C3.1 Seismic refraction - single horizontal interface

The P -wave is refracted at the interface between the two layers. Since $v_{l}>v_{2}$ the wave is refracted towards the horizontal. As the angle of incidence is increased, the geometry results in a head wave travelling horizontally in layer 2. From Snell's Law we can write:

$$
\frac{\sin \theta_{c}}{v_{1}}=\frac{\sin 90^{\circ}}{v_{2}}
$$

Thus $\sin \theta_{c}=\frac{v_{1}}{v_{2}}$ and from geometry we can show that $\mathrm{AB}=\mathrm{CD}=z / \cos \theta_{c}$
Can also show that $\mathrm{BC}=x-2 z \tan \theta_{c}$
Total travel time

$$
\begin{aligned}
& t=\mathrm{t}_{\mathrm{AB}} \quad+\mathrm{t}_{\mathrm{BC}} \quad+\mathrm{t}_{\mathrm{CD}} \\
& t=\frac{z}{v_{1} \cos \theta_{c}}+\frac{\left(x-2 z \tan \theta_{c}\right)}{v_{2}}+\frac{z}{v_{1} \cos \theta_{c}} \\
& t=\frac{x}{v_{2}}+\frac{2 z}{v_{1} \cos \theta_{c}}-\frac{2 z \tan \theta_{c}}{v_{2}} \\
& t=\frac{x}{v_{2}}+\frac{2 z v_{2}-2 z v_{1} \sin \theta_{c}}{v_{1} v_{2} \cos \theta_{c}} \\
& t=\frac{x}{v_{2}}+\frac{2 z-2 z \sin ^{2} \theta_{c}}{v_{1} v_{2} \cos \theta_{c}} \\
& t=\frac{x}{v_{2}}+\frac{2 z \cos \theta_{c}}{v_{1}} \\
& t=\frac{x}{v_{2}}+\frac{2 z \sqrt{v_{2}^{2}-v_{1}^{2}}}{v_{1} v_{2}} \\
& t=\frac{x}{v_{2}}+\operatorname{constant}
\end{aligned}
$$

- The travel time curve for the refracted wave is a straight line with slope $=1 / v_{2}$
- The refracted arrival is only observed when $x>x_{\text {crit }}=2 z \tan \theta_{c}$
- The refracted wave is the first arrival at values of x greater than the cross over distance ($x_{\text {cross }}$)
- When $x=x_{\text {crit }}$ the refracted and reflected waves are the same
- $\quad v_{2}$ can be calculated from the slope of the refracted wave on the $t-x$ plot
- The depth of the interface (z) can be found by extrapolating the travel time of the refracted wave to $x=0$ where the travel time is

$$
t_{i}=\frac{2 z \sqrt{v_{2}^{2}-v_{1}^{2}}}{v_{1} v_{2}}
$$

Rearranging gives

$$
z=\frac{v_{1} v_{2} t_{i}}{2 \sqrt{v_{2}^{2}-v_{1}^{2}}}
$$

C3.2 Seismic refraction - multiple horizontal layers

Direct wave

$$
t=\frac{x}{v_{1}}
$$

Data analysis

- compute v_{l} from slope of direct arrival

First refraction

Critical refraction occurs as the wave travels from $1>2$ giving

$$
\begin{aligned}
& \sin \theta_{c}=\sin \theta_{12}=\frac{v_{1}}{v_{2}} \\
& t=\frac{x}{v_{2}}+\frac{2 z_{1} \cos \theta_{12}}{v_{1}}=\frac{x}{v_{2}}+t_{1}
\end{aligned}
$$

Data analysis

- Compute v_{2} from the slope of the refracted wave
- Compute z_{l} from the intercept time $\left(t_{l}\right)$ when $x=0$ and v_{l} and v_{2} are already known

$$
t_{1}=\frac{2 z_{1} \cos \theta_{12}}{v_{1}}
$$

Second refraction

Critical refraction occurs as the wave travels from $2>3$ giving $\sin \theta_{23}=\frac{v_{2}}{v_{3}}$
Applying Snells Law at the interface between 1 and 2 gives $\sin \theta_{13}=\frac{v_{1}}{v_{2}} \sin \theta_{23}$

