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The Theory of Magnetotelluric Methods When the Source
Field Is Considered
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Abstract.

The theory of the relationship between the tangential components of E and H for

geomagnetic fluctuations over a stratified earth is extended to take account of the distribution of
the ionospheric inducing field. It is shown that Cagniard’s simple formulas on which magneto-
telluric methods are generally based need modification to take account of the dimensions of this
field. This is so even when the inducing field is much more extensive than the region under con-
sideration and when the depth of the probe is quite moderate. It is further shown that, for deep
probing, magnetotelluric methods can be satisfactorily applied only if an analysis of the field over
a region having dimensions comparable with those of the inducing field is first made. The relation
between these methods and the earlier methods of determining the conductivity distribution from
analyses of the components of the surface magnetic field is discussed. The evaluation of the ampli-
tude and phase relations of E and H over the oceans is also discussed, and it is shown that some re-
sults obtained recently by Fonarev need extending and amending.

1. INTRODUCTION

The basic ideas underlying magnetotelluric
methods of prospecting were presented in a
classie paper by Cagniard {1953], in which he
investigated the amplitude and phase relations
that hold between the horizontal components of
E and H when a uniform oscillating electromag-
netic field exists at the surface of a stratified
earth. He indicated how these relations depended
on the electrical conductivities of the strata and
the period of the oscillating field, and he sug-
gested that new methods of prospecting could
be based on the measurements of the horizontal
components of E and H over a range of fre-
quencies of natural geomagnetic oscillations.

These methods have been developed in recent
years and applied extensively to geophysical
explorations of limited areas [Wait, 1954;
Tikhonov and Shakhsuvarov, 1956 ; Garland, 1960;
Cantwell and Madden, 1960; N<iblett and Sayn-
Wittgenstein, 1960; Smith, Provazek, and Bostick,
1961]). They have also been used by Tikhonov
and others in attempts to infer the distribution
of conductivity down to depths as great as 950
km; some of the results obtained for these great
depths arc quoted by Migauz, Astier, and Revol
[1960]. These results do not, however, agree very

1 This work was completed while the author was
at the Coast and Geodetic Survey, U. S. Depart-
ment of Commerce, Washington, D. C.

well with those obtained by spherical harmonic
analyses of magnetic variations and associated
studies of currents induced in nonuniform
spherical conductors [Lahiri and Price, 1939].
It is the purpose of the present paper to examine
the basie theory of magnetotelluric methods more
closely to see whether an explanation of the
discordant results 1s to be found therein.

One notable feature of magnetotelluric methods
is that they apparently indicate the conductivity
distribution with depth from measurcments (over
a suitable range of frequencies of the oscillations)
made at one station only, whereas the magnetic
variations method requires the analysis of the
magnetic field over the entire earth, or over a
suitable portion of it if the inducing field is a
local one. This suggests the desirability of con-
sidering the influence of the distribution of the
source field when using magnetotelluric methods.

Apart from a short but important discussion
by Wait [1054], little attention appears to have
been paid to a fundamental assumption on which
Cagniard’s calculations of the amplitude and
phase relations of E and H are based, namely,
that the electromagnetic field is uniform over
any horizontal plane. Wait showed that, if this
condition is not satisfied, the simple relations
found by Cagniard are not exact, and he cal-
culated corrections to those relations in terms of
second-order space derivatives of the field. He
concluded that the corrections would be necessary

A. T Price, Journal of Geophysical Research, Vol. 67, No. 5, 1907-1918. © 1962 American Geophysical Union.

Reprinted with permission.

44



Theory of Magnetotelluric Methods

if the horizontal magnetic field changed ap-
preciably in a distance of 35 km, when the
period (T) of the oscillations was greater than
about 10 seconds and the ground conductivity
(o) of the order of 10-% mho/m (10 emu).
(The ground conductivity is given in Wait’s
paper as 10! mho/m, but this is apparently a
misprint.) The relevant distance varies as
v/ (T/o). Wait pointed out that, if the source
field arises from ionospheric currents flowing at
heights of about 100 km, the corrections would
be important for many of the natural geomag-
netic oscillations that might be used in magneto-
telluric methods. We may note in particular that
this would be true for the fluctuations often
observed in the fields of auroral or equatorial jets.

