will require information 
from fewer nodes if the degree is kept low. The most commonly 
used approximation for the Laplacian on the left side of eq. ( la) 
uses a second-degree polynomial, which requires values from 
only the four nodes surrounding the node at which the equation 
is approximated. Differentiating the interpolating polynomial 
leads to estimates of the required derivatives in terms of the 
nodal values and hence the FDA. Although the electric field 
and its first derivatives are everywhere continuous for the TE 
mode, the second derivatives can jump across surfaces where 
a is discontinuous. Even when a is continuous inside the 
model, the second derivatives of the electric field may be 
discontinuous at the Earth-air interface. Polynomial approxi- 
mation of the field at such discontinuities will necessarily lead 
to inaccurate estimates of the Laplacian. 

To see what to do when the conductivity is discontinuous, 
consider a typical nodal point ‘0’ in a rectangular, but not 
necessarily uniform, grid. Its neighbouring nodes are R (right), 
L (left), U (up) and D (down), which are respectively located 
at distances AR, AL, A” and AD from 0 (see Fig. 1) .  Let 0 also 
be a point at which eight abutting triangular regions of 
(possibly different) conductivity meet as shown. Now integrate 
eq. ( l a )  over the rectangular area A in Fig. 1, whose sides 
intersect the grid halfway between 0 and each of the adjacent 
nodes. Gauss’ Theorem can be used to transform the area 
integral on the left-hand side to an integral around the 
perimeter of A: 

j A ( V * V E , ) d A  = s ( f i * V E , ) d l ,  

L 

w 
D 

< >< 

(3) 

a, 

Figure 1. Nodal point 0 in a rectangular grid at which eight abutting 
triangular regions of potentially different conductivities ui meet. The 
Ai are the areas of each triangle with a rectangular region of total 
area A = ZAi that extends halfway to the adjacent nodes. 

0 1997 RAS, GJI  129, 29-40 



Accurate jinite-diference approximations 3 1 

where fi is the outward unit normal to the edges of A. Since 
the first derivatives of E, are everywhere continuous, we can 
accurately approximate derivatives normal to the contour of 
integration in (3)  using centred first differences. For instance, 
along the right edge of A we have 

Adding the contributions from the four sides of A, the contour 
integral becomes 

(4)  

where EO,R,L,U,D are the values of Ex at the nodes 0, R, L, U, 
and A is a typical node spacing. One can easily show, using 
the Lagrange interpolation formula (Davis & Polonsky 1964), 
that the leading error term in (4)  becomes identically zero on 
a uniform grid (see Smith 1988). 

The integrated right-hand side of eq . ( la )  can be 
approximated using 

impo ]A EJx, z)u(x, z ) d A  z iopoEO u(x, z )  dA s, 
8 

z i o p o ~ o  ,r O i ~ i  + 0 ( ~ 3 ) ,  ( 5 )  
i = l  

where ui are the spatially averaged conductivities in the eight 
small triangles of area Ai inside A. When u is non-uniform, 
the error term that we are neglecting in ( 5 )  involves V Ex even 
when the grid is uniform. Since we are keeping terms involving 
VEX in (4), one needs to check that the neglected term in (5) 
is substantially smaller than the retained terms in (4). This 
turns out to require that 

where 6=J- is an appropriate 'skin depth'. This 
inequality reduces to A2<<h2 and we have the reasonable 
(and well-known) result that the node spacing must be small 
compared to the local skin depth. It is a good idea to take 
advantage of the higher order of accuracy of the FDA on a 
uniform grid and make the node spacing the same on either 
side of a discontinuity and a fraction of the skin depth in 
the most conducting medium. For high-accuracy results, we 
recommend A z 8/10 near the surface of the model. This can 
be progressively relaxed with depth as the contribution of 
inaccuracies in the FDA to errors in the surface fields decays. 
It can also be relaxed in the horizonal away from model 
(and hence field) gradients. We have found that an effective 
compromise between keeping the grid uniform and minimizing 
the number of nodes is to increase each successive node spacing 
by 10 per cent in the vertical and to increase horizontal 
spacing by 50 per cent outside regions of uniform nodes where 
strong lateral variations occur. 

