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THE EFFECT OF A FAULT ON THE EARTH’S NATURAL 

ELECTROMAGNETIC FIELD* 

I. d’ERCEVILLEf ASD G. KUNETZt 

The main purpose of this paper is to study the effect on a natural electromagnetic field of a lateral variation in 
the physical properties of the ground. 

An exact mathematical solution is given for two media of different resistivities in contact along a vertical plane 
(fault) overlying a horizontal basement that is taken as being either infinitely resistive or infinitely conductiveJ or 
at infinite depth. Results are given in the form of curves along profiles perpendicular to the fault. Some practical 
inferences are drawn from the shape of the curves and from their comparison. 

EXTENT OF SURVEYS BY TELLURIC CURRENTS 

AND THEIR RELATION TO THE 

MAGNETO-TELLURIC METHOD 

Before taking up the study of a particular ex- 

ample of the application of natural electromag- 

netic fields in prospecting, it should be recalled 

that these fields have already supplied geophysics 

with a valuable tool, the telluric current method. 

This tool has been widely used, often with com- 

plete success, particularly in the Eastern hem- 

isphere. The magneto-telluric method is very 

closely related to certain aspects of the telluric 

current method, so that the analysis of the experi- 

mental and theoretical results obtained in these 

studies could be quite valuable. 

This latter point will be taken up again, but 

first, a few statistics will be given to show the ex- 

tent of the work done using the telluric method, 

which was first employed by the Schlumberger 

brothers in the “thirties” and which reached its 

full expansion during and after World War II. 

The upper part of Table 1 gives the crew 

months, the number of measuring points, and the 

kilometers of profile with geographic distribution, 

representing the activity of one French geophys- 

ical contractor. As can be seen, the use of the 

method has reached a high level. During the 

period under review, crew income exceeded six 

million dollars. 

Although activity in this field has decreased in 

,Western Europe during the last few years, the 

method is being developed in the Eastern coun- 

Table 1. Exploration activity by telluric method 
1941-1955. 

France 
Other European 

I 230 32,000 

Countries 70 13,000 
North Africa 111 
Equatorial Africa ’ 

I 

28.000 

Madagascar 108 18,000 
U. S. A. 23 2,700 
Venezuela 19 2,000 
Asia 4 300 

Total / / 96,oOC’ 565 63,500 
1 

1955-1957 

Kilometers 
of profile 

25,000 

10,000 
11,000 

13,000 
2,100 
2,200 

200 

U.S.S.R. 312 I 

tries, particularly in East Germany, Russia, and 

Hungary. At the last Geophysical Congress held 

in Budapest (1959), four papers were devoted to 

it. The last line of Table 1 shows an activity figure 

for the U.S.S.R. 

Details on the technique of the method or the 

results obtained will not be presented in this 

paper. A large number of publications have been 

devoted to the subject. 

The majority of the surveys using this method 

have been made on the assumption that the 

telluric field is practically stationary (frequency 

independent). The validity of this hypothesis was 

checked experimentally by comparing the results 

* Presented at the 29th Annual SEG Meeting, Los Angeles, California, November 1959. Manuscript received by 
the Editor November 2, 1961. 

t Compagnie GCnerale de geophysique Paris, France. 
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given by the use of different frequency compo- However, experience both in the field and in 
nents. In the range of the frequencies dealt with, the laboratory has shown that the hypothesis of 
which lies between l/l0 and l/l00 cps, the influ- “cylindrical” structures is often a very good ap- 
ence upon the results of these frequency varia- proximation for anomalies which are even slightly 
tions were usually found to be negligible. This was elongated, Moreover, in the present problem, the 
in agreement with the theoretical distribution of theoretical study of the effect of cylindrical struc- 
a time-varying electromagnetic field in a strati- tures already presents sufficient difficulties. 
fied medium, allowing for the order of magnitude A particular example of these structures is 
of the resistivities involved. covered in the following. 

However, in some cases, significant frequency 
effects were noted. These effects were sometimes 
greater than could be explained by theory, assum- 
ing the strata were horizontal, and this led in 
part to the present study. 