Cagniard [1953], in a reply to Wait’s discussion,
argued that ‘most magnetotelluric perturbations
are generated by vast systems of ionospheric
electric currents whose dimensions are on a
global scale,” and that consequently his original
formulas can be applied in the great generality
of cases. This conclusion would be fairly reason-
able if the actual effect of the source field dis-
tribution were limited to that disclosed by Wait’s
discussion, but it seems that Wait himself made
a simplifying assumption that causes his cal-
culated effect to be smaller than the true one in
certain cases. He assumed that for the purpose
of estimating the corrections to Cagniard’s for-
mulas the earth could be treated as a semi-
infinite conductor of uniform conductivity. We
find that, if the conductivity is assumed to vary
with depth from the surface, the dimensions and
distribution of the inducing fleld cannot be
ignored, even when the field is on a global scale
and the depths being probed are quite moderate.

2. THE GENERAL THEORY OF MAGNETOTELLURIC
MEeTHODS

We first develop the general theory of magneto-
telluric methods for any source field and any
distribution of conductivity with depth. We then
illustrate the importance of the spatial dimen-
sions of the source field by considering a simple
example.

It will be sufficient for the present purpose to
treat the earth as a semi-infinite conductor
occupying the half-space z > 0 of Cartesian
coordinates, z being vertically downward from
the surface, though for the application of mag-
netotelluric methods to deep probing (to depths

that are a significant fraction of the eartl’s
radius) it will be necessary to develop the corre-
sponding theory for a sphere. The conductivity
o is a function of z only, and for simplicity we
take the permeability p to be unity, We assume
that a varying magnetic field of arbitrary dis-
tribution in the region z < 0 induces electric
currents in the conductor. We must find the
tangential components of the electric and mag-
netic fields at the surface z = 0.

The theory of magnetotelluric probing is fre-
quently expressed in terms of concepts drawn
from wave propagation theory and transmiss’
line analogies. For example, Cagniard’s basic
formulas can be derived by considering plane-
polarized electromagnetic waves incident nor-
mally on the surface of the earth; the required
complex ratio E/H is then simply the field
impedance at the surface. This can be found
readily by using the transmission and reflection
coefficients at the boundaries between the
different strata. Some caution is needed, how-
ever, in drawing deductions from the physical
picture provided by real wave propagation. An
arbitrary oscillating magnetic field at the earth’s
surface cannot, in general, be built up physically
from plane-polarized waves incident at all (real)
angles « on the surface, though such a field can
be built up mathematically if the angles a can
take complex values. But then we no longer have
real waves in the physical sense but only the
so-called evanescent waves. Physically we are,
in fact, concerned not with electromagnetic wave
propagation but with the diffusion of the elec-
tromagnetic field through the conductor. The
problem may be treated as one in pure diffusion
if the displacement current in the conductor is
negligible compared with the conduction current.
This condition is certainly satisfied when the
geomagnetic oscillations considered have periods
greater than 1 second, and the oscillations used
in magnetotelluric methods generally have peri-
ods much longer than this. Hence, in developing
the general theory of magnetotelluric probing it
is convenient to ignore the displacement current
from the start.

The field equations (in electromagnetic units)
for a periodic field, when the displacement
current is ignored and the permeability is unity,
are

curl H = 47i = 47q(2)E (1)

curl E = —iwH (2)
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where all the field vectors contain the same time
factor eiet,
Taking the curl of (2), we obtain .

grad div E — V’E = —driwe(z)E  (3)

It follows from (1) that div i is zero, and therefore

o(2){0E,/dz + OE,/dy + OE,/0z)
B 9c/az=0 (4

Now the currenuts induced in the conductor by
a varying external magnetic field necessarily flow
parallel to the surface of the conductor, This is
because the layers of equal conductivity are
parallel to the surface [Lahirt and Price, 1939)].
Current flows having a component normal to the
surface are, of course, possible, but they cannot
be produced or affected by electromagnetic
induction from outside the conductor (Price,
1950].

It follows that in the conductor

i,=0 E =0 (5)
and therefore, from (4),

o8, , oF,
dx + dy

=0 (6)
and from (3)

¢ 9 9
(af + ay° + 82°

We shall now show that the solution of the
general problem, corresponding to an inducing
magnetic field of arbitrary distribution, can be
built up from elementary solutions of (7) of the
form

)E = 4miwo(2)E (7

E = ¢*'Z(9)¥F(z, y) (8)

in which
_ (2p op )
F(Iy Z/) - (ay ’6_’17 )0

in virtue of (5) and (6). Equation 7 then shows
that

(9)

’P 9P
Py o7 4+ P =0 (10)
and
2
%zgz = ' + dmiwo(2)) Z (11)

where v is a constant.