Combining (4) and (5) and rescaling the result by dividing 
by the total area of integration A = ( A L  + AR)(Au + AD)/4 we 

finally obtain 

( 6 4  = -iwpodoE0, 

where the 'effective conductivity' at the central node is defined 
by 

For a uniform grid with nodal spacing A and a constant 
conductivity go, (6a) reduces to 

1 
- [EL + ER + E, + ED - 4Eo] = - iopoaoEo. 
A2 

( 6 4  

The left sides of (6a) and (6c) are the standard five-point FDAs 
for the Laplacian operator on non-uniform and uniform grids. 

The result embodied in (6a) and (6b) is particularly simple 
to implement and can be generalized. The TE FDA in a 
medium with general conductivity variation is the same as in 
a medium with constant conductivity, except that nodal values 
of conductivity must be replaced with effective values that are 
spatial averages of the actual conductivities around each nodal 
point out to half the distance to the adjacent nodes. When the 
conductivity is continuous, this average will commonly be 
close enough to the actual conductivity at the node that it is 
not worth bothering about the difference (i.e. just set do = no). 
However, when the conductivity is discontinuous, the local 
spatial average that must be assigned to the node will usually 
be substantially different from the actual value of u at the 
node. In practice, one may need a nodal spacing smaller than 
the skin-depth arguments suggest in order to make the effective 
conductivities easy to compute. For instance, one would 
probably always want several nodes within a discrete body. 
Likewise, nodal spacing in a continuous conductivity variation 
should be small compared to the scale of the gradient of 
conductivity. 

As a simple example, consider the FSA at a node 
on a horizontal interface within a uniform grid. Then, 
d = 1/2(00+ + go- ) ,  where go+ and uo- are the conductivities 
just above and below the interface. One gets the same result 
for a vertical or diagonal interface. Thus, we see that an 
interface that cuts diagonally across a mesh cell is as easy to 
model as an interface that is coincident with the mesh. 

With the appropriate definition of effective conductivity, (6a) 
and (6b) should be useful for completely arbitrary boundaries, 
which may not pass through any nodes. As derived, the first 
differences in (4) do not span a discontinuity, so that their 
errors, which involve second derivatives, are always bounded. 
However, their errors would remain bounded, although they 
may be larger, even if the first differences do span a model 
discontinuity. This is because the second derivatives are only 
discontinuous, not unbounded. Thus running the model dis- 
continuities through node 0 improves accuracy, but is other- 
wise a matter of convenience. There is clearly no need to pass 
the discontinuity through 0 in the derivation of the right side 
of the FDA. It is simply necessary to define the effective 
conductivity so as to weight each constituent u according to 
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its area inside A. This involves no degradation in the accuracy 
of the right side of the FDA. 

3 F D A  FOR THE TM MODE 

3.1 Discontinuous model 

A similar approach can be used for the TM mode at a 
diskontinuity. We again look at a node 0, at which up to 
eight triangular regions with (possibly) different resistivities, 
pi = l/oi, come together. Integrating (2a) over the same area A 
used for the TE mode and again using Gauss' Theorem gives 

V . pVH,dA = ii * p V H  dl = ipo [A H,dA , fA s (7)  

where f~ is the outward unit normal to the edges of A. Since 
the right side of (7) does not involve p, and the magnetic field 
and its first derivatives are always continuous for the TM 
mode, we can approximate it by 

where Ho is the value of H ,  at 0. 
The left side of (7) is more complicated than its TE-mode 

equivalent. The derivatives of H ,  normal to the edges of A can 
again be estimated from centred first differences that do not 
span discontinuities in p or VH,. However, p varies along the 
integration path and it is therefore necessary to use the 
appropriate pi for each path segment (see Fig. 1). For instance, 
along the right edge of A, we have 

(9) 

(again, the subscripts on H denote the node at which H, is 
measured). As a result, the FSA does not depend on one 
'effective conductivity'. Instead, there are four 'effective 
resistivities': 

(10) 
( P S A L  + P 7 A R )  ( h A L  + P Z A R )  

( A L  + AR) ' 
3 Pu= 

(AL + A d  Po = 

where the pi = l/oi are defined in Fig. 1. 
The final FDA is 

+ PL---- 
H L  AL - II0I 

2 HR - HO 

+ A- 
A U  

(11) 

Hu - "1 + - [ P D T  ~ H D - H O  

AU + AD 

= - i o / ~ o H o .  

