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Abstract

Heavy oil and bitumen recovery processes rtedoe optimizedn order to increase the recovery,
reduce cost andminimize the environment impacMost of the optimization studiepublished in
petroleum engineerintiteraturefocus ona few designparameterdy combiningthe elements of
numericalflow simulation with graphical or analytical techniques. Limited effgurticularly in

the areas of enhanced heavy oil recovery desigmbine global optimization techqpies with
flow simulation to achieve better performance and dediga.challenge remairsecause ohigh
computational costs and slosenvergence efficiency of the algorithms. In this research, genetic
algorithm and simulated annealiage considered firsas a single optimization technique. Then,
the hybridization of these with the orthogonal arrays and response surface proxy techniques are
tested. Savings up 85% m theexecution timere obtained for steam and solvent applications in

oilsands and &ctured carbonates.
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Chapter1: Introduction

Unconventional resourcesich aoil sands, heavy oil, coab-liquids, biofuels,gasto-liquids, and

shale oilrise on average by 4.6 percent per year overctiraing 25 yearsCanadian oil sandsre

the largest components of future unconventional production, which is about 4.8 million barrel per
day (Conti and Holtberg 2011)Although there is an increase on unconigrdl resources
production, still it faces production development difficulties such as highamsplex processes,

and environmental concern€anadian oil reservesncluding oil sandsare about 175 billion
barrels,(Conti and Holtberg 2011)however,the developmendlifficulties limit the projects and
investmentsHigher recovery, lower cost, and less environmental impact can be achieved by better

recovery processes design.

Global optimization techniques ateseful tools for process optimization andsdyn in various
petroleum engineering disciplineé®ne of the drawbacks, however, is tHagde techniques, such
as genetic algorithm and simulated annealiaye very slow computation time because they have

to evaluate large numbers of models to reaehoptimum.

This researcHocus on optimizing heavy oil and bitumen recovery processes, SAGSAED,
heterogeneous ESAGD, and thermal recovery process in fractured reservoirsFRusing
global optimization techniques as well as hybrid algorittmnsnhance the process efficiency with
minimal computation overburdehe solution methodology applied in this research is elaborated

in Chapter 3

Selecting arefficient algorithmis animportant step toward achieving the best outcamterms of
accuracy and computation efficiencghapter 4 address this lpmparing the performance of
genetic algorithm and simulated annealing for SAGD and solvent additive SAGD optimization.
The objective function was defined to obtain the lowest dative stearvoil ratio (cSOR) and
highest recovery factor. It was used later as scoring function by changing operating pressure,
solventto-steam ratio, and steam injection rat€be results in thighaptercan be implemented
directly in the efforts of nmimization of cost and environmental impacts while accelerating the

recovery in SAGD.

Having an efficient and robust optimization technique is critical in the design of SAGD or solvent
additive SAGD processes. Chaptepiposes a hybrid strategy that donesthe elements of
experimental design, response surface proxy, and genetic algoritmvestigate the effects of
heterogeneity in the design process; optimization of solassisted SAGD was performed on
various synthetic heterogeneous reservoir ef®af varying porosity, permdaility, and shale
distributions Computational time associated with flow simulations of heterogeneous reservoirs
typically render most global optimization schemes rather challenging. It is shown that the

proposed implementatn of hybrid techniques can greatly enhance the proxy model predictability



and computational efficiencyHexane was cinjected with steam. The objective function, defined
based on cumulative steamil ratio (cCSOR) and recovery factor, was optimized byngiirzg

injection pressures, production pressures, and injected sobsetdam ratio.The results from

these hybrid approaches revealed that an optimized solution could be achieved with less CPU time
(e.g. fewer number dhll flow simulation) compared tahe conventional GA method. Sensitivity
analysis was also conducted on the choice of proxy model to study the robustness of the proposed
methods.Our results highlight the potential application of the proposed techniques in other

solventenhanced heavy aiecovery processes.

Chapter 6 focuses on optimizi&jeamOverSolvent Injection for Fractured Reservoirs (SES)
process using a hybrid technique applie€apter 5The complexity of the process suggests that
our objective function, defined by the m&y recovery factor, can be increased significantly by

adjusting the steam and solvent usage and their injection profiles.

As this isa paperbasedthesis,each chapter containts own literature review, conclusion and

references. The major contributiooisthis researclarehighlighted inChapter 7.

Nomenclature

ESSAGD: Expanded solvent steam assisted gravity drainage thermal recovery process also
known as solvent additive SAGD.

GA: Genetic Algorithm.

NOA Nearly-Orthogonal Array.

OA: Orthogonal Array.

SAGD: Steam assisted gravity drainage thermal recovery process.

SOSFR: SteamOverSolvent for Fractured Reservoirs

References

Conti J1, and Holtberg P2011. International Energy Outlook 2014 report published inJ.S. Energy
InformationAdministration http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf
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Chapter2: Problem Statement & Research
Obijectives

In order to reach the ultimate heavy oil and bitumen recovery with minimg| eifisient and
optimizeddesign forrecovery processes operation strategiegecessary. Despiteugeamount of
heavy oil and bitumen reserves around the world, the production is limited due to the production
development difficulties such as high cagimplex processes, and environmental concéasy
design and performance evaluatistudies pubshed in the literature combin@umerical
simulation with graphical or analytical technigulewever,only few design elementre handled
due to the difficities of handling large number of factorBecause ofhigh computation
requirements)imited attentionthat integrated the simulation exercise with global optimization
algorithms has been paido handle more design elemenWithout efficient and optimized
recovery process desigrnhe ultimate recovery from unconventional resources will not be
achieved, or it could be achieved with great castl large environmental impacfhus, this
research studies how global optimization techniques can be enhancepgeadied to be a robust

tool for the design and performance evaluation of unconventional recovery processes.

The objective of this researchis to developan approachthat combinesthe techniques of
experimental design, proxy models, and global optimindio the design of key proceskements

in the thermal/solvent method#t is well known that computing costs associated with flow
simulation of complex recovery processes (solvent and steam injection) in heterogeneous
reservoirs can pose significant dealges on the optimization procedure. Tinge of hybrid
techniques, as implemented in this thesis, aimaninimize the computational costs and to

improve the solution accuracy.



Chapter3: Solution Methodology

There are manyechniquegeither heuristic omathematicgl availableto maximize an objective
functionfor nonlinear processe@alke andHorne, 1997. Figure 3-1 presents a classification of
these techniqued his chapteraims to provide additional details about thethodologiesisedin

the research

Non Linear
Optimization
Techinque
|

1 1
Local

(gradientbased),

Global

. . Simulated
Genetic Algorith Annealing
Accelerators
|
I |
OA & NOA Proxy Methods

174

Respose Surfacg

Figure 3-1: Optimization algorithms classification

Global Optimization Techniques

In optimization algorithms, one needs to start with specifying the effective parameters (and their
respective ranges of values) to be evaluated. Next, the algorithm proposes various trial solutions,
and the objective (or scoring) function would be evallidte each trial solution. This process is
repeated until specified number of iterations is reached or once certain stopping or convergence

criteria are metigure 3-2 shows the global optimization techniques process schematically.



*Parameters or
variable (x;,
Xy, etc) Processing

*[Constraints]

Objective
Function
Evaluation f(x,,
Xy, e1C.)

Best / Good
Solution

Figure 3-2: Schematic representation of optimization process.
Genetic Algorithm

GA is a stochastic search technidue s ed on the principle of Asurvival
al., 2002; Chen et al., 2010yigure 3-3 shows the overall optimization process (as similar to

Figure 3-2) using genetic terimology. Figure 3-4 summarizes the mechanisms of a typical GA

algorithm. The population or genotypa partial space solutigris picked initially and modified

subsequentlyn each evolution, which is called iteration. In each evolyttbe fitness of each

chromosome containing genes is calculated each gene represents a parameter and each
chromosome represents a trial. Then, paoents are selected based on their fitness value to create

an offspring or child by performing crossover, which is simply exchanging genes between parents

(Figure 3-5). The newly generated offspring is mutated by changing some of its binary digits

(Figure 3-6). The new offspring is inserted ingmew population.

*Population with
chromosomes
Initial which have o ) . i
Populaiton =Sl rocessing
*[Constraints]

*New Population Chromosomes(s)

Figure 3-3: Optimization process in genetic algorithm terminology



wGenerate an initial population/genotype (each member is called a chromosome)

uLalculate the fitness (objective function value) of each chromosome in genotype

y

N
uSelect pairs of parerthromosomes from a population according to their fithegs

(the better fitness, the bigger chance to be selected)
V.

wAccording to a crossover probability, parents are combined to form new
offsprings (children). If no crossover was performed, offsprings are exact copjes of

parents. )

N
wAccording to a mutation probability, mutate new offsprings at each locus
(position in chromosome).

@]
X
@
2
@
]
@
=
o
o
k]
=
2
5]
]

uFitness value of new offspring is calculated, and new population is generated by
discarding chromosomes with low fitness values and replacing them with th
new offsprings.

Figure 3-4: Genetic algorithm flow diagram

Gene Gene Gene Gene Gene

Parent Chromosome 1

Parent Chromosome 2 11111001111 1001000010 1110011111 1000010010 11000100000

Child Chromosome 1 1110011111 1000010010 11000100000

Child Chromosome 2 11111001111

Figure 3-5: Example of crossover of two parent chromosomes.

Gene Gene Gene Gene Gene
Parent Chromosome 10101111 11110010111 11100101010 1001011111 10110100100
Child Chromosome 10101111_ 11100101010 1001011111 10110100100

Figure 3-6: Example of mutation of a parent chromosome.



GA Advantages

1. GA initiatesthe search with a population of parameter realizations, instead of a single
realization.

2. Theusedrules are probabiligtirather than deterministic

3. It manipdates a chromosome (or string ioflividual parametersrather tlan changing
each individual paraetet

4, It uses function evaluations instead of derivatives or other secondary descriptors
(Bittencourt and Horne, 1997)

5. It has the ability to be combined with other algoritivmorderto avoid suboptimal
solution. (Guyaguler et al., 2002)

6. Itis easy to bgarallelized which is a potential to accelerate the calculation (Guyaguler et
al., 2002)

GA Disadvantages
1. Even though it is good that the initial population is randomly allocated, this may covers
bad regions. This randomnesantinues on the generatioropess, which depends tme
values of the initial membe(8ittencourt and Horne, 1997).

2. It can be timeconsuming to apply GA to complex optimization problem because it
suffers frompotentiallylow convergence spee@lfen et al., 2010

GA Accelerators
To avoid GA drawbacksseveral techniques have besudied and chosen in this research
Orthogonal Array and Neariprthogonal Array for Initial Population Generation

Techniques from the experimental design literature, namely Orthogonal Array (OA) ang-Nearl
Orthogonal Array (NOA), can be implemented with GA to improve the quality of initial
population (Chen et al., 2010) by generating evenly distributed samples while reducing the
redundancy between chromosomes. The objective is to design experimentsnooscmes by
determining the levels at which the parameters should be varied. Instead of testing all
combinations of parameters at all levels, only the ones containing principal information are
included. This reduces the population size and the associatgglitational costs. In thigsearch

we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to gemesdie
orthogonalarrays based on the Taguchi method aveeagk minimaxcriterion described by Ma

et. al. (2000) and Lu et. al. (2003)able 3-1 shows an example where there are 4 runs for 3

factors with 4, 3, 2 levelsespectively

Table 3-1: Nearly orthogonal array example

Factors
Run
Factor 1 | Factor 2 | Factor 3
1 2 2 0
2 3 0 0
3 1 0 1
4 0 1 1




Proxy Method for Objective Function Evaluation

As can be seen iRigure 3-3, the fitness function must be evaluated for every chromosome at
every evolution. In our particular application, evaluation of the fitness function involves
calculation of the recovery factdypically obtained from results of a numerical flow simulation.
Depending on the level of complexity of the processes that are being modeled, each flow
simulation could take up to days to complete. Hetlegosts of objective function evaluation are

often the most important computational considerations in any optimization scheme. Proxy
met hods are viable Acheaperd alternatives that
computing efficiency. The technique implemented in this study was thenss surface method.
Response surface is a relationship between the parameter sets and the corresponding fitness
function. Once calibrated in the form of regression, it can be used as a proxy for flow simulation
and allows the fitness function to be ewtd rapidly. In particular, we compared the fosder

linear model and the secowdder (quadratic) nonlinear model, as discussed in Myers and
Montgomery (2002). Equations for the linear and -tinear models are shown in Egs. 1 and 2,

respectively, whre J is the response (fithess function valug,su ar e t he variabl es

app.

(op

parameters), bi 6s are the regression coefficients,

01T 6 E 16 f (1)

0of 16 E fT6 B 1T o6 B B f 66 f 2)
The regression equation for both modélghe problem is ovedeterminedis expressed in Eg. 3:

I YY YO (3)

If there are many factorg, U matrix is constructed with fewer experiments than the number of
unknown parameterthe problem becormeunderdetermined and Eq. 4 is used:

Y YY 0 (4)



Proxy Method for Objective Function Evaluation with Periodic Updating

In order to achieve a better representation of the solution space and regression accuracy, the proxy
is re-calibrated or updated periodically by performing detailed flow simulation using parameters of
the chromosome with the highest fithess value and incorporating its simulation result after each

evolution. This updating step is illustrated in the flow chadtemvn inFigure 3-7.

Initialize population using NOA

dfitness calucation using full flow simulations

Build proxy using initial population

Create New Population

uselection
uxrossover
amutation
wAccepting
uFitness Value calculated using the proxy

Repeatedor

each evolution

Update proxy

ausing full flow simulation of the fittest chromosome

Figure 3-7: Flow diagram for the periodic updating approach where proxy is updated with
the additional flow simulation results of the fittest chromosomes after each evolution
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Simulated Annealing

Metropolis proposed a search algorithm called simulated annealing (8#9h, at a given
temperature, finds the equilibrium configuration of a number of atoms. The key benefit of using
the SA is avoiding local minimum (Gates and Chakrabarty, 20®8ure 3-8 shows simulated

annealing flow chart.

Randomize according to current temperature
Replace
Better than current Yes current
solution? solution
No

Yes Reached maximum tries

for this temperature?

No
Decrease temperature by specified
rate
Lower temperature Y m
No bound reached? €

Figure 3-8: Simulated annealing one iteration flow chart
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Research optimization framework

In this research, we have developediramework that integratethe previously mentioned
techniques with CMG STARS numerical flow simulation package for thermal recovery process,
to optimize steam and solvent injectiogprocessesA JGAP runner packagis implementedo
generataninitial populationeitherrandomly or ugg the NOA reader packagad customize the
genetic algorithm configuration, e.g. crossover and mutation Adter that, JGAP runner calls
JGAP package to start evolving the evolutiavisere each chromosome is evaluatesing the
objective functionevaluationpackage. This package calls either the CMG agent package to fully
execute a scenario or the response surface package to get an estimaté&iigumki8-9 shows the
framework packages and the interaction within the framework (blue packages) and with external

software.

(2) Get Initial

NOA Reader JGAP Runner

Population

CMG Agents
Objective
Preprocessor Function

(5) Prepare new Evaluator
model (dat)

. (6) Execute
STARS ~ anew model

pXimate the
of a trial

Processor

RESULT {(7) Execute rwi
REPORT " to get results PostProcessor

& j (8) Extract results

Figure 3-9: Optimization framework packages interaction.

