C2.1 Travel time curve for a single horizontal interface

Seismic energy can travel from the shot $\left({ }^{*}\right)$ to the receivers (geophones) by the 3 distinct routes shown in the upper panel. The lower panel is a travel-time curve and is a plot of travel time as a function of distance from the shot (x).

(1) Direct wave

A P-wave travels in a straight line just below the surface of the Earth. The travel time is $t_{d}=x / v_{1}$ which plots as a straight line on the travel time curve. This line passes through the origin on the travel time curve ($x=0$ and $t=0$).

(2) Ground roll

A Rayleigh wave travels in a straight line along the surface at a velocity $=v_{R}$. The travel time is $t_{g}=x / v_{R}$ which plots as a straight line on the travel time curve. This line passes through the origin $(x=0$ and $t=0)$. Since $\mathrm{v}_{\mathrm{R}}<\mathrm{v}_{1}$ note that slower seismic signals have a steeper slope on this plot.

(3) Reflection

A P-wave reflects from the interface between layer 1 and layer 2 . The angle of incidence and reflection are equal (see C1.5). Using Pythagoras' Theorem, the distance travelled by the seismic signal on the downward leg of the journey is :

$$
d=\sqrt{z^{2}+\frac{x^{2}}{4}}
$$

From symmetry, the total distance travelled is $2 d$. The whole journey is travelled at velocity v_{1}, so the travel time is given by

$$
t_{\text {ref }}=2 \frac{\sqrt{z^{2}+\frac{x^{2}}{4}}}{v_{1}}=\frac{\sqrt{4 z^{2}+x^{2}}}{v_{1}}
$$

Note that:

(1) When $x=0, t_{\text {ref }}$ is not zero, in contrast to the direct wave and ground roll.
(2) $t_{\text {ref }}$ has a minimum value when $x=0$. In this situation, the seismic signal travels vertically and makes an angle of 90° with the interface. This geometry is called normal incidence and the travel time is $t_{\text {ref }}=t_{0}=2 z / v_{1}$
(3) In practice, it is impossible to measure t_{0} since a geophone will be destroyed if place close to the shot. Observations at a range of x values can be used to extrapolate to find $t_{\text {ref }}$ at $x=0$. The travel time can be written:

$$
t_{r e f}^{2}=t_{0}^{2}+\frac{x^{2}}{v_{1}^{2}}
$$

Thus a graph of $t_{\text {ref }}^{2}$ versus x^{2} can be used for this. This will be a straight line with intercept t_{0}^{2} when $x=0$
(4) At normal incidence, two unknown model parameters (z and v_{1}) determine t_{0}. The solution of this inverse problem (to find the model parameters z and v_{1}) is nonunique. This is because we have two unknowns and just one equation.
(5) As x gets large the path taken by the reflection becomes very close to that taken by the direct wave. This means that the travel times for the reflection and direct wave become very close and $\mathrm{t}_{\text {ref }} \rightarrow x / v_{1}$

Can you sketch the travel-time curve for the reflection on the figure above?
To address the problem of non-uniqueness in (3) and find the depth (z) and velocity $\left(v_{1}\right)$ we need to consider values of $x>0$.

$$
t_{\text {ref }}^{2}=\frac{4 z^{2}}{v_{1}^{2}}+\frac{x^{2}}{v_{1}^{2}}=t_{0}^{2}+\frac{x^{2}}{v_{1}^{2}}
$$

Note that this equation is for a parabola ($t_{\text {ref }}$ varies as x squared). Simple re-arrangement gives:

$$
\begin{gathered}
t_{\text {ref }}=\frac{\sqrt{4 z^{2}+x^{2}}}{v_{1}}=\frac{2 z}{v_{1}} \sqrt{1+\left(\frac{x}{2 z}\right)^{2}}=t_{0} \sqrt{1+\left(\frac{x}{2 z}\right)^{2}} \\
t_{\text {ref }}=t_{0}\left[1+\left(\frac{x}{2 z}\right)^{2}\right]^{1 / 2}=t_{0}\left[1+\left(\frac{x}{v_{1} t_{0}}\right)^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

We can simplify the equation for $t_{\text {ref }}$ by using a power series expansion (Taylor's Theorem) and assuming that $x / v_{1} t_{0}$ is relatively small.

$$
t_{\text {ref }}=t_{0}\left[1+\left(\frac{x}{v_{1} t_{0}}\right)^{2}\right]^{\frac{1}{2}}=t_{0}\left[1+\left(\frac{x}{v_{1} t_{0}}\right)^{2}\right]^{\frac{1}{2}}=t_{0}\left[1+\frac{1}{2}\left(\frac{x}{v_{1} t_{0}}\right)^{2}+\ldots \ldots .\right]
$$

If the higher order terms are ignored, then we can write that:

$$
t_{r e f}=t_{0}\left[1+\frac{1}{2}\left(\frac{x}{v_{1} t_{0}}\right)^{2}\right]=t_{0}+\frac{x^{2}}{2 v_{1}^{2} t_{0}}
$$

Re-arranging gives an expression for $t_{r e f}-t_{0}$ which is termed the normal moveout.

$$
t_{\text {ref }}-t_{0}=\frac{x^{2}}{2 v_{1}^{2} t_{0}}
$$

Normal moveout (NMO) is a measure of the extra time taken for seismic signal to travel on a non-vertical path, compared to the time for a signal travelling vertically. The word normal refers to the seismic energy travelling at right angles to the interface.

A graph of NMO versus x^{2} will be a straight line, passing through the origin. The slope of the line will be $1 / 2 v_{1}^{2} t_{0}$. As x increases, the approximation made above becomes invalid and a deviation from the straight line will be observed.

Example 1

In this example, we will look at the synthetic seismic reflection data and compute the depth of the interface and estimate the velocity of the layer. These data are shown in graphical and numerical form on pages 4 and 5 .
(1) Read the value of t_{0} from the table $t_{0}=$
(2) Look at the geophone at $x=90 \mathrm{~m} . \quad \mathrm{t}_{\text {ref }}=$
(3) At this geophone, compute the NMO
$\mathrm{NMO}=$ \qquad
(4) Find v_{1} using the equation above
$v_{1}=$ \qquad
(5) Using the values for v_{1} and t_{0} find the depth of the interface. This can be done with the equation for travel time at normal incidence $t_{0}=2 z / v_{1}$. Rearrange this equation to find the depth to the interface.

$$
z=
$$

\qquad
Does your answer agree with that shown in the plot below? If not, can you suggest a reason for the discrepancy?
(6) What can we determine from the seismic data about the seismic velocity below the interface $\left(v_{2}\right)$?

Reflected amplitudes modelled assuming normal incidence Attenuation, geometric spreading or AVO effects not included Direct wave and ground roll included

Numerical data in file travel-time-1layer-ex1

Note : To be more rigorous when computing v_{1} it is best to plot a graph of NMO vs. x^{2} which should be a straight line with slope $1 / 2 v_{1}^{2} t_{0}$. A non-straight line may indicate that the simple form of the NMO equation is invalid.

C2.1 Shot gather for a single horizontal reflector

 Example 2

Reflected amplitudes modelled assuming normal incidence Attenuation, geometric spreading or AVO effects not included Direct wave and ground roll included

Numerical data in file travel-time-1layer-ex2
(1) Look at the seismic reflection data presented above. How are they different from those in Example 1?
(2) Which model parameters (v_{1}, v_{2} and z) will be different?

