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THE EFFECT OF A FAULT ON THE EARTH’S NATURAL
ELECTROMAGNETIC FIELD*

I. FERCEVILLEY} axp G. KUNETZY

The main purpose of this paper is to study the effect on a natural electromagnetic field of a lateral variation in
the physical properties of the ground.

An exact mathematical solution is given for two media of different resistivities in contact along a vertical plane
(fault) overlying a horizontal basement that is taken as being either infinitely resistive or infinitely conductive, or
at infinite depth. Results are given in the form of curves along profiles perpendicular to the fault. Some practical

inferences are drawn from the shape of the curves and from their comparison.

EXTENT OF SURVEYS BY TELLURIC CURRENTS
AND THEIR RELATION TO THE
MAGNETO-TELLURIC METHOD

Before taking up the study of a particular ex-
ample of the application of natural electromag-
netic fields in prospecting, it should be recalled
that these fields have already supplied geophysics
with a valuable tool, the telluric current method.
This tool has been widely used, often with com-
plete success, particularly in the Eastern hem-
isphere. The magneto-telluric method is very
closely related to certain aspects of the telluric
current method, so that the analysis of the experi-
mental and theoretical results obtained in these
studies could be quite valuable.

This latter point will be taken up again, but
first, a few statistics will be given to show the ex-
tent of the work done using the telluric method,
which was first employed by the Schlumberger
brothers in the ‘“thirties’” and which reached its
full expansion during and after World War 1II.

The upper part of Table 1 gives the crew-
months, the number of measuring points, and the
kilometers of profile with geographic distribution,
representing the activity of one French geophys-
ical contractor. As can be seen, the use of the
method has reached a high level. During the
period under review, crew income exceeded six
million dollars.

Although activity in this field has decreased in
_Western Europe during the last few years, the
method is being developed in the Eastern coun-

Table 1. Exploration activity by telluric method

1941-1955.
Crew Setu Kilometers
months DS | of profile
France 230 32,000 25,000
Other European
Countries 70 13,000 10,000
North Africa 111 28,000 11,000
Equatorial Africa
Madagascar 108 18,000 13,000
U. S A 23 2,700 2,100
Venezuela 19 2,000 2,200
Asia 4 300 200
Total 565 96,000 63,500
1955-1957
USSR. I |

tries, particularly in East Germany, Russia, and
Hungary. At the last Geophysical Congress held
in Budapest (1959), four papers were devoted to
it. The last line of Table 1 shows an activity figure
for the U.S.S.R.

Details on the technique of the method or the
results obtained will not be presented in this
paper. A large number of publications have been
devoted to the subject.

The majority of the surveys using this method
have been made on the assumption that the
telluric field is practically stationary (frequency
independent). The validity of this hypothesis was
checked experimentally by comparing the results

* Presented at the 29th Annual SEG Meeting, Los Angeles, California, November 1959. Manuscript received by

the Editor November 2, 1961.
t Compagnie Générale de Géophysique, Paris, France.
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given by the use of different frequency compo-
nents. In the range of the frequencies dealt with,
which lies between 1/10 and 1,/100 cps, the influ-
ence upon the results of these frequency varia-
tions were usually found to be negligible. This was
in agreement with the theoretical distribution of
a time-varying electromagnetic field in a strati-
fied medium, allowing for the order of magnitude
of the resistivities involved.

However, in some cases, significant frequency
effects were noted. These effects were sometimes
greater than could be explained by theory, assum-
ing the strata were horizontal, and this led in
part to the present study.

In any event, the results of a study of the varia-
tion of the telluric current field as a function of
frequency are closely linked to those obtained
from a magneto-telluric study. For instance, in the
case of cylindrical structures (i.e., structures
which have a constant cross-section), it is easily
shown that the magnetic field caused by a sheet
of current normal to the axis of the structure con-
sists of a single component which is horizontal and
parallel to the axis of the structure, and which has
the same instantaneous value everywhere at the
surface. Therefore, if the profile of the simultane-
ous values of the telluric field is considered along
a cross-section perpendicular to the axis of the
structurc (values which can also be found by
successive measurements, by relating them to a
fixed reference base), this profile will be similar,
within a constant coeflicient, to that which would
have been found by the magneto-telluric method.
In order to correlate the profiles corresponding to
different frequencies, it is necessary to determine
the variation of the ratio of the magnetic ficld to
the telluric field as a function of frequency at a
single point, either by actual measurement or by
calculation. Calculation is feasible if the zone
around the point chosen is geologically undis-
turbed and the distribution of resistivities is
known. It follows in this case that the magnetic
field is essentially a calibration standard.