Thus $\sin \theta_{13}=\frac{v_{1}}{v_{2}} \sin \theta_{23}=\frac{v_{1}}{v_{3}}$

Total travel time for the second refraction

$$
t=\frac{x}{v_{3}}+\frac{2 z_{1} \cos \theta_{13}}{v_{1}}+\frac{2 z_{2} \cos \theta_{23}}{v_{2}}=\frac{x}{v_{3}}+t_{1}+t_{2}
$$

Data analysis

- compute v_{3} from the slope of the second refracted wave
- At $x=0$, intercept time $=t_{1}+t_{2}$
- Since t_{1} is known we can compute t_{2}
- From $t_{2}=\frac{2 z_{2} \cos \theta_{23}}{v_{2}}$ we can then calculate z_{2}

Example of field seismogram

Figure 3-6 Field seismogram from the Connecticut Valley, Massachusetts. Geophone traces are labeled $1-12$. The first geophone is located 5 m from the energy source. The geophone interval is 3 m . First breaks for each trace are indicated by a downward directed arrow. Timing lines are at $5-\mathrm{ms}$ intervals. The record encompasses 100 ms . This seismogram exhibits a classic two-layer pattern.

Multiple layers with velocity increasing with depth

The results for two layers can be generalized for an N-layer model and written as a series. See the text book for details. Consider the case where there is a uniform increase in velocity with depth. What will be the form of the ray paths and travel time curves?

What could cause velocity to increase uniformly with depth?
For each ray, the quantity called the ray parameter, p, is constant. $p=\frac{\sin \theta}{v}$

Low-velocity layers

- for a head wave to propagate, an increase in velocity from one layer to the next is needed. If a decrease in velocity occurs, there will be no head wave and refraction will fail to detect the layer.

Example : If a 3-layer model has a LVZ in the second layer, then interpretation in terms of 2-layers will give a wrong answer e.g. soil-peat-bedrock. The peat is a low velocity layer.

Hidden layers

Even if a layer has an increase in velocity, then it possible for the head wave on the upper surface to never be the first arrival. Again if a 3-layer velocity model has a hidden second layer, then interpretation in terms of 2-layers will give a wrong answer
C3.2 Hidden layers in seismic refraction

(s) әш!!

(шy) чıддәр

C3.2 Seismic refraction - with a low velocity zone (LVZ)
(a) 3-layer model with no LVZ

(b) 3-layer model with LVZ

(c) Interpretation of first arrivals from (b)

First arrivals shown in red. Data is fit by a 2-layer model. Which parameters are estimated correctly?

C3.3 Seismic refraction - dipping interface

Direct wave

$$
t=\frac{x}{v_{1}}
$$

- same as in horizontal case considered in C3.2
- compute v_{l} from slope of direct arrival

Refraction from the dipping interface

(b)

If ray is travelling down dip, then the upward leg to the geophone will increase in length as offset (x) increases. Thus the first refraction will arrive progressively later, compared to the flat interface in C3.1. This if effectively the same as the signal travelling more slowly and will increase the slope of the refracted wave on the travel time curve ($x-t$ plot)

- Can show that the travel time, $t_{\text {for }}=\frac{x \sin \left(\theta_{12}+\gamma_{1}\right)}{v_{1}}+\frac{2 z_{\text {perp }} \cos \theta_{12}}{v_{1}}$
- Can you confirm that this result is correct when $\gamma_{1}=0$?
- Apparent velocity down dip $=v_{2 d}=\frac{v_{1}}{\sin \left(\theta_{12}+\gamma_{1}\right)}<v_{2}$
- Note that the apparent velocity down dip is slower than v_{2} which results in a steeper slope on the travel time curve.
- Example of layer with $\gamma_{1}=5^{\circ} v_{1}=1000 \mathrm{~m} / \mathrm{s}$ and $v_{2}=3000 \mathrm{~m} / \mathrm{s}$ is shown on page 9 .

What value of $v_{2 d}$ is predicted for these values?