No special consideration of the FDA is required at the 
Earth-air interface for the TM mode because the boundary 
condition H, = constant is valid at this interface, even in the 
case of topography. Just as for the TE mode, one can use ( 11) 
with degraded accuracy if the discrete boundaries do not pass 
through 0. However, the effective resistivities must be based 
on the contribution of each constituent resistivity to the 
integrals along the four edges and are more onerous to 
calculate. In contrast to the TE mode, the accuracy of the left 
side of (11) does not improve by one order on a uniform grid 

unless p is also uniform. However, the order of accuracy of 
the right side does improve on a uniform grid. Comparison of 
the neglected first-derivative term on the right with the retained 
first-derivative terms on the left again leads to the requirement 
that A, << 6,. 

3.2 Continuous model 

The FDA ( 11) is also valid away from a model discontinuity, 
but care must be taken in defining the effective resistivities. 
The simplest approximation, in which the effective resistivities 
are estimated to be the resistivity at the central node, po,  
reduces the left side of (1 1) to the standard FDA for pVz H ,  
and thus ignores the first-derivative terms in (2a). One can 
restore these terms by approximating them with first differences 
centred on 0. The resultant FDA, 

P O  [ H R - H O  I 

A R + A l .  AR AL. 

HD-Ho H U - H O  +---I Au 

= - iwpo H o  , (12) 
was used successfully by Smith (1988) and Smith & Booker 
(1991) in a rapid algorithm for 2-D inversion of MT data. 

Alternatively, the resistivity on each segment of the contour 
integral around the area A can be approximated by linear 
interpolation between 0 and the nearest node outside A. The 
effective resistivities then become 

We call ( l l) ,  using the effective resistivities (9), the TM(d) 
FDA; we call (12) the TM(c1) FDA; and we call (11), using 
the effective resistivities (13). the TM(c2) FDA. We shall see 
that TM(d) gives excellent results for discrete boundaries and 
that both TM(c1) and TM(c2) work well for models with 
modest conductivity gradients. However, TM(c2) performs 
much better than TM(c1) as the resistivity gradients become 
large. Obviously, practical estimation of the effective resistivit- 
ies in all three cases may again require nodal spacings smaller 
than skin-depth arguments would suggest. 

4 EXAMPLES 

4.1 

If the grid is uniform about a node on the Earth-air inter- 
face and we let go+ = oair = 0 and oO- = oEarth, we find that 
8 = 0.50Earth. Brewitt-Taylor & Weaver (1976) have already 
suggested this result by making an analogy with the 1-D case, 
and our derivation shows that it is rigorously justified in 2-D 
when the node spacing is the same on either side of the 
interface. More generally, 8 depends on the ratio of the node 
spacing on either side of the interface. More complicated 
shapes for the Earth-air interface, including the possibility of 
an internal discontinuity intersecting the surface, can easily be 
constructed using combinations of the triangular regions in 
Fig. 1. For instance, suppose that the grid is uniform and that 

The TE mode with topography 
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(a) Trapezoidal Valley As a test, we compare results using (6a) for the trapezoidal 
valley model shown in Fig. 2(a) with results using the finite- 
element code of Wannamaker et al. (1987). This finite-element 
code (PW2D) reduces the forward problem to a linear system 
Ax = b in which A has nine non-zero diagonals. This system 
is solved by complete decomposition of the matrix A. Our 
code (FWD2D) reduces the FDA plus the boundary conditions 
to a linear system in which A has five non-zero diagonals. The 
system is solved using an efficient iterative technique that takes 
advantage of the sparseness of the system (see Smith & 
Booker 1991). 

