3aSC10.
Information conveyed by f0 for vowel identification.
Session: Wednesday Morning, Jun 07

Terrance M. Nearey
Univ. of Alberta
Peter F. Assmann
The Univ. of Texas at Dallas
[Work supported by SSHRC, NSF]

Background

• Speaker variation and perception
 ◦ Evidence f0 may help but role may vary [8]
 ◦ Vocoding: Changing f0 - formant relations degrades ID performance [1-5]
• We present possible accounts
 ◦ Speaker normalization perspective developed in [12]

Training Datasets

• /i, ɪ, ɛ, æ, ʌ, ɔ, ʊ, o, ɔ/ in h-V-d syllables
• H95 Hillenbrand et al. 1995 [7]
 ◦ 45 men, 48 women, and 46 children from western Michigan. (1 ‘take’ per v per speaker) (http://homepages.wmich.edu/~hillenbr/voweldata.html)
• A00 Assmann and Katz 2000 [2]
 ◦ 10 men, 10 women, and 30 children (ages 3, 5, and 7 years) from north Texas (multiple takes)
• P52 Peterson and Barney (1952) [13]
 ◦ 33 men, 28 women, 15 children (no / ɛ/, ɔ/) 2 takes each
Measurements

- \(f_0 = \) average \(f_0 \) of vowel
- \(F_1 \, F_2 \, F_3 \) - first 3 formants
 - For A00 and H95 two sections
 - \(F_1a \, F_2a \, F_3a \) at 20% of duration
 - \(F_1b \, F_2b \, F_3b \) at 80%
 - For P52 only one section (steady-state)

NOTE: Log values
- \([g_0, G_1, G_2, G_3] = \ln([f_0, F_1, F_2, F_3])\)

Three normalization methods

- Method A: log-mean normalization
 - (Some extrinsic direct info from speaker required)
- Method C: no explicit normalization
 - Intrinsic info only, apparently direct only
 - Arguably, indirect normalization implicit in covariance among formants frequencies and \(f_0 \)
- Method B: middle way
 - Intrinsic info only
 - Well-defined imputation of info related to A
- (Additional model studied in [12])

Notation: kinds of info

(after Johnson 1990 [8])

- Identifying for current vowel \(\nu \)
 - Intrinsic - info from \(\nu \) only
 - Extrinsic - some info from beyond \(\nu \)
 - Direct - info from signal only
 - Indirect - some info ‘imputed’ from beyond signal (‘knowledge’)

Method A:

log-mean normalization

Let

\[
\hat{\psi}_{s} = \bar{G}_{s} = \frac{1}{(3 \cdot V \cdot T)} \sum_{v} \sum_{t} G_{kvst}
\]

where \(G_{kvst} \) is the measured frequency of formant \(k \)

of “take” \(t \) of vowel \(\nu \) by speaker \(s \).

Define:

\[
\hat{N}_{kvs} = G_{kvs} - \hat{\psi}_{s}
\]

where \(\hat{N}_{kvs} \) is the normalized value of formant \(k \) for vowel \(\nu \) of

subject \(s \).
Constant log-interval hypothesis (CLH = log version of CRH [11])

\[G_{k,v} = G^*_k + \psi_s \]

where

- \(G^*_k \) is the \(k \)-th log formant value for the reference pattern of vowel \(v \);
- \(\psi_s \) is a single-speaker-dependent displacement constant.

(Note: Each of the terms is the log of the corresponding elements in CRH = constant ratio hypothesis, \(F_{k,v} = F^*_k \cdot \rho_s \), where \(\rho_s \) is a single-speaker-dependent scale factor.)

Application of Method A

- Normalize each speaker’s data using log-mean normalization
- Measurement vector for A00, H95 is then
 - [N1a, N2a, N3a, N2a, N2b, N3b] for each vowel token
 - Note: No f0 (g0) information used!
- Apply LDFA
 - (linear discriminant function analysis)

Graphical interpretation of CLH (sliding template)

- Movement along diagonal for different speakers
- Position corresponds to \(\psi_s \) in CLH
- Fixed pattern of ‘holes’ in template correspond to reference pattern \(G^* \)

Method C: No explicit normalization

- Use raw log format and g0 measures
- Measurement vector per vowel token is:
 - [g0, G1a, G2a, G3b, G1b, G2b, G3b]
 - All info from single syllable
- Apply LDFA
Graphs related to LDFA info