C3.3 Seismic refraction - dipping layers

(b) 5 degree dip to right

C3.3 Seismic refraction

 with dipping layers(a) Model 1 -dip too shallow

(b) Model 2 - true model

(c) Model 3 - dip too steep

- Note that several velocity models can be found that all fit the data. v_{1} is uniquely determined, but there is a trade-off between γ_{1} and v_{2} (non-uniqueness again)

> Model 1
> Model 2
> Model 3

$$
\begin{aligned}
& \gamma_{1}=0^{\circ} \quad \mathrm{v}_{1}=1000 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=2400 \mathrm{~m} / \mathrm{s} \\
& \gamma_{1}=5^{\circ} \mathrm{v}_{1}=1000 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=3000 \mathrm{~m} / \mathrm{s} \\
& \gamma_{1}=10^{\circ} \mathrm{v}_{1}=1000 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=3900 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- On the basis of a single shot recorded in one direction, we cannot determine which model is the correct one.
- Suppose we fire a second shot at the far end of the geophone array, then these waves will travel up dip. As the refraction travels to larger offsets (x) the final leg in the upper layer will become shorter, and the refraction will arrive earlier. This effectively increases the apparent velocity and reduces the slope of the travel time curve.

$$
t_{\text {rev }}=\frac{x \sin \left(\theta_{12}-\gamma_{1}\right)}{v_{1}}+\frac{2 z_{\text {perp }}^{\prime} \cos \theta_{12}}{v_{1}}
$$

- Apparent velocity up dip $=v_{2 u}=\frac{v_{1}}{\sin \left(\theta_{12}-\gamma_{1}\right)}$

For with $\gamma_{1}=5^{\circ} v_{l}=1000 \mathrm{~m} / \mathrm{s}$ and $v_{2}=3000 \mathrm{~m} / \mathrm{s}$, what value of $\mathrm{v}_{2 \mathrm{u}}$ is predicted?

- Note that the travel times $t_{A D}$ (forward direction) and $t_{D A}$ (reverse direction) are the same. This is a phenomena known as reciprocity. Why is this true?
- When forward and reverse profiles are recorded, the correct model (\#2) can be seen to be the only one that fits the travel time data (attached handout)

Computing \mathbf{v}_{2} and dip of the interface

By rearranging expressions for $v_{2 u}$ and $v_{2 d}$ can show that

$$
\theta_{12}=\frac{1}{2}\left[\sin ^{-1}\left(\frac{v_{1}}{v_{2 d}}\right)+\sin ^{-1}\left(\frac{v_{1}}{v_{2 u}}\right)\right]
$$

and

$$
\gamma_{1}=\frac{1}{2}\left[\sin ^{-1}\left(\frac{v_{1}}{v_{2 d}}\right)-\sin ^{-1}\left(\frac{v_{1}}{v_{2 u}}\right)\right]
$$

C3.3 Seismic refraction with dipping layers

Red $=$ synthetic data
All three velocity models fit the data from the forward profile

The reverse profile shows that models (a) and (c) are not consistent with the data

C3.3 Seismic refraction - dipping interface - Example

Look at the travel time curve. Which way does the interface dip?
You will need this information to decide which direction is up and which is down!

Forward profile

$x(\mathrm{~m})$	t_dir (ms)	t_ref(ms)
0.000	0.000	
50.000	33.000	
100.000	67.000	110.410
150.000	100.000	133.927
200.000	133.000	157.444
250.000	167.000	180.960
300.000	200.000	204.477
350.000	233.000	227.994
400.000	267.000	251.510
450.000	300.000	275.027
500.000	333.000	298.544
550.000	367.000	322.060
600.000	400.000	345.577
650.000	433.000	369.094
700.000	467.000	392.610
750.000	500.000	416.127
800.000	533.000	439.643
850.000	567.000	463.160
900.000	600.000	486.677
950.000	633.000	510.193
1000.000	667.000	533.710

Reverse profile

$x(m)$	t_dir (ms)	t_ref(ms)
0.000	667.000	533.710
50.000	633.000	517.616
100.000	600.000	501.522
150.000	567.000	485.428
200.000	533.000	469.334
250.000	500.000	453.240
300.000	467.000	437.146
350.000	433.000	421.051
400.000	400.000	404.957
450.000	367.000	388.863
500.000	333.000	372.769
550.000	300.000	356.675
600.000	267.000	340.581
650.000	233.000	324.487
700.000	200.000	308.393
750.000	167.000	292.299
800.000	133.000	276.205
850.000	100.000	260.111
900.000	67.000	244.017
950.000	33.000	
1000.000	0.000	

From the travel times compute the following.

v_{1}	$=$	m / s
$v_{2 d}$	$=$	m / s
$v_{2 u}$	$=$	m / s
θ_{12}	$=$	degrees
$v_{2}=v_{1} / \sin \theta_{12}$	$=$	m / s
γ_{1}	$=$	degrees

Use the modelling program refract_v3.m to confirm the answers.