N "
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ST NN
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Hence the electrie field inside the conductor
18 given by

swi (0P —aP
E=c¢ Z(z)(a/‘ Py 0) (12)

where P and Z satisfy (10) and (11).
From (2) we find that the corresponding mag-
netic field is given by
dZ 3P dZ 3P )
S2O5 SR Lezp) (13
dsz'dzaz/’V} (1)
Outside the conductor, where ¢ = 0, the
solution of (11) is of the form

wH = —ci”’(

7= @e " + ®e” (14)

and, since the tangential components of E are
continuous at the boundary z = 0, the function
Z{z) of (12) must have the surface value

Z0) =2+ ®

The above implies that E, is zero outside the
conductor as well as inside, for if we assume
that in the dielectric

E — e'”‘Z(z)(Fz, F‘y’ F;)

and there is no space-charge distribution, so that

divE =0

then Z oF./0z + Z OF,/0y + F, 8Z/0z = 0.
But the tangential components of E are con-
tinuous at z = 0, so that

0F,/ox = —aF,/dy = 0°P/dz dy (15)

and therefore F, 8Z/3z = 0, whence F, = 0.
This raises the question whether the assumed
elementary solutions represented by (8) are
sufficiently general to permit the solution for
any inducing field to be found from them (see
section 3), since such a field may not have E,
zero. The currents induced in the conductor
depend, however, only on the varying magnetic
field, and any magnetic inducing field can always
be represented by a suitable current system
flowing in a plane parallel to z = 0. Such a
current system would make E, = O cverywhere;
we may conclude that a nongero value of &, in
the actual source field would not affect the result.
If the actual source field has an oscillating
normal component of E at the surface, it will
induce a surface-charge distribution whose field
will practically extinguish E, inside the con-
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ductor and double it outside. This is. not exactly
true, because oscillating currents having a non-
zero normal component are required to vary the
surface charge. These currents, however, are of
the order of 1/(3.10%) times the magnetically
induced currents flowing parallel to the surface
and are therefore negligible. It follows from the
above that the tangential components of E and
H at the surface will be practically unaffected by
£, which can therefore be taken as zero without
loss of generality. It may be noted in passing
that the tangential component of E is mainly
determined by the conductivity and will in
general be much smaller than the tangential
component of E arising from the source alone.

The magnetic field outside the conductor is
given by substituting the value of Z from (14)
into (13), which can then be reduced to the form

wH
= —ygrad {(—@Qe™ " + ®e')P(z, y,v)} (16)

Henee the sealar potential of the magnetic field
in the nonconducting region 2 > 0 1s

Q = (Ae””" + B YP(x, 4, v) (1D
where

4= —v/iw B = 0v/iw (18)

1i » is now taken as real and positive, the term
involving Ae—»z in (17) corresponds to a source
in the region z < h < 0 and therefore represents
an inducing field, whereas the term involving
Be »# represents the field of the induced currents.

Siuce the tangential components of H are
continuous at z = 0, we have from (13), (16),
and (18)

(%) cv—a+® =iat+ B ()
92 /.
The other boundary condition for H at z = 0,
namely, the continuity of the normal com-
ponents of H, is already satisfied in virtue of (15).
Since the ficld originates from a varying
magnetic source in the regioun z < A < 0, all the
field vectors must tend to zero as z tends to
infinity. Henee the appropriate solution of equa-
tion 11 for Z(z) is the one that satisfies the
condition

Z2(z) >0 as z— @ (20)

Solutions of (11) satisfying (20) can be found

in analytic form for several different functions
a(z); for example, there are solutions in terms of
Bessel functions when o(z) = % (a positive con-
stant), o(z) = kz7?, and o(z) = ke*e:, In the
general case, when o(z) is an arbitrary positive
real function of z (not necessarily continuous),
the solution can be obtained to any degree of
approximation by numerical methods. The values
of E and H at all points can then be found in
terms of the inducing field represented by the
first term of (17).

It will be noted that the solution for this
particular inducing field (corresponding to any
one value of ») makes E-H = 0; that is, the
field vectors are orthogonal. This is one of the
necessary conditions for the application of
Cagniard’s method in its original form. It has,
however, already been pointed out by Wait [1954]
that, for an arbitrary inducing field, this condi-
tion is not in general satisfied. This point is
considered further in a later section.

The amplitude and phase relations between
the tangential components of E and H at the
surface, which form the basis of the magneto-
telluric methods, arc found from the complex
ratios £,/11, or E,/II,, and from (12) and (13)
we find that

E./iwH, = —E,/iwll, = —Z(0)/(32/3z),
= (@ + &) /ve — @) (21)