Air 

100 Ohm-rn 400 

-500 m Om 500 m 

2f ' , ' 
(b) Internal Sloping Interface 

-1 0 1 2 3 Km 
I " " I " " I ' " ' " " ' ~  I 

100 Ohm-m 

T 10 Ohm-m 

Figure2. Two models used to compare the accuracy of the finite- 
difference and finite-element calculations with sloping boundaries. 
Note the break in vertical scale for model (b). 

the interface has a corner at 0, with the interface horizontal 
to the left of 0 and sloping up at 45" to the right of 0. Five 
of the eight triangles have u=uEarth and three have u = 0 .  
Consequently, 8 = 0 . 6 2 5 ~ ~ ~ ~ ~ ~ ~ .  

The FDA nodes and finite-element corners for this test are 
identical, and are listed in Table 1. The boundary conditions 
on the distant edges of the model are also conceptually the 
same for both algorithms. However, PW2D solves for 2-D 
'secondary' perturbations to the analytic solution for fields in 
a 1-D host (taken to be the structure at the left edge of the 
model), while FWD2D solves directly for the total fields. A 
property of the secondary-field approach is that it always 
converges to the analytic 1-D solution as the two-dimensionality 
of the model vanishes. The total-field approach will only do 
so if the model has been adequately discretized in the vertical 
direction. If the secondary fields are substantially smaller than 
those in the 1-D host, one should expect higher absolute 
accuracy for PW2D, or alternatively less stringent requirements 
on numerical precision or model discretization. When the 
model is strongly 2-D and the secondary fields become com- 
parable to the total fields, the accuracy of the total and 
secondary-field approaches should be similar. 

Fig. 3 shows surface values of the TE responses, pxy and bxy,  
as a function of position for frequencies at which the skin 
depth is smaller and larger than the width of the valley. The 

Table 1. Nodes and finite-element corners for model (a) in Fig. 2. The vertices of the valley 
are at ( y, z)  = (- 500,0), ( -  300,200), (300,200), (500,O). Units are metres. 

Horizontal 

-5oooO -3oooO -2oooO -12000 -8000 -5000 -3000 -2000 -1500 -1000 

-800 -700 -650 -600 -550 -525 -510 -500 -490 -475 

-450 -400 -350 -300 -275 -260 -250 -240 -225 -200 

-150 -100 -50 0 50 100 150 200 225 240 

250 260 275 300 350 400 450 475 490 500 

510 525 550 600 650 700 800 1000 1500 2000 

3000 5000 8000 12000 2oooO 3oooO 5oooO 

Vertical 

-30 -10 0 

10 25 50 100 150 200 225 24Q 250 26Q 

275 300 350 400 450 500 600 700 800 900 

1010 1131 1264 1411 1572 1749 1944 2158 2394 2653 

2938 3252 3597 3977 4395 4854 5360 5916 6528 7200 

7940 8754 9650 10635 11718 12910 14221 15663 17249 18994 

-100000 3oooO -loo00 -3000 -1000 -300 -100 

20914 
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100 Hz 

50 7 
1 Hz 

46 - 
g 48 45.5 

45 
b S 46 
W 
I 
E 4 4  44.5 

44' ' 

-2000 -1000 0 1000 2000 
42 

-2000 -1000 0 1000 2000 

102 

101 

100 

99 

-2000 -1000 0 1000 2000 

Figure 3. Surface values of the TE phase (top) and apparent resistivity (bottom) for 100 Hz (left) and 1 Hz (right) for the trapezoidal valley of 
Fig. 2(a). Finite-element responses are plotted as open circles at the horizontal position of each element corner on the Earth-air interface. FDA 
results have nodes at  the same positions and are shown as solid curves. The differences between the responses are much less than 1 per cent in 
resistivity of 0.29 degrees in phase. The small (0.2 per cent) systematic offset noticeable between the resistivities at 1 Hz is believed to be a result 
of the secondary and total-field approaches of the two codes (see text). 

