<u>C3.1 Seismic refraction – single horizontal interface</u>

The P-wave is refracted at the interface between the two layers. Since $v_1 > v_2$ the wave is refracted **towards** the horizontal. As the angle of incidence is increased, the geometry results in a **head wave** travelling **horizontally** in layer 2. From Snell's Law we can write:

$$\frac{\sin \theta_c}{v_1} = \frac{\sin 90^{\circ}}{v_2}$$

Thus $\sin \theta_c = \frac{v_1}{v_2}$ and from geometry we can show that $AB = CD = z / \cos \theta_c$ Can also show that $BC = x - 2z \tan \theta_c$

Total travel time $t = t_{AB} + t_{BC} + t_{CD}$

$$t = \frac{z}{v_1 \cos \theta_c} + \frac{(x - 2z \tan \theta_c)}{v_2} + \frac{z}{v_1 \cos \theta_c}$$
$$t = \frac{x}{v_2} + \frac{2z}{v_1 \cos \theta_c} - \frac{2z \tan \theta_c}{v_2}$$
$$t = \frac{x}{v_2} + \frac{2zv_2 - 2zv_1 \sin \theta_c}{v_1 v_2 \cos \theta_c}$$
$$t = \frac{x}{v_2} + \frac{2z - 2z \sin^2 \theta_c}{v_1 v_2 \cos \theta_c}$$
$$t = \frac{x}{v_2} + \frac{2z \cos \theta_c}{v_1}$$
$$t = \frac{x}{v_2} + \frac{2z \sqrt{v_2^2 - v_1^2}}{v_1 v_2}$$
$$t = \frac{x}{v_2} + \cosh t$$

- The travel time curve for the refracted wave is a straight line with slope = $1/v_2$
- The refracted arrival is only observed when $x > x_{crit} = 2z \tan \theta_c$
- The refracted wave is the **first arrival** at values of *x* greater than the cross over distance (*x*_{cross})
- When $x = x_{crit}$ the refracted and reflected waves are the same
- v_2 can be calculated from the **slope** of the refracted wave on the *t*-*x* plot
- The depth of the interface (z) can be found by extrapolating the travel time of the refracted wave to x = 0 where the travel time is

$$t_i = \frac{2z\sqrt{v_2^2 - v_1^2}}{v_1 v_2}$$

z =

Rearranging gives

$$\frac{v_1 v_2 t_i}{2\sqrt{v_2^2 - v_1^2}}$$

C3.2 Seismic refraction – multiple horizontal layers

Direct wave

$$t = \frac{x}{v_1}$$

Data analysis

• compute *v*₁ from **slope** of direct arrival

First refraction

Critical refraction occurs as the wave travels from 1>2 giving

$$\sin \theta_c = \sin \theta_{12} = \frac{v_1}{v_2}$$
$$t = \frac{x}{v_2} + \frac{2z_1 \cos \theta_{12}}{v_1} = \frac{x}{v_2} + t_1$$

Data analysis

- Compute v_2 from the **slope** of the refracted wave
- Compute z_1 from the **intercept time** (t_1) when x = 0 and v_1 and v_2 are already known $t_1 = \frac{2z_1 \cos \theta_{12}}{v_1}$

Second refraction

Critical refraction occurs as the wave travels from 2 > 3 giving $\sin \theta_{23} = \frac{v_2}{v_3}$

Applying **Snells Law** at the interface between 1 and 2 gives $\sin \theta_{13} = \frac{v_1}{v_2} \sin \theta_{23}$

Thus $\sin \theta_{13} = \frac{v_1}{v_2} \sin \theta_{23} = \frac{v_1}{v_3}$

Total travel time for the second refraction

$$t = \frac{x}{v_3} + \frac{2z_1 \cos \theta_{13}}{v_1} + \frac{2z_2 \cos \theta_{23}}{v_2} = \frac{x}{v_3} + t_1 + t_2$$

Data analysis

- compute *v*₃ from the **slope** of the second refracted wave
- At x = 0, intercept time $= t_1 + t_2$
- Since t_1 is known we can compute t_2

• From
$$t_2 = \frac{2z_2 \cos \theta_{23}}{v_2}$$
 we can then calculate z_2

Example of field seismogram

Figure 3-6 Field seismogram from the Connecticut Valley, Massachusetts. Geophone traces are labeled 1–12. The first geophone is located 5 m from the energy source. The geophone interval is 3 m. First breaks for each trace are indicated by a downward directed arrow. Timing lines are at 5-ms intervals. The record encompasses 100 ms. This seismogram exhibits a classic two-layer pattern.