The situation is more complicated in the case
of structures of arbitrary form. Definite analogies
do exist nevertheless. For instance, the two com-
ponents of the magnetic field are linear functions
of the simultaneous components of the telluric
field at the same point, and the simultaneous
components of the telluric field are linear func-
tions at two different points.
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However, experience both in the fleld and in
the laboratory has shown that the hypothesis of
“cylindrical” structures is often a very good ap-
proximation for anomalies which are even slightly
elongated. Moreover, in the present problem, the
theoretical study of the effect of cylindrical struc-
tures already presents sufficient difficulties.

A particular example of these structures is
covered in the following.

EFFECT OF A VERTICAL FAULT ON A NATURAL
ELECTROMAGNETIC FIELD

When natural electromagneltic fields are stud-
ied, horizontal homogeneous strata are generally
assumed. This assumption is not satisfactory in
applications to the search for anomalies which
deviate from such an arrangement.

Unfortunately, assuming lateral changes in
the electromagnctic properties usually results in
great mathematical difficulties. For this reason,
a particular case (obviously idealized) is consid-
ered for which calculations can be carried out
without approximation, in order to illustrate the
phenomena corresponding to similar field condi-
tions.

A vertical fault of infinite length, separating
two formations of different resistivities py and p,, is
assumed. These two formations rest on the same
horizontal substratum of infinite resistivity or
infinite conductivity. As a special case, the fault
can be extended to an infinite depth. The telluric
current is assumed to be horizontal and normal
to the fault plane at an infinite distance from the
fault.

Under these conditions, the magnetic field on
the ground surface is not only horizontal and
parallel to the fault, but in addition, its intensity
is the same at all points. In contrast, the intensity
of the electric field on the surface is a function of
the distance between the point of measurement
and the fault plane. In the case of a natural elec-
tromagnetic field (the intensity of which is highly
variable as a function of time), the ratio of the
component of the telluric field normal with the
fault to the simultaneous component of the mag-
netic field parallel with the fault is independent of
these time variations of intensity. As the mag-
netic field is invariant in space, variations of this
ratio occurring along a profile perpendicular to
the fault depend only on the variation of the
electric field.
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Of course, in addition to the distance to the
fault and the geometric and electrical character-
istics of the formation, results also depend on the
frequency.

METHOD OF SOLUTION!

In the foregoing hypotheses, all vertical sec-
tions normal to the fault are identical from the
electromagnetic point of view, and the magnetic
field, which is always normal to these sections,
can be represented by a scalar H.

The vertical at one point of the fault is taken
as the z axis, and the horizontal normal to the
fault as the x axis. Accordingly, the derivatives
of the fields with respect to the third co-ordinate
axis, v, will be zero.

Disregarding the displacement currents and
using the relation Curl H=4mi (noting that at
the surface i, is zero), it follows that 0H/9x=0,
which proves that the magnetic field on the sur-
face is the same at all points.

Considering now a sinusoidal field with angular
frequency, w, the cases of an infinitely resistant,
infinitely conductive, and infinitely deep sub-
stratum will be discussed.

Substratum of infinile resistivity

The solution for the magnetic field, H, is ob-
tained. From this the electric field on the surface,
normal to the fault, E,, is calculated by means of
the formula

P 1 OJH
y = —p
4w 9Jz

The expressions for the magnetic field are
written separately in the two compartments.
These expressions have to satisfy boundary con-
ditions at the surface of the earth, at the surface
of the substratum, and at infinity (for v= £ ),
and must satisfy Maxwell’s equations. They each
comprise a set of arbitrary coefficients which will
be determined in turn by the continuity of the
magnetic field and that of the vertical component
of the electric fields at the fault plane (for x=0).