Response

Surface
Proxy

JGAP Runner for initialization and executing

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:
http://jgap.sourceforge.net/) for the GA modeling. This package needs to be initialized by
specifying GA configuration such as crossover and mutation rates, initial popykatid objective

function. Example code is shown in Appendix 1.
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Objective function evaluation package

Global optimization techniques rely mainly on objective function evaluation for the generated
trials. In ourframework,this package is responsible abeatling the CMG Agent package to get
the results that are needed in the objective function calculation. Example code froffRSOS

experiments is shown in Appendix 2.
CMG Agents package

This package handles the interaction between our software and CMQGtstdtihas three stages
pre-processing, processing, and post gosicessing. Prprocessing is needed to build a new
simulation model file (.dat) using old model file by changing the parts that need to be changed
using thevaluesprovided by the optimizéon algorithm.In the pocessing stagehe simulation is
executedPostprocessing stage extradhe relevantresults froma *.rwo file, which is built by
executingthe *.rwd file generated using CM@Result Reporitool. Example code from SGER

experiments is shown in Appendix 3.
Response surface proxy package

This package is used to build and calibrate the linear andimear proxy described before to
approximate the objective function. This package code is shown in Appendix 4.

Nearly Orthogonal Arr ays (NOA) reader package

In this researchwe used Gendex DOE Toolkit (websitgtp://designcomputing.net/gendeto

generate the NOA array$his tool generates numbers that represent the level at wagbhfactor
(parameter) should be used in a particular tfldlese numbersnust be converted to values
appropriate for the parameter rangesr examplefor injection raterangingfrom 100 to 300
units, five levels indicated by 0, 1, 2, 3, and 4, wouwdrrespond to actual parameter values of
100, 150, 200, 250, and 300 units, providing audld resolution for the parametérhis step can
be done manually using excgreadsheetifter that, the newly generated OA is copied into a text
file to be read sing thisreaderpackage. Example code from S®R experiments is shown in

Appendix 5.


http://designcomputing.net/gendex
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Nomenclature

b : represent a regression coefficients for one trial.
A: a vector which contains all regression coefficients.
F(u) or FX: objective function value.

F: objective function.

GA: Genetic Algorithm.

J: the actual response or actual objective function value calculated based simulation output for
one trial.

J :&he repose obtained from the regression model.

Jo: the best trial actual response in the initial pdgion.

L 3 vector that contains all the trials response.

NOA Nearly-Orthogonal Array.

OA: Orthogonal Array.

SOSFR: SteamOverSolvent for Fractured Reservoirs

u: a (1*n) vector which contains the optimization variables for a trial.
U : represent an optimization variable for one trial.

= a matrix with alludé s .
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Chapter4:. Optimization of SAGD and Solvent
Additive SAGD Applications: Comparative Analysis
of Optimization Techniques with Improved
Algorithm Configuration

Abstract

Heavy oil and bitumen recovery cost is excessive mainly due to high energy requirement to
generate heat and its environmental impacts. Steam Assisted Gravity Drainage (SAGD) is an
example of this case. The determination of optimal operating conditiorts,asumjection rates

and well locations, based on reservoir and fluid characteristics is essential in the design of field

applications.

Many Steam Assisted Gravity Drainage (SAGD) optimization studies published in the literature
combined numerical simuian with graphical or analytical techniques for design and
performance evaluation. There have been limited efforts that integrated the simulation exercise
with global optimization algorithms. Some studies focused on optimization of cumulative steam
to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on
optimization of cumulative net energg-oil ratio (CEOR) in solvenadditive SAGD by altering
injection pressures and fraction of solvent in the injection stream. Typicahgdanctions were

the net present value per hectare of land (NPV/ha) by controlling steam and solvent rates. Several
studies also considered total project net present value calculation by changing total project area,
capital cost intensities, solvent & discount rate, and risk factors to determine the well spacing
and drilling schedule. Optimization techniques commonly used in those studies were scattered
search, simulated annealing, and genetic algorithm (GA). In continuation of these efforts, we
focused on optimizing the SAGD process and its extension to seddelitive SAGD and several
optimization techniques including simulated annealing and genetic algorithm were tested and
compared. Additional procedures were incorporated to improve the imgiginanconfiguration

and initial population or seed. The objective function was defined to obtain the lowest cumulative
steamoil ratio (cSOR) and highest recovery factor. It was used later as scoring function by
changing solvento-steam ratio and steammjéction rates. The results in ththaptercan be
implemented directly in the efforts of minimization of cost and environmental impacts while

accelerating the recovery in SAGD.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Introduction

A great portion of Al ber t aoblsbyiosith recovergtéchniggeser ves can
(Al-Bahlani and Babadagli, 2009). Steam Assisted Gravity Drainage (SAGD) is the most widely

applied in situ recovery method but the cost of this process is excessive because of the need to

generate heat and its environmted effects. Maximizing the recovery with minimum impacts by

determining the optimal process variables such as injection rate is essential in the design of field

application.

Most of the earlier studies focused on optimizing the SAGD process. Limitednamiowork has

been performed in the area of solvadtitive SAGD optimization. In particular, two groups of
researchers performed studies that are interesting examples of this kind of optimization exercise.
In the first group, Gates and Chakrabarty @0@ocused on SAGD optimization to reduce
cumulative steano-oil ratio (cSOR) by altering steam injection rates. Later, they expanded their
work to include solvent injection to reduce cumulative net entrgyl ratio (CEOR) by adjusting

the injection pessures and fraction of solvent in the injection stream (Gates and Chakrabarty,
2008).

In the second group, Peterson et al. (2009) used net present value per hectare of land (NPV/ha) as
scoring function by controlling steam and solvent rates. Later, theg total project net present

value calculation as an objective function (Peterson et al., 2010). The user would specify total
project area, capital cost intensities, solvent prices, discount rate and risk factors. The optimization

process determines theellvspacing, drilling schedule and facility size (Edmunds et al., 2010).

One of the critical questions in the optimization of complex applications is to select an efficient
algorithm. As seen, limited number of works in the area of SAGD optimizationediaptl tested
different techniques (Bittencourt et al., 1997). Yet, the selection of efficient algorithm is a critical
issue to reduce the optimization time. This work focuses on testing and comparing different
algorithms to demonstrate their efficiencyr fihe optimization of SAGD and solvent additive
SAGD applications and how they can help in selecting the optimal case for maximum recovery
and minimum cSOR. In addition, improvements in the implementation configuration and initial

population (or seed) dhe algorithms tested are also made.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Global Optimization Techniques

In optimization algorithms, one needs to start with specifying the effective parameters (and their
respective ranges of values) to be evaluated. Next, the algorithm proposes vaticodutians,

and the objective (or scoring) function would be evaluated for each trial solution. This process is
repeated until specified number of iterations is reached or once certain stopping or convergence
criteria are metFigure 4-1 shows the global optimization techniques process schematically. In

this chapter we adopted two algorithms as described below.
Genetic Algorithm

The Genetic Algorithn{GA) is a stochastic and structured search technique that uses the principle

of Asurvival of the fittesto and natur al selectio
Figure 4-2 shows the overall optimization process (as similarFigure 4-1) using genetic

termnology. Figure 4-3 summarizes how the algorithm workBhe population or genotype is

partial space solution picked initially and modified in eacbl@ion which is called iteration. In

each evolution, the fitness of each chromosome, which consists of numerous genes, is calculated;

each gene represents a parameter while each chromosome represents a trial. Subsequently, two

parents are selected based their fitness value to create an offspring or child by performing

crossover which is simply exchanging genes between parfegte€ 4-4). The newlygenerated

offspring is mutated by changing some of its binary digiigyre 4-5). The new offspring is

inserted in the new population.

The GA isa popular optimization technique in the petroleum industry as one of the most powerful
and robust optimization technique. Chen et al. (2010) used GA with nearly orthogonal arrays
(NOA) to design a WateAlternatingGas (WAG) process in a C@Miscible Floodng project.
Edmunds et al. (2010) applied GA for optimization of sohemiditive SAGD process. This
techniqgue was also used for nthvermal applications, mainly for the purpose of reservoir
development (Palke and Horne, 1997; Bittencourt and Horne, 198v}the basis of all these

efforts, the advantages and disadvantages of this method can be summarized as follows:
Advantages

1. GA initiatesthe search with a population of parameter realizations, instead of a single
realization.

2. The rules used are probasiic rather than deterministic

3. It manipdates a chromosome (or string ioflividual parametersrather tlan changing
each individual parameter

4. It uses function evaluations instead of derivatives or other secondary descriptors
(Bittencourt and Horne, B9)

5. It has the ability to be combined with other algorithm to avoid suboptimal solution.
(Guyaguler et al., 2002)

6. Itis easy to be parallelized which is a potential to accelerate the calculation (Guyaguler et
al., 2002)

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Disadvantages

3. Even though it is goothat the initial population is randomly allocated, this may covers
bad regions. This randomnessntinues on the generation process, which depentiseon
values of the initial membe(8ittencourt and Horne, 1997).

4. It can be timeconsuming to apply GA t@omplex optimization problem because it
suffers frompotentiallylow convergence spee€lien et al., 2010

GA Accelerators

To avoid GA drawbacksseveral techniques have begroposed, yet mangf them are at the

initial development stage with room for imovements
Orthogonal Array and Neariprthogonal Array

Orthogonal Array (OA) and Nead@rthogonal Array (NOA) can be integrated with the GA to
improve the quality of initial members. They are commonly used in the efficient experimental
design process (@n et al., 2010). Chen et al. (2010) used GA with nearly orthogonal arrays
(NOA) to design a WateAlternatingGas (WAG) process.

Proxy Method

Proxy method is used to approximate the actual evaluation function and to increase the computing
efficiency. Sone of the techniques used as proxies are kriging, neural networks (Guyaguler et al.,
2002) and response surface methodology which is a relationship between the parameter sets and
the corresponding fitness function. It can be used as a proxy for flow dwnular faster
evaluation of the fithess function after calibration (Algosayir et. al. 2011). Myers and Montgomery
(2002) showed that the firstrder linear model and the seceowler norlinear model are

examples of such proxy.
Simulated Annealing

Metropdis et al. (1953) proposed a search algorithm called simulated annealing (SA), which, at a
given temperature, finds the equilibrium configuration of a number of atoms. The key benefit of
using the SA is avoiding local minimum (Gates and Chakrabarty, 2088).technique was first

used by Gates and Chakrabarty (2008) to optimize solvent additive SAGD.

In this chapter, we implemented three different schemes including (1) the conventional GA, (2)
GA with nearly orthogonal arrays, and (3) simulated anneatingptimize steam injection rate
over four periods in SAGD and additive mole fraction in sohasditive SAGD cases over 10

period.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Objective function

In many enhanced oil recovery applications, maximizing recovery is essential as it directly affects
profit. Reduction of cost is also critical in profit maximization. Thus, the process optimization
focused on the maximization of recovery factor and reduction of cumulative-steaatio which

help to reduce costs and minimize environments impacts dueam gjeneration process. After
several attempts, we proposed an equally weighted objective function (F(X)) for recovery factor
(RF) and cumulative steam oil ratio (cSOR) as different from earlier works mentioned above.
Ideally, objective function should bdimensionless. Therefore, RF is assigned a unit weight
because its value ranges between 0 and 1, while cSOR has to be normalized to be between 0 and 1.
This is achieved by dividing its value by the maximum observable cumulative steam oil ratio
[max(cSOR)] In order to minimize the cSOR, its weighted value should be subtracted from the
recovery factor. The adopted GA implementation assesses the objective (fitness) function

(equation 1) and aims to maximize its value:
Owhbhohy YO — p 1)

An adjusting factor of fAlo was added, 1ltw[0,t he obj ect.

2], such that a positive objective function value would always be obtained.

On the other hand, our implementation of simulated annealimg to minimize the objective

function, which is defined in equation (2):
Owfhhy — 'YOp (2)

whereo o Fro Fio are the paameters explained in reservoir model section.

Reservoir model

A two-dimensional simulation madl of laboratoryscale experiments provided by Ayodele et al.
(2010) was constructed and used in the case studies. Then, this model wasstalédte field
dimensions by changing the grid sizes. The simulation input properties are desciibbteid-1.

The cases GA, SA and OGAL are SAGD optimization, while H&A case is an ESAGD
application using the OGA approach. The SAGD optimizatipnocess evaluates Eqgs. 1 and 2 by
adjusting the &ear steam injection schedule (injection rates over femno6th periods). On the

other hand, ESSAGD optimization process evaluates Eq. 1 by adjustigga2 injection strategy

by changing fluids injectiomates and hexane mole fraction over four months period. These
optimized parameters injection rate and hexane model fraction have been studied over reasonable
range of values that are suitable for the reservoir model and research objective as shown in
Table 4-2.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Results

In all cases, [max(cSOR)] is fixed to 3%m?’. Resultsobtained with the various optimization

algorithms are presented below.
GeneticAlgorithm Case 1 (GA 1)

The purpose of this Genetic Algorithm case (BAis to investigate the different ways of
generating initial population. Three different options were used for this purpose. The first
conventional way was to generate the initial gapan randomly using stock random generator
providing by the JGAP package (Java Genetic Algorithm Package (JGAP) website:
http://jgap.sourceforge.ngtThe second and third ways use nearly orthogonal arrapjM@brid

technique with GA. The array used lio(17") which have 4 factors, 17 levelsind 40 runs

(Table 4-3). The factors are basically the parameters desired to be adjusted, hence, X values in our
case are injection rates. The levels are how many cases each factor should have. The number of
runs efers to the desired number of combined cases (i.e. humber of chromosomes in GA
terminology). The difference between the two NOAs is that the second way uses the average
criterion (Ma et. al 2000, Lu et. al. 2003) while the third applies the minimaxigritétu et. al.

2003). Among these, we observed that NOA minimax returned good fitness value after executing
434 reservoir models which is the least number of trials among these cases. It also converged

faster from the lowest fithess value to a good fisnemlue as seen Figure 4-6.

Simulated Annealing case (SA)

The simulated annealing (SA) algorithm initial seed was selected based on the kest MDA
minimax run used in GA minimax case. A better solution than @ANOA Minimax was found

after performing only 78% total number of trials. However, this does not necessarily mean that GA
is less efficient, as GA can be improved with better conditjon selection. The SA algorithm was

initialized using the values given irable 4-4.
Optimized Genetic Algorithm Cases (OGA 1)

In order to have agood configuration for genetic algorithm implementation, we ran full
optimization experiments to optimize the mutation and crossover rates in addition to the
population size and evolution count to have a higher objective function value. This experiment and
the other experiments using GA and SA were performed through exhaustive number of
simulations to reach the optimum. As a result, the best experiment optimum case objective
function value was found to be 0.9548 with the least number of trials about a83wthile SA
reached the same solution after executing 169 trials. As sdebia 4-6 all SAGD results using
different algorithms and different cfigurations are very similar in terms of the objective

function, recovery factor, and cSOR. The objective function value differs only after the third

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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decimal number. However, the major difference is in the number of cases needed to reach an
acceptable optaum value, which implies reducing the number of flow simulation runs needed and
the execution time needed to reach the optimum. Fluid flow simulations in porous media under
norrisothermal conditions usually require remarkable amount of time to executeaGognwith

other optimization operations. For example, in our applications, the average execution time of
flow simulation is about 2 minutes and this saved about 80 minutes on running optimization using
OGA compared to SATable 4-5 summarizes the configuration parameters for all the GA cases.
All of these experiments were initialized with the samg17") NOAs in order to make the results
comparable.The convergence behaviour of SA and these optimized GA case are shown in
Figure 4-7. Table 4-6 shows the final optimal solution for each case and at which trial tivaadpt
solution was reached. Also tabulated are the corresponding injection periods, the final objective

function value, recovery factor, and cumulative stedlmatio.