Multiple layers with velocity increasing with depth

The results for two layers can be generalized for an *N*-layer model and written as a series. See the text book for details. Consider the case where there is a **uniform increase** in velocity with depth. What will be the form of the ray paths and travel time curves?

What could cause velocity to increase uniformly with depth? For each ray, the quantity called the **ray parameter**, *p*, is constant. $p = \frac{\sin \theta}{2}$

Low-velocity layers

• for a head wave to propagate, an **increase in velocity** from one layer to the next is needed. If a decrease in velocity occurs, there will be no head wave and refraction will fail to detect the layer.

Example : If a 3-layer model has a LVZ in the second layer, then interpretation in terms of 2-layers will give a wrong answer *e.g.* soil-peat-bedrock. The peat is a low velocity layer.

Hidden layers

Even if a layer has an increase in velocity, then it possible for the head wave on the upper surface to **never be the first arrival**. Again if a 3-layer velocity model has a hidden second layer, then interpretation in terms of 2-layers will give a wrong answer

First arrivals shown in red. Data is fit by a 2-layer model. Which parameters are estimated correctly?

C3.3 Seismic refraction – dipping interface

Direct wave

$$t = \frac{x}{v_1}$$

- same as in horizontal case considered in C3.2
- compute *v*₁ from **slope** of direct arrival

Refraction from the dipping interface

If ray is travelling down dip, then the upward leg to the geophone will **increase** in length as offset (x) increases. Thus the first refraction will arrive progressively later, compared to the flat interface in C3.1. This if effectively the same as the signal travelling more slowly and will increase the **slope** of the refracted wave on the travel time curve (x-t plot)

- Can show that the travel time, $t_{for} = \frac{x \sin(\theta_{12} + \gamma_1)}{v_1} + \frac{2z_{perp} \cos \theta_{12}}{v_1}$
- Can you confirm that this result is correct when $\gamma_1 = 0$?
- Apparent velocity **down dip** = $v_{2d} = \frac{v_1}{\sin(\theta_{12} + \gamma_1)} < v_2$
- Note that the apparent velocity down dip is **slower** than v_2 which results in a **steeper** slope on the travel time curve.
- Example of layer with $\gamma_1 = 5^\circ v_1 = 1000$ m/s and $v_2 = 3000$ m/s is shown on page 9.

What value of v_{2d} is predicted for these values?

C3.3 Seismic refraction - dipping layers

• Note that several velocity models can be found that all fit the data. v_1 is uniquely determined, but there is a trade-off between γ_1 and v_2 (non-uniqueness again)

Model 1	$\gamma_1 = 0^\circ v_1 = 1000 \text{ m/s} v_2 = 2400 \text{ m/s}$
Model 2	$\gamma_1 = 5^{\circ} v_1 = 1000 \text{ m/s} v_2 = 3000 \text{ m/s}$
Model 3	$\gamma_1 = 10^\circ v_1 = 1000 \text{ m/s} v_2 = 3900 \text{ m/s}$

- On the basis of a single shot recorded in one direction, we cannot determine which model is the correct one.
- Suppose we fire a second shot at the far end of the geophone array, then these waves will travel **up dip**. As the refraction travels to larger offsets (*x*) the final leg in the upper layer will become shorter, and the refraction will arrive earlier. This effectively **increases the apparent velocity** and **reduces the slope** of the travel time curve.

$$t_{rev} = \frac{x\sin(\theta_{12} - \gamma_1)}{v_1} + \frac{2z_{perp}^{'}\cos\theta_{12}}{v_1}$$

• Apparent velocity **up dip** = $v_{2u} = \frac{v_1}{\sin(\theta_{12} - \gamma_1)}$

For with $\gamma_1 = 5^{\circ} v_1 = 1000$ m/s and $v_2 = 3000$ m/s, what value of v_{2u} is predicted?

- Note that the travel times t_{AD} (forward direction) and t_{DA} (reverse direction) are the same. This is a phenomena known as **reciprocity**. Why is this true?
- When forward and reverse profiles are recorded, the correct model (#2) can be seen to be the only one that fits the travel time data (attached handout)

Computing v2 and dip of the interface

By rearranging expressions for v_{2u} and v_{2d} can show that

$$\theta_{12} = \frac{1}{2} [\sin^{-1}(\frac{v_1}{v_{2d}}) + \sin^{-1}(\frac{v_1}{v_{2u}})]$$

and
$$\gamma_1 = \frac{1}{2} [\sin^{-1}(\frac{v_1}{v_{2d}}) - \sin^{-1}(\frac{v_1}{v_{2u}})]$$

C3.3 Seismic refraction with dipping layers

Red = synthetic data

All three velocity models fit the data from the forward profile

The reverse profile shows that models (a) and (c) are not consistent with the data

Look at the travel time curve. Which way does the interface dip?