H has been found to be constant on the surface
of the earth. In the case of an infinitely resistant
substratum, the same must be true on the surface

! The detailed mathematical derivation of the solu-
tion, along with its complete analytical expressions, are
given in the Appendix.
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of the substratum. On the other hand, at an in-
finite distance from the fault, it no longer has any
effect, and the variation of the field with depth 2
should be that which can be calculated for an in-
definite horizontal stratum. Take H,° and H)°
as the expressions of these undisturbed fields,
functions of z, which are different in the two com-
partments because of the difference in resistivity.
In each medium, a field of disturbance due to the
fault is superposed on these undisturbed fields.
If Py and P. represent these disturbances, and H,
and H, the total fields, then

H1: Illu‘l"l)l
and
H2=H20+P2.

The disturbances P, and P, are expanded to a
Fourier series (as sines), as a function of z, in the
interval 0 to # (k=depth of the substratum). In
this way the disturbance will be zero for z=0,
and z=+/, as required by boundary conditions.
As to the second factor of Laplace’s product, i.e.,
the function of x, it is determined to within a con-
stant factor by the fact that each term must be a
solution of Maxwell’s equations and become zero
for x infinite.

The fields of disturbances will thus be developed
in series of terms such as

. nmes nirt  Amjw
@, Sin——exp| + x —_—t
h h? Pi
(i =1 or 2),

the sign being taken in such a way that the ex-
ponent will be negative.

All that now remains to be done is to determine
the two series of constants @y, and a@s,. This is
done by stating that I7 and E, must be continuous
for x=0 at the point where the fault is crossed.

To express equality of the magnetic fields, the
undisturbed fields H,? and H,® are also expanded
into Fourier series. Then, after adding this to the
series representing the disturbances, the two ex-
pressions obtained for x =0 are identified, term by
term on both sides of the fault. This gives a first
series of linear equations (not homogeneous)
for the series of constants a1, and as,.

To ensure continuity of the vertical electrical
field, it suffices to state the equality of the dis-
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turbing fields, the other fields being horizontal at
all points. This equality is expressed as

0P, 9P,
p1—— = ps——>

dx dx
and gives the second series of linear equations
which, with those resulting from the equality of
the magnetic fields, permits calculating the series
of the a;, and a,, pairs.

The magnetic field H is thus completely deter-

mined and from this the electric field E, which
must be zero on the surface of the substratum.

Substratum of infinite conductivity

Calculation in this case is similar to the preced-
ing one, taking into account that this time it is
the horizontal component of the electric field,
E;, which must be zero on the surface of the sub-
stratum.

Now, examination of the formulae relating to
the insulating substratum shows that the above
condition is satisfied in this case for z=h/2,
for all uneven terms of the series giving the dis-
turbances. In these terms, if % is replaced by 2k
(and x by x/2), the disturbances relating to the
conductive substratum are obtained.

Substratum of infinite depth

This case is the common limit of the two cases
considered above, when /% tends towards infinity.
The solution could be obtained by passing to the
limit on the results obtained, but it is easier to
revert to the calculations, substituting Fourier
integrals (in sines) for the expansions into Fourier
series.

RESULTS OBTAINED

In view of their length, the analytical expres-
sions of the solution in the various cases are not
presented here (they will be found in the Ap-
pendix), but a few results of numerical calcula-
tions in the form of curves are presented.

Values of the parameters involved

First, it will be observed that, as was to be ex-
pected, results depend only on dimensionless
quantities:

w w x
h — h /‘/— y and — -
P pe h
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In the case of faults of finite depth (%, finite),
profiles perpendicular to the fault have been
represented by showing, as abscissae on a linear
scale, the ratio x/k of the distance, x, between the
point of measurement and the fault plane to the
depth, %, of the latter, and as ordinates, first, the
ratio of the moduli (on a logarithmic scale), and
second, the phase difference of the electric field,
E;, and of the magnetic field, H, in radians and
in degrees on a linear scale.

The two other parameters adopted are: the
ratio of resistivity of the two compartments,
p2/p1, to which ratio have been given the nu-
merical values 9 and 100; and the ratio d,/4 of
the “depth of penetration”

(- 2)
27w

in the medium of greatest conductivity to the
depth of the fault, 4. The values /2, v/2/2,
\/2/4 have been assigned to this latter ratio.