Since Z(z) depends on the parameter » through
equations 11, it is evident that the ratio £,/H,
also depends on ». The reciprocal of this param-
eter is a measure of the horizontal scale of the
source field, represented Dy the term e~v:
P(z, y, ») in expression 17 for the potential @
of the magnetic field outside the conductor. A
simple example is e~ +z cos vr, corresponding to
a field having a wavelength 27/v in the =z
direction. The case treated by Cagniard is
obtained by taking » = 0, P = 1. This corre-
sponds to a uniform oscillating field parallel to
the surface of the conductor. Actually, the
problem of finding the induced field (and the
corresponding induced currents) beconies inde-
terminate if the indueing ficld is of this simple
form, but if the total fiecld (induecing plus induced)
is assumed to have this form a determinate
problem results and, for a uniform conductor,
gives the well-known formula for the ‘skin effect’
as well as the result quoted by Cagniard for
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E./H,. The result can be regarded as giving the
approximate value of 2,/77, over a limited region
of the surface, of linear dimensions I, where
Ly/2x is small, and the vertical component of
the total field is nearly zero over this region.
It is important to notice that, without further
information about the ficld outside this region,
it is not possible to separate the induced and
inducing fields. In any actual physical situation
the induced currents will flow in closed horizontal
loops and will be determined by the clectro-
motive forces generated by the changing veriical
component of the inducing field. If this were
zcro everywhere, no currents would be induced.

It 1s sometimes argued that, if the surface
vectors £, and H, are practically uniform over
the limited area of the earth’s surface being
investigated, their amplitude ratio and phase
difference depend only on the conductivity of
the earth strata, and it is therefore unnecessary
to know the nature of the inducing field over a
wider area in order to determine the conduc-
tivity distribution. The argument is based on the
fact that E, depends on the surface values of
the current density and conductivity, while H,
is a neasure of the integrated current density
throughout the entire depth of the conductor,
being given by

H, = 471—[ J, dz
o

[Cagniard, 1953, p. 608}, from which it has been
assumed that H, is due solely to the currents in
the conduetor. But this assumption is unjustified,
because Cagniard’s derivation of the above ex-
pression for /, depends on taking the field to be
strictly uniform over the entire horizontal sur-
face, and this in turn implies that the inducing
field is similarly uniform. Such a field will not
decrease as z increases to infinity but will remain
constant. Hence, although the ioial H, tends to
zero as z tends to infinity, it does so because the
induced field becomes equal and opposite to the
inducing fie]ld. Hence the H, in Cagniard’s
formula contains an {(unknown) contribution
from the inducing field. Of course, in any real
situation the inducing field will tend to zero as
z tends to infinity, but then the field will not be
strictly uniform and will contain a vertical com-
ponent. No matter how small this component is,
it will render Cagniard’s expression for 17,
invalid.

3. Tur GENERAL INDUCING FIELD

The equations of the last scction give the
solution for the particular case when the poten-
tial of the source field has the forin 4¢-+* Pz,
¥, v). The general solution corresponding to an
arbitrary source ficld can be derived by sum-
mation from this, because the potential of any
such field can always be expressed as a sum (or
integral) of terms of this type, summation of the
solutions being permissible because all the equa-
tions are lincar. For example, the field of a line
current of intensity Jet«t, flowing parallel to the
surface of the conductor along 2 = —h, z = 0
can be written

* dy

; R T .

Q, = —2J¢'*" [ e " gin vy —
v v

2> —h (22)

corresponding to a summation of terms of the
above form in which Pz, », ») = sin vz and
A= —2Jendp/p.
In the gencral case it is convenient to express
equation 10 in polar coordinates in the form
FpP  1aP | 19°P

o et TVP=0 (2

of which elementary solutions are J,(vr) cos
(s6 + £), where s is any integer. Any arbitrary
function £, given over the plane of (r, 6), can
then be cxpressed in terms of these functions by
means of Fourier’s theorem and the Fourier-
Bessel integral.

Where the inducing field involves only a single
value of », it has been seen that the horizontal
components of E and H are orthogonal. This is
not, however, true in general when a range of
values of » is involved, though it can be truc
in special cases such as that of the straight line
current, represented by (22). If the conductivity
of the earth is isotropic, the angle between E
and H is determined by the inducing feld.
Deviations from perpendicularity of the E and
H vectors that are found in practical applications
of the method have usually been attributed to
anisotropic conductivity of the ground, but they
could also arise from the nature of the distribu-
tions of the inducing field. Consider, for exampie,
the field whose potential is

Q, = (4.7 coswx

4 Ase " cosvaye’ ! (24)
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The induced field will then have a potential
Q= (Bye"*" cosviz + Boe"** cosway)e’™' (25)

where B, and B, are obtained from the equations
of the previous section. The horizontal com-
ponents of H at z = 0 are therefore

H, = »(A, + B)) sinwnz
H, = v,(A; + B,) sinvyy

(26)

and the corresponding horizontal components of
E are

E,
E, = —ww(A, — B))sinyz

W(Ag - B2) Sin Vol

i

(27)