EFFECT OF A VERTICAL FAULT ON A NATURAL 

ELECTROMAGNETIC FIELD 

In any event, the results of a study of the varia- 
tion of the telluric current field as a function of 
frequency are closely linked to those obtained 
from a magneto-telturic study. For instance, in the 
case of cylindrical structures (i.e., structures 
which have a constant cross-section), it is easily 
shown that the magnetic field caused by a sheet 
of current normal to the axis oi the structure COP 
sists of a single component which is horizontal and 
parallel to the axis of the structure, and which has 
the same instantaneous value everywhere at the 
surface. Therefore, if the profile of the simultane- 
ous values of the telluric field is considered along 
a cross-section perpendicular to the axis of the 
structure (values which can also be found by 
successive measurements, by relating them to a 
fixed reference base), this profile will be similar, 
within a constant coefficient to that which would 
have been found by the magneto-tetluric method. 
In order to correlate the profiles corresponding to 
different frequencies, it is necessary to determine 
the variation of the ratio of the magnetic field to 
the telluric field as a function of frequency at a 
single point, either by actual measurement or by 
calculation. Calculation is feasible if the zone 
around the point chosen is geologically undis- 
turbed and the distribution of resistivities is 
known. It follows in this case that the magnetic 
field is essentially a calibration standard. 

When natural electromagnetic fields are stutl- 
icd, horizontal homogeneous strata are generally 
assumed. This assumption is not satisfactory in 
applications to the starch for anomalies which 
deviate from such an arrangement. 

Unfortunately, assuming lateral changes in 
the electromagnetic properties usually results in 
great mathematical difficulties. For this reason, 
a particular case (obviously idcatized) is consid- 
ered for which calculations can be carried out 
without approximation, in order to illustrate the 
phenomena corresponding to similar field cond- 
tions. 

A vertical fault of infinite length, separating 
tcvo formations of different resistivitiespl andpz, is 
assumed, These two formations rest on the same 
horizontal substratum of infinite resistivity or 
infinite conductivity. As a special case, the fault 
can be extended to an infinite depth. The telluric 
current is assumed to he horizontal and normal 
to the fault plane at an infinite ttistance from the 
fault. 

The situation is more complicated in the case 
of structures of arbitrary form. Definite analogies 
do exist nevertheless. For instance, the two com- 
ponents of the magnetic field are linear functions 
of the simultaneous components of the telluric 
field at the same point, and the simultaneous 
components of the telluric field are linear func- 
tions at two different points. 

Under these conditions, the magnetic field on 
the ground surface is not only horizontal and 
parallel to the fault, but in addition, its intensity 
is the same at all points. In contrast, the intensity 
of the electric field on the surface is a function of 
the distance between the point of measurement 
and the fault plane. In the case ol a natural elec- 
tromagnetic field (the intensity of which is highly 
variable as a function of time), the ratio of the 
component of the tetluric field normal with the 
fault to the simultaneous component of the mag- 
netic field parallel with the fault is independent of 
these time variations of intensity. As the mag- 
netic field is invariant in space, variations of this 
ratio occurring along a profile perpendicular to 
the fault depend only on the variation of the 
electric field. 
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Of course, in addition to the distance to the 
fault and the geometric and electrical character- 
istics of the formation, results also depend on the 
frequency. 

METHOD OF SOLUTION’ 

In the foregoing hypotheses, all vertical sec- 
tions normal to the fault are identical from the 
electromagnetic point of view, and the magnetic 
field, which is always normal to these sections, 
can be represented by a scalar H. 

The vertical at one point of the fault is: taken 
as the z axis, and the horizontal normal to the 
fault as the s axis. Accordingly, the derivatives 
of the fields with respect to the third co-ordinate 
axis, y, will be zero. 

1)isregarding the dispiacement currents and 
using the relation Curl H =4ri (noting that at 
the SUI face i, is zero), it follows that dH/dx=O, 

M:hich proves that the magnetic field on the sur- 
face is the same at all points. 

Considering now a sinusoidal field with angular 
frequency, w, the cases of an infinitely resistant, 
infinitely conductive, and infinitely deep sub- 
stratum will be discussed. 

Substratum o/ iafiaite rfsistioity 

The solution for the magnetic field, H, is ob- 
tained. From this the electric field on the surface, 
normal to the fault, E,, is calculated by means of 
the formula 

R, = ;p y . 
z 

The expressions for the magnetic field are 
written separately in the two compartments. 
These expressions have to satisfy boundary con- 
ditions at the surface of the earth, at the surface 

of the substratum, and at infinity (for .Y= _t m), 
and must satisfy Maxwell’s equations. They each 
comprise a set of arbitrary coefficients which will 
be determined in turn by the continuity of the 
magnetic field and that of the vertical component 
of the electric fields at the fault plane (for x=0). 