You will need this information to decide which direction is up and which is down!

Forward pro:	file		Reverse	profile	
x(m)	t_dir(ms)	t_ref(ms)	x(m)	t_dir(ms)	t_ref(ms)
0.000	0.000		0.000	667.000	533.710
50.000	33.000		50.000	633.000	517.616
100.000	67.000	110.410	100.000	600.000	501.522
150.000	100.000	133.927	150.000	567.000	485.428
200.000	133.000	157.444	200.000	533.000	469.334
250.000	167.000	180.960	250.000	500.000	453.240
300.000	200.000	204.477	300.000	467.000	437.146
350.000	233.000	227.994	350.000	433.000	421.051
400.000	267.000	251.510	400.000	400.000	404.957
450.000	300.000	275.027	450.000	367.000	388.863
500.000	333.000	298.544	500.000	333.000	372.769
550.000	367.000	322.060	550.000	300.000	356.675
600.000	400.000	345.577	600.000	267.000	340.581
650.000	433.000	369.094	650.000	233.000	324.487
700.000	467.000	392.610	700.000	200.000	308.393
750.000	500.000	416.127	750.000	167.000	292.299
800.000	533.000	439.643	800.000	133.000	276.205
850.000	567.000	463.160	850.000	100.000	260.111
900.000	600.000	486.677	900.000	67.000	244.017
950.000	633.000	510.193	950.000	33.000	
1000.000	667.000	533.710	1000.000	0.000	

From the travel times compute the following.

Use the modelling program **refract_v3.m** to confirm the answers.

C3.4 Seismic refraction – non planar interfaces

C3.4.1 Basics and concept of delay time

- the **delay time** at the shot is the **extra time** needed for the wave to travel AB, compared to the time to travel CB.
- delay time at detector is the extra time needed for wave to travel DE, compared to DF
- can see this from the travel time curve $t = x/v_2 + \delta_{ts} + \delta_{td}$
- for horizontal interface, $\delta_{ts} = \delta_{td} = z \cos \theta / v_1$
- with just a single shot, we cannot separately determine δ_{ts} and δ_{td}
- with a reversed profile, we can individually determine δ_{ts} and δ_{td}
- for a non horizontal interface, with many geophones δ_{td} contains information about how the depth of the interface (z) varies with position (x')
- two common methods of finding δ_{td} are the **plus-minus method** and the **generalized** reciprocal method. More details shortly.

distance (m)

Consider the model with two layers and an undulating interface. The refraction profile is reversed with two shots (S₁ and S₂) fired into each detector (D). Consider the following three travel times:

(b) Forward shot

(a) The reciprocal time is the time from
$$S_1$$
 to S_2
 $t_{S_1S_2} = \frac{l}{v_2} + \delta_{S_1} + \delta_{S_2} = t_{S_2S_1}$
(b) Forward shot into the detector
 $t_{S_1D} = \frac{x}{v_2} + \delta_{S_1} + \delta_D$

(c) Reverse shot into the detector
$$t_{S_2D} = \frac{(l-x)}{v_2} + \delta_{S_2} + \delta_D$$

Our goal is to find v_2 and the delay time at the detector, δ_D . From the delay time, δ_D , we can find the depth of the interface.

Minus term to estimate velocity (v2)

(b)-(c) will eliminate δ_D

$$t_{S_1D} - t_{S_2D} = \frac{(2x - l)}{v_2} + \delta_{S_1} - \delta_{S_2}$$
$$t_{S_1D} - t_{S_2D} = \frac{2x}{v_2} + C$$

where C is a constant. A plot of $t_{S_1D} - t_{S_2D}$ versus 2x will give a line with slope = $1/v_2$

Plus term to estimate delay time at the detector

(b)+(c) gives

Using the result (a) we get

$$t_{S_1D} + t_{S_2D} = \frac{l}{v_2} + \delta_{S_1} + \delta_{S_2} + 2\delta_D$$
$$t_{S_1D} + t_{S_2D} = t_{S_1S_2} + 2\delta_D$$

Re-arranging to get an equation for $\,\delta_D$

$$\delta_D = \frac{1}{2} (t_{S_1 D} + t_{S_2 D} - t_{S_1 S_2})$$

This process is then repeated for all detectors in the profile

Example 1 : Synthetic refraction data were generated for a dipping flat interface with the MATLAB script refract_v3_data_plus_minus.m

The plus-minus technique was then applied using the MATLAB program plus_minus_ex1.m

Original model	$v_1 = 1500 \text{ m/s}$	$v_2 = 2500 \text{ m/s}$
Interpretation with plus-minus method	$v_1 = 1502 \text{ m/s}$	$v_2 = 2525 m/s$

The interface dips to the right at 8°, and is correctly imaged in this example.