These two parameters are kept constant on
each curve and the curves relating to a single re-
sistivity ratio have been grouped on the same
graph. Moreover, to relate the graphs one to an-
other, it has been assumed that the resistivity
p2 of the most resistive compartment remains the
same for both ratios ps/p:.

Variation of the field for various depths of penetra-
tion

Figure 1 shows these results for a substratum of
infinite resistivity, while Figure 2 gives those cor-
responding to a substratum of infinite conductiv-
ity. A comparison of the curves relating to these
two extreme cases permits an approximate esti-
mation of the outline of the profiles which would
be obtained with a substratum of finite resistivity,
especially since it is easy to calculate the asymp-
totes of these profiles (for x=+ % and —«) by
using the formulae relating to infinite horizontal
strata.

For given rock characteristics (resistivities and
depth), the various curves on a single graph cor-
respond to different frequencies of the field. Ac-
cording to whether the strata involved are thin
and resistive or, on the contrary, thick and
conductive, the values adopted can correspond to
frequencies of an entirely different order of mag-
nitude. Thus, for strata 100 meters thick, and for
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a resistivity of 10 ohmmeters of the more conduc-
tive compartment, the three curves worked out
correspond to frequencies of approximately
125, 500, and 2,000 cps, whereas if 2=2,000
meters and p=1 ohmmeter, they correspond to
frequencics 4,000 times less, or to periods of 32, 8,
and 2 sec, respectively.

The curves also make it possible to estimate
to what extent a “magneto-telluric sounding,”
i.c., the curve of the values of E/H at a definite
point, as a function of frequency, will be influ-
enced by the proximity of a fault. To determine
this, it suffices to note the values of the ordinates
of the successive curves for a single abscissa. It
will be found that the disturbance is definitely
greater in the compartment of lowest resistivity,
and decreases quickly as the distance from the
fault plane is increased. At a distance of about
half the depth of thc substratum, the influence
becomes very slight, and is practically zero at a
distance equal to 4.

Variation of the field for various depths
of the basement

Results relating to a substratum of infinite
depth cannot be shown in the same way, since 7,
being infinite, cannot be taken as a unit of length.

A second method of presentation is therefore
adopted in which the “depth of penetration”, di,
(in the more conductive medium) is taken as the
unit of length (Figures 3 and 4). By way of com-
parison, the results relating to finite % have been
shown in the same way, still grouping the profiles
relating to the same value of ps/py on a single
graph. However, with this second presentation of
results, the different profiles shown on a given
graph no longer correspond to a single cross-sec-
tion of rock (or to different {requencies), but to
the same frequency and the same resistivities,
and to different depths of the substratum.

A comparison of the curves relating to 2=
with the other curves shows that the phenomenon
is far from evolving monotonically with the varia-
tions in depth of the substratum, and not only in
reference to the phase differences (of which it
seems difficult to take practical advantage), but
also in reference to the field moduli ratio.

An example of a magneto-telluric sounding curve

The magneto-telluric sounding curve for A= =
is given this time by the points of the curve re-
lating to d,/k =0 itself, as these points can be con-
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sidered to correspond to constant values of » and
p, and to variable values of di, and therefore of
frequency. To obtain the usual representation of
these curves, it is sufficient to adopt a logarithmic
scale for the abscissae, as shown on Figure 5.

Additional results in the case of an infinitely deep
basement

Finally, in Figure 6, curves corresponding to an
infinitely deep substratum, and a more complete
set of resistivity ratios are given. The same re-
sults are presented in the form of numerical val-
ues in Table 2.

An apparent paradox

When the case of a fault of infinite depth and of
a sinusoidal field is considered, the electric field
ratio at an infinite distance from the fault is equal
to +/pi/pe, and is independent of the frequency of
the field. But if, from the beginning, the case of a
direct current is considered, p;/p is found.

The foregoing results clear up this apparent
paradox. On the fault itself, the field ratio is al-
ways equal to pi/ps. As the distance from the
fault is increased indefinitely, on cither side, the
ratio tends toward +/pi/ps, but the lower the
frequency, the slower this tendency becomes.
When the frequency becomes zero, the asymptote
can no longer be reached.