Hence
E.H, + E,H, = iwln(4 + B)(4, — By)
— v( A, — B)(A, + B,)} sinyzsinw,y (28)

and therefore the horizontal components of E
and H are perpendicular if (1) », or v, is zero,
(2) wix or wmy is a multiple of 7, or (3) » = »,
(because then Bz/Az = Bl/A[)

This suggests that apart from (1) when the
source field is unidirectional, or (2) when the
point (z, ¥) has a special position in relation to
the source field, the field vectors will approach
perpendicularity if the band width of » for the
inducing field is small. This is probably true for
many world-wide geomagnetic fluctuations hav-
ing a definite time period 27/w. Even when it is
not, as for a jet current, represented approxi-
mately by (22), the vectors may be perpendicular
for other reasons already noted.

Values of v for geomagnetic fields. It has
already been pointed out that the general equa-
tions obtained above reduce to Cagniard’s
equations when v = 0, and that 2r/» may be
taken as a measure of the linear dimensions of
the source field. Cagniard has argued that, since
the geomagnetic fields are generally world-wide
in character, their spatial variations can be
ignored for local geophysieal prospecting; this is
equivalent to taking » = 0. On the face of it
this would seem reasonable, but calculations
show that the dimensions of the source field may
be quite important in certain circumstances.
To obtain an estimate of the least value of v
that can occur, we may equate 2w/v to the
circumference of the earth, which would corre-

spond to the wavelength of a field represented in
polar coordinates by a spherical harmonic of the
first order; this gives » = 1.57 X 10— cm~t
The fields of most geomagnetic fluctuations
would contain spherical harmonics of an order
somewhat higher than the first, and » = 10~
em~! would probably be a good representative
value for many such fields.

For more local fields, like the field of an
ionospheric jet current, the relevant values of »
are larger. The greatest value of » likely to be of
importance may be found by equating the wave-
length 27/v to, say, 4 times the height (about
100 km) of the ionospheric currents; this gives a
maximum for » of about 1.57 X 10-7 em-.
For example, in the expression 22 for the poten-
tial of the field of a straight jet current at
¢ = —h, although all values of » from 0 to
infinity occur in the integration, the magnitude
of the integrand drops off sharply when » in-
creases beyond w/(2h) because of the factor
e~*/p. Hence the important values of v are
those less than 7/(2h). We may conclude that
the values of » of interest in magnetotelluric
investigations will generally lie somewhere in the
range 1.57 X 10~ em™* to 1.57 X 1077 ¢cm™1,

4. THE VARIATION OF E,/H, WITH v IN A
SimpPLE CASE

We shall now show that for certain distribu-
tions of ground conductivity the quantity E,/H,
used in magnetotelluric methods will be con-
siderably affected by the value of » assumed for
the inducing field and may be very different
from that obtained when v is assumed zero.

A simple illustrative case is that in which the
conductivity has a constant value ¢ down to a
certain depth D and is zero below this depth.
This will represent very roughly a common
actual situation, since it is probable that the
conductivity of the earth at a depth of a few
kilometers is much smaller than at the surface
(though at considerably greater depths it may
rise again, owing to increase of temperature).

For this simple case the function Z(z) of
equation 11 in the region 0 > z > D is easily
found to be

Z =" + b (29)
where a and b are constants and

9’ = »* + 4drive (30)
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and therefore
0 — 2_]/2[{((14 + V4)1/2 + V?}i/?

+ Z{(a4 + V4)1/2 _ VZ}]/Z] (31)
where o = 4wow. In the region z < 0, Z is

given by (14); and in the region z > D, Z is of
the form

Z = @" (32)

The field vectors E, H in cach of the three regions
can then be written from (12) and (13).

The tangential components of E and all the
components of H are continuous at each of the
boundaries z = 0 and z = D. These boundary
conditions lead to the relations

o+ b=0+® (33)
0e”” + b’? = ¢ (34)
(@ — ®) = 6(a — b) (35)

8(ac’” — b’") = v (36)

If the inducing field were known, @ would be
known, and the above four equations would
determine the other coefficients ®, @ @, and b in
terms of @; the total field could then be evaluated
everywhere.

For our purpose we need only the ratio E,/H,.
From equations 21, 33, and 35 we have

E,. __F _G+® _ a+tb
twH, wH, v@—® 6ae— b

(87)

Eliminating @, ®, and € from equations 33 to
36 we find

b= ae (8 —») /(0 +» (38)
Hence

20D
wH,  ¢{6+v — (6 —»)e "}
The modulus and argument of the complex
quantity E./H, given by this expression are
equal to the amplitude ratio and phase difference
of E, and H,. In the expression, » and D are real
but 8 is the complex function given by (31).
In considering the dependence of the ratio
E./H, on », it should be noted that, apart from
v appearing explicitly on the right-hand side of
(39), the quantity @ also depends on ».