Plus-minus method : Example 1

C3.4 Non-uniform interfaces

+ Depth of true model

C3.4 Non-uniform interfaces

Plus-minus method : Example 2

C3.4.3 Generalized reciprocal method

The plus-minus method assumes a linear interface between points where the ray leaves the interface. A more powerful technique if the **Generalized reciprocal** method in which pairs of rays are chosen that leave the interface at the same location. More details can be found in *Kearey page 109*.

C3.5 Shallow applications of seismic refraction

C3.5.1 Depth of bedrock

- velocity of bedrock greater than unconsolidated layer
- in this example, (Kearey 5.24) a shot point was located every 30 m
- depth to bedrock increases with *x*

Example from Northern Alberta

Seismic refraction was used to determine depth to bedrock at the location where a pipeline was planned to cross a creek. DC resistivity data were also collected at this location. Data courtesy of Greg Kovacs and Komex

Note that the direct wave is the only the first arrival at the first 2 geophones. This is because of a very high velocity contrast between the upper and lower layers. The model below was derived from the seismic data using the general reciprocal method.

3.5.2 Locating water table

3.5.3 Rippability

C3.6 Crustal scale seismic refraction surveys

3.6.1 Discovery of the crust-mantle boundary (the Moho)

In 1910 Andrija Mohorovicic published a paper describing the time taken for earthquake waves to travel across the Balkans. He noticed that P-waves apparently travelled at two different velocities. He inferred that this required a crustal layer, underlain by a higher velocity layer. This boundary is now called the **Mohorovicic discontinuity** or Moho.

- •What crustal velocity and crustal thickness is implied by the attached figure?
- •How do the travel time curves differ from those we have considered with a hammer or explosive source?
- •Why can the S-waves be detected, since they are not first arrivals?
- In modern seismic terminology $P = P_n$ and $\overline{P} = P_g$

- the direct wave is referred to as P_g and often travels as a parabola. Why?
- the head wave that travels in the upper mantle is called P_n
- reflection from the Moho is called P_mP
- reduced travel time is sometimes plotted on the vertical axis.

 $t' = t - x/v_{red}$

where v_{red} is the **reduction velocity**. This has the effect of making arrivals with $v=v_{red}$ plot **horizontally** on a *t-x* plot.

• in the figure on the left, the crustal Pwave velocity was used as the reduction velocity.

3.6.2 Seismic refraction at sea

- signals can be detected either by seafloor recording, using a long streamer, two-ship survey or a sonobuoy.
- refractions (head waves) occur at seafloor and at deeper interfaces.
- sonobuoy sends data back via radio telemetry. Modern sonobouys are often disposable.

- Can you locate the direct water wave on this section? (P-wave velocity is 1500 m/s)
- Locate a refraction and measure the velocity.
- Where would you expect to see normal incidence reflections?

3.6.3 Fan shooting

Technique first used in the 1920's in the search for salt domes. The higher velocity of the salt causes earlier arrivals for signals that travel though the salt.

Kearey and Brooks

Eve and Keys, Applied Geophysics, 1928

3.6.4 Tectonic studies of the continental lithosphere with refraction

Deep Probe experiment

• used explosive shots up to 2400 kg with seismic recorders deployed on a profile from $60^{\circ}N$ to $43^{\circ}N$

- ray tracing used to model the data. Measures the variation in Moho depth and crustal structure. Figure above shows ray tracing for SAREX shot 5. Note that with a reduction velocity of 8 km/s, P_n plots as a horizontal line, while the slower P_g has a positive slope.
- Gorman, A.R. *et al*, Deep probe: imaging the roots of western North America, *Canadian Journal of Earth Sciences*, **39**, 375-398, 2002.
- Clowes, R. et al, Crustal velocity structure from SAREX, the Southern Alberta seismic experiment, *Canadian Journal of Earth Sciences*, **39**, 351-373, 2002.

Geophysics 224 MJU 2006