Figure 4-8 and Figure 4-9 show the steam injection rates with function value for all the periods

for the SA and OGA case. It is interesting to note that SA reaches its optimal solution by gradually
adjusting its paraster values; while GA attempts to identify the optimal solution by running
different scenarios (because of the crossover feature) of adjusting the parameter values (hence the
abrupt jumps in objective function values). Furthermore, the results suggeghehaptimal

injection rate for period one and three aro@nui/day and increasing the injection in the second
period to be around 8.5%day while the last period should be decreased to arouritidaynAs a

result, it appears that the optimal injectistnategy would be to alternate between high and low

values over several injection periods.
Hexane Additive SAGDCase (HAGA)

After studying the optimization techniques using SAGD models, the good optimization
methodology learned have been applied intov&wAdditive SAGD case in order to show how

the optimized Solverfdditive SAGD have better recovery and cSQfexane additive SAGD

case was executed using GA with initial NOA minimax airay17%). The optimum solution has
better fithess function valuthan all SAGD cases, which implies higher recovery (al®u%o
increase) and lower cSOR (about ¥mi decrease) as shownTable 4-6, which alsoinclude the
optimized fluid injection rate compared to the SAGD cases. Since Hexane additive is costly, it was

optimized over the same periods and the optimized hexane mole fraction is shicataheid-7.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at EhderBianced Oil Recovery
Conference, Kuala Lumpur, Malaysia,i?4 July.
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Conclusions

The GA and SA techniques are powerful in finding an optimized solution; however, both require
evaluating number of trials in order to reach the optimum solution which is in ourwasag

simulation model. Execution of several models requires more computation time.

In this chapter several optimization techniques were tested to reduce the computational time such
as choosing the right configuration and the initial population or.s@eda result, the SA
converged faster than most of the GA cases. After optimizing the GA configuration, we obtained a
case that converges in reasonable time. Even though the SA converged faster, the GA has some
advantages such as having initial populatiwhich can guide the algorithm to better solution, and

the final population gives more than one scenario that can be used.

On the other hand, the SA may end up being slower than GA if it is initialized with a very bad
seed. In order to improve its penfagince, several other options can be implemented such as
running the algorithm in parallel computing environment for one flow simulation or running

multiple flow simulations simultaneously, which can be implemented in Genetic Algorithm.

As seen, several tipns can be used to improve the performance. However, one has to answer the
critical question eventually: what is the most time consuming part? Clearly, the answer is running
time of the flow simulation. Reducing the number of runs by up to 40% is anaolution but

it is difficult to obtain such percentage often times as it is hard to know in advance what the best
configuration is. Hence, to reduce the time required for running a flow simulation, implementation
of a proxy, which approximates the flosimulation result in fraction of second instead of two
minutes in our cases, could be a solution. This implies that more than 95% of simulation run time

is saved and all we need is to run a couple of cases to build the proxy.

A version of this chapter was submitted and accepted by JafrRakroleum Science and Engineering and it is a revision
of the conference papeAl-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
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Nomenclature

ANN: Artificial Neural Networks.

CEOR: cumulative net energg-oil ratio.

CMG: Computer Modeling Group.

CcSOR: steanto-oil ratio.

F(X): objective function.

GA-1: Genetic Algorithm SAGD cases.

GA: Genetic Algorithm

HA-GA: Hexane Additive SAGD Case executedquSA.

JGAP: Java Genetic Algorithm Package.

NOA: NearlyOrthogonal Array.

NPV: Net Present Value.

OA: Orthogonal Array.

OGA1: Optimized Genetic Algorithm configuration SAGD case.
P1, 2, 3, 4: four 6 months injection periods.

RF: Recovery Factor.

SA: Simlated Annealing Algorithm

SAGD: Steam Assisted Gravity Drainage thermal recovery process.
STARS: CMG thermal reservoir simulator.

WAG: WaterAlternatingGas recovery process.
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Tables

Table 4-1: Reservoir simulation input parameters.

Item

Value

Grid
Grid Dimensions (1)
Grid Dimensions (J)

Grid Dimensions (K)

Initial Reservoir Temperature
Initial Reservoir Pressure
Minimum Producer BHP
Injected steam temperature

Injected steam quality

Porosity

Permeability

Rock heat capacity
Rock thermal conductivity
Water thermal conductivity

Oil thermal conductivity

Hexane k-value coefficients

Mechanical Dispersivity (All components in all phases)
Molecular Diffusion of Hexane in oleic phase (All components)

Molecular Diffusion of Hexane in vapour phase (All components)

Table 4-2: Optimized parameters ranges.

Cartesian 40*1*15
2m
50 m

2m

20 oC
2090 kPa
1500 kPa
200 oC

1

20%
1 Darcy

2.35J/cm3-C
2.5833 J/cm-min-C
0.3715 J/cm-min-C
0.07986 J/cm-min-C
KV1 =1.01x106 kPa
KV4 =-2697.55 C
KV5 =-224.37C

0.024 cm

0.000250596 cm2/min

0.0250596 cm2/min

Item | Range
Injection Rate 07 10 m%day
Hexane injection mole fraction 07 0.3
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Table 4-3: NOA Tables.

Average Criterion Array Minimax Criterion Array
Factors Factors

Run 1 2 3 4 Run 1 2 3 4

1 3 7 7 9 1 9 9 0 0

2 3 8 5 8 2 8 2 3 3
3 9 9 1 0 3 6 5 6 4
4 4 2 5 4 4 8 4 6 9

5 1 4 1 1 5 1 8 0 10

6 2 0 4 6 6 0 2 5 8

7 6 0 1 2 7 4 3 8 4
8 3 5 3 8 8 6 3 9 2

9 9 1 3 8 9 9 3 3 7
10 1 10 3 7 10 1 3 1 3
11 4 3 6 9 11 4 5 8 3
12 0 9 9 10 12 5 1 8 7
13 10 5 8 3 13 1 9 1 9
14 5 1 4 1 14 0 6 1 1
15 0 6 3 2 15 1 7 8 2
16 7 6 1 4 16 6 9 3 0
17 1 1 9 5 17 3 0 9 4
18 9 3 8 0 18 7 2 9 3
19 8 1 6 8 19 3 0 4 8
20 8 4 3 4 20 2 9 6 1
21 4 10 9 3 21 0 4 7 6
22 7 2 1 1 22 4 10 2 5
23 2 6 6 1 23 4 1 10 9
24 3 1 9 0 24 3 4 1 6
25 3 3 10 6 25 5 6 3
26 2 4 4 3 26 8 1 10 10
27 1 8 2 3 27 1 3 6 1
28 10 3 2 4 28 3 4 0 8
29 5 4 2 1 29 3 6 4 3
30 4 3 3 9 30 9 1 2 9
31 6 6 10 6 31 10 0 5 0
32 6 9 0 9 32 3 8 3 1
33 1 0 6 7 33 2 8 9 5
34 9 8 7 3 34 10 6 3 6
35 0 3 8 1 35 6 10 4 1
36 6 7 0 3 36 2 3 1 2
37 3 2 0 2 37 9 8 4 8
38 1 8 8 6 38 8 1 2 6
39 8 1 1 10 39 7 7 1 1
40 8 9 4 5 40 1 1 7 4

Table 4-4: Simulated annealing configuration.

Initial temperature 1
Acceptance rule temperature 1
Maximum temperature iterations 600
Random moves 10
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Table 4-5: GA cases configuration.

GA-1 OGA-1 | HA-GA
Crossover 0.35 0.85 0.85
Mutation 12% 17% 17%
Population 40 20 20
Evolutions 30 7 30

Table 4-6: Comparison of the selected solution.

Steam/Fluids injection
) ) rates (m*day)
Case Trial# | Evolution F(X) RF cSOR
PL | P2 | P3 | P4
GA-1 (Random) 445 27 0.9564 7.7 8.4 7.7 7.0 61.2% 1.967
GA-1 (Average) 442 25 09535 | 78 | 84 | 7.7 | 6.7 | 60.9% | 1.966
GA-1 (Minimax) 434 22 0.9557 | 8.1 | 8.8 7.9 6.8 | 61.9% | 1.991
SA 341 - 0.9577 7.8 8.6 7.8 7.0 61.6% 1.976
SA reached 0.9548 169 - 0.9548 | 85 | 8.7 7.7 6.9 | 62.1% | 1.997
OGA-1 133 5 0.9548 | 8.1 | 88 8.0 7.0 | 62.2% | 2.003
HA-GA 265 23 1.3448 | 8.8 | 9.0 8.1 6.7 | 65.3% | 0.925

Table 4-7: Optimized Hexane Mole Fraction.
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Figures

*Parameters or

variable (x,, 25&?;? Best/ Good
X, etc) Processing B Solution
*[Constraints] X5, etc.) v
2! i

Figure 4-1: Schematic representation of optimization process.

*Population with
chromesomes

Initial which have

. *Fitness Function
genes Processing

Fittest
Chromosomes(s)

Populaiton

*New Population
*[Constraints]

Figure 4-2: Optimization process in Genetic Algorithm terminology.
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N
wGenerate random initial population

J

N

uLCalculate the fitness of each chromosome in genotype

Fitness
J

N
uSelect two parent chromosomes from a population according to their fithess
(the better fitness, the bigger chance to be selected)
obow fithess chromosomes will die )
wAccording to a crossover probability, parents are combined to form a new
offspring (children). If no crossover was performed, offspring is an exact copy of
parents.

Create a \
new . . - .
population wAccording to a mutation probability, mutate new offspring at each locus

(position in chromosome).

J

N
oPlace new offspring in a new population

J

Figure 4-3: Genetic Algorithm flow diagram.

Gene Gene Gene Gene Gene

Parent Chromosome 1

Parent Chromosome 2 11111001111 1001000010 1110011111 11000100000

Child Chromosome 1 1110011111 11000100000

Child Chromosome 2 11111001111

Figure 4-4: Example of crossover of two parent chromosomes.

Gene Gene Gene Gene Gene
Parent Chromosome 10101111 11110010111 11100101010 1001011111 10110100100
Child Chromosome 10101111_ 11100101010 1001011111 10110100100

Figure 4-5: Example of mutation of a parent chromosome.
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Figure 4-6: Function value for the GA with different ways of generating initial population.
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Figure 4-7: Convergence speed comparison between SA and Optimized GA case.
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Chapter5: Design of SolventAssisted SAGD
Processes in Heterogeneous Reservoirs Using
Hybrid Optimization Techniques

Abstract

Many Steam Assisted Gravity Drainage (SAGD) ojitiation studies published in the literature
combined numerical simulation with graphical or analytical techniques for design and
performance evaluation. There have been numerous efforts that integrated the simulation exercise
with global optimization algdthms. Some studies focused on optimization of cumulative steam
to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on
optimization of cumulative net energg-oil ratio (CEOR) in solventdditive SAGD by altering
injection pressures and fraction of solvent in the injection stream. Several studies also considered
total project net present value calculation by changing total project area, capital cost intensities,
solvent prices, and risk factors to determine the well spaagdrilling schedule. Optimization
techniqgues commonly used in those studies were scattered search, simulated annealing, and

genetic algorithm (GA). However, the applications of hybrid genetic algorithm were rarely found.

In this chapter we focused onoptimization of solvenaissisted SAGD using various GA
implementations. In our models, hexane was selected to-bgected with steam. The objective
function, defined based on cumulative steaihratio (cCSOR) and recovery factor, was optimized

by changng injection pressures, production pressures, and injected stdveteam ratio.
Techniques including orthogonal arrays (OA)
proxy models for objective function evaluations were incorporated with then@#od to
improve computational and convergence efficiency. Results from these hybrid approaches
revealed that an optimized solution could be achieved with less CPU time (e.g. fewer number of
iterations) compared to the conventional GA method. Sensitwviglysis was also conducted on

the choice of proxy model to study the robustness of the proposed methods.

To investigate the effects of heterogeneity in the design process, optimization of-agbisted
SAGD was performed on various synthetic hetereges reservoir models of porosity,
permeability, and shale distributions. Our results highlight the potential application of the

proposed techniques in other solvenhanced heavy oil recovery processes.
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Introduction

Different versions of steam injectiamr e used to extract most- of Al bert a
Bahlani and Babadagli, 2009)he most common application ite&m Assisted Gravity Drainage

(SAGD) recovery It, however, requires generation of excessive amount of steam, which is very

costly and has adverse environmental impacts, and it is often considered as a limiting factor in the

efficiency of the entire process. One of the suggested ways to reduce steam consumption is

addition of solvent to steatn maximize the recovery

Several studiefocused on optimization of SAGD processes that are with or without solvent
addition. A number of efforts focused on utilizing global optimization technig@eses and
Chakrabarty(2006 used genetic algorithm in order to optimize SAGD operatimggditions such
as steamnjection ratego reducecumulative stearto-oil ratio (cCSOR). The same authors have
also implemented simulated annealing to optim&zeandedsolvent SAGD (ESSAGD) by
alteringthe fraction of solvent in the injeetl steamandthe injection pressurea order to reduce
cumulative net energio-oil ratio (CEOR)(Gates and Chakrabart2008). Yang et al. (2009)
applied theDesigned Exploration and Controlled Evolution (DECE) algorithropgbmize thenet
present value (NPV) of dhreedimensionalmodel. Peterson et al. (2010)tilized genetic
algorithm to optimizesteam and solvent rates solverdadditive SAGDto maximize NPVper
hectare of land (NPV/ha).

Having an efficient and robust optimization technique is critical in gt of SAGD or solvent
additive SAGD processes. Hence, this work focuses on hybrid techniques to enhance the
computational efficiency of the Genetic Algorithm to design soheaelditive SAGD processes in

heterogeneous reservoirs.
Methodology
Global Optimization Techniques

In this chapter we adopted the Genetic Algorithm (GA) and integrated it with two other

techniques in a hybrid formulation. GA a stochastic search techmégbased on the principle of

Agr vi val of t he f i tt,eGhéndet a.R01Y)Anginitialepopulatian ora | . |, 2002
genotype is constructed by sampling the solution space randomly. Individual members of the

popul ation are called fAchromosomeso, and they defi
problem.Iln each evolutin, the fitness of each chromosorisecalculated Then,multiple pairsare

selected based on their fithess value to create an offspisngossoverand mutation The new

offspring is inserted in the populatiowhile the chromosomes with lowest fitnesdues are

discardedFigure 5-1 summarizeshe mechanisms of a typical GA algorithm.
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To improve the convergence behaviour and computational efficiency of GA, we proposed a hybrid

formulation by integrating the following mwtechniques into the conventional framework of GA:
Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation

Techniques from the experimental design literature, na@elyogonal Array (OA) and Nearly
Orthogonal Array (NOA) can be inplementedwith GA to improve the quality of initial
population (Chen et al.,, 200)0by generating evenly distributed samples while reducing the
redundancy between chromosomes. The objective is to design experiments or chromosomes by
determining the levelsat which the parameters should be varied. Instead of testing all
combinations of parameters at all levels, only the ones containing principal information are
included. This reduces the population size and the associated computationdhddsssstudy,

we usedGendex DOE Toolkitwebsite: http://designcomputing.net/gendeto generate neary
orthogonal arrays based on the Taguchi metinaetage criteriomlescribed byMa et.a. (2000

andLu et. al.(2003)

Proxy Method for Objective Function Evaluation

As can be seen iRigure 5-1, the fitness function must be evaluated for every chromosome at
every evolution. In our particular application, evaloat of the fitness function involves
calculation of the recovery factor, typically obtained from results of a numerical flow simulation.
Depending on the level of complexity of the processes that are being modeled, each flow
simulation could take up to dsyto complete. Hence, costs of objective function evaluation are
often the most important computational considerations in any optimization schnmey
method ar e vi abl e fic heapprpxenaté theaattwdimessiumdtiontoershanteh a t
computing efficiencyThe technique implemented in this study was the response surface method.
Response surface is a relationship between the parameter sets and the corresponding fitness
function. Once calibrated in the form of regression, it can be asedproxy for flow simulation

and allows the fitness function to be evaluated rapidly. In particular, we compared toedfrst
linear model and the secowdder norlinear model, as discussed in Myers and Montgomery
(2002). Equations for the linear amadrlinear models are shown in Egs. 1 and 2, respectively,

wherelJ is the response (fithess function valugjs are the variables (optimization parameters),

bd6s are the regré‘flismieroonterm.oefficients, and
01 106 E 16 I €Y
o f 16 E 6 B 16 B B f 66 f 2)

The regression equation for both models is expressed in Eq. 3:

A A0 ©)
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where Lis a vector that contains all the responsés a vector which contains all regriss

coefficients andr is a matrix with all thes vectors evaluated.