When v = 0, (39) reduces to

E: _ 1 + 6—2D00

wH, g1 — ¢ 22") (40)

where
6, = (1 + 1)V (21wo) (41)

which is equivalent to result 44 given by Cagniard
[1953). For D, small, the right-hand side of (40)
reduces to 1/ 6,2 D approximately, so that

E./JH, ~ 1/4xaD (42)

showing that E,/Ii, is then practically inde-
pendent of the period T = 27/w.
Cagniard obtains a corresponding result, his
equations 45, in the form
E 1 P,

1, = 2v(er) D

Here 6 is the phase difference, and P, the depth
of penetration given by

P=1/200VT/c

Ile does not point out, however, that 7' dis-
appears from the formula.

When D is infinite, that is, for a semi-infinite
conductor, equation 39 reduces to

E 1 1
T = - = e (43)
wH, 6  /(’+ 4riwo)

Thus the dependence on » is now only through
the quantity 6. For small values of v we have,
approximately,

B - \/E (1 _ ) (44)
H, 4o Rriwa
Watt [1954] has obtained the correction to

Cagniard’s formula in this case by a quite
different method. He finds

- 7 o
Ez = 77”,, + 272

9’ Hzx
dxdy

d’H, *Hy
. - 3 2
(61/2 a2 +
and a similar equation for E,, where, on taking
g = 1, ignoring displacement currents, and

using emnu,

) + oY) (45)

~ = driow 7 = iw/dro (46)
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Wait actually writes v = touw — euw? and
n = twp/y, but in the first equation v should
read 7% and the term euw? is negligible; the
factor 4 is accounted for by the different units
used. It may be noted that, since there are no
vertical currents, we have

dH, _ 9H,

dy dx (47)

so that (45) may be reduced to the more sym-
metrical form

su )
dz’ ay’

E, = qH, + Ja(
2y

+ 00y (48)

To compare this with (44), we note that using
(13) and (29) we can express [f, at the surface
in the form

H, = —(i6/w)Z(0) 3P/dy (49)

Substituting this value in (48) and using (10),
it is easily seen that Wait’s formula 48 reduces
to (44). It should be emphasized, however, that
this formula is based on the assumption that the
conductivity has the same constant value at all
depths extending to infinity. In the expression
39 for a different distribution of conductivity,
Wait’s correction effectively takes account only
of the factor @ in the denominator. It will now
be shown that the correction introduced by the
other factors in this expression will sometimes be
of greater importance.

For numerical illustration, calculations have
been made of the modulus and argument of the
expression on the right of (39) for a range of
values of v from 0 to 10-¢ em~, and for a range
of depths D from 0 to 103 em. The conductivity
o has been taken as 107'¢ emu, and the period
T (=2r/w) as 100 seconds. Since ¢ and T enter
into the expression only as the ratio o/T, it
follows that the values calculated for E,/1wii,
will be unaltered if ¢ and T are altered by the
same factor; for cxample, the caleulations will
apply equally well to ¢ = 1078 emu, T = 103
seconds. We also note from (39) that the quun-
tity OF,/iwH, is nondimensional, and its value
will be unchanged if \/{(¢/T) and » are changed
by a factor & while D is changed by the factor 1/k.
The calculations are therefore casily extended to
other values of the parameters.

The results are shown in Figures 1, 2, and 3.
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Fig. 1. Variation of amplitude ratio E/wH with
change of dimensions of inducing field, for a con-
ducting stratum of thickness D overlying a stratum
of high resistivity. ¢/7 = ow/27 = 107" emu/sec
= 10"° in mks units.

In Figure 1 the value of mod (F./iwH,) is
plotted against v for various thicknesses D of
the conductor. The wavelength (27/») of the
inducing field is shown at the top of the figure,
and the corresponding order of the spherical
harmonie for a field varying in the same degree
over the earth’s surface, but expressed in spheri-
cal harmonies, is shown at the bottom. It will
be scen that for moderate values of D there is a
considerable change in the value of the modulus
as v ranges over the values from 1.537 X 107*
em~! to 1.57 X 1077 em™?, which are those we
expect to find in the ficlds of natural geomag-
netic fluctuations. The values of mod (E./iwH,)
for different valucs of D when v is assumed zero,
as in Cagniard’s calculations, would be obtained
by continuing the curves to infinity on the left
of the diagram. (Note that the scales for both v
and mod (F,/iwH,) are logarithmic. Each curve
will level off at some value of mod (E./iwH,) as
v is decrcased and will then remain practically
constant for smaller values of ».