In other words, the asymptotic value of this
ratio depends on the order in which the param-
eters involved approach their limit. If, for a
fixed frequency, however low, the points of
measurement are moved further and further from
the fault, on cither side, the field ratio tends to-
ward +ps/p1. If, for two fixed points of measure-
ment, however far from the fault, the frequency
is caused to tend toward zero, the field ratio will
approach pa/p1.

APPENDIX

Let a vertical fault be considered infinite in
horizontal direction. 1t separates two formations
with resistivities p; and pa, resting on the same
horizontal substratum at a depth, 4. A normal to
the fault at the surface will be taken as the x-axis,
the vertical along the fault as the z-axis, and the
trace of this fault at the surface as the y-axis. Con-
sidering now a sinusoidal telluric current uniform
at infinity and perpendicular to this fault with
pulsation w, by reason of symmetry, we will have
E,=0 and all the other factors will be independ-
ent of y. Taking into account the relation curl
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E=—jwH and in view of the fact that, according At an infinite distance from the fault, # is inde-
to the foregoing, pendent of x and the equation reduces to
ok, JOE, oE, 9F, *H 47rjw
—_— = and - — — H
0x dy dy Jz c')z~ p

are zero, it follows that
H,=H,=0

and the only component of the magnetic field is
Hy, which will be deisgnated as H, a scalar de-
fining this field. Moreover, considering that 7, is
zero at the surface, from the relation curl H=4xi
it may be deduced that 9H,/dx=0, i.e., the mag-
netic field at the surface is constant. Maxwell’s
equations make it possible to write
4mjw
V:H=—H
p

which gives the gencral solution in the first
medium:

H\ = Ae¥ Grisio): o Bl Griwloz, (1)
If Hy is the surface field,
Al "I- B1 - Ho.

To carry this calculation further, a hypothesis
relating to the substratum must be chosen.

Let it be assumed that the substratum is of in-
Jinite resistivity. In this case, it will be further as-
sumed that the magnetic field at infinite depth is
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zero. Since the magnetic field is constant in this
substratum, it is also zero at its surface.
Stating

Arw
—— h = hy,
Pt
A Th 4 BT =0
is obtained.
This gives immediately:

_ Hoe—\/j_hl

25h(~/] )

A, =

and
ng”/f_’”
25h(+/f )

The second formation can be dealt with simi-
larly, substituting p: for ps.

The presence of the fault will bring about in
both media a disturbance H, which becomes zero
at infinity.

The first medium (x negative) will be examined
first. Obviously the disturbance P; is zero for
z=0 and z=A. It can be developed, with respect
to z, into a sine series of argument nwz/k. Each
term of the series will therefore be expressed by
Fa(x)-sin naz/h.

Thus, the equation to be satisfied, namely,

(2)

621)1 62P1 . 1’112
e
ox? 0z2 h?
gives
7 = e = 5
x) = ——flo) = 7 — f(x).
h J h?

Taking into account that f(x) becomes zero for
x= — oo, the solution will be

2RI JY)
al,n'GV" T4k J/L,

the real part of the radical being positive. A simi-
lar expression is obtained for the second medium,
provided that %, is replaced by /., and that the
sign of the exponent is changed, in view of the
fact that this term becomes zero for x equal to
+ «. Hence,