- Illustration of in Method A and Method C in reduced space
- Next 2 panels
 - Plot of 1-s.d. ellipses in N1a x N2a space of mean and covariance pdfs of Method A
 - Plot of ellipsoids in g0 x G1a x G2a space of Method A
 - **NB**: these are empirical estimates from A00 data with no editing

(i) Method A [N1a x N2a]

Note: little correlation between N1a N2a

Full Method A is 6-dimensional

Method B: Preliminaries

- Method A reduces correlation among variates due to speaker variation (expected by CRH)
- Problem: Don’t have good estimate of log mean $\bar{G} (\approx \psi_s)$ until you have lots of data
- But we can estimate ψ_s from stable statistical patterns shown below
 - And (!) from good match of template with incoming vowel at estimated ψ_s
(ii) Relation between g_0 and \bar{G}

Data from all speakers in H95, A00 and P52

Regression lines
- G on g_0
- g_0 on G

Method B strategy

- Apply *structure* of Meth. A (normalized training data)
 - ...even if speaker averages are not available (e.g., talkers randomized)
 - Requires estimation of a latent ψ_T ($\approx \bar{G}$)
- Choose ψ_S (position of template) to provide:
 - (i) Good match to a vowel category
 - (ii) Good match with average relation of g_0 and \bar{G}
 - (iii) Good match usual ranges of ψ_S
 - (Compare: Roman numbering on prior panels)

(Technical sketch at end of poster)

(iii) Marginal distribution of ψ_S:
limits on human range?

Data from all speakers in H95, A00 and P52

Cross-validated classification

- LDFA used with each model
 - Hedge: Method B requires optimization of a latent ψ_T for each vowel category for each signal
 - But uses method similar to LDFA in Method A
 - Compare cross validation classification rates of the three methods
 - Leave-out-one-talker, train on rest
 - Classify that token
 - Error bars show estimated standard error of classification rate
LDFA Classification of H95

![Bar chart showing classification accuracy for H95](image)

LDFA Classification of P52

![Bar chart showing classification accuracy for P52](image)

LDFA Classification of A00

![Bar chart showing classification accuracy for A00](image)

Summary Classification

- Method B does about same as Method C, using f0 info only indirectly
- Involves explicit estimation of speaker scaling parameter ψ_s
 - Makes predictions about apparent speaker ‘size’
- With more speech from same speaker: $\psi_s (\approx \overline{O})$ can be updated
- Eventually, Method B should match Method A
Preliminary Perceptual Results

- 11 vowels in hVd words, 2 male voices
- STRAIGHT vocoder (Kawahara, 1997)
 - formant frequency scale factors (0.6–2.0)
 - f0 scale factors (0.25–8.0)
- Listeners’ ID rate declines:
 - When f0 and formants are scaled beyond natural human range
 - Even more when f0/formant scaling violates natural covariation between f0 and formants in speakers of different age/sex classes.

Method C predictions * v. listeners’ resp. O

Discussion of perceptual results

- Compared to listeners
 - Method C trained on production data shows too great a sensitivity to f0 x formant covariation
 - Method B trained on production data is a little less sensitive (not illustrated)
 - Method B can be ‘tuned’ (as illustrated) by inflating error variance of regression of g0 on \bar{G}
Caveats on perceptual modeling

- Method B does better job than Method C in predicting listeners’ responses
- But there are still clear mismatches between tuned Method B behavior and listeners
 - Listeners do worse than predicted in upper left and and lower right corners
 - Especially with high f0 where F1 may be poorly defined
 - Predicted confusion matrices show definite discrepancies with listeners
 - Research in progress to solve remaining problems

References

Optimization formula for Method B

\[\hat{\psi}_{v,d} = \arg \max_{\psi} [P(G_1 | v, \psi^d) \cdot P(g_0 | \psi^d) \cdot P(\psi)] \]

- \(G_1 \) represents the log formants of the current token \([G1a, G2a, G3a, G1b, G2b, G3b]\);
- \(g_0 \) is the log f0 of the current token;
- \(\arg \max \) returns the value of \(\psi \) that maximizes the quantity in \([\cdot]\).

There are three components related to three plots above:

- (i) \(P(G_1 | v, \psi^d) \) is the multivariate normal probability density for vowel \(v \) when \(G_1 \) is normalized by subtracting current \(\psi^d \) (generalization of 2-D ellipse plot)
- (ii) \(P(g_0 | \psi^d) \) is a regression estimate of likelihood of the current g0, assining \(\psi^d \) (see regression plot)
- (iii) \(P(\psi^d) \) is the marginal probability of \(\psi^d \) (see histogram plot)