10 Hz 1 Hz 

25 I 
-5 0 5 

1 0' f 

P .- 

E r 
2 
- 
u) 
u) 

- 1  

m 

.- 
d 

2 
10 

n 

-5 0 5 -5 0 5 
10' 

Figure 4. TE responses at 10 Hz (left) and 1 Hz (right) for the model with an internal sloping interface shown in Fig. 2( b). Finite-element responses 
are plotted as open circles at the horizontal position of each element corner on the Earth-air interface. FDA results have nodes at the same 
positions and are shown as solid curves. 

responses use the electric and magnetic field calculated in the 
horizontal direction for both methods. Wannamaker, Stodt & 
Rijo (1986) discussed measuring the magnetic field in the 
direction parallel to a sloping surface and in the horizontal, 
and concluded that the most convenient choice for a practical 

MT experiment, horizontal, minimizes so-called 'static shift' 
effects of topography. The two methods agree to much better 
than 1 per cent in apparent resistivity and to better than the 
equivalent difference of 0.29 degrees in phase. The small, but 
noticeable offset between the apparent resistivities at 1 Hz 
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Table 2. Nodes and finite-element corners for model (b) in Fig. 2. The negative vertical values 
are in the air and are used only for the TE mode. The vertices of the shallow internal interface 
are at  ( y ,  z )  = (0, loo), (1800, 1000). Units are metres. 

Horizontal 

-100000 7oooO -5oooO -35000 -25000 -2oooO 

-2908 -1947 -1306 -879 -595 

-75 -50 -30 -10 0 

400 600 800 1000 1200 

1790 1800 1810 1830 1850 

2205 2395 2679 3106 3747 

23120 

Vertical 

-100000 

0 

200 

985 

1500 

5 100 

7916 

I5432 

3 m  

25 

300 

995 

1800 

5200 

8387 

16655 

-loo00 

50 

400 

lo00 

2100 

5400 

8906 

18001 

-3000 

75 

500 

1005 

3000 

5620 

9477 

19481 

-1000 

95 

600 

1015 

3500 

5862 

10105 

21109 

10 Hz 
I 

20' I 
-5 0 5 

-405 

10 

1400 

1875 

4708 

-300 

100 

700 

1025 

4Ooo 

6128 

10795 

-14621 

-278 

30 

1600 

1900 

6150 

-100 

105 

800 

1050 

4500 

6421 

11554 

-9156 -6512 -4350 

-194 -138 -100 

50 100 200 

1700 1750 1770 

1938 1994 2078 

8312 11556 16421 

-75 -50 -25 

115 125 150 

900 950 975 

1100 1200 1300 

4700 4900 so00 

6743 7097 7487 

12390 13309 14320 

1 Hz 

40 

35 

30 

20 251 -5 0 5 

Figure 5. TM responses at 10 Hz (left) and 1 Hz (right) for the model with an internal sloping interface shown in Fig. 2(b). Finite-element 
responses are plotted as open circles at the horizontal position of each element corner on the Earth-air interface. The FDA results have nodes at 
the same positions and are shown as solid curves. 
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persists to large horizontal distances, where PW2D converges 
to 100 o m and FWD2D converges to 99.88 o m. This offset is 
actually slightly larger at 100 Hz, but is masked by the larger 
amplitude of the anomaly. It is a consequence of the difference 
between the total and secondary-field approaches and will be 
discussed in more detail in the next example. Our FDA results 
are in far better agreement with the finite-element results than 
the agreement between the transmission-line results of Ngoc 
i( 1980) and finite-element results for a similar model reported 
by Wannamaker et al. (1986). 

4.2 Discrete FDA versus finite elements for an internal 
sloping boundary 

The model of Fig. 2(b) has an internal sloping interface, and 
Table 2 gives the FDA nodes and finite-element corners. Fig. 4 

-O.l t 
-0.2 I I 

-100 -80 -60 -40 -20 0 20 40 

B 0  a 

~ 

-0.3 

-0'4 t 
0 0 0 0  

0 

0 
0 

0 

- 
0 

-0- 

0 1 
-0.5 I I 

-100 -80 -60 -40 -20 0 20 40 
Horizontal Positlon (Km) 

