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Applications of DC resistivity exploration

e Modern DC resistivity surveys collect data for generating a 2-D or 3-D geoelectric

model of the Earth. A simple 1-D analysis does not often yield results that are
satisfactory.

e Also see reviews by Ward (1990) and Pellerin (2002)

B7.1 Cave detection
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e Caves show up as high resistivity zones in a Wenner array profile over karst terrain.
e What other geophysical methods could be used for cave detection?

Sting Cave Survey
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Figure 18. The observed apparent resistivity pseudosection for the Sting Cave survey together
with an inversion model. The time taken to invert this data set on a 90 Mhz Pentium
computer was 98 seconds (1.6 minutes), while on a 266 Mhz Pentium II it took 23 seconds.

e This DC resistivity survey detected both a known cave and discovered a new (larger)
cave that was called the Sting Cave. Figure courtesy of M.H. Loke



B7.2 Environmental geophysics

B7.2.1 Locating and mapping waste dumps
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e Here the fill has a higher resistivity than the surroundings. What could be the content?
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A second example of locating a waste pit from www.hydrogeophysics.com. Both DC

resistivity and magnetic field measurements were used and revealed the presence of

55-gallon drums containing pesticides.

In other cases the landfill will be a low resistivity zone. Why?
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B7.2.2 Mapping contaminant plumes

Conductive plume: (low resistivity) often due to saline water, heavy metals
Resistive plume: hydrocarbons, CCly and DNAPLS (dense non-aqueous phase liquids)
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e Example from a landfill near Utrecht in the Netherlands.

e Contaminated fluids leak into two layers that are characterized by a low resistivity

a). Old tar works leacheate survey
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Figure 20. (a) The apparent resistivity pseudosection from a survey over a derelict industrial
site, and the (b) computer model for the subsurface.

e Note that contaminants leak from surface at the edge of a metal loading dock (shows
up as a low resistivity zone). Figure from Loke (2004).
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Image of a low resistivity plume moving through the ground. Measurements made at
three separate time intervals. From www.hydrogeophysics.com

B7.3 Hydrocarbon exploration

Shallow gas exploration. Natural gas can accumulate close to the surface in
paleochannels Example from Northern Alberta. Data courtesy of Komex International
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B7.4 Geothermal exploration
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e A geothermal reservoir is generally a low resistivity zone, owing to the presence of
saline fluids. The hydrothermal circulation and high temperatures often form a low
resistivity clay cap above the reservoir.

e DC resistivity exploration can be used to locate the clay cap and reservoir.
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e Example above shows Schlumberger sounding with AB/2 = 1000 m from the
Wairakei geothermal field in New Zealand (Bibby et al., 2009)

e Note that when a geothermal reservoir is depleted, the clay cap will remain making
exploration more complicated.
e FElectromagnetic exploration can be used to map geothermal reservoirs
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Country 1990 1995 2000
Argentina 0.67 0.67 0
Australia 0 0.17 0.17
China 19.2 28.78 29.17
Costa Rica 0 55 142.5
El Salvador 95 105 161
Ethiopia 0 0 8.52
France 4.2 4.2 4.2
Guatemala 0 334 334
Iceland 45 50 170
Indonesia 145 310 590
Italy 545 632 785
Japan 215 413 547
Kenya 45 45 45
Mexico 700 753 755
New Zealand 283 286 437
Nicaragua 35 70 70
Philippines 891 1227 1909
Russia (Kamchatka) 11 11 23
Thailand 0.3 03 0.3
Turkey 206 204 204
USA 2775 2817 2228
Total 5832 6833 7974

http://iga.igg.cnr.it/geo/geoenergy.php

Geothermal Power Plants

More details http://geothermal.marin.org/GEOpresentation/ Hot dry rock projects
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B7.5 Geotechnical applications

e Evaluating the hazards posed by landslides. Results of profiling with a Wenner
array on a grid of points can show low resistivity areas that may be due to enhanced

water flow
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e Detailed study in a region where landslips begin and are triggered by a zone of
water saturation. Note that topography has been included in the model. Figure from
Loke (2001) and Loke (2004)
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Figure 19. (a) The apparent resistivity pseudosection for a survey across a landslide in
Cangkat Jering and (b) the interpretation model for the subsurface.
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Monitoring Earth dams for leaks

Shows that time variations can be measured. Important that electrodes are placed in
same locations on each survey. If possible, the electrodes can be left in place.

Figure from http://www.hydrogeophysics.com/services/safetynet.html
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B7.6 Groundwater studies

e Infiltration study showing time variations described by Barker and Moore (1998)
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Figure 2. (a) Apparent resistivity pseudosection measured over sand and gravel with electrode spacing of 1.5 m; (b)
resistivity produced from the inversion of (a); (c)-(0) difference images measured during infiltration and recovery
phases of the study.

Ocroser 1998  The Leaoiws Epse 1455

e Monitoring the flow of water in the ground and hydrogeology

10
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B7.7 Monitoring in-situ vitrification of radio active waste

e Spies and Ellis (1995) describe a pilot study to see if ground contaminated with
radionuclides could be vitrified, to immobilize the contamination and stop it seeping
into aquifers.

e A 3D DC resistivity survey was chosen to monitor the site as the sand was heated,
became molten and then solidified.

e It is expected that the molten rock would have a low resistivity and that the glass
would have a high resistivity.
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(a) Pre-melt (b) maximum amount of melting. The melt body has a low resistivity but is
surrounded by a high resistivity halo caused by a zone of heated (dry) sand (c) post-melt.
The melt has frozen to glass and has a high resistivity.
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B7.8 Mineral exploration

Many types of mineral deposit have a low electrical resistivity that is caused by the
presence of mineralization. Certain minerals such as sulphides are also polarisable.

DC resistivity surveys in mineral exploration routinely measure induced polarization as
well as apparent resistivity data.

See the separate section for notes about induced polarization (IP)
Links

Geophysical methods for mineral exploration
http://gsc.nrcan.gc.ca/mindep/method/geophysics/index e.php

Case studies from Hydrogeophysics
http://www.hydrogeophysics.com/sampleprojects/sampleprojects.html#resistivity

RES2DINYV software, tutorials and case studies
http://www.geoelectrical.com/

More about Induced polarization
http://www.cflhd.eov/agm/geoapplications/SurfaceMethods/934InducedPolarization.htm
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