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B3 Variation of gravity with latitude and elevation 
 

 By measuring the subtle changes in the acceleration of gravity from one place to another, it is 
possible to learn about changes in subsurface density.  

 
 However, other factors can cause gravity to vary with position on the Earth. These effects must 

be removed from measurements in order to use gravity data to study the interior of the Earth. 
 
 

B3.1 Variation of gravity with latitude 
 
It is observed that at the Equator, g E  = 978,033 mgal while at the poles g P  = 983,219 mgal  
 
This difference is  5186 mgal, which is a lot larger than changes in gravity because of 
subsurface density.   
 
Can this observation be explained by the fact that the Earth is a rotating ellipsoid?  
 
 
(A)The Earth is distorted by rotation   

 

 
 

The Earth is an 
oblate spheroid. 
 
R E = 6378 km 
 
R P = 6357 km.  

 
 

  Qualitative answer 
 
Since a point on the Equator is further from the centre of the Earth than the poles, gravity 
will be weaker at the Equator and g E  < g P  
 
 
Quantitative answer 
 

 For a sphere g (r) = 2r
GM E  where the mass of the Earth, ME = 5.957 1024 kg.   

 At  the North Pole,  RP = 6357 km and g P = 983,219 mgal.  
  
 If we move up 21 km to the equator, the decrease in gravity will be 6467 mgal     
 

Thus g E  =  g P - 6467 mgal, which is too much  to explain the observed difference 
between the Equator and the Poles. 
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(B) - Centrifugal forces vary with latitude 

 
The rotation of the Earth also causes gravity to vary with latitude.  

   
  Qualitative answer 

 
Imagine you are standing at the North Pole. The rotation of the Earth will not change g, all 
that will happen is that you rotate once a day. 
 
Now imagine you are at the Equator. If we could increase the rotation rate of the Earth 
enough, you would be ultimately be thrown into space (i.e. become weightless). Thus rotation 
makes gravity weaker at the equator. 
 
 
Quantitative answer 
 

 

 
 
An observer is at a point with latitude θ. 
This observer travels around the rotation 
axis in circle with radius  r = R cos θ.  
 
The rotation rate is ω (radians per sec).  
 
This corresponds to a radial acceleration  
a = r ω 2 oriented towards the rotation 
axis.  
 
Assume RE = 6378 km 

 
 
In a “vertical” direction (defined as pointing towards the centre of the Earth) this has a 
component : 
 
ar = a cos θ = Rω2 cos2 θ 
 
Now the Earth rotates once per day so ω = 2π / (24 x 60 x 60) =  7.27 10-5 rad s-1 

 
At the North Pole   θ =  90º   ar = 0  
 
 
At the Equator,  θ =  90º   ar =  0.03370  m s-2   =  3370 mgal 
 

   
  g P = g E  +3370 mgal 
 
  g E  < g P  
 
 Question : You are standing on the Equator. How fast would the Earth need to rotate to throw 

you into space? 
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(C) Mass distribution of the Earth 
 

These two factors both make g E  < g P  so to get the observed difference we need to find a 
factor that has the opposite effect. The change in shape from a sphere to an ellipsoid 
redistributes the Earth’s mass. Thus results in more mass between points on the Equator and 
the centre of the Earth, than between the poles and the centre of the Earth.  
 
 
Qualitative answer 
 

 
 
Consider the case shown above where the flattening is extreme. The observer at the pole 
experiences the pull of gravity in all directions, and this almost cancels out. An observer on 
the equator only experiences the pull of gravity due to mass located to the left.  
 
Thus this effect will make g E  > g P  

  Quantitative  answer 
 

Integration shows that g E  ~  g P + 4800 mgal 
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Overall variation of g with latitude 
 
Combining these three effects (A,B and C) gives 

 
g P = g E + 6467+ 3370 - 4800 mgal   =  g E  +5037 mgal   ( approximately as observed) 

 
 
These factors are represented in the following equation, that defines the variation of g with 
latitude θ 
 
 

 g (θ) = 9.78031846 (1+ 0.0053024 sin ² θ – 0.0000058 sin² 2θ) 
 

 
This equation is called the  Geodetic Reference System  for 1967.  
 
More recent revisions are essentially the same, but with ever more decimal places ….. 
 

 

 
 
  
 
  
 Calculation 1 - What value does this equation predict for Edmonton? 
 
  In Edmonton  θ = 53˚ 30’ 25” N and the GRS67 equation gives  
 
  g  =   9.78031846 ( 1+0.003417902-0.000005395)   m s 2−  
 
   =   9.81369388  m s 2−  
 
  
 
 
  
 Calculation 2 – How rapidly does gravity vary in a north-south direction? 
 