Figure 6.  Phase differences between finite-element and finite-difference 
calculations at 10 Hz for the model with an internal sloping interface 
shown in Fig. 2( b). The points are plotted at the positions of the finite- 
difference nodes and the finite-element corners for the full width of 
the model. A phase difference of kO.29 degrees is equivalent to 1 per 
cent difference in apparent resistivity. The systematic behaviour of 
these differences is consistent with what is expected between a code 
that uses total fields and one that uses secondary fields relative to the 
analytic response of the 1-D structure at the left edge of the model 
(see text). 

compares the surface TE responses at frequencies where the 
skin depth is smaller than or larger than the thickness of the 
surface layer on the right side of the model. Fig. 5 compares 
TM responses (pxy and d x y )  using the discrete TM(d) FDA of 
eq. (11) at the same frequencies. This FDA can be used 
everywhere in the model because the resistivities are constant 
except at the discontinuities. 

The responses are again almost indistinguishable at the 1 per 
cent (0.29 deg) level. The only obvious difference is a small, 
systematic bias of the phases at 10Hz on the left side of the 
model. These differences are plotted for the full width of the 
model in Fig. 6. They are almost certainly a consequence of 
the secondary and total-field approaches and are not a result 
of the finite-difference or finite-element approximations. Both 
codes estimate the vertical derivative at the Earth-air interface 
in eqs ( lb )  or (2b) from a parabolic fit to three field points 
that do not straddle the discontinuity of the second derivative 
at the Earth-air interface. For TE, the field points are in the 
air, where a parabola is a better approximation to the solution 
than it is in the Earth. For TM, the points must be in the 
Earth. For the total field, this results in error terms that are 
usually opposite in sign for TE and TM and slightly larger for 
TM. However, PW2D needs to apply the numerical differ- 
entiation only to the non-1-D host part of the field, which, by 
assumption, approaches zero on the left side of the model. 
Thus the PW2D error terms also approach zero on the left, 
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Figure 7. TM responses computed analytically (squares, Weaver et d. 
1985), with finite elements (crosses, Wannamaker et al. 1987) and with 
FDA TM(d) (dashed lines) at a period of 300 s for the model shown. 
The model is uniform to infinity outside the central region. Both the 
finite-element and FDA computations approximate the infinite con- 
ductivity of the basement with 10" S m-'. The analytic and finite- 
element results are computed from Table 1 of Wannamaker et d. 1987. 
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and the observed phase difference is entirely due to the 
inaccuracy of the 1-D total field. On the right side of the 
model, the 1-D structure is substantially different from the 1-D 
host assumed by PW2D, and the secondary fields are a 
significant fraction of the total fields. Thus the PW2D error 
terms will also be significant and the observed phase difference 
is substantially smaller. The accuracy of the 1-D total field can 
be increased considerably by finer gridding; response differ- 
ences between the total and secondary field approaches are 
not evident at 1 Hz. 