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:
http://jgap.sourceforge.ngtior the GA modeling.

Objective Function

Profit maximization and cost reduction are important aspects in many engineering projects,
especially in enhanced oil recovery applications. this chapterour focus is to maximize the
recovery and minimizeumulative stearoil-ratio during SAGD applicaon with solvent addition.

After severaltrials (Algosayir et al., 2011)we proposedan equallyweighted objective function

(F) for recovery factor (RF) and cumulative steam oil ratio (CS®R)ch is different from earlier

works mentioned previouslydeally, the objective function should be dimensionless. Therefore,
the RFis assigned a unit weigltecausats value ranges between 0 and 1, while cS@R to be
normalized to be between 0 and This is achieved by dividing its valugy a userdefined
maximum observablecumulative steam oil ratigmax(cSOR)] Assembling the various terms
together, our proposed GA implementation assesses and aims to maximize the following objective

(fitness) function:
Owhdh i YO —— p (4)

wherea Fo fo Foo oo fio are theoptimized pammeters.In our study, the optimization process
evaluates Eq. 1 by adjusting the-yi€ar injection pressure, production pressure, and hexane mole
fraction over two 5 yearperiods (a total of 6 model parameterdRanges of these model
parameters are shown Trable 5-1. The normalizing parameter [max(cSOR)] is set to a value of
three (in n¥m® for the lomogemus Expanded Solvent SAGD (ER\GD) case, and a value of

five (m*m?) was used for the heterogeneous cases. It should be noted that an adjusting factor of
10 i s adde tunctiomin Egh6do shift its raege fm [-1, 1] to [0, 2] such that a

positive objective function value would always be obtained

All optimization casesfollow the same Genetic Algorithm configuration as presented in
Table 5-2. In each evolution, 35% of the population chromosomes are crossovered to generate
new chromosomes, and 3% of them are mutated by changing parts of the bit in binary encoding.
This crossover and mutation processepeaated 30 times per evolution and, in each evolution, a

constant population size of 30 is maintained.
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Case Study
Model Description

In our case studies, three twlimensional simulation models were constructed originally based on
the laboratornscale simlation model with homogeneous and isotropic reservoir properties
provided by Ayodele et al. (2010Yhese models weresubsequently scalagp to the field
dimensions by adjusting the grid definition as describethinle 5-3. The homogenous moddias

a constanporosity 0f20% andpermeabilityof 1 Darcy for allcells. The homogeneous model was

used to (1) investigate the sensitivity of the optiti@aresults to the choice of response surface
proxy models and (2) assess the computational savings with the use of proxy techniques as
compared to the conventional method (no proxy). Success with the homogeneous case allows us to
subsequently apply thegposed implementation to cases with heterogeneous reservoir properties.
In particular, two heterogeneous models exhibiting different shale distributions (30% and 10%
shale content) were used in our study, and they are shoviigime 5-2 and Figure 5-3,

respectively.
Response Surface Proxy Models

To reduce the computation time required, a linear-firder €q. 1) andnonlinear secongrder

(Eq. 2 responsaurface models were constructed for the three reservoir models. These proxies (or
response surfaces) were calibrated using flow simulatressilts of an initial population,
constructed using the neabythogonal array (NOA).5(17°) consists ob factors, 17 levelgnd
30runs (Table 5-4) andapplying E. 1-3.

Results and Discussion

The primary objective of thishapteris to study the impacts of reservoir heterogeneities on the
optimization of solventssisted SAGD recoveryprocess. Given that objective function
evaluations using detailed flow simulation results are extremely time consuming, particularly for
heterogeneous reservoirs, our first step is to evaluate various response surface proxy techniques

that can be easilytegrated folGA optimization.

First, we established a base case fwrforming conventional GA optimizatiofmo proxy) for a

homogenouseservoir with an initial population constructeding the NOA inTable 5-4. The
entireexperimentrequired a total of 5Rours to execute about 980nulationcases to obtain the

optimum which has 1.31 fitness value, 68% recovery and 1.£8r{incSOR.Figure 5-4 shows

the oil production profile for the optimum field scale cdseorder to evaluate the reproducibility

of our optimization results, weepeated the optimization experiment and similar results were

obtained: 1.32 fitness value, 69% recovery and 1.F4n{fhcSOR. Results of the two trials are

|l abell ed as AConventional ( 1) Tablesb#.dNexfjli@eamande nt i on al (2
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nonlinear response surface proxiegre tested. The proxies were constructed based on flow
simulation results of the initial population generatesing the NOA. In other words, the
computation requirement was reducggnificantly to only that was required to execute the cases
of the initial population. It was observed that the Hiorar proxy approximated the initial data
actual responses closelyhile the match with the linear proxy was not satisfactory as shown in

Figure 5-5. The trials are sorted based on the fithess values obtained from actual flow simulations.

Similarly, we built linear and nochnear proxies for the 30% and 10% shale content
(heterogeneous)ases as shown Higure 5-6 and Figure 5-7, respectively. In the 30% case, the

nonlinear shows excellent match, while in the 10% case, it did not yield a satisfactory match.

In the homogenous case, optimizatigmerformed with thelinear proxy was completely
unsuccessful as it was not able to imge the fitness during the evolutions. On the other hand, the
nonlinear proxy showed very good improvement in the fithess function value during the
evolutions as shown iRigure 5-8. In order to compare the optimal solution obtained using the
proxy to that of the conventional approaurg performed flowsimulationon the final optimized
solutionto obtain the actual respondginstead of the proxgstimatedvalue J .6In the case of
linear proxy, the actual respondewas lower than the best case in the initial populatlgn
indicating that the fithess function was not maximizbd.contrast,for the case ofnonlinear
proxy, the actual responsé matched closely withthe conventional optimization result even
though the proxy was amplifying the response valUdss is due to the extrapolation of the
response surface corresponding to parts of parameter SffaEeactual response value for the
optimum casely, Was 1.3 with 68% recovery and 1.15%m’) cSOR as shown ifiable5-5. It is
important to note thahts result was olined in 105minutes where we saved about 90¥cthe

computational effortfrom the conventional optimization as indicated able 5-6.

This improvement in computatial efficiency becomes particularly important in applications for
heterogeneous reservoirs because of the increase in flow simulation execution time with reservoir
heterogeneity. On average, a single flow simulatiothis studytakes about five minutesif the

30% shale case and about 6 minutes for the 10% shale case to execute. If optimization of these
heterogeneous models was performed with the conventional GA implementation, the
computational timevould have been over three days, thus rendering thieothahfeasible due to
computational constraints. This consideration motivates the use of proxy for objective function
evaluation and allows optimization to be performed efficiently in the case of heterogeneous
reservoirs. Our proposed hybrid approach took t88utes for the 30% shale case and 187
minutes for 10% shale case to complétakle5-6). Thisis equivalent to a savings of 152 hours

(or approximately 97%) of thtotal computational time.
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Our results suggest that the performance of the linear proxy in the heterogeneous cases was better

than the homogenous case; the fitness function increased with evolution sheyaren5-9 and
Figure 5-10 as opposetb staying constant iRigure5-8. However, the notinear proxy was still
providing better results. For the 30% shale case, the linear proxy actual response value for the
optimum casel,,; was 0.65 with 5% recovery and 1.98%m®) cSOR while the notinear proxy
actual response value for the optimum caggewas 0.71 with 7% recovery and 1.77%nr)
cSOR. Similarly, in the 10% shale case, the linear proxy actual response value fotirthemop
caseJ,p; Was 1.13 with 40% recovery and 1.28°%(mr’) cSOR while the nofinear proxy actual
response value for the optimum cakg was 1.14 with42% recovery and 1.38 ém®) cSOR.
Optimization results of all cases ashown inTable5-5. It is worthwhile to point out that the
calculated response valude ®f the linear proxy is similar in range to the actual valuevhile
higher degree of esdpolation in the nofinear proxy model leads to a larger deviation from this

range.

Several ways were investigated to reduce the degree of extrapaatido obtain more accurate
approximation of the fithess function using the #ioear proxy.The appoach that gave the most
promising results was the one where flow simulation was performed for the fittest chromosome
after every evolution, and the corresponding simulation result would be incorporated to fit a new
proxy. It was observed that updating tvexy after evolution with an additional flow simulation
output using the fittest chromosome could significantly improve the predictability of the non
linear proxy. The flow diagram of the modified approach is shiomFigure 5-11. It is notedfrom

Figure 5-12 that each timehe proxywas updatedising the fittestt hr o mosomeds si
results,more accuratgroxy values(as compared to the actual flow simulation outputs) were
achieved Figure 5-12 also shows that towards tleed of the optimization exercise, there was no
noticeable differences between the proxy values and actual flow simulation outputs, indicating that
the predictability of the notinear was significantly improvedzinally, as shown inTable 5-5,
applying this modified approach to the homogeneous case achieved a better (more optimized)
scenario than the conventional method with a higibeess valueof 1.4, a higher recovery 6%

and a lower cSOR df.07 (ni/m°).

The modified approach was also applied to the 10% and 30% shale cases to updatdinkamon
proxy after every evolution. Similar improvement as in the homogeneous case was achieved:
updating the proxy using the fittest chromosome aéeery evolution gave the best optimized
parameters among all scenarios, while the proxy predictability was excellent (as evidenaed by th
identical v ainh Tialeed-5) f The optidnizadiom desullsdfitness value as a function of
evolution) are shown ifrigure 5-13 andFigure 5-14. It should be noted that the total number of

flow simulation runs performed in this modified approach ®as(30 for the initial population
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plus an additional one per every evolution). The increased computational expenses could easily be
justified given the considerable improvements in the predictability of the response surface models
and the final optimizedscenario. Furthermore, the computational savings as compared to the

conventional approach is still importaiitaple5-6).

Conclusions

Proxy methods are convenient ways to improve efficiency of an optimization algohithoor
application, we observed that the execution time for objective function evalistiba largest

Other factors like the algorithm convergence speed and the input/output (I/O) processing that
serves as an interface between the flow simulator and the rest of the algorithm implementation are
negligible in comparison to the time needed etcecute the simulation. This computational
consideration becomes particularly important for heterogeneous reservoirs. To alleviate the
computational burden, we constructed the initial population by the process of experimental design
using nearlyorthogonalarrays. Flow simulations were performed on this initial population to
calibrate a response surface, which was subsequently used as a proxy for fithess function
evaluation. Our initial results verified the applicability of the proxy for the homogeneaeisliciss
important to note that a proxy should be chosen with care such that it gives an accurate
representation of the relationship between the objective function and its control variables; we
found in our cases that the nbimear proxy is better for thipurpose. Although it yields better
optimal solution, it does not necessarily reflect the true fitness function value precisely due to non
linear extrapolation corresponding to parts of the parameter space. Therefore, -apuiatiyg

step was introducedfter evolution in which flow simulation results of the fittest chromosome
were added to fit a new proxy. Our results indicated that this updating step not only improves the
predictability of the response surface model, it also enhances the capabhigy@Atalgorithm to
identify a more optimized set of model parameters than the conventional approach in a
computationallyefficient manner. This improvement (as compared to the case where the proxy
was calibrated using only simulation runs of the initigbgation) should justify the incremental

costs incurred because of additional flow simulation runs being performed in the updating step.
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Nomenclature

cEOR:cumulative net energip-oil ratio.
cSOR:steamto-oil ratio.

F(X): objective function value.

GA: Genetic Algorithm.

HMF: Hexane injection mole fraction

IBHP: Injector maximum Bottorhole Pressure

J: the actual response or actual objective function value calculated based simulation output for
one trial.

J :&he repose obtained from the regressioodel.

Jo: the best trial actual response in the initial population.

NL: Nonlinear Proxy

NOA: Nearly-Orthogonal Array.

NPV: Net Present Value.

OA: Orthogonal Array.

PBHP: Producer minimum Bottofhole Pressure

RF: Recovery Factor.

SAGD: Steam Assistésravity Drainage thermal recovery process.
u: a (1*n) vector which contains the optimization variables for a trial.
U : represent an optimization variable for one trial.

b; : represent a regression coefficients for one trial.

L a vector that contains bihe trials response.

= a matrix with allué s .

73: a vector which contains all regression coefficients.
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Tables

Table 5-1: Optimized parameterséranges

Optimization Parameters Range

Injector maximum Bottom-hole Pressure (IBHP) 2100-2800 kPa
Producer minimum Bottom-hole Pressure (PBHP) | 1500-2000 kPa

Hexane injection mole fraction (HMF) 0-0.2

Table 5-2: GA configuration

Item Value
Crossover 0.35
Mutation 3%
Population 30
Evolutions 30

Table 5-3: Reservoir simulation input parameters

Item Value

Grid Cartesian 40*1*15
Grid Dimensions (1) 2m

Grid Dimensions (J) 50 m

Grid Dimensions (K) 2m

Initial Reservoir Temperature 20 oC

Initial Reservoir Pressure 2090 kPa
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Table 5-4: Nearly-Orthogonal Array (6 factors, 17 levels, and 30 runs) used for
generating initial population

Factors Factors
Run Run
1 2 3 4 5 6 1 2 3 4 5 6
1 0.06 | 2275 | 1563 | 0.13 | 2581 | 2000 16 0.10 | 2188 | 1688 | 0.01 | 2188 | 1656
2 0.14 | 2319 | 1750 | 0.06 | 2144 | 1906 17 | 0.05 | 2450 | 1719 | 0.16 | 2450 | 1594
3 0.01 | 2538 | 1781 | 0.06 | 2406 | 1531 18 0.15 | 2625 | 1875 | 0.15 | 2669 | 1625
4 0.18 | 2144 | 1625 | 0.01 | 2319 | 1938 19 | 0.11 | 2494 | 1781 | 0.08 | 2494 | 1719
5 0.01 | 2756 | 1656 | 0.04 | 2713 | 1844 20 0.19 | 2494 | 1813 | 0.04 | 2100 | 1875
6 0.14 | 2669 | 1719 | 0.00 | 2800 | 1688 21 0.10 | 2581 | 1594 | 0.14 | 2144 | 1875
7 0.00 | 2713 | 2000 | 0.15 | 2494 | 1781 22 | 0.15 | 2538 | 1688 | 0.09 | 2538 | 1969
8 0.16 | 2100 | 1750 | 0.14 | 2625 | 1781 23 0.13 | 2100 | 1875 | 0.10 | 2406 | 1594
9 0.08 | 2144 | 1563 | 0.18 | 2231 | 1750 24 | 0.13 | 2800 | 1594 | 0.03 | 2275 | 1750
10 0.04 | 2450 | 1906 | 0.03 | 2231 | 1625 25 0.11 | 2188 | 1844 | 0.05 | 2625 | 1813
11 | 0.09 | 2231 | 1531 | 0.11 | 2450 | 1688 26 | 0.04 | 2231 | 1844 | 0.19 | 2581 | 1531
12 | 0.20 | 2363 | 1625 | 0.13 | 2363 | 1500 27 | 0.00 | 2275 | 1656 | 0.05 | 2275 | 1656
13 | 0.08 | 2581 | 1500 | 0.08 | 2100 | 1563 28 | 0.03 | 2625 | 1969 | 0.10 | 2363 | 1813
14 | 0.03 | 2406 | 1531 | 0.00 | 2319 | 1719 29 | 0.09 | 2363 | 1938 | 0.09 | 2188 | 1563
15 | 0.05 | 2319 | 1813 | 0.11 | 2756 | 1500 30 | 0.06 | 2406 | 1500 | 0.20 | 2538 | 1844
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Table 5-5: Comparison of the selected solution values