Wait’s corrected value corresponds to the
curve labeled D = o, and his correction becomes
important only when v increases beyond 1077,
that is, the wavelength 27/ v is less than 628 km.
This agrees with Wait’s own estimate if we take
into aceount the differcnt values we have assumed
for ¢ and T. [t is clear from the figure that, for
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Fig. 2. Variation of amplitude ratio E/wH with thickness D of conducting stratum for
different values of », which determines the scale of the induecing field.

geomagnetic fluctuations having a period of 100
seconds and originating from ficlds of large
dimensions corresponding to wavelengths 2x/v
ranging from 40,000 km to, say, 1000 km, Wait’s
correction would not be important.

If, however, the actual distribution of con-
ductivity is represented more closcly by the
curve D = 10 km, that is, if the conductivity
decreases sharply with depth at about 10 km,
to such an extent that we can neglect it below
this depth, then the graph shows that mod
(E./1wH,) depends very markedly on the value

of », and a correction to Cagniard’s formula
would be neeessary when considering all geomag-
nctic fluetuations, including those having a
global distribution.

Another way of looking at the results is to
plot the values of mod (F./wH,) against D for
different values of ». This is done in Figure 2,
both scales being again logarithmic. The results
obtained by Cagniard now correspond to the
curve v = 0, and this curve would be used to
estimate the thickness of the conducting layer
from a knowledge of mod (£,/wll,) found from
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Fig. 3. Variation of phase difference £ — H with thickness D of conducting stratum for
different values of ».



Theory of Magnetotelluric Methods

measurements of £, and H,. For example, if mod
(E./wH,) were found to be 5.107, using emu, the
thickness would be estimated as about 25 km.
But this estimate would be in serious error if the
source field were such that » = 2.10-% cm-.
In this case the thickness could not be greater
than 4 km, but might have any value less than
this, because the value of mod (£./wH,) would
now be due almost entirely to the inducing field.

The phase differcnce, given by arg (£,/11,),
is plotted against U for various values of » in
Figure 3. The importance of the linear dimen-
sions of the field source, represented by the
reciprocal of the parameter », is again very
obvious. Only when D is greater than 300 km is
the influence of » much reduced. In this case the
phase difference is always greater than 45°, but
may still vary from 45° to 75° for values of v
well within the range appropriate to natural
geomagnetic fluctuations (see section 3). For
smaller values of D, for example, D = 20 km,
the phase difference varies from near 0° to
about 85°.

Although the above calculations have been
made ouly for an especially simple distribution
of conductivity, they are sufficient to show that
the dimensions of the source field will sumctimes
have an important influence on both the ampli-
tude ratio and the phase difference found
between the horizontal components of E and H
in magnetotelluric prospecting. This is so even
when the source field has a global distribution
and when only moderate depths within the earth
are involved. The corrections to Cagniard’s
formulas to take account of this may in certain
cases be considerably greater than those cal-
culated from Wait’s formula.

It is perhaps worth noting that, if both the
amplitude ratio and the phase difference of E
and H are known for a given w, the value of D
for the model considered above would be uniquely
determined; for example, if mod (E/wH) were
5.107 and arg (E/ H) were 60°, D would be about
13 km. This suggests the possibility that, for
a general model with ¢ an unknown function of
2, a knowledge of both the amplitude ratios and
the phase differences for a whole range of valucs
of w might be sufficient to determine both » and
o(z). In this way an extension of Cagniard’s
theory could be made, with a corresponding
useful development of magnetotelluric methods.
It would, however, be necessary to consider the
practical limitations imposed by the assumption

that the ground conductivity is uniform and
isotropic over any horizontal plane.

5. APPLICATION TO MEASUREMENTS AT SEA

The above figures will also represent the values
of mod (wE./H,) and arg (E./H,) found at the
surface of a sea of depth D, if suitable changes
are made in the values of the parameters and if
the bottom conductivity can be ignored (or
allowed for approximately by taking an effective
D somewhat greater than the true value). To
obtain a value of o corresponding to the con-
ductivity of sea water (about 3.10~!! emu) the
original ¢ must be multiplied by a factor 3000.
If the period T is kept the same at 100 seconds,
« is increased by a factor 4/(3000) = 55 approxi-
mately. Hence if v is multiplied by 55 and D
divided by 55, the curves of the diagrams will
give the value of 55 mod (£,/wH,). The curve
labeled D = 10 km in Figure 1 will correspond
to a sea of depth rather less than 200 meters,
and the figure therefore shows that for seas
deeper than about 200 meters the value of mod
(E./H,) is scarcely affected by the dimensions of
the source field unless » is greater than about
3 X 1072 X 55 = 1.65 X 1077, that is, unless the
field is of a decidedly local character.