4.3 Comparison with analytic results when the Galvanic 
response is large 

For the TM mode, continuity of the normal component of an 
electric current at an interface between media of different 
conductivities implies charge accumulation on the interface. 
The ‘Galvanic’ electric field of these charges does not necessarily 
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disappear as frequency tends to zero and the governing physics 
changes from diffusion to electrostatics (Poisson’s equation). 
This near-singularity means that computation of the fields 
from the diffusion equation at frequencies where the Galvanic 
response is significant may become numerically unstable. 
Weaver, LeQuang & Fischer (1985) presented an analytic 
solution for a model consisting of three blocks of differing 
conductivity overlying an infinitely conducting basement (see 
Fig. 7). Wannamaker et al. (1987) demonstrated the accuracy 
and stability of PW2D by comparing their responses to these 
analytic results at 300s. At this period, the surface units are 
all more than one skin depth thick, so that induction in the 
basal infinite conductor is of little importance. Instead, the 
TM response is strongly influenced by the Galvanic charges 
on the vertical contacts, which cause large discontinuities in 
surface apparent resistivity. Fig. 7 extends this comparison to 
include responses calculated using FWD2D with the TM(d) 
FDA. 
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Figure 8. TM (left) and TE (right) responses at 1 Hz for the model shown. Note that the length scales for the model and responses are not the 
same and that the response scales are different for each mode. The responses were calculated with two different grids: (a) the discrete boundaries 
of the internal conducting prism pass between the nodes and (b) the nodes lie on the discrete internal boundaries. The TE F D A  is the same for 
both cases, but the effective conductivities near the discrete boundary differ. The TE dashed response of (a) lies within the width of the solid 
response curve of (b) and cannot be distinguished. The TM(c2) F D A  was used for (a) and the TM(d) F D A  was used for (b). 
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FWD2D agrees with the analytical results to better than 
1 per cent (0.29 degrees) and the FWD2D phase appears to 
be in better agreement than is the PW2D phase in the right 
half of the model. We do not know why PW2D has not 
performed quite as well as FWD2D in this instance. The grids 
are very similar, although not identical, and are unlikely to 
cause this difference. Both numerical models approximate 
the infinitely conducting basement with a conductivity of 
10'' S m-'. Differences between the total and secondary-field 
approaches are also unlikely, because the secondary fields are 
up to 30 per cent of the total field in the right block and even 
larger in the centre block. Furthermore, the two numerical 
codes agree in the left block, where such differences are most 
likely. Remaining possibilities include the accuracy of the 
different linear system solvers and the higher-precision 
arithmetic used by FWD2D (64 versus 32 bits for PW2D). 
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4.4 Discrete boundaries that d o  not intersect nodes 

Fig. 8 shows the TE and TM responses at 1 Hz for an infinitely 
long conductive prism in a resistive host. At this frequency, 
the skin depth in the prism is comparable to its size, while the 
skin depth in the host is much larger than the depth to the 
prism. In this situation, the TE response is dominated by 
current induced in the prism, while the TM response has small, 
but significant inductive and Galvanic contributions. For both 
modes, these are strong electric-field gradients near the outer 
edge of the prism. Responses are shown for a grid in which 
the discrete boundaries intersect the nodes, and one in which 
the discrete boundaries lie between the nodes. The TE calcu- 
lations use the same FDA for both grids, but different effective 
conductivities at the nodes. The TM calculations use the 

1 "'1 

TM(d) FDA for the discrete boundaries that intersect the 
nodes and the TM(c2) FDA for the discrete boundaries that 
do not intersect the nodes. 

The TE responses for the two grids are identical within the 
width of the line, and it is clear that choosing whether or not 
discrete boundaries intersect nodes is simply a matter of 
convenience. The two cases give slighty different TM responses, 
but the difference is much less than 1 per cent (0.29 degrees), 
and very small compared to the amplitude of the anomaly. 
Thus, although the non-intersecting case using TM(c2) does 
not give exactly the same answer as the intersecting case using 
TM(d), the responses are close enough for most purposes to 
opt for the simplicity of TM(c2). This is especially true since 
TM(c2) can also be used in regions of variable p away from 
the discontinuity. In fact, in our experience, increasing the grid 
spacing near the discontinuity degrades the response accuracy 
of the non-intersecting case using TM(c2) more slowly than 
the intersecting case using TM(d). When the grid is sparse due 
to computer resources or other considerations, non-intersecting 
discontinuities using TM(c2) often out-perform intersecting 
discontinuities using TM(d). The currently distributed code 
for the rapid 2-D inversion of Smith & Booker (1991) uses 
TM(c2). 