C3.4 Seismic refraction - non planar interfaces

C3.4.1 Basics and concept of delay time

- the delay time at the shot is the extra time needed for the wave to travel AB , compared to the time to travel CB.
- delay time at detector is the extra time needed for wave to travel DE, compared to DF
- can see this from the travel time curve $\mathrm{t}=\mathrm{x} / \mathrm{v}_{2}+\delta_{\mathrm{ts}}+\delta_{\mathrm{td}}$
- for horizontal interface, $\delta_{\mathrm{ts}}=\delta_{\mathrm{td}}=z \cos \theta / v_{l}$
- with just a single shot, we cannot separately determine $\delta_{\text {ts }}$ and $\delta_{\text {td }}$
- with a reversed profile, we can individually determine δ_{ts} and δ_{td}
- for a non horizontal interface, with many geophones $\delta_{\text {td }}$ contains information about how the depth of the interface (z) varies with position (x)
- two common methods of finding δ_{td} are the plus-minus method and the generalized reciprocal method. More details shortly.

C3.4.2 Plus-minus interpretation method

Consider the model with two layers and an undulating interface. The refraction profile is reversed with two shots (S_{1} and S_{2}) fired into each detector (D). Consider the following three travel times:
(a) The reciprocal time is the time from S_{1} to S_{2}
(b) Forward shot into the detector

$$
\begin{aligned}
& t_{S_{1} S_{2}}=\frac{l}{v_{2}}+\delta_{S_{1}}+\delta_{S_{2}}=t_{S_{2} S_{1}} \\
& t_{S_{1} D}=\frac{x}{v_{2}}+\delta_{S_{1}}+\delta_{D}
\end{aligned}
$$

(c) Reverse shot into the detector

$$
t_{S_{2} D}=\frac{(l-x)}{v_{2}}+\delta_{S_{2}}+\delta_{D}
$$

Our goal is to find v_{2} and the delay time at the detector, δ_{D}. From the delay time, δ_{D}, we can find the depth of the interface.

Minus term to estimate velocity (\mathbf{v}_{2})

(b)-(c) will eliminate δ_{D}

$$
\begin{aligned}
& t_{S_{1} D}-t_{S_{2} D}=\frac{(2 x-l)}{v_{2}}+\delta_{S_{1}}-\delta_{S_{2}} \\
& t_{S_{1} D}-t_{S_{2} D}=\frac{2 x}{v_{2}}+C
\end{aligned}
$$

where C is a constant. A plot of $t_{S_{1} D}-t_{S_{2} D}$ versus $2 x$ will give a line with slope $=1 / v_{2}$

Plus term to estimate delay time at the detector

(b) + (c) gives

$$
t_{S_{1} D}+t_{S_{2} D}=\frac{l}{v_{2}}+\delta_{S_{1}}+\delta_{S_{2}}+2 \delta_{D}
$$

Using the result (a) we get

$$
t_{S_{1} D}+t_{S_{2} D}=t_{S_{1} S_{2}}+2 \delta_{D}
$$

Re-arranging to get an equation for δ_{D}

$$
\delta_{D}=\frac{1}{2}\left(t_{S_{1} D}+t_{S_{2} D}-t_{S_{1} S_{2}}\right)
$$

This process is then repeated for all detectors in the profile

Example 1 : Synthetic refraction data were generated for a dipping flat interface with the MATLAB script refract_v3_data_plus_minus.m

The plus-minus technique was then applied using the MATLAB program plus_minus_ex1.m

Original model

$$
\begin{array}{ll}
v_{1}=1500 \mathrm{~m} / \mathrm{s} & v_{2}=2500 \mathrm{~m} / \mathrm{s} \\
v_{1}=1502 \mathrm{~m} / \mathrm{s} & v_{2}=2525 \mathrm{~m} / \mathrm{s}
\end{array}
$$

The interface dips to the right at 8°, and is correctly imaged in this example.