El has been found to be constant on the surface 
of the earth. In the case of an infinitely resistant 
substratum, the same must be true on the surface 

1 The detailed mathematical derivation of the solu- 
tion, along with its complete analytical expressions, are 
given in the Appendix. 

of the substratum. On the other hand, at an in- 
finite distance from the fault, it no longer has any 
effect, and the variation of the field with depth z 
should be that which can be calculated for an in- 
definite horizontal stratum. Take HI0 and Hz0 

as the expressions of these undisturbed fields, 
functions of z, which are different in the two com- 
partments because of the difference in resistivity. 
In each medium, a field of disturbance due to the 
fault is superposed on these undisturbed fields. 
If PI and PZ represent these disturllances, and HI 

and H, the total fields, then 

and 

The disturbances P1 and P2 are expanded to a 
Fourier series (as sines), as a function of z, in the 
interval 0 to h (Iz=depth of the substratum). In 
this way the disturbance will be zero for z=O, 
and z=h, as required by boundary conditions. 
As to the second factor of Laplace’s product, i.e., 
the function of X, it is determined to within a con- 
stant factor by the fact that each term must be a 
solution of Maxwell’s equations and become zero 
for N infinite. 

The fields of disturbances will thus be developed 
in series of terms such as 

(i = 1 or 2), 

the sign being taken in such a way that the ex- 
ponent will be negative. 

All that now remains to be done is to determine 
the two series of constants al, and uZn. This is 
done by stating that II and E, must be continuous 
for x=0 at the point where the fault is crossed. 

To express equality of the magnetic fields, the 
undisturbed fields HI0 and Hz0 are also expanded 
into Fourier series. Then, after adding this to the 
series representing the disturbances, the two ex- 
pressions obtained for x=0 are identified, term by 
term on both sides of the fault. This gives a first 
series of linear equations (not homogeneous) 
for the series of constants al, and a?,,. 

To ensure continuity of the vertical electrical 
field, it sufliccs to state the equality of the dis- 
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turbing fields, the other fields being horizontal at 
all points. This equality is expressed as 

dP1 ap:! 

P1ax = pz-' dX 

and gives the second series of linear equations 
which, with those resulting from the equality of 
the magnetic fields, permits calculating the series 
of the al, and az,, pairs. 

The magnetic field H is thus completely deter- 
mined and from this the electric field E, which 
must be zero on the surface of the substratum. 

Substratum of irtjinite conductivity 

Calculation in this case is similar to the preced- 
ing one, taking into account that this time it is 
the horizontal component of the electric field, 
E,, which must be zero on the surface of the sub- 
stratum. 

Xow, examination of the formulae relating to 
the insulating substratum shows that the above 
condition is satisfied in this case for z=h/2, 
ior all uneven terms of the series giving the dis- 
turbances. In these terms, if h is replaced by 2/z 
(and x by s/2), the disturbances relating to the 
conductive substratum are obtained. 

Substratum of infinite depth 

This case is the common limit of the two cases 
considered above, when h tends towards infinity. 
The solution could be obtained by passing to the 
limit on the results obtained, but it is easier to 
revert to the calculations, substituting Fourier 
integrals (in sines) for the expansions into Fourier 
series. 

RESULTS OBTAINED 

In view of their length, the analytical expres- 
sions of the solution in the various cases are not 
presented here (they will be found in the Ap- 
pendix), but a few results of numerical calcula- 
tions in the form of curves are presented. 

I.alues of the parameters involved 

First, it will be observed that, as was to be ex- 
pected, results depend only on dimensionless 
quantities: 

In the case of faults of finite depth (It, finite), 
profiles perpendicular to the fault have been 
represented by showing, as abscissae on a linear 
scale, the ratio x/h of the distance, X, between the 
point of measurement and the fault plane to the 
depth, h, of the latter, and as ordinates, first, the 
ratio of the moduli (on a logarithmic scale), and 
second, the phase difference of the electric field, 
E,, and of the magnetic field, H, in radians and 
in degrees on a linear scale. 