The variation of g with latitude is important when a survey extends over a significant north-
south distance. Differentiating the GRS67 equation with respect to θ yields 
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θd
dg

  =     9.78031846  (0.0053024 x 2 sin θ cos θ - 0.0000058 x 4sin 2θ cos 2 θ) 

    =    0.049526      m s 2−  per radian 
 
   =    0.0008655    m s 2−  per degree 
 
    =    86.550          mgal per degree 
 
    =    0.7868          mgal  km 1−    ( 1 degree latitude = 111 km) 

  
All the these equations define the expected value of theoretical gravity (or normal gravity) 
at latitude θ. Differences between this value and what is actually measured are anomalies that 
we will analyse for information about subsurface density structure. 
 

 
Calculation 3 – How much lighter would you feel after driving from Edmonton to 
Calgary?  
 
Assume the scales read 80 kg in Edmonton 

 
  Change in gravity = 300 x 0.7868  mgals 
 
  Fractional change = 300 x 0.7868  / 981369.388  =  2.34 10-4 

 

  “Mass” in Edmonton = 80 kg   >    “Mass” in Calgary =  80 (1-2.34 10-4) = 79.98 kg 
 
  Change =   19 grams!!!!
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210 B3.2  Variation of gravity with elevation 
 

(i) The Free air correction 
 
Newton’s Theory of Gravitation states that at a distance, r, from the centre of the Earth 
 

g(r)  = 2r
GM

 

 
This means that as you move away from the centre of the Earth, the acceleration of gravity (g) 
decreases. In Edmonton, g = 9.81 ms 2−  and if you move up a distance, Δh, the acceleration of 
gravity will decrease by 
 

 Δg =  3.086   Δh x 10 6−    m s 2−  
 =  0.3086 Δh   mgal 

 
Consider the exciting topography of a flat topped mountain:  
 

 
 
 
Gravity measurements are made at points A and B. The difference in elevation means that gB will 
be less than gB by an amount 
 
   Δg =  0.3086 x 100  = 30.86 mgal 
 
When collecting gravity data, our real interest is to determine the density of the rocks below 
ground. The change in elevation from ‘A’ to ‘B’ will thus contaminate the data. The Free Air 
correction is a mathematical way of undoing the effect of elevation. It allows us to correct the 
data collected at ‘B’ in order to make it equivalent to data collected at the same elevation as ‘A’. 
 
In gravity surveys, we always define a reference level for the survey. Free Air corrections are 
made relative to this level. In general, any reference level could be chosen, but sea level is 
commonly chosen in coastal areas. In Alberta, the average level of the prairies would be a good 
choice. 
 
If a gravity measurement was made Δh above the reference level, we must add 
 
  CFA = 0.3086 Δh mgal 
 
CFA is called the Free Air correction for a given gravity measurement. 
 
Similarly, if a gravity measurement was made Δh below the reference level, we must subtract 
 
  CFA = 0.3086 Δh mgal 

 
Question :  to keep data accurate to 0.1 mgal, how accurately must we know the elevation? 
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(ii) The Bouguer  correction 
 
 

 
 
Unfortunately, this is not the end of story! Compare the gravity measurements at ‘A’ and ‘B’. At 
point A, the gravity measurement is solely due to structure below the reference level (blue). At 
‘B’ the gravity measurement is due to structure below the reference level, plus the gravitational 
pull of the 100 metres of mountain (red). The net result is that gB > gA 
 
From section B2.3 the magnitude of this extra gravitational attraction is approximately 
 
gB - gA =  2πG ρ Δh 
 
where ρ is the density of the mountain.  
 
Thus to remove this effect we need to subtract  CB = 2πG ρ Δh from the observed gravity 
measurement at ‘B’. This is called the Bouguer correction and 
 
CB = 0.00004193  ρ Δh   mgal 
 
Note that to apply the Bouguer correction we need to estimate ρ, the density that lies between ‘B’ 
and the reference level. Using the value ρ = 2670 kg m 3−  this gives  
 
CB = -0.1119  Δh    mgal   
 
This value represents an average density for crustal rocks. Other information (e.g borehole gravity 
data or Nettleton’s method)  may be used to give a better estimate of the density. 
 

 Pierre Bouguer 
 
 
Summary 
 
Measurement above reference level Add Free Air  Subtract Bouguer  
     correction  correction 
 
Measurement below reference level Subtract Free Air Add Bouguer  
     correction  correction 
 
 
           