For slower geomagnetic fluctuations, corre-
sponding to larger values of T, the dimensions of
the source field become more important. Thus
for T = 86,400 seconds (1 day) and the same
value 3 X 10t emu for o, the values of » and
of mod (E,/wH,) in the diagrams must each be
multiplied by /(30/864) = 0.19 approximately,
and D multiplied by 5.26. Since the average
depth of the oceans is near 5 km, the curve
labeled D = 1 km in Figure 1, which now
corresponds to an ocean of depth 5.26 km, would
be fairly representative of the results obtained
at sea for daily oscillations of the source field.
This shows that the amplitude ratio of E, to H,
and their phase difference would now be largely
dependent on » throughout the whole range of
possible values of ». In fact, it appears that the
ratio will be almost entirely determined by the
source field, and practically independent of the
induced field. It therefore appears that the cal-
culations made by Fonarev [1961] of mod (E/H)
and arg (£/H) over an ocean of depth 5 km for
geomagnetic oscillations of periods 3, 6, 12, and
24 hours need modifying and extending to take
account of the source field.
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6. THE DETERMINATION OF THE CONDUCTIVITY
AT GREAT DEPTHS

In the previous sections we have been con-
cerned mainly with distributions of conductivity
at moderate depths within the earth. Some
information about the distribution at much
greater depths can be obtained from analyses of
relatively long-period fluctuations of the geomag-
netic field components [Chapman and Price,
1930; Lakirt and Price, 1939]. 1t is worth while
considering whether and in what way magneto-
telluric methods can be used to supplement this
information [Garland, 1960]. To answer this
question completely it would be necessary to
develop the theory of magnetotelluric methods
for a spherical conductor, but we can get some
idea of what to expect from the equations of the
present theory.

In the first place, it is clear that in order to
gain information about the conditions at a great
depth it is necessary that the measured surface
field components be significantly affected by
the induced currents flowing at that depth.
Hence the induced currents must penetrate
deeply, and this in turn requires that the field
fluctuations have a correspondingly long period.
We have already seen that, in the particular
case treated in section 4, the influence of the
dimensions of the source field on the amplitude
ratio E./H, increases as the period is made
longer. In the general case the amplitude ratio
and phase difference of E, and H, are given by
(21), in which the ratio Z(0)/(3Z/dy). is deter-
mined by (11) and (20). The problem is to decide
to what extent this ratio is affected by the value
of vin (11). From equation 11 it is evident that
v will be important if »? is comparable in magni-
tude to 4mws(z) over all or some appreciable
part of the range of z involved. Since ¢ (z) is the
quantity we are seeking, we have to proceed, to
some extent, by trial and error. Moreover, it is
quite likely that o(z) varies by several orders of
magnitude within the range of z we wish to
consider. The values near the surface will have
the greatest effect, but the solution of the prob-
lem treated in section 4 shows that it is not
permissible merely to take the surface value o (0).

For the purpose of numerical calculation we
shall adopt the representative value ¢ = 1014
emu with the proviso that it may be altered by
one or two orders of magnitude either way.
Then for & period of 1 day the value of 47rwo is
approximately 4.6 X 10718 so that » will be

important if it is near the value 2.15 X 10-2,
This is near the lower limit (1.57 XX 10-%) of the
values of v estimated in section 3 to be present
in natural geomagnetic fields. Hence, for this
value of o and all smaller values the distribution
of the inducing field would have to be taken into
account in using magnetotelluric methods. Even
if o is as high as 1072 emu (and the results of the
magnetic field analyses already referred to sug-
gest that this is too high until a depth of several
hundred kilometers is reached), » would be
important when near 2.15 X 107¢, which is still
within the range of values expected in the
natural fields.

We may conclude that the application of
magnetotelluric methods to the determination
of the conductivity at great depths would first
require the analysis of the horizontal surface
magnetic field components (H., H,) over the
earth to determine the distribution of the field.
This shows that the methods are comparable
with those based on the analysis of the magnetic
components (H,, H,, H,) without using E, and
E,. The only question that remains is whether a
knowledge of E, or E, over the earth is equiva-
lent to a knowledge of H,. That this is so may be
inferred from equations 12 and 13, which show
that

E. _iwP/oy

H, VP

E, _iwdp/os

H, VP (50)

so that, if the horizontal distribution of the field
represented by P(z, vy, v») is known, F, and E,
can be found from H,. It will be noted that these
relations depend only on the distribution of the
field and the period 27/w, and that they are
independent of the conductivity.
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