The two other parameters adopted are: the 
ratio of resistivity of the two compartments, 
pz/pl, to which ratio have been given the nu- 
merical values 9 and 100; and the ratio dl/h of 
the “depth of penetration” 

(d, = &) 
in the medium of greatest conductivity to the 
depth of the fault, h. The values t/Z, x,2/2, 
\,/‘I/4 have been assigned to this latter ratio. 

These two parameters are kept constant on 
each curve and the curves relating to a single re- 
sistivity ratio have been grouped on the same 
graph. Moreover, to relate the graphs one to an- 
other, it has been assumed that the resistivity 
pa of the most resistive compartment remains the 
same for both ratios p?,/pI. 

ITariation oj the field for various depths qf penetra- 

tion 

Figure 1 shows these results for a substratum of 
infinite resistivity, while Figure 2 gives those cor- 
responding to a substratum of infinite conductiv- 
ity. A comparison of the curves relating to these 
two extreme cases permits an approximate esti- 
mation of the outline of the profiles which would 
be obtained with a substratum of finite resistivity, 
especially since it is easy to calculate the asymp- 
totes of these profiles (for z= + w and - co) by 
using the formulae relating to infinite horizontal 
strata. 

For given rock characteristics (resistivities and 
depth), the various curves on a single graph cor- 
respond to different frequencies of the field. Ac- 
cording to whether the strata involved are thin 
and resistive or, on the contrary, thick and 
conductive, the values adopted can correspond to 
frequencies of an entirely different order of mag- 
nitude. Thus, for strata 100 meters thick, and for 
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FIG. 1. Variation of the field for various depths of penetration. 
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FIG. 2. Variation of the field for various depths of penetration. 
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a resistivity oi 10 ohmmeters of the more conduc- 
tive compartment, the three curves worked out 
correspond to frequencies of approximately 
125, 500, and 2,000 cps, whereas if h=2,000 
meters and p= 1 ohmmeter, they correspond to 
frequencies 4,000 times less, or to periods of 32, 8, 
and 2 set, respectively. 

The curves also make it possible to estimate 
to what extent a “magneto-telluric sounding,” 
i.e., the curve of the values of E/H at a definite 
point, as a function of frequency, will be influ- 
enced by the proximity oi a fault. To determine 
this, it suffices to note the values of the ordinates 
of the successive curves for a single abscissa. It 
will be found that the disturbance is definitely 
greater in the compartment of lowest resistivity, 
and decreases quickly as the distance from the 
fault plane is increased. At a distance of about 
half the depth of the substratum, the influence 
becomes very slight, and is practically zero at a 
distance equal to h. 

l’ariafion oj fkc jield/or oariozts depths 

of fke basement 

Results relating to a substratum of infinite 
depth cannot be shown in the same way, since k, 

being infinite, cannot be taken as a unit of length. 
A second method of presentation is therefore 

adopted in which the “depth of penetration”, d,, 

(in the more conductive medium) is taken as the 
unit of length (Figures 3 and 4). By way of corn- 
parison, the results relating to finite 12 have been 
shown in the same way, still grouping the profiles 
relating to the same value of p2,:;Ol on a single 
graph. However, with this second presentation of 
results, the different profiles shown on a given 
graph no longer correspond to a single cross-sec- 
tion of rock (or to different irequencies), but to 
the same frequency and the same resistivities, 
and to different depths of the substratum. 

A comparison of the curves relating to /z= x: 
with the other curves shows that the phenomenon 
is far from evolving monotonically with the varia- 
tions in depth of the substratum, and not only in 
reference to the phase differences (of which it 
seems difficult to take practical advantage), but 
also in reference to the field moduli ratio. 

.ln example qf a magneto-telluric souizdiug curoe 

The magneto-telluric sounding curve for h = zc 

is given this time by the points of the curve re- 
lating to dl/‘h =0 itself, as these points can be con- 

sidered to correspond to constant values of .v and 
p, and to variable values of dl, and therefore of 
frequency. To obtain the usual representation of 
these curves, it is sufficient to adopt a logarithmic 
scale for the abscissae, as shown on Figure 5. 

Additional results in tke case 01 an injZfely deep 

bosement 

Finally, in Figure 6, curves corresponding to an 
infinitely deep substratum, and a more complete 
set of resistivity ratios are given. The same re- 

sults are presented in the form of numerical val- 
ues in Table 2. 