C3.4 Non-uniform interfaces

Plus-minus method: Example 1

Example 2: Field data from Kearey and Brooks, p. 123

C3.4 Non-uniform interfaces

Plus-minus method: Example 2

C3.4.3 Generalized reciprocal method

The plus-minus method assumes a linear interface between points where the ray leaves the interface. A more powerful technique if the Generalized reciprocal method in which pairs of rays are chosen that leave the interface at the same location. More details can be found in Kearey page 109.

C3.5 Shallow applications of seismic refraction

C3.5.1 Depth of bedrock

- velocity of bedrock greater than unconsolidated layer
- in this example, (Kearey 5.24) a shot point was located every 30 m
- depth to bedrock increases with x

Example from Northern Alberta

Seismic refraction was used to determine depth to bedrock at the location where a pipeline was planned to cross a creek. DC resistivity data were also collected at this location. Data courtesy of Greg Kovacs and Komex

Note that the direct wave is the only the first arrival at the first 2 geophones. This is because of a very high velocity contrast between the upper and lower layers. The model below was derived from the seismic data using the general reciprocal method.

3.5.2 Locating water table

3.5.3 Rippability

C3.6 Crustal scale seismic refraction surveys

3.6.1 Discovery of the crust-mantle boundary (the Moho)

In 1910 Andrija Mohorovicic published a paper describing the time taken for earthquake waves to travel across the Balkans. He noticed that P-waves apparently travelled at two different velocities. He inferred that this required a crustal layer, underlain by a higher velocity layer. This boundary is now called the Mohorovicic discontinuity or Moho.

- What crustal velocity and crustal thickness is implied by the attached figure?
- How do the travel time curves differ from those we have considered with a hammer or explosive source?
-Why can the S-waves be detected, since they are not first arrivals?
- In modern seismic terminology $P=P_{n}$ and $\bar{P}=P_{g}$

C3.6 Depth of Moho from seismic refraction data

data in red (line) model response (wiggles)

- the direct wave is referred to as P_{g} and often travels as a parabola. Why?
- the head wave that travels in the upper mantle is called P_{n}
- reflection from the Moho is called $\mathrm{P}_{\mathrm{m}} \mathrm{P}$
- reduced travel time is sometimes plotted on the vertical axis.
$t^{\prime}=t-x / v_{\text {red }}$
where $v_{\text {red }}$ is the reduction velocity. This has the effect of making arrivals with $v=v_{\text {red }}$ plot horizontally on a $t-x$ plot.
- in the figure on the left, the crustal Pwave velocity was used as the reduction velocity.

3.6.2 Seismic refraction at sea

- signals can be detected either by seafloor recording, using a long streamer, two-ship survey or a sonobuoy.
- refractions (head waves) occur at seafloor and at deeper interfaces.
- sonobuoy sends data back via radio telemetry. Modern sonobouys are often disposable.

- Can you locate the direct water wave on this section? (P-wave velocity is $1500 \mathrm{~m} / \mathrm{s}$)
- Locate a refraction and measure the velocity.
- Where would you expect to see normal incidence reflections?

3.6.3 Fan shooting

Technique first used in the 1920's in the search for salt domes. The higher velocity of the salt causes earlier arrivals for signals that travel though the salt.

Kearey and Brooks

Fig. 80. Diagram showing the "shot-point" and positions of six
recording seismographs. recording seismographs.

Eve and Keys, Applied Geophysics, 1928

3.6.4 Tectonic studies of the continental lithosphere with refraction

Deep Probe experiment

- used explosive shots up to 2400 kg with seismic recorders deployed on a profile from $60^{\circ} \mathrm{N}$ to $43^{\circ} \mathrm{N}$

- ray tracing used to model the data. Measures the variation in Moho depth and crustal structure. Figure above shows ray tracing for SAREX shot 5 . Note that with a reduction velocity of $8 \mathrm{~km} / \mathrm{s}, \mathrm{P}_{\mathrm{n}}$ plots as a horizontal line, while the slower P_{g} has a positive slope.

Gorman, A.R. et al, Deep probe: imaging the roots of western North America, Canadian Journal of Earth Sciences, 39, 375-398, 2002.

Clowes, R. et al, Crustal velocity structure from SAREX, the Southern Alberta seismic experiment, Canadian Journal of Earth Sciences, 39, 351-373, 2002.