Period 1 Period 2
Case Jo J Jo RF CcSOR
uvE | 1BH | PBH | o | 1BH | PBH (m3/m3)
P P P P
CO”"‘H‘)“O”a' 1.04 | 1.31 - 0.20 | 2616 | 1651 | 0.16 | 2669 | 1669 | 68% 1.13
I Conv?;)tlonal 1.04 1.32 R 0.19 2756 1624 0.18 2650 1842 69% 114
[}
3
‘ Linear Proxy | 1.04 | 093 | 1.04 | 015 | 2625 | 1875 | 0.05 | 2756 | 1635 | 39% 1.38
2
& Non-Linear o
(NL) Proxy 1.04 | 1.30 | 366 | 020 | 2800 | 1512 | 0.19 | 2800 | 1506 | 68% 1.15
Updated NL 108 | 14 | 14 | 020 | 2795 | 1515 | 016 | 2800 | 1576 | .. 107
Proxy
Linear Proxy | 058 | 065 | 075 | 0.20 | 2115 | 1986 | 0.20 | 2109 | 2000 | 5% 1.98
. N
30% Non-Linear 058 | 071 | 1.33 | 0.00 | 2124 | 2000 | 0.19 | 2286 | 1927 | 7% 1.77
shale Proxy
sand
Updated NL
Proxy 058 | 073 | 078 | 5 | 2104 | 1970 | 0.20 | 2116 | 1814 | 7% 1.69
Linear Proxy | 1.04 | 1.13 | 1.15 | 020 | 2793 | 1504 | 0.20 | 2756 | 1500 | 40% 1.23
. L
10% Non-Linear 1.04 | 114 | 515 | 020 | 2777 | 1536 | 0.19 | 2756 | 1523 | 42% 1.38
shale Proxy
sand
Up(é(':git;NL 108 | 12 | 1o | 005 | 2450 | 1718 | 016 | 2450 | 1593 | Lo, 0.96
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Table 5-6: Cases execution time

# Actual Averaget: time
Case Simulation . per Total Execution Time
simulation
runs
run
Conventional 900 3.5 minutes 2 Days, 4 hours and 23 minutes
Linear Proxy 30 3.5 minutes 1 hours and 45 minutes
Homogenous N Li (NL)
on-Linear . .

Proxy 30 3.5 minutes 1 hours and 45 minutes
Updated NL Proxy 90 3.5 minutes 5 hours and 15 minutes
Linear Proxy 30 4.6 minutes 2 hours and 18 minutes

0,
30 faiféale Non-Linear Proxy 30 4.6 minutes 2 hours and 18 minutes
Updated NL Proxy 90 4.6 minutes 6 hours and 54 minutes
Linear Proxy 30 6.3 minutes 3 hours and 07 minutes

0,
10 faizale Non-Linear Proxy 30 6.3 minutes 3 hours and 07 minutes
Updated NL Proxy 90 6.3 minutes 9 hours and 27 minutes

* The homogenous cases executed by utilizing all the two 6 cores and 2.66 GHz processors of total 12 cores, where the

heterogeneous cases was executed in 6 cores 2.66 GHz processor.

A version of this chapter was submittadd accepted bjournal of Canadian Petroleum Technology and it is a revision of

the conference paper: /osayir, M., Leung, J., and Babadagli, T., 2011b. Design of SeAssisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian
Unconventional Resources Conference, Calgary, Canatla7 Movember. DOI: 10.2118/1490MS.



47

Figures
~
wGenerate an initial population/genotype (each member is called a chromosome)
J
~
oLalculate the fithess (objective function value) of each chromosome in genotype

uBelect pairs of parerthromosomes from a population according to their fitness

(the better fitness, the bigger chance to be selected)

\8JL

wAccording to a crossover probability, parents are combined to form new
offsprings (children). If no crossover was performed, offsprings are exact copies of
parents.

N

Create a
new wAccording to a mutation probability, mutate new offsprings at each locus

population (position in chromosome).

uFitness value of new offspring is calculated, and new population is generated by
. discarding chromosomes with low fitness values and replacing them with t
el | new offsprings.

23

Figure 5-1: Conventional Genetic Algorithm flow diagram (modified from Algosayir et al.

2011).
—
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J
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Figure 5-2: 30% shale sand distribution.
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Figure 5-3: 10% shale sand distribution.
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Figure 5-4: Optimized ES-SAGD homogeneous case oil production profile.

A version of this chapter was submittadd accepted bjournal of Canadian Petroleum Technology and it is a revision of

the conference paper: /osayir, M., Leung, J., and Babadagli, T., 2011b. Design of SeAssisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian
Unconventional Resources Conference, Calgary, Canatla7 Movember. DOI: 10.2118/1490MS.



49

1.10

1.00

Fitness Value

0.20 n T T T T T T T T T T T T T T T T T T T T T T T

1234567 8 9101112131415161718192021222324252627282930

Trial#

=—¢—J = =J'(Non Linear) ------ J'(Linear)

Figure 5-5: Proxies approximation for the homogeneous case: trials are sorted based on

actual flow simulation fitness value J.
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Figure 5-6: Proxy approximation for the 30% shale case.
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Figure 5-7: Proxy approximation for the 10% shale case.
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Figure 5-8: Fitness value as a function of evolution for the homogeneous case.
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Initialize population using NOA

ufitness calucation using full flow simulations

Build proxy using initial population

Create New Population

uselection
urrossover

wmutation
wAccepting
oFitness Value calculated using the proxy

Repeatedor 60

evolutions

Update proxy

ausing fall flow simulation of the fittest chromosome

Figure 5-11: Flow diagram for the modified approach where proxy is updated with the
additional flow simulation results of the fittest chromosomes after each evolution.
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Figure 5-12: Fitness value as a function of evolution for the homogeneous case using the
modified approach with non-linear proxy updating.
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Figure 5-13: Fitness value as a function of evolution for the 30% shale case using the
modified approach with non-linear proxy updating.
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Figure 5-14: Fitness value as a function of evolution for the 10% shale case using the
modified approach with non-linear proxy updating.
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Chapter6: Optimization of SOSFR (SteamOver-
Solvent Injection in Fractured Reservoirs) Method
Using Hybrid Techniques: Testing Cyclic Injection

Case

Abstract

Many processes and techniques have been proposed to improve the heavy oil recovery from
fractured reservoirs. Such complprocesses require careful operation planning and management
to achieve optimal efficiency with minimal costs and environmental impacts. Steam injection is
one of the options for heaxgil recovery from fractured reservoirs but significant steam
requirenent for effective matrix heating due to heterogeneous structure poses important challenges
in terms of cost, water availability, and environment impacts due to water processing and steam
generation. ABBahlani and Babadagli (2008, 2009a) proposed a newepsocalled Stea@ver

Solvent in Fractured Reservoirs (S®GR) by adding solvent component to minimize the heat
needed. The SOBR technique consists of a heating phase using steam injection, subsequent
solvent injection, and low temperature steam ingectfor solvent retrieval and additional oil
recovery. Optimization of this process is a critical step to determine optimal injection (and
soaking) schedules as the heterogeneous structure of this kind of reservoirs may easily yield an
inefficient procesglue to high cost and excessive use of steam and solvent. In this study, we
adopted a global optimization scheme, where genetic algorithm is integrated with orthogonal
arrays and response surface proxies for better convergence behavior and higher icmalputat
efficiency, to optimize the SOBR process for cyclic injection option. The results show that one
may be able to double the profit obtained with the benchmark model using the optimal injection
scheme suggested by our optimization procedure.

Introduction

Unconventional solutions are needed to overcome the challenge of heavy oil production. In high
permeability norfractured sand reservoirs, steam injection processes showed acceptable
production, however, they require the availability of a largeowrh of water that is a major

challenge in remote areas with limited water accessibility, and this water consumption has to be

managed and processed in an environment friendly mann&aani and Babadagli, 2011).

Alternative to steam injection, Butleand Mokrys (1991) introduced the VAPEX (vapor
extraction) process, which is pure solvent injection from a horizontal well to displace the oil by
gravity drainage to another horizontal producer. Later, different schemes of steam/solvent

injection were teed at laboratory or simulation conditions as well as field pilots. Nasr et al.
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(2003) developed Expanding SolvesAGD (ESSAGD) method to minimize the use of steam in
heavyoil production. This method relies on addition of small percentage of gas w $igivent

into steam during steam assisted gravity drainage process (SAGD). Subsequently, steam
alternatingsolvent (SAS) technique was introduced as an application of alternative injection of
steam and solvent (Zhao et al., 2005; Zhao, 2007). Leaut€Carey (2007) demonstrated that
addition of small amount solvent into steam during cyclic steam injection improves the recovery.
Their technique called Liquid Addition to Steam for Enhancing Recovery (LASER) showed a

success in a pilot scale field apptioa.

A major consideration for these advanced recovery processes is that the recovery performance is
highly influenced by factors such as steam and solvent injection rate, solvent concentration,
injection pressure, and injection schedule. This mattesptimal design was addressed in the
literature for several processes. For example, several studies employed global optimization
techniques and detailed flow simulations. Gates and Chakrabarty (2006, 2008) used genetic
algorithm and simulated annealingrf@AGD and ESSAGD (expanding solvent SAGD)
optimization. Peterson et al. (2010) utilized genetic algorithm for scbdditive SAGD
optimization. AlGosayir et. al. (2011b) studied the design of sokaesisted SAGD processes in
heterogeneous reservoirsing hybrid genetic algorithm. A more common approach has been the
design and performance evaluation of these processes using a combination of numerical

simulations, sensitivity analysis, and graphical or analytical techniques.

Optimization of steam/seént methods in fractured carbonate reservoirs is more challenging as
the efficiency becomes critically important due to excessive steam/solvent requirement for matrix
oil recovery. Although ample amount of lab studies exist, steam injection in fracansohates

is limited to a few field scale applications due to inefficiency of the proces8dMiani and
Babadagli, 2008). ABahlani and Babadagli (20098 suggested the use of solvent to reduce the
cost of steam and improve the recovery for fractwwadonates with cilvet matrix containing
heavyoil. Accordingly, they proposed SteaBver-Solvent Injection for Fractured Reservoirs
(SOSFR) process to enhance the recovery efficiency by injection of both steam and solvent. The
SOSFR process consistd three main phases (Aahlani and Babadagli, 2008, 2008a

Phase 1: It consist of pieeating by steam (or hot water) injection. In this phase, thermal
expansion of oil (expected recovery is ~10% as reported Hyahlani and Babadagli, 2008) is

the main recovery mechanism and no water capillary imbibition is expected if matrix is not
strongly wateswet, which is a common situation in carbonates. The matrix oil is also conditioned

for the subsequent solvent injection.
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Phase 2: Solvent injection abe: Solvent (heptane was used byBAhlani and Babadagli [2008,
2009a)) is injected to be diffused into matrix and further reduce the viscosity of oil. Then, the
matrix oil is produced by gravity drainage caused by the density difference betweenl @iigina
and oil diluted by the solvent. Mahlani and Babadagli (2011) numerically tested two scenarios:
(1) Continuous solvent injection and (2) cyclic solvent simulation (CSoS) which consist of three

stages: (a) solvent injection, (b) solvent soaking, @h production.

Phase 3: Solvent retrieval period: To retrieve the solvent (and recover additional oil); steam is
injected at a temperature near to the boiling point of the solvent, which causes rapid thermal

expansion of solvent.

Al-Bahlani and Babadag(2011) compared, by building each case manually, the injection of
exclusively steam or solvent for the whole period with the two scenarios oFBQ8ocess at the

field scale; continuous solvent injection and cyclic solvent injection (HndfPuff) in a single
fracture and multiple fractures system. Their results showed that cyclic application of tHeRSOS
technique gives promising result for multiple fracture models in terms of the economics of the
process. The cyclic solvent SGFR process has humer® operating parameters that could affect

the recovery including duration of heating period during Phase 1, steam injection rate and
duration, solvent cycles schedilileluration of injection and soaking cycles as well as the number

of cycles for Phase 2nd the steam injection rate for Phase 3. Such a large number of factors
require testing remarkably large number of scenarios to reach an optimal solution, which would be

very exhaustive to achieve manually.

In this paper, we focus on optimizing the (SBR¥) process and apply a hybrid technique
introduced in our previous publication for EB2GD optimization (AlGosayir et al., 2011b) to

propose optimal application conditions that maximized the recovery and profit.

Optimization methodology
Global Optimization Techniques

Similar to our work on ESSAGD optimization (AlGosayir et. al., 2011b), we integrated the

Genetic Algorithm (GA) with two other techniques in a hybrid formulation. The GA is a
probabilistic search techni que ebsatsoe d( Guny atghuel eprr ientc i g
2002; Chen et al., 2010). An initial population or genotype can be constructed by sampling the

solution space randomly or by utilizing an experimental design strategy such nearly orthogonal

arrays. Additional scenarios constructecarmally can be incorporated to accommodate the

engineerd6s judgement and to accelerate the converge

fichromosomesd which define the parameters for the o

c hr o mo s oesseisicalculatédt Tinen, pairs of parent chromosomes are selected based on their
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fitness values to create new offsprings (children) via crossover and mutation as illustrated in
Figure 6-1. Examples for crossover and mutation genetic operations that are used to generate new
offsprings are showrrigure 6-2 in and Figure 6-3. The newchromosomesare added tdahe

population while the chromosomes with low fithess values are discarded

Computationabehavior of genetic algorithm is highly sensitive to the choice of initial population.
Thus, we proposed a hybrid formulation to improve the computational and convergence efficiency
by integrating the following experimental design and response surfabeigees into the
conventional framework of GA.

Orthogonal Arrays for Experimental Design

Orthogonal Array (OA) and Near@rthogonal Array (NOA) experimental design techniques can

be integrated with GA to improve the quality of initial population (Cheralgt 2010) by
generating evenly distributed samples and reducing the redundancy between chromosomes.
Instead of trying all combinations of parameters at all levels, just the ones that contain principal
information are included by determining the levelsvaich parameters should be varied. In this
paper, we utilized Gendex DOE Toolkit (website: http://designcomputing.net/gendex) for NOAs
generation based on the Taguchi method minimax criterion described by Ma et. al. (2000) and Lu
et. al. (2003).