A IZ appavelzf paradox 

When the case of a fault of infinite depth and of 
a sinusoidal field is considered, the electric field 
ratio at an infinite distance from the fault is equal 
to dpl!pr, and is independent of the frequency of 
the field. But if, from the beginning, the case of a 
direct current is considered, pJp* is found. 

The foregoing results clear up this apparent 
paradox. On the fault itself, the field ratio is al- 
ways equal to p1,/p2. As the distance from the 
fault is increased indefinitely, on either side, the 
ratio tends toward dpJp2, but the lower the 
frequency, the slower this tendency becomes. 
When the frequency becomes zero, the asymptote 
can no longer be reached. 

In other words, the asymptotic value of this 
ratio depends on the order in which the param- 
eters involved approach their limit. If, for a 
fixed frequency, however low, the points 0i 

measurement are moved further and further from 
the fault on tither side, the field ratio tends to- L__ 
ward dp2/pl. If, for two fixed points of measure- 
ment, however far from the fault, the frequency 
is caused to tend toward zero, the field ratio will 
approach pJpl. 

APPENDIX 

Let a vertical fault be considered infinite in 
horizontal direction. It separates two formations 
with resistivities p, and ~2, resting on the same 
horizontal substratum at a depth, 17. A normal to 
the fault at the surface will be taken as the z-axis, 
the vertical along the fault as the z-axis, and the 
trace of this fault at the surface as the y-axis. Con- 
sidering now a sinusoidal telluric current uniform 
at infinity and perpendicular to this fault with 
pulsation W, by reason of sytnmetr!,, we will have 
E!,=O and all the other factors will be independ- 
ent of y. Taking into account the relation curl 
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FIG. 3. Variation of the field for various depths of the basement. 
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FIG. 4. Variation of the field for various depths of the basement. 
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E= -_jwH and in view of the fact that, according 
to the foregoing, 

aE, dE, i3E, aI<, 
_-_ and _ _ ___ 

ax dy dy a2 

are zero, it follows that 

H, = H, = 0 

and the only component of the magnetic field is 
Hy, which will be deisgnated as H, a scalar de- 
fining this field. Moreover, considering that i, is 
zero at the surface, from the relation curl H=&ri 
it may be deduced that aH,/dx=O, i.e., the mag- 
netic field at the surface is constant. Maxwell’s 
equations make it possible to write 

VH = 
47rjw 
__ H. 

P 

;\t an infinite distance from the fault, H is inde- 
pendent of n-and the equation reduces to 

which gives the general solution in the first 
medium : 

HI" = .I icy (4TjwIP112 + Hle-“(4niw/Pl)i, (1) 

If Ho is the surface field, 

Al+ B1 = Ho. 

To carry this calculation further, a hypothesis 
relating to the substratum must be chosen. 

Let it be assumed that the substratum is of ix- 
finite resistivity. In this case, it will be further as- 
sumed that the magnetic field at infinite depth is 



is obtained. 
This gives immediately: 

_ Hoe-‘/~“’ 

dlz---_p 

Zs/z(dj hl) 

and 
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zero. Since the magnetic field is constant in this 
substratum, it is also zero at its surface. 

Stating 

The second formation can be dealt with simi- 
larly, substituting pr for ~2. 

The presence of the fault will bring about in 
both media a disturbance H, which becomes zero 
at infinity. 

The first medium (X negative) will be examined 
first. Obviously the disturbance PI is zero for 
.z=O and s=h. It can be developed, with respect 
to z, into a sine series of argument mm/h. Each 
term of the series will therefore be expressed by 
fn(x) -sin n7r.z/lz. 

Thus, the equation to be satisfied, namely, 

@Pi @Pi h12 
--+ 
a22 as -=qy PI, 

gives 

f”( .I” ) = ~~f( 
h” x ) = j /“Tj( ) 

h” x. 

Taking into account that j(x) becomes zero for 
.Y = - 00, the solution will be 

the real part of the radical being positive. A simi- 
lar expression is obtained for the second medium, 
provided that hl is replaced by hz, and that the 
sign of the exponent is changed, in view of the 
fact that this term becomes zero for x equal to 
+ M . Hence, 

-10 -05 0 05 ,.Cl 

/ 

4 

I 

PI P2 

Id clkm) = ?iF IOT sec.h ohm.m. 

FIG. 6. Variation of the field in the case of an 
infinitely deep basement. 
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Table 2. Numerical values of the field in the case of an infinitely deep basement 
E,=R(x) cos wl+Z(x) sin wf=p, cos (wf-0,). 