001 .
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Fic. 6. Variation of the field in the case of an
infinitely deep basement.
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Table 2. Numerical values of the field in the case of an infinitely deep basement
E.=R(x) cos wl+ I(x) sin wt=p, cos (wl—6.).
dl;ﬁ I R P 8 d, /2 I R l p )
-2 | 0.07815 | 006556 | 0,10200 | 0,8726
-7 0,07572 | 0,04733 | 008879 10085 -2 0,12356 0,10650 | 0,76312 0,85944
-~ 376 006538 | 003437 | 007387 | 10867 -7 g, 12007 0.08069 | 0, 14462 097873
- 0.4 0, 05592 002647 0,06187 1,1286 -06 010637 8,06175 0,12307 17,0449
- 02 004075 007765 0,04441 116189 -04 0.09278 004997 0, 10540 10767
-0 0.00832 a 00816 8,01656 | 0.795 -02 0,07062 0.03668 007959 | 10917
+ 0 0,82425 | 082430 | 1,1615 | 0.785 -0 0.02192 | 002200 | 003103 | 0,783
+07r 0,80202 081962 11467 077454 + 0 0.85721 0.65724 121234 0,785
+0.2 a,79040 081529 11355 0.76989 +02 0.60705 084327 11672 0.76345
+04 0,77367 0.80757 11183 0.76400 +04 g 76244 0.63129 1.71416 0.75513
+0.6 076170 8.80068 11857 0,76044 +06 0.76533 082083 11222 a.7504/
+ 7 0,74521 0,78918 10854 075674 + 7 0.74264 080339 1.0940 0.74611
+ 2 0 72334 0.76852 710553 0,75512
P2 _ P
£ —]00 P, - 39
s | ] R | ¢ 8 | @ I R p 8
-2 0.24935 0,226839| 0. 33814 0.82926 -2 0,36573 0.34807| 0.50483 | 0.81004
-1 024735 | 0.719289 | 0.31367 0.906847 -/ 0,36592 0.31557 0.48314 0.85925
-06 0,22950 | 0.16433 | 0.28226 | 0.94939 | -0.6 0.35028 | (.28728 | 0.45307 | 0.88390
-04 a.210/4 0.14575 | 0.25573 0.96439 -04 8.33208 0.26818 0.42683 0.89145
-2 0.17644 0.12396 | ©.21563 0.95836 -02 0.29903 0.24507 0.38660 | 0.88425
-0 0.09886 8.09687 | 0.14367 0.785 -0 0.21744 g.21745 8.30750 0.78%
+ 0 0.88981 0.88980 1.2545 0.785 + 0 0.86971 0.86970 1.2299 0.785
+0.1 0.83649 087712 1.2134 0.76268 +0.1 0.81626 085550 1.1820 0.76155
+4u.2 g 81055 0.86556 1.1858 0 75259 +0.2 0.78715 0.84272 1.1531 a.75137
+04 0.77395 0.84521 7. 1460 0.74141 +0.4 a.75167 0.82060 2.1127 0.745154
+06 0.75032 0.82788 7.1173 0.73629 + 0.6 8.73015 0.80222 1.0847 0.73839
+ 7 0.72209 | 0.80003 10777 0.73423 + 7 0.70713 0.77390 ). 0483 0.74034
+ 2 0.69634 0.75554 1.0277 -0.74438
fi = P2 _
P J I 4
e nTE . Now H,'—H,® can be developed by standard
P, = Z @i SIn —— eBIiRS 2k () pathods into a sine series of argument nwz/k.
n=t G Since H'—H,° is zero for =0 and z=#,
(i =10r2).
. . . ad nws
But H is continuous at x=0, i.e., H, — H°= Z ba sinT )
Hll:no = H?]z;ﬁ e
and, since where
H1=H10+P1 and H2=H20+P2, 2 © sin s
bn = -f (HZO— Hl")—~—dz.
this gives hJo h
H\°+ P, = Hy' + P, Substituting for H,° the solution (1) and for H,°
or for x = 0. (4) the similar expression for the second formation,

Pl_'Pz:HQO—HlO

the result:
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bn - ZTjHo(}h? - h22)
n
(n2x? + i) (wPn? 4 oY)

is obtained. Now, equating coefficients of sin
nwz/k on both sides of equation (4), where for
P, and P, the expression (3) (with x=0) is sub-
stituted, we obtain

(5)
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which becomes in the first formation:

1 o(H.* 4+ Py)
Fi=-—p———
47 9z
Using expressions (1) and (2) on the right-hand
side for H,', and expressions (3) and (8) for 2,
differentiating with respect to z and putting
=0, the following result is obtained:

n

A1,n — 27rj'H0[1112 bl h22]

[n2r? + ] [t + jhat] [1 t+= =

with

1+ ]tlz<
whH(] —
El,r!z-o =

\/

S 8
ho® /nim +]hl] ®)
l

2 nint gkt

;) (5;>

— k2 |X U

—— =i

4 2x% [

lll“ ]<h>+ <}l1>
i) T\ 3 J

ain — adz n = bn- (6)

Moreover, E, is continuous across the fault, which
entails continuity of p(0H /9x). Hence,

o0H, aHz
pL—— = p2

for x = 0,
ax 6x

and, as H:° and H,® are independent of x,

aPl 0P,
p1 = py——
(h ox

for x = 0.