Proxy Method for Objective Function Evaluation with Periodic Updating

For each chromosome in each evolution, its fitness function must be evaluated. In our application,
the money recovery factor as defined in the next section is calculated from the results of a
numerical flow simulation. Depending on the reservoir size and process complexity, each flow
simulation could take up to days to complete. Proxy methods are feasible and computationally
efficient alternatives for fithess value estimation. The response sudabnique, a method in
which a relationship between the parameter sets and the corresponding fitness function is
approximated via regression, has been implemented in this study. Once calibrated using the results
obtained from detailed flow simulationd)ig response surface can be used as a proxy for flow
simulation. Results presented in our previous work demonstrated that a-sedendonrlinear

proxy model typically provides satisfactory performance for our optimization applications (Al
Gosayir et. al 2011b, Myers and Montgomery, 2002). The equations foflinear (quadratic)
models are shown in Eq. 1, whelés the response (fitness function valugfs are the variables

(optimization parametershio s ar e t he r egr dlisaniemontermoef fi ci ents, and
o f 16 E 6 B 16 B B | 66 f 1)
Eq. 2 is the regression equation for edetermined problem:

[ 55 5* )
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When the number of optimization parameters is larger than the number of experithen

problem becomes unddetermined and Eq. 3 should be used:
[ 5 55 * (3)

where Lis a vector that contains all the responsés a vector which contains all regression

coefficients andr is a matrix with all thes vectors evaluated.

In order to achieve a better representation of the solution space and regression accuracy, the proxy
is recalibrated or updated periodically by performing detailed flow simulation using parameters of
the chromosome with the highest fitness value and incorpgrés simulation result after each

evolution (AFGosayir et al., 2011b). This updating step is illustrated in the flow chart given in

Figure 6-4.

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:
http://jgap.sourceforge.ngtior the GA modeling.

Objective Function

Efficiency of recovery pmcesses can be assessed by their profit by calculating the Money
Recovery Factor, MRF, (ABahlani and Babadagli, 2011) which incorporate the major elements
(mainly steam, solvent, and oil), which influence the profit. The MRF focuses on the key
elementsand omits the other factors, which may vary from one field to another. The MRF is
defined as follows:

YQUL Q¢ 6 Qi 0

VYO Vs o dm e 0

wherethe cost is:
6Ei 000 G0 addOWTE QQAYQQRGE i 0606 &6 a GBEANIEEQAQDO QQ
z "Yé &4 00QEA0Q
and the revenue is:
YQU Q¢ D ¢ 6 & oMb Q6HNBA QORO6 & 6 & GBE@UIIELHQ6 OQQ
z "YE G 0INEAOQ
The steam cost and solvent and oil prices are showabte 6-1.

This objective functioreliminates the revenue of the steam since it is not a common practice to
treat the produced water andingect it again as steam. One the other hand, solvent is considered
to have the same price for revenue and cost even if it is not extracted from Hezaise it

upgrades the oil and reduces the need to add solvent for pipeline transportation and it is recovered
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in the distillation tower. The capital expenditures (CAPEX) are considered the same for all

scenarios (ABahlani and Babadagli, 2011).

Benchmark (Base) Simulation Model

Since AlBahlani and Babadagli (2011), results indicated that cyclic solventFF50i8 reservoirs

with multiple fractures yielded the highest money recovery factor (see Figure 16 of this reference),
we considered this askmse case for our optimization study. This model is an IK Cartesian 2D
single porositysingle permeability model with the dimensions of 20x30x15 m that contains
multiple fractures of 1 cm aperture. Geological features of the model are providedla6-2.
Representation of the fractuneatrix model in a flow simulation is shown IFgure 6-5. This

base case gives a money recovery factor (MRF) value of approximatéihi@&hase case gives a
money recovery factor (MRF) value of approximately 28. This model was an implementation of
cyclic optionof the SOSFR Process. This model has total process duration of three years and six

months, and it is designed as follows-@dhlani and Babadagli, 2011):

1. Phase 1: Heating period (HP) has 395 days length.

2. Phase 1: Heating period where steam is injectéql rate of 20 riiday.

3. Phase 1: Cooling period (CP) has 175 days length withwatdr injection with rate of 5
m3/day. This was included by Aahlani and Babadagli (2001) in their simulation to
simulate their laboratory experiments {Bahlani and Babayli, 2008, 2009a), which
had a cooling period between Phase 1 (heating) and Phase 2 (solvent injection). In
practice, this corresponds to the period switching to Phase 2 and a short period of soaking
the reservoir with injected steam to condition therixatil for solvent diffusion.

4. Wells shutin after the cooling period for 6 days.

5. Phase 2: 14 Cycles each cycle contains three periods: One week solvent injection, two
weeks soaking, and two weeks production.

6. Phase 3: Recovery phase where the steameistég with rate of 2én*/day.

7. Phase 3: Recovery phase length is 198 days.

Semicompositionalcommercial simulator (CMG STARS)as used for full flow simulations

evaluation
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Results and Discussion

In order to identify the parameters that have the greatesacts on the objective (fithess)
function, a sensitivity analysis was carried out first. In particular, we varied the steam injection
rate in the heating period (Phase d9lvent injection ratedurations of soaking phaskiring the
huff-andpuff stage (Phase 2), and the steam injection rate in the final recovery phase (Phase 3).
As shown inFigure 6-6, for each of thes parameters, except the solvent injection rate, an
optimum value can be easily identified. However, MRF continues to increase as the solvent

injection rate increase.
Experiment 1:

Based on the result of the sensitivity analysis we have developed ardipdaxy and genetic

algorithm experiment to increase the MRF by varying:

1. Phase 1: Heating period (HP) length between 60 to 790 days with 30 days resolution.
2. Phase 1: Heating period (HP) steam injection rate from 10 to*4fayn
3. Phase 2: Cycle lengthdicators each cycle contains three periods:
a. 4 mandatory cycles [b].
b. 9 optional cycles [&].
4. Phase 2: 3 Cycles periods length indicators (Solvent Injection, Soaking, and Production)
[1-3].
5. Phase 3: Recovery phase steam injection rate from 10rt5/day.

While the other properties fixed such as:

1. Phase 1: Cooling period (CP) lengtHLigs days
2. Phase 1: Cooling period (CP) injection rate is*day.
3. Phase 3: Recovery phase leng@#i8days.
A comprehensive list of optimization parameters for all expemis carried out in thishapteris

shown inTable 6-3.

This experiment gave better results than the base case; a value of 48 for the money ractovery f
instead of 28 is obtained, with an increase of about two hundred thousand dollars in the profit. The
result of this experiment suggests, as showiTable 6-4, that the optimal solution can be
achieved by reducing the length of the heating period (phase 1), with a minimum value of 60 days
as the total length for heating period. Similarly, aJable 6-5, the optimal length indicators for

the soaking and production periods in each cycle (phase 2) were the minimum value of 1, while

the optimized solvent injection period is the maximum value.
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Analyzing the result of this experiment and noting that numerous optimized parameters coincide
with either the lower or upper limits of the optimization range raise a few interesting questions: (1)
Can we optimize the MRF by further reducing the duratiothefphase 1 by adjusting the length

of cooling period? Is it necessary to soak or produce in each cycle? To address such questions, two
additional experiments were executed simultaneously (experiments 2 and 3).

Experiment 2;

Based on experiment 1 resyltooling period was eliminated and only optional heating period
(with a minimum value of zer o) was kept, cycl es i
optional, allowing them to be eliminated for better flexibility. Ranges for other parameters are

shownin Table6-3.

Comparing with previous experiment, the MRF was increased by 4.2 with profit increase of about
fifty thousand dollars. This experiment suggests that dptimal the heating period (phase 1)
should be around three months.

Experiment 3:

Similarly, based on experi ment 1 results, bot h pha
periodsd | ength indicator range mithe bestecase®fd t o 5. C
experiment 1 were used in this experiment to minimize number of optimized parameters. Ranges

for other parameters are listedTiable6-3.

A MRF vdue of 58.4 and three hundred thousand dollars increase in the profit from base case
were observed. This is better than the results obtained froprahi®us experimentas presented

in Table 6-6. The result indicates that keeping two phase 1 periods are worthy, and similar to the
previous experiments, the solvent injection phase is the dominant on all cycles. Based on the
results from experiments &d 3, one might wonder if the process can be further optimized by

varying the periodsé duration in each cycle individ
Experiment 4:

A length indicator for each period in each cycle was introduced which res®@0 length
parameters to represent 10 cycles, instead of 13 parameters in all the previous setups. Increasing
the number of parameters increases the size of the solution space, which in turn reduces the
convergence speed and accuracy of the proxy régneds order to facilitate the convergence
efficiency, we repeated the optimization scheme multiple times sequentially such that optimized
models from the previous step are placed in the initial population for the next step. In other words,

instead of talng a big step along the descent direction, a few smaller steps are taken.
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First, two experiments (4 and 4b) with different initial populations, constructed based on nearly
orthogonal arrays (minimax criterion) and randomly generated populatioGdqalyir et. al.,
2011b), were executed concurrently. Next, these two initial populations and the fully evaluated
flow simulation models of their respective optimized solution in each evolution were combined
into one initial population for experimentc? Findly, even though satisfactory results were
achieved, we repeated the optimization again using the initial population and flow simulation
results from experiment-d as an initial population for a conventional genetic algorithm
experiment (4d) which takedonger time to ensure sampling more scenarios in the solution space

to achieve the best result.

These experiments provided only slight improvement compared to experiments 2 and 3, as
expressed iTable6-6. The last experiment result was the best with a 65.5 money recovery factor,
82.2% oil recovery factor, an#675,512profit, which is more than double of the base case
scenario as shown Figure 6-7 andFigure 6-8; andthe cumulative solvent injected volumeas

lower than the optimized case from experiment 3 aBigure 6-9. Based on the result of this
experiment, we noticed that some periods could be eliminated from certain cycles, while the phase
1 cannot be eliminated though it can be shorter than the basd-itage. 6-10 andFigure 6-11
compare the injection and production schedules of the base case anesbggxperiment -4l)
scenarios, respectively, whileable 6-7 shows all cases schedulégure6-11 shows that we need

to start and finish with longer cycles of solvent injection. The solvent injection rate is low (5
m/day), and it has already staditto diffuse through the system during the injection period. én th
middle cycles, one should adjust the lengths of the soaking or production periods alternatively
between cycles. It is also noted that the solvent injection duratithe middle cycles is about 40

weeks, which is approximately equal to the otherpeiodsd t ot al

Solvent injection in the optimum cases is much higher than the amount of steam injection. An
important assumption in our simulation model is that the reservoir is confined such that we are
able to recover most of the solvent, as shanvkRigure 6-9. However, Experiment-B shows an
interesting result, which has the least solvent injection and consequently the least cost as shown in
Figure 6-9, Figure 6-8, andTable 6-6. At the same time, this experiment gives a good money
recovery factor of about 51 and a profit of 526 thousand dollars. This experiment illustrates the
benefit of soakingeriod in each cycle, which gives more time for the solvent to diffuse into the
reservoir with less amount of solvent as shownFigure 6-12. Since this experiment was
initialized using random initial population that is different from the other experiments where
minimax criterion nearly orthogonal array is used, the solution space was investigated from
different angle Minimax criterion tends to combé the parameters by maximizing some while

minimizing the others.
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Conclusions and remarks

Despite the challenge of optimizing the injection time and cycles of theFFOfocess using

hybrid genetic algorithm, the outcome was very promising and betidtsréisan the benchmark

case were achieved. The money recovery factor and the profit were doubled and about 30% oil
recovery increase was obtained. The results suggest that steam heating period should be decreased,
while the solvent injection time to becireased without eliminating the necessity of having solvent
soaking or production periods. Handling such complex process optimization is a challenge, which
could be overcome by implementing a hybrid optimization scheme that incorporates a detailed
sensitivty analysis with experimental design methods for initial population construction, followed
by a global optimization scheme of genetic algorithm, whose convergence efficiency was
improved with the use of response surfaces. In addition, the accuracy fotthye model was
further enhanced with a periodic updating step in which additional flow simulation results using
the most optimal case were used tocaéibrate the response surface at each evolution.
Furthermore, we noticed that hybrid genetic algorittsmaiuseful tool designing the operating
strategy of a complex recovery process by optimizing the time required for each phase of-the SOS
FR method.
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Nomenclature

BC: Base/Benchmark case.

b : represent a regression coefficients for one trial.
A: avector which contains all regression coefficients.
CP: Cooling period in phase 1.
cSOR:cumulativesteamto-oil ratio (m*/nr).

CSoS Cyclic Solvent Stimulation

cS/OR cumulative net solvent injected (difference between cumulative solvent injected and
produced) to oil ratio(m*/m®).

EIF: Economic Impact Factor

F(u) or FX: objective function value.

F: objective function.

GA: Genetic Algorithm.

HMF: Hexane injection mole fraction

HnP: Huff and Puff

HP: Heating Period in phase 1.

IAV: Initial Asset Value

IBHP: Injector maximum Bottofhole Pressurg¢kPa).

J: the actual response or actual objective function value calculated based simulation output for
one trial.

J :&he repose obtained from the regression model.
Jo: the best trial actual response in the iaitpopulation.
L 3 vector that contains all the trials response.

MRF. Money Recovery Factor

NA: Not applicable.

NL: Nonlinear Proxy

NOA Nearly-Orthogonal Array.

NPV: Net Present Value.
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OA: Orthogonal Array.

PBHP: Producer minimum Bottothole Pressure
PP: Production period in each cycle.

RF: Recovery Factor.

RP: Recovery phase 3.

SAGD: Steam Assisted Gravity Drainage thermal recovery process.

SIP. Solvent Injection period in each cycle.
SOP Solvent Soaking period in each cycle.
SOSFR: SteamOver-Solvent for Fractured Reservoirs

STOIIP. Stock Tank Qil Initially In Place

u: a (1*n) vector which contains the optimization variables for a trial.

U; : represent an optimization variable for one trial.
= a matrix with allué s .

USD United Sates Dollar
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Tables

Table 6-1: Elements prices

Element | Price
Steam 18 $/m°
Solvent 1000 $/m®

Qil 80 $/bbl

Table 6-2: Reservoir properties used in the simulations. (Al-Bahlani and Babadagli, 2011)

Item Value
Reservoir depth 500 m
Matrix porosity 0.30
Fracture porosity 0.99
Matrix permeability 10 mD
Fracture permeability 550 D
Initial reservoir pressure 8 MPa
Initial reservoir temperature 50 °C
Oil density SC 965
Solvent type Heptane
Initial water saturation 0.00
Solvent diffusion coefficient 2.88ei 5m2/day
Wettability Oil wet
Table 6-3: Optimized parameterséranges
3 Each
Cycles Cycle
Recovery | periods period
HP CP phase Lls Cycles Lls
HP Injection CP Injection | Injection (Same Lengths (Different
Length Rate Length Rate Rate for all Indicators in each
Experiment | (days) | (m3/day) | (days) | (m*day) | (m%day) | Cycles) (LIs) cycle)
[60- 4*[1-5]
Exp. 1 [1-40] 175 5 [10-40] [1-3] and 9*[0- NA
790] 5]
Exp. 2 [0-346] [0-30] NA NA [10-40] [0-3] 13+*[0-5] NA
Exp. 1
Exp. 3 [1-120] [1-30] [1-180] [1-6] 40 [1-5] Best case NA
setup
Exp. 4-a [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]
Exp. 4-b [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]
Exp. 4-c [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]
Exp. 4-d [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]

A version of this chapter was submittied publication
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Table 6-4: Optimal parameters values for all experiments.

HP HP cp CP Recovery
Experiment Number of FX Lenath Injection Lenath Injection phase
P Evolutions | (MRF) (dags) Rate (dags) Rate Injection
YS) 1 (m¥day) YS) | (m%day) | Rate (m%day)

Base Case - 28.0 395 20 175 5 20
Exp. 1 80 48.0 60 25 175 5 40
Exp. 2 85 52.8 90 26 - - 36
Exp. 3 26 58.4 45 30 15 1 40
Exp. 4-a 72 56.9 120 29 1 2 40
Exp. 4-b 89 51.0 15 28 180 5 40
Exp. 4-c 10 58.7 120 29 1 2 40
Exp. 4-d 87 65.5 120 29 1 2 40

Table 6-5: Optimal lengths indicators of the base case, experiment 1, 2, and 3.