-2 0.07815 
- I 0,075/r? 
- 0.6 0,06538 
- 0.4 0#05532 
- 0.2 qo407.5 
-0 0.00832 
+o a,82425 
+01 0,80202 
f 0.2 0.79040 
+ 0.4 0.77367 
+ 0.6 0,76170 
+ 1 0. 74521 
+2 0,72334 

x 
*,/v'F 
-2 
-1 
- 0.6 
- 0.4 
- 0.2 
-0 
+o 
+ 0. I 
+ll.2 
+ 0.4 
+ 0.6 
+r 
+2 

I _~ 
0.24935 
0.24735 
0.22950 
O.PION 
0.17644 
0.09886 
088981 
0.83849 
081055 
0.77395 
0.75032 
0.72209 
0.69634 

1 
T- 

R 

0,06556 
0,04733 
0.03437 t 
QO2647 
401765 
0.00816 
0.82430 
081962 
0.81529 
0.80751 
0.80068 
0.78918 
0.76852 

4 
__-- 

R -.- 
(I> 22.934 , 
0. 19289 
0 16433 
0.14575 
0.72396 
0.09887 
0.88980 
087712 
0.86556 
o.bv521 
0.82788 
0.80003 
0 75594 

Pe 1 -- = 
Pl 

9 

P 8 

O,fO200 0.8728 
0.08879 1.0085 
0,O 7387 rU867 
0.06167 1.1286 
0/?4441 I.lli?Y 
0.01656 0.795 
7,?615 0,785 
1,1467 0.77454 
?,?355 0.76989 
1,?183 0.76400 
r,m5~ 0,76044 
10854 0.75674 
I,0553 0.75512 

t 

___ 
P __ 

0.33814 
0.31367 
0.28226 
0.25573 
021563 
0.14361 
I.2545 
1.2134 
1.1858 
1. 7460 
I.1173 
10777 
1.0277 

0 

0.82926 
0.90847 
0.94939 
0.96439 
0.95836 
0.785 
0.785 
0.76288 
0 75259 
0.74141 
0.73629 
0.73423 
0.74438 

pi = 5 ai,, sin ?F ~+~‘n2r2+ihz2..r/h (3) 

n-=1 

(i = 1 or 2). 

Now Hzo-HIQ can be developed by standard 
methods into a sine series of argument n?rz/h. 
Since Hzo-HI0 is zero for z=O and z= h, 

But H is continuous at x=0, i.e., 

H ~~r_o = Hzj,, 

and, since where 

Hz0 - HI0 = 5 b, sin? j 
n=l 

HI = H1° + PI and Hz = Hz0 + Pz, 

this gives 
b, = + S 0 

m(&O _ HIO) F d2. 

H,O + PI = Hz0 + Pz Substituting for HI0 the solution (1) and for Hz” 
or the similar expression for the second formation, 
PI - P2 = Hz0 - HI” I 

for x = 0. (4) 

the result: 

-2 
- 7 
-06 
- .o 4 
-02 
-0 
+o 
+0.2 
to.4 
+06 
+l 

1L 
*l/r5 

-2 
-1 
-06 
-0.4 
-02 
-0 
+0 
+ 01 
+ 02 
+ u.4 
+ 06 
+9 

I R 

0,?2356 O.IO650 0,16312 0,85944 

0,120or 0.08069 u, 74462 0.97878 
0.10637 0.06175 OR301 I, 0449 

lJ.09278 0.04997 U.?O5dO 1.0767 
0.07062 0.03668 0.07959 1‘0917 
0.02192 0.02200 0,03/03 0,783 
0.85721 0.85728 I.21234 0.785 
0.80705 084327 1.1672 0.76345 
0.78244 0.83129 I.?416 0.75513 
0.76533 082083 I.1222 0.75041 
0.74261 u.8Q3.99 1.0940 0. 74611 

Izl $Ljg 

P 

I 
0.36573 
0.365392 
0.35028 
0.33208 
0.29903 
021744 
0.86971 
0.81626 
0.78775 
0.75167 
0.73015 
u.70713 

t 

R 
0.34865 
U.3155? 
028728 
0.26818 
0.24507 
021745 
0.116970 
0.85550 
a.84272 
082060 
0.80222 
0.77390 

r_rl &- 
Pl -4 

P -__ 
0.50483 
0.48314 
0.45301 
0.42683 
0.38660 
a.30750 
f.2299 
?.f820 
1.1531 
?.1127 
f.0847 
10483 