..... . .  . .  
z=15km j i 

4.5 Comparison of the TM FDAs for continuous models 

We wish to compare the TM(c1) and TM(c2) FDAs as 
conductivity gradients increase within a model. To do this, we 
have developed the suite of four models with successively 
smoother gradients, as shown in Fig. 9 (ml, m2, m3 and m4), 
from an originally discrete model (mO). Fig. 10 shows the TM 
responses at 0.42 Hz for each of the four continuous models. 
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Figure9. Suite of five models with progressively smaller resistivity gradients. Model mO is a 5 km wide 300om discrete body in a 15 o m  
horizontal layer. Both overlie a very conductive basement at a depth of 20 km. The subsequent models replace the infinite gradient at the top of 
the basement and at the vertical edges of the central body with a finite zone of constant resistivity gradient that gets progressively wider from 
model ml  to m4. This is illustrated by plotting the resistivity along A-A' at 15 km depth and B-B' at the middle of the central body. 
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Figure 10. Comparison of TM responses for the suite of models defined in Fig. 9. In all plots, the solid line is the response of the discrete model 
mO using the discrete FDA TM(d). The dashed responses are for the continuous FDA TM(c1) and the dotted responses are for the continuous 
FDA TM(c2). The same nodes are used for all FDAs. When the model gradients are smallest (model m4), TM(c1) and TM(c2) give identical 
responses. However, as the gradients increase, the TM(c2) responses converge toward the discrete case, while the TM (cl ) responses diverge. Note 
the different vertical scales on the m4 responses. 

At this frequency, the skin depth in the 15 o m host is approxi- 
mately equal to the width of the 300om vertical resistive 
region, and the skin depth in the 300 o m  vertical resistive 
region is approximately equal to the depth to the highly 
conducting basement. This guarantees strongly 2-D fields with 
significant contributions to the response from induction in all 
elements of the model and the Galvanic electric charges on 
the vertical edges of the resistive region. Responses were 
calculated using the two continuous FDA TM(c1) and TM(c2) 
(dashed lines). The response for the discrete model mO (solid 
lines), computed with the discrete FDA TM(d), is included in 
all cases to show how the TM(c1) and TM(c2) solutions evolve 
as the continuous models approach mO. From left to right, 
beginning with the smoothest model (m4 in Fig.9), we see 
both the TM(c1) and TM(c2) FDAs give essentially identical 
results. As the model gradient increases, the responses for the 
two continuous FDAs deviate from one another, particularly 
in the phase. The TM(c2) response approaches the TM(d) 
response as the gradients become steeper, while the TM(c1) 
response diverges from the TM(d) response. For the continuous 
model with the steepest gradients, TM(c1) required 126 iter- 
ations to reduce the numerical residuals sufficiently to suppose 
that the linear system had been solved, while TM(d) and 
TM(c2) required only 47 and 34 iterations respectively. This 
reflects the numerical instability of TM(c1) with steep gradi- 
ents. We conclude that TM(c2) is as good as TM(c1) when 

model gradients are small and much better than TM(c1) when 
the model gradients are high. Thus TM(c2) is clearly preferable. 

5 CONCLUSIONS 

We have developed finite-difference approximations with which 
almost any arbitrary discrete boundary can be modelled in a 
fairly simple and accurate way. For the TE mode, the FDA 
for the discrete case can be obtained from the FDA for a 
constant model by simply replacing the conductivity at each 
node by an ‘effective conductivity’, which is an appropriately 
weighted mean of the actual conductivity surrounding each 
node. The TM mode is more complicated, because the gradient 
of the resistivity interacts with the gradient of the magnetic 
field and consequently four ‘effective resistivities’ must be 
specified at each node. 

These new FDAs can mimic finite-element approximations 
by allowing discrete boundaries to cut diagonally across mesh 
cells. In some sense, the new FDAs are actually more flexible 
than finite elements, because they allow discrete boundaries 
that do not intersect nodes. They appear to give essentially 
identical results to finite elements and lead to sparser matrix 
equations. 

We have also presented an FDA for the TM mode when 
the model is continuous, which gives accurate results when 
model gradients are high. This FDA even performs well for a 
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discrete boundary located between nodes in comparison to the 
TM FDA designed specifically for a discrete boundary running 
through the nodes. 

Finally, we have noted that maintaining computational 
accuracy with these FDAs requires careful mesh discretization. 
The grid should be as uniform as possible anywhere that one 
expects substantial field gradients in order to take advantage 
of the higher-order accuracy. For practical computation of the 
>appropriate effective conductivities and resistivities at the 
nodes, the node spacing also needs to be somewhat less than 
the size of individual discrete bodies or the scale of continuous 
conductivity gradients. Finally, the grid spacing should be 
small compared to the scale of the spatial gradients of the 
fields. Of the order of one-tenth of the local skin depth is 
recommended near the surface at which MT responses are to 
be calculated. 
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