This gives, from (3),
x4 b nir? 4 jha?
aZ,n
111 h2

ai,n

=0. (7)

The two relations (6) and (7), where, in (6) ex-
expression (5) is substituted for b,, give

For the other medium it suffices to permute
hy and hs. Now the final result, the ratio of the
electric and the magnetic ficlds at the surface
E\/H,, is equal to

Iflx

H,

?

as the magnetic field is constant at the surface.

Let it now be assumed that the substratum is
infinitely conductive. In this case, I, must be zero
at the depth /. This implies that

oH
[—] 0.
62 z=h

In the first medium, at infinity,

0 — 4.pV7 hi(z/h V] hi(z/h)
H = A 1(z/)+Ble J 1(z/u’

0 1’lv2€7~ 11272-0—]}112 lzllh

U=

n=1

Finally, E, can be obtained from the equation

5 1 8H
iz — — Pi T
47 61:

[nia? + jha?| 2w + jhst] l:

+47{m I jhe

2 nir? 4 jh? ]

is found along with the relations:
Al + B1 = H,

and
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AT — B =0, I D - —
o S v @k D it s 12k
This gives @1 2een S 2h ‘
VT h
- ,,{Lue<:} : is found.
2ch[\G ] From this it is deduced that
(35)+4(%5)
! Jtg
whllo _ V2 V2 " o
]';r - T ‘\/] h] I + 87T2]ll112 — hg“]’lt y
1112 1 + /( h > < ]Zl >
t 1 — =
] V2 vz
with
i (2n + 1):23—\/(27-;6‘2#2-#4]']1,_13- le/2h]
b | i T V@t DRt At
[(2n + 1222 4 4502 [(2n + 1202 + 4h:?] [1 + e ;:*;*]
h1“ \/(27’1/ + 1)“)71") + 4]}122
and It can be seen that the terms of the disturbance
o T for an infinitely conductive substratum can be
| = A_i)eﬁi_, deduced from the odd terms of this disturbance
2612[\/]'-111] for an infinitely resistive substratum, by merely
replacing #; and 4y by 2k and 2ke and x by x/2.
and the same applies for the second medium. Let it be assumed that the suln‘lmtum is at in-
As previously, H,'—H,® can be developed finite depth (infinite fault). This is a common

into a sine series, but this time, the argument limit for the two preceding cases.
being nrz/2h, the function H.—H, is completed Taking

by symmetry around the plane z=/ up to z=2/. S ——
It can casily be seen that the even terms arc P = P and  ps = /‘/ P2 ,
zero. Then, drw drw
( n -+ 1)7r~
. (2n + 1) sin -—
H® — H\" = 16mjHo(h> — Z

[(721;3} 1) - 4]111 [(2n + 1)t + 45

All these terms satisfy the condition 0H,/d2=0, with the conditions at infinity,
forz=h.

Let the values of a1,2,,1 be determined as above H\" = Hee Y=t and IT," = Hoe ™7 elm,
by the condition of continuity of H and E, for
x=0, It is found that The previous deductions can be repeated by

tomjHo(h2 — ) (2n 4+ 1)

Jig® 2y 1272 4 47h°
[(27,1, + 1) 4 4]71#][(211 + 1) 4 4]']122] I:l + L V(2n 4+ )+ 45 :l
bt A (2n 4 1)27? 4 44k°

Ay, 241 = 7

The disturbance is similarly developed into
this sine series of the same argument. For the substituting Fourier integrals (in sines) for
first medium, Fourier series. Then,
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q‘—’e—‘/q21712+f lzipil

Fa [ \/4_1+2j[0 2]f’°
Ho—wﬁl ]p1 #Pz 4! .

is obtained.

For the other medium, it suffices to permute
P and P2

The case of a current parallel to the faull, i.e., the
case in which the only component of E is E,.
Another hypothesis is necessary so that the prob-
lem be well determined. It will be assumed that
at the surface, E, is not dependent on x, which
amounts to assuming that the vertical com-
ponent of the magnetic field is zero at the surface.
From these data, the magnetic field, H,, can be
calculated by the same method as above. This is
done by estimating the fields {or x equal to
infinity and computing the disturbance developed
into series of sines, in view of the fact that both
E and H, must be continuous across the fault.
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