0 
0.81004 
0.85925 
008390 
0~89145 
0.88425 
0 785 
0.785 
0.76155 
0:75731 
0.7ri'154 
0.73839 
0.74034 
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b, = 2njHo(h12 - h?) which becomes in the first formation: 

n 

‘( 
__ (5) 

n%r2 + j1~~2)(n2~2 + jhz”) 
El, = ; PI 

~(HI’ + PI) 

dz . 

is obtained. Now, equating coefficients of sin Using expressions (1) and (2) on the right-hand 
npz/h on both sides of equation (4), where for side for HI”, and expressions (3) and (8) for PI, 
PI and Pz the expression (3) (with x=0) is sub- differentiating with respect to z and putting 
stituted, we obtain z=O, the following result is obtained: 

with 

whHo 
F Jl,Z!Z_0 

- i 

h,” 

al,, - &,n = bn. (6) 
Moreover, E, is continuous across the fault, which 
entails continuity of p(dH/a.v). Hence, 

dH1 dHz 

P1dx = p2p dX 

for .X = 0, 

and, as HI0 and Hz0 are independent of -T, 

aP1 aPz 
Pldr = PZdx for x = 0. 

This gives, from (3), 

n2r2 + jhl” 
al,, ~~ + az.,, 

?a%2 + jJl.22 

Ia1 hz 
= 0. (7) 

The two relations (6) and (7), where, in (6) ex- 
expression (5) is substituted for b,, give 

For the other medium it suffices 

hl and h2. Now the final result, the 
electric and the magnetic fields at 
E,,/H1, is equal to 

to permute 
ratio of the 
the surface 

as the magnetic field is constant at the surface. 
Let it ?zow be assumed thaf the substratum is 

ilzfinitely comhctive. In this case, E, must be zero 
at the depth h. This implies that 

aH 

r-1 = 0. 
az z=h 

In the first medium, at infinity, 

Finally, E, can be obtained from the equation is found along with the relations: 

&, = ; pi ‘Hi > 
ax and 

A, + B1 = Ho 
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is found. 
From this it is deduced that 

and 

n, = _-___, 
2ch[&h,] 

and the same applies for the second medium. 
As previously, HzO-Hra can be developed 

into a sine series, but this time the argument 
being naz/2h, the function Hlr-HI is completed 
by symmetry around the plane z=k up to .z=2/2. 

It can easily be seen that the even terms are 
zero. Then, 

All these terms satisfy the condition a13/& = 0, 
for z=h. 

Let the values of (~r,~~+r be determined as above 
by the condition of continuity of B and E, ior 
.T= 0. It is found that 

It can be seen that the terms oi the disturbance 
for an infinitely conductive substratum can be 
deduced from the odd terms of this disturbance 
for an infinitely resistive substratum, by merely 
replacing hr and /zz by 2hl and 211, and x by x/2. 

Let it bc assumed that the suhstrut~tm is at ia- 

J&c depth (infinite j*uzd~). This is a common 
limit for the two prcccding cases. 

Taking 

fJ Pl 

p1 = v- -lirw 
and pz = 

d 

PP 

G’ 

(2% + 1)7rz 
(2% + 1) sin -- 

2/t 

+ l)“x? + 4$r”][(Zrz + l)%r” + 4jhz”] 

with the conditions at infinity, 

The previous deductions can be repeated by 

The disturbance is similarly developed into 
this sine series of the same argument. For the substituting Fourier integrals (in sines) for 
first medium, Fourier series. Then, 
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is obtained. 
For the other medium, it suffices to permute 

pl and pz. 
The case oj a curretzc parallel to theJut& i.e., the 

caSe in which the ody compo?zent oj E is Ev. 

Another hypothesis is necessary so that the prob- 
lem be well determined. It will be assumed that 
at the surface, Eg is not dependent on x, which 
amounts to assuming that the vertical com- 
ponent of the magnetic field is zero at the surface. 
From these data, the magnetic field, Hz, can be 
calculated by the same method as above. This is 
done by estimating the fields for s equal to 
infinity and computing the disturbance developed 
into series of sines, in view of the fact that both 
E and 11, must be continuous across the fault. 
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