Period Length Indicator of Length indicator of Cycle:
Experiment
S"I'r‘]’je”t Soaking | Production |1 |2 |3 |4|5|6|7|8|9|10]|11| 6 14
Base Case 1 2 2 1(1|1(1|1|1|1|1(1]|1 1 1
Exp. 1 3 1 1 3{1|1|1(3|5|5|1|1|1]°5 0
Exp. 2 3 1 1 5|13|4]1|1|5|1|5|0] 0 0 0
Exp. 3 5 1 1 3|{1|1|1(3|5|5|1|1|1]°5 0
Table 6-6: Comparison of the selected solution values
Cum. Cum. Cum. Cum. Cost
Exp. MRF | Steam | Solvent | Solvent Oil RF | cSOR (nlnpﬁva;) (min T;Vlin;f Profit ($)
Inj. Inj. Prod. | Prod. $)
ggz: 28.5 | 12355 990 952 1099 | 53.7 6.3 1.03 1.21 1.51 $290,000
Exp.1 | 48.0 | 10277 2475 2468 1363 | 66.3 2.7 1.03 2.7 3.2 $494,830
Exp.2 | 52.8 9546 2910 2910 1422 | 69.5 2.2 1.03 3.1 3.6 $545,005
Exp.3 | 58.4 9286 3571 3584 1501 | 74.0 1.8 1.03 3.7 4.3 $602,544
B4 | 569 | 11307 | 3201 | 3225 | 1525 | 757 | 24 | 103 | 34 | 40 | $586,785
EX‘;' 4 1510 | 9261 | 2042 2067 | 1325 | 66.0 | 2.7 1.03 2.2 2.7 $526,110
P-4 | 587 | 11307 | 3245 | 3260 | 1560 | 77.4 | 24 | 103 | 35 | 41 | $605337
B4 | 655 | 11307 | 3183 | 3250 | 1614 | 822 | 23 | 103 | 34 | 41 | $675512

A version of this chapter was submittied publication
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Table 6-7: Experiments huff-and-puff phases lengths in days

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Exp. SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP
BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14
1 55 18 18 18 6 6 18 6 6 18 6 6 55 18 18 92 31 31
2 116 39 39 70 23 23 93 31 31 23 8 8 23 8 8 116 39 39
3 79 16 16 26 5 5 26 5 5 26 5 5 79 16 16 | 132 26 26
4-a 142 14 0 43 43 14 57 0 28 71 14 0 28 43 0 71 57 28
4-b 48 36 0 48 60 24 48 60 0 60 36 36 36 12 48 24 24 0
4-c 138 14 0 41 41 14 55) 0 28 69 14 0 69 41 0 69 55 28
4-d 159 16 0 32 64 16 64 0 16 80 16 0 80 48 0 16 64 32
Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 Cycle
Exp. | SIP | SOP [ PP | SIP | SOP | PP | SIP | SOP | PP [ SIP | SOP | PP | SIP | SOP [ PP | SIP | SOP | PP
BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14
1 92 31 31 18 6 6 18 6 6 18 6 6 92 31 31
2 23 8 8 116 39 39
3 132 26 26 26 5 5 26 5 5 26 5 5 132 26 26
4-a 57 0 14 57 28 0 71 43 14
4-b 60 24 0 60 48 0 24 48 0
4-c 55 14 14 | 124 41 14
4-d 16 0 16 | 159 48 0

A version of this chapter was submittied publication
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Figures

\
“ wGenerate an initial population/genotype (each member is called a chromosome)
S

uLalculate the fitness (objective function value) of each chromosome in genotype
Fitness

Y

\
uSelect pairs of parerthromosomes from a population according to their fitnes:
(the better fitness, the bigger chance to be selected)

J

wAccording to a crossover probability, parents are combined to form new offsprings
(children). If no crossover was performed, offsprings are exact copies of parents.

wAccording to a mutation probability, mutate new offsprings at each locus (position
in chromosome).

(@]
e}

o @
23
S 3
2o
o

53
=

oFFitness value of new offspring is calculated, and new population is generated| by
_ discarding chromosomes with low fithess values and replacing them with the jnew
Al | offsprings.

Figure 6-1: Conventional genetic algorithm flow diagram (Al-Gosayir et al. 2011b).

Parent Chromosome 1

Parent Chromosome 2 11111001111 1001000010 1110011111 1000010010 11000100000

Child Chromosome 1 1110011111 1000010010 11000100000

Child Chromosome 2 11111001111

Figure 6-2: Example of crossover of two parent chromosomes (Al-Gosayir et al. 2011a).

Gene Gene Gene Gene Gene
Parent Chromosome 10101111 11110010111 11100101010 1001011111 10110100100
Child Chromosome 10101111_ 11100101010 1001011111 10110100100

Figure 6-3: Example of mutation of a parent chromosome (Al-Gosayir et al. 2011a).
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Initialize population using NOA

ufitness calucation using full flow simulations

Build proxy using initial population

Create New Population

uselection
urrossover

wmutation
wAccepting
oFitness Value calculated using the proxy

Repeated for 90
evolutions

Update proxy

ausing full flow simulation of the fittest chromosome

Figure 6-4: Flow diagram for the modified approach where proxy is updated with the
additional flow simulation results of the fittest chromosomes after each evolution. (Al-
Gosayir et al. 2011b)
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Figure 6-5:

Money Recovery Factor
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Representation of multiple-matrix block with unity oil saturation in flow
simulation. (Al-Bahlani and Babadagli, 2011)
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Figure 6-6: Sensitivity analysis for some key parameters before starting the optimization.

ry

A version of this chapter was submittied publication



75

90 7
80 6
70 5
LL
4
- 60 4
C
IS
LL
X 50 - 3
=
40 - 2
30 - 1
20 - -0
Base Exp.1 Exp.2 Exp.3 Exp.4-aExp.4-bExp. 4-cExp. 4-d
Case

mmm Money Recovery Factor mmm Recovery Factor =#=cSOR

CcSOR (#im?3)

Figure 6-7: Optimized money recovery factor, oil recovery factor, and cumulative steam oil

ratio of all experiment.
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Figure 6-9: All experiments hydrocarbons and steam injected and produced.
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Cycle 1
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Figure 6-10: Base case Gantt-chart
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Phase 3_
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Cycle 5_
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Cycle 3 .
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Cycle 1
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0 20 40 60 80 100 120 140 160 180
Weeks

HP m CP mSolvent Injection m Soaking m Production m RP

Figure 6-11: Experiment 4-d (best MRF) Gantt-chart.
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Figure 6-12: Experiment 4-b (random initial population) Gantt-chart.
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Chapter7: Contributions

There are severahajorcontributiors gainedout of this thesis as listed below

1. A hybrid optimization strategy, integrating elements of experimental design (orthogonal
arrays) and response surface proxy into a global tgersdgorithm optimization
workflow, was developed. The adopted proxy provided a saving of 95% computational
time, while the use of orthogonalrays (with minimax criterionyvas shown to improve
the algorithmbés conver gensolgionbehavi or in seeking

2. It was observed thahorntlinear response surface proxgan potentiallygive a more
accurate representation of the true objective function vhlutét alsotendsto overshoot
during extrapolations Therefore, a periodic updating schemwas proposed and
implemented The success of this steyss illustratedby the improved predictability of
the objective function and minimal increase in computational time.

3. The proposed technigueras applied to construct optimal designs for three different
heavy ol recovery processes using steam and solMenparticular, the computational
efficiency of the technique allows optimization to be carried out successfully for
heterogeneous reservoirShese case studies illustrdtéhat the hybrid optimization
framewok is ausefultool for desiging complex recovery processaad increasing the
profit.
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Appendix1: JGAP initializercode

package mmm.ga.tests;

import  java.io.BufferedReader;
import  java.io.FileReader;
import  java.io.|IOException;
import  java.util.List;
import  java.util.Vector;
import mmm.ga.MyGenericChromosome;
import  org.jgap.*;
import  org.jgap.audit.ChainedMonitors;
import  org.jgap.audit.EvolutionMonitor;
import  org.jgap.audit.FitnessImprovementMonitor;
import  org.jgap.audit.|Evoluti onMonitor;
import  org.jgap.audit. TimedMonitor;
import  org.jgap.impl.*;
import  Jama.Matrix;
public  abstract class GenericRunner {
int evolutions
Genotype population ;
|IEvolutionMonitor monitor
FitnessFunction objectiveFunction ;
public  GenericRunner(String runTitle, int  evolutions, int
a_sizeOfPopulation, FitnessFunction objectiveFunction) throws  Exception {
System. out .printin(runTitle);
this . evolutions = evolutions;
this . objectiveFunction = objectiveFunction;
/I Start with a DefaultConfiguration, which comes setup with the

/I most common settings.
I
Configuration gaConf = new DefaultConfiguration();

/I Care that the fittest individual of the current population is

/I always taken to the next generation.

I

boolean preservFittestindividual = false ;

gaConf.setPreservFittestindividual(preservFittestindividual)

System. out .printin( "setPreservFittestindividual \ t"
+ preservFittestindividual);

/I Set the fitness function we want to use, which is our
1l

gaConf.setFitnessFunction( this . objectiveFunction );
boolean alwaysCaculateFitness = true ;
System. out .printin( "alwaysCaculateFitness o+

alwaysCaculateFitness);

gaConf.setAlwaysCaculateFitness(alwaysCaculateFitness);

double crossoverRatePercentage = 0.35d,;

int  mutationRate =3;

gaConf.getGeneticOperators().clear();

gaConf.addGeneticOperator( new CrossoverOperator(gaConf,
crossoverRatePercentage));

gaConf.addGeneticOperator( new MutationOperator(gaConf,

mutationRate));

System. out .printin( "Crossover rate \'t" + crossoverRatePercentage);
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System. out .printin( "Mutation rate \'t" + mutationRate);

boolean allowDoubllette = false ;
double originalRate = 0.9;
BestChromosomesSelector s = (BestChromosomesSelector) gaConf

s.setDoubletteChromosomesAllowed(allowDoubllette);
s.setOriginalRate(originalRate);

System. out .printin( "allowDoubllette \t* + allowDoubllette);
System. out .printin( "originalRate \'t" + originalRate);
List monitors = new Vector ();

monitors.add(_ new Ti medMonitor(6)) ;
monitors.add(  new FitnessimprovementMonitor(1, 3, 5.0d))
monitors.add(  new EvolutionMonitor())

monitor = new ChainedMonitors(  monitors _, 3);
System. out .printin( "Monitors on." );
IChromosome sampleChromosome = getSampleChromosome(gaConf);

gaConf.setSampleChromosome(sampleChromosome);

System. out .printin( "Sample Genes:" );
for (Gene gene : sampleChromosome.getGenes()) {
System. out .printin(gene);

}
/I Finally, we need to tell the Configuration object how many
/I Chromosomes we want in our population. The more Chromosomes,

/I the larger the number of potential solutions (which is good

/I for finding the answer), but the longer it will take to evolve

/I the population each round.
gaConf.setPopulationSize(a_sizeOfPopulation);

System. out .printin( "Population Size \t*  + a_sizeOfPopulation);

/I Create random initial population of Chromosomes.
System. out .printin( "Random Initial Population Generated" );
population = Genotype. random InitialGenotype (gaConf);

/Ipopulation = new

Genotype (gaConf,NoaArraylmporter.getlnitiaINAOPopulation(gaConf, 0, 0));

}

protected

level length

IChromosome getSampleChromosome(Configuration gaConf)
throws  InvalidConfigurationException {
/I Now we need to tell the Configuration object how we want our
/I Chromosomes to be setup. We do that by actually creating a
/I sample Chromosome and then setting it on the Configuration

I/ object.

int  chromeSize = 19; 1

Gene[] sampleGenes = new Gene[chromeSize];

/Heating Phase length: multiple integer [60 - 790] days with 30 days
sampleGenes[0] = new MutiplelntegerGene(gaConf, 60, 790, 30);

/IHeating Phase steam injection rate

sampleGenes[1] = new DoubleGene(gaConf, 10, 40);

/ICycles lengths indicators

sampleGenes[2] = new IntegerGene(gaConf,1,5);
sampleGenes|[3] new IntegerGene(gaConf,1,5);
sampleGenes([4] new IntegerGene(gaConf,1,5);
sampleGenes|[5] new IntegerGene(gaConf,1,5);
sampleGenes|[6] new IntegerGene(gaCon f,0,5);
sampleGenes[7] new IntegerGene(gaConf,0,5);
sampleGenes|[8] new IntegerGene(gaConf,0,5);
sampleGenes[9] new IntegerGene(gaConf,0,5);
sampleGenes[10] = new IntegerGene(gaConf,0,5);
sampleGenes[11] = new IntegerGene(gaConf,0,5);
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sampleGenes[12] = new IntegerGene(gaConf,0,5);
sampleGenes[13] = new IntegerGene(gaConf,0,5);
sampleGenes[14] = new IntegerGene(gaConf,0,5);
/lsampleGenes[15] = new IntegerGene(gaConf,0,5);

/ICycles periods (3 periods one of them soaking)

sampleGenes[15] = new IntegerGene(gaConf,1,3);
sampleGenes[16] = new IntegerGene(gaConf,1,3);
sampleGenes[17] = new IntegerGene(gaConf,1,3);

/IRecovery Phase steam injection rate
sampleGenes[18] = new DoubleGene(gaConf, 10, 40);

IChromosome sampleChromosome = new MyGenericChromosome(gaConf,
chromeSize);
sampleChromosome.setGenes(sampleGenes);

return  sampleChromosome;

}

package mmm.ga.tests;

import  java.io.|OException;
import  java.util.List;

import mmm.cmgAgents.*;

import mmm.ga.MyGenericChromosome;

import mmm.ga.objectiveFunctions.NonLinearProxyObjectiveFunction;
import mmm.sosfr.SosFrPreprossor2;

import  org.jgap.*;

import  org.jgap.impl.DoubleGene;
import  org.jgap.impl.IntegerGene;

import  org.jgap.impl.MutipleIntegerGene;

public class ProxyEvolutionFittestRun3 extends  GenericRunner {
public  ProxyEvolutionFittestRun3(String runTitle, int  evolutions, int
a_sizeOfPopulation, FitnessFunction objectiveFunction) throws  Exception {
super (ru nTitle, evolutions, a_sizeOfPopulation, objectiveFunction);
Configuration gaConf = super . population .getConfiguration();

/IOverride the random population with an old population to avoid
re - running the simulations

population = new
Genotype(gaConf, getlnitiaINAOPopulation (gaConf, "ex3_good_62cases.txt" ));
}
@Override
public  void run() throws Exception {
System. out .printin( "Evolution Start \'t* + evolutions +

"\ tevoluions"  );
System. out .println();
System. out
printin( "Location \tEvolution \tFX\tmaxEN\t" );

System. out .printin( "FileInfo  \tpll \tplinjRate \tRPInjRate \ tAllCyclesLength \tC
yclesCount \tcpl \ tcp2 \ tcp3 \ tCyclesLengths" );

System. out .printin( "ObjValues \ tmoneyRecoveryFactor \tCumSteaminj \tCumsSolinj \
tCumSolProd \ tCumOilPr od\ tRF\ tcSOR\ tiav \ tcost \trevenue \ tgrossProfit" );
long startTime = System. currentTimeMillis 0;
NonLinearProxyObijectiveFunction obj =
(NonLinearProxyObjectiveFunction) objectiveFunction ;

for (int i=0;i< evolutions ;i++) {
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population

msg);

population

"

fittest);

for (IChromosome cl:

.getPopulation().getChromosomes()) {

MyGenericChromosome ¢ = (MyGenericChromosome) c1;

System. out .printin( i = O Vto+i+ M\
+ c.getFitnessValue() + "\t\t" +c)
}
if  (funiqueChromosomes(  population .getPopulation())) {
System. out .printin( "Invalid state in generation
) .
if  (monitor = null ){
List<String> messages = population .evolve( monitor );
if (messages.size() > 0) {
for (String msg : messages) {
System. out .prin tin( "Monitor: \t" +i+
}
} else {

population .evolve();

MyGenericChromosome fittest = (MyGenericChromosome)

.getFittestChromosome();

System. out .printin( "Currently fittest Chromosome " +i+
+ fittest.getFitnessValue() + "\t o+
long simStartTime = System. currentTimeMillis 0;

double actualFitnessValue =

obj.performActualEvaluation(fittest);

long simEndTime = System.  currentTimeMillis 0;
if  (fittest.isError())
System. out .printin( "ACTUAL_EVAL_ERROR" +i+ "\t"

+ actualFitnessValue + "\ "+ fittest
+ "\t +(simEndTime - simStartTime)
+ "\tms\t" );
else {
System. out .printin( "ACTUAL_EVAL_NEW" +i+ "\t"
+ actualFitnessValue + "\t" +fittest
+ "\t +(simEndTime - simStartTime)
+ "\tms\t" );

"\ tminutes"

);

obj.getProxy().addTrial(fittest.getGenesValues(),
actualFitnessValue);

/I IAfter adding new cases Proxy updating
obj.getProxy().loadDynamicData();
try {

obj.getPro  xy().calculateNonLinearModel();
} catch (Exception e){
e.printStackTrace();

}
}
}
long endTime = System.  currentTimeMillis 0;
System. out .printin( "\ n\ nTotal evolution time: \t
+ ((endTime - startTime) / (1000 * 60)) +

/I Print summary.
e
MyGenericChromosome fittest = (MyGenericChromosome) population
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.getFittestChromosome();

System. out .printin( "Fittest Chromosome \'tro+
fittest.getFitnessValue()
+ "\ t" +fittest);
/ldouble[] g = fittest.g etGenesValues();

double actualfitnessValue = obj.performActualEvaluation(fittest);

System. out .printin( "Currently Fittest Chromosome Actual Values
+ actualfitnessValue + "\t +fittest +
Time"
+ fittest.getGenericModelResult().getLastTime());
}
/**
* args
* Exception
*/
public  static void main(String[] args) throws  Exception {
String simulatorPath = "C:/Program Files
(x86)/ICMG/STARS/2010.11/Win_x64/EXE/st201011.exe" ;
String workDirectoryPath = "C: \\ algosayir \\runs_files
String resultReportPath = "C:/Program Files

(x86)/CMG/BR/2010.12/Win_x64/EXE/report.exe” :
String baseModelFilePath = workDirectoryPath
+ "\ \ sosfr2.dat" ;

double lastTime = 1264;

Preprossor prep = new SosFrPreprossor2(lastTime);
Postprossor postp = new Postprossor();
SimulatorExecuter sim = new SimulatorExecuter(simulatorPath,

workDirectoryPath, resultReportPath,
baseModelFilePath,lastTime, 3, prep, postp);
System. out .printin(sim);

int  numberOfActualEvalutions = 62;

System. out .printin( "Last time \t"  +lastTime);
NonLinearProxyObjectiveFunction obj = new
NonLinearProxyObjectiveFunction(
sim, numberOfActualEvalutions);

ProxyEvolutionFittestRun3 r = new
ProxyEvolutionFittestRun3( "Experiment 3: Updated Nonlinear Proxy, using O lenght
periods ", 90, 60, obj);

r.run();

"\ tLast

\ t

\\ sosFr \\ 2";
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Appendix2: Objective function evaluation code

This example of a nelinear objective function code, when exclude proxy calling it become for
conventional GA.

package mmm.ga.objectiveFunctions;
import  java.util. ArrayList;

import mmm.cmgAgents.*;
import mmm.ga.*;

import  org.jgap.*;

public  abstract class GenericObjectiveFunction extends FitnessFunction {

[* I** String containing the CVS revision. Read out via reflection! */

/I private final static String CVS_REVISION = "$Revision: 1.6 $";

protected  ArrayList<MyGenericChromosome> listOfEvaluatedChromosomes = new
ArrayList<MyGenericChromosome>();

protected SimulatorExecuter sim ;

public  GenericObjectiveFunction(SimulatorExecuter sim)
throws  Exception {
this .sim =sim;

public  double performActualEvaluation(MyGenericChromosome a_subject)
throws  Exception {
double fitnessValue;
double [] genesValues = a_subject.getGenesValue s();
GenericModelResult r = sim .getGenericModelResults(genesValues);

a_subject.setGenericModelResult(r);
it (r.isError()) {
fitnessValue = 1e - 300;
} else {
fitnessValue = calculateFitness(r);
}

return  fitnessValue;

}

protected double calculateFitness(GenericModelResult r) {
int steamCost = 18;
int  solventCost = 1000;
int  oilPrice = 504;
int  million = 1000000;

double CumSteamlnj = r.getLastLineValues()[1];
double CumSolinj = r.getLastLineValues()[2];
double CumSolProd = r.getLastLineValues()[3];
double CumOilProd = r.getLastLineValues()[4];
double RF =r.getLastLineValues()[5];

double cSOR =r.getLastLineValues()[6];

double iav =r.getN() * oilPrice / million;

double cost = (CumSteaminj * steamCos t + CumsSolinj * solventCost)
/ million;

double revenue = (CumOilProd * oilPrice + CumSolProd * solventCost)
/ million;

double grossProfit = revenue - cost;

double moneyRecoveryFactor = (grossProfit / iav) * 100;

System. out .printin( "ObjValues \t" +moneyRecoveryFactor+ "\t" +CumSteaminj+ "\t" +
CumsSolinj+ "\ t* +CumSolProd+ "\ t* +CumOQilProd+ "\ t"



+RF+'\ t" +cSOR+ \ t" +iav+ "\ t" +cost+ "\t" +revenue+ "\t" +grossProfit);
if (moneyRecoveryFactor<0)
moneyRecoveryFactor=0;

return  moneyRecoveryFacto r;

}
package mmm.ga.objectiveFunctions;
import  java.util. ArrayList;

import mmm.cmgAgents.*;

import mmm.ga.*;

import mmm.responseSurfaceProxy.ResponseSurfaceProxy;
import mmm.responseSurfaceProxy.ResponseSurfaceProxyJama;

import  org.jgap.*;

public  class NonLinearProxyObjectiveFunction extends  GenericObjectiveFunction {

[** String containing the CVS revision. Read out via reflection! */

/I private final static String CVS_REVISION = "$Revision: 1.6 $";

private  ArrayList<MyGenericChromosome> listOfE valuatedChromosomes = new
ArrayList<MyGenericChromosome>();

private  ResponseSurfaceProxy p;

private int  numberOfAcutalEvaluation ;

private  int actualEvaluationCount ;

public  NonLinearProxyObjectiveFunction(SimulatorExecuter sim, int
numberOfAcutalEvaluation) throws  Exception {
super (sim);
this . numberOfAcutalEvaluation = numberOfAcutalEvaluation;
this . actualEvaluationCount =0;

this . p = new ResponseSurfaceProxyJama();

public  double evaluate(IChromosome c) {
MyGenericCh romosome a_subject = (MyGenericChromosome) c;

int  evolution = a_subject.getConfiguration().getGenerationNr();
double fitnessValue = 1le - 300;
double [] genesValues = a_subject.getGenesValues();

if  (listOfEvaluatedChromosomes .contains(a_subject)) {
MyGenericChromosome cc = listOfEvaluatedChromosomes
.get( listOfEvaluatedChromosomes .indexOf(a_subject));

if  (cc.isError())

System. out .printin( "evaluateEOLD \t" + evolution +

"
+ fitnessValue + "\'t" +a_subject);

else {

a_subjec t.setGenericModelResult(cc.getGenericModelResult());
fitnessValue =
calculateFitness(cc.getGenericModelResult());

System. out .printin( "evaluateOLD \t" + evolution +
N
+ fitnessValue + "\'t" + a_subject);

return  fitnessValue;
} else {

long startTime = System. currentTimeMillis 0;

if  (actualEvaluationCount < numberOfAcutalEvaluation ) {
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try {
fitnessValue =
performActualEvaluation(a_subject);
long endTime = System.  currentTimeMillis 0;
if  (a_subject.isError())

System. out .printin( "evaluateERROR \ t"
+ evolution + "\t* +fitnessValue + "\t +a_subject + "\'t* +(endTime -
startTime) + "\tms\t" );

else {

p.addTrial(genesValues,
fitnessValue);

System. out .printin( "evaluateNEW \t" +
evolution + "\'t" +fithessValue + "\'t" +a_subject + "\'t" +(endTime - startTime)
+ "\tms\t");

listOfEvaluatedChromosomes .add(a_subject);
actualEvaluationCount ++;

return  fitnessValue;

} catch (Exception e) {
e.printStackTrace();
return -1;

}
} else if (actualEvaluationCount ==

numberOfAcutalEvaluation ){
/I initialize and use the proxy
p.calculateNonLinearModel();
fitnessValue = p.getNonLinearResponse(genesValues);
long endTime = System. currentTimeMillis 0;
actualEvaluationCount ++; // Just to stop
recalculating the proxy
if  (fitnessValue < 0) {

fitnessValue = 1e - 300;

System. out .printin( "evaluateProxyNLErr ‘'t +
evolution + "\t" +fitnessValue + "\'t" +a_subject + "\t" +(endTime - startTime)
+ "\tms\t");

} else {

System. out .printin( "evaluateProxyNL  \t" +
evolution + "\'t" +fithessValue + "\'t" +a_subject + "\'t" +(endTime - startTime)
+ "\tms\t" );

return  fitnessValue;
} else { /lusethe proxy
fitnessValue = p.getNonLinearResponse(genesValues);
long endTime = System.  currentTimeMillis 0;
if  (fitnessValue < 0) {

fitnessValue = 1e - 300;

System. out .printin( "evaluateProxyNLErr 't o+
evolution + "\t* +fitnessValue + "\t +a_subject + "\'t* +(endTime - startTime)
+ "\tms\t" );

} else {

System. out .printin( "evaluateProxyNL  \t" +
evolution + "\t* +fitnessValue + "\t +a_subject + "\'t* +(endTime - startTime)
+ "\tms\t" );

return  fitnessValue;
}
}
}
public  ResponseSurfaceProxy getProxy() {
return  p;
}



87

Appendix3: CMG Agents Package

package mmm.cmgAgents;
import  java.io.*;

public  abstract class Preprossor {

/**
* Copy from baseFile to generatedFile until searchText is found
* br
* bw
* searchText
* last line found
* IOException
*/
protected String copyUntil(BufferedReader br, BufferedWriter bw,
String searchText) throws  IOException {
String currentRecord;
while ( (currentRecord = br.readLine()) != null X

if (searchText'= null &&
currentRecord.trim().toUpperCase().contains(searchText) {
break ;

else {
bw.write(currentRecord);
bw.newLine();

}
}
return  currentRecord;
}
protected  void copyUntilEnd(BufferedReader br, BufferedWriter bw) throws
IOException{
copyUntil(br, bw, null );
}
protected boolean checkFile Availability(String filePath, boolean
isTighterModel) throws  |IOException {
/lif the file exist don't regenerate it
File gf = new File(filePath);

if (isTighterModel){
if (gf.exists())
if (isFileContians(filePath, "CONVERGE TOTRESTIGHTER"))
return  true ;

else
return  false ;
else
return  false ;
} else {
return  gf.exists();
}
}

protected boolean isFileContians(String filePath, String searchString)
throws  IOException {

FileReader fr = new FileReader(filePath);

BufferedReader br = new BufferedReader(fr);

String currentRecord;

while ((currentRecord = br.readLine()) != null X
if (
currentRecord.trim().toUpperCase().contains(searchString .trim().toUpperCase()) §
br.close();

return true ;
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}
br.close();
return false ;
}
protected String getGeneratedFileName(String baseFilePath, double []

newValues) {
String valuesText = ;
for (double g :newValues){

valuesText += "t o+g;
}
String generatedFilePath = baseFilePath.replace( ".dat" , valuesText+
return  generatedFilePath;
}
/**

* Implement this method to Generate new model file based on baseFilePa
using algorithm generated values newValues
*

* Example implementation:
* <code> String generatedFilePath =
getGeneratedFileName(baseFilePath,newValues);
<p>
if(checkFileAvailability(generatedFilePath, isTighterModel))
return genera  tedFilePath;
<p>
BufferedReader br =new BufferedReader(new FileReader(baseFilePath));
<p>
BufferedWriter bw = new BufferedWriter(new FileWriter(generatedFilePath));
<p>
String searchText = "PERMI ALL";
<p>String  currentRecord = copyUntil( br, bw, searchText);

<p>bw.write(currentRecord);
<p>bw.newLine();

<p>if (isTighterModel) {

<p> searchText = "NUMERICAL";
<p> currentRecord = copyUntil( br, bw, searchText);
<p> bw.write(currentRecord);
<p> bw.newLine();
<p> bw.write("CONVERGE TOTRES TIGHTER");
<p> bw.newLine();
<p>}
<p>currentRecord = copyUntil( br, bw, "OPERATE");
<p>//Replace number
<p>currentRecord=currentRecord.replaceAll("[0 SOV VLV R -

newValues[0]+"");
<p>bw.write(currentRecord);
<p>bw.newLine();

<p>copyUntilEnd(  br, bw),
<p>br.close();
<p>bw.close();

<p>return generatedFilePa th;
</code>

*  @param baseFilePath

*  @param newValues

*  @param isTighterModel

* @return generated file path

* @throws Exception

*

".dat"

th

);
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public  abstract String generateModelFile(String baseFilePath, double []

newValues, boolean isTighterModel) throws  Exception;
}

package mmm.sosfr;

import  java.io.*;

import mmm.cmgAgents.Preprossor;

public  class SosFrPreprossor extends  Preprossor {
private double lastTime

public  SosFrPreprossor(  double lastTime) {

this . lastTime = lastTime;
}
/**
* args
* IOException
*
private  void generateRUNSection(BufferedWriter bw, double [] newValues,

double lastTime) throws  |OException {
double pll = newValues|[0];
double plinjRate = newValues[1];
double rpInjRate = newValues[18];

int  p2l=175; /ffix this

int  p3l=6; /ffix this

int  pSlLastP = 198; /[fix this

double allCyclesPeriodLenght = lastTime - (pll+p2l+p3I+p5iLastP);
/[To optimize this create 13 length indicators

/IFive of them multiple integer [1 - 5]

/IR emaining [0 - 5]

int  numberOfCycles = 0; /ITO BE OPTIMIZED

int  sumCyclesLenghtindicators = 0;

for (int 1=2;i<15;i++){
if  (newValues[i]>0) {
numberOfCycles++;

sumCyclesLenghtindicators += newValuesi];

double [] cyclesLength = new double [numberOfCycles];

int  currentCycle = 0;
String cyclesLenghtinfo = "
for (int i=2;i<15;i++){
if  (newValues[i]>0) {
cyclesLength[currentCycle] =
(newValues]i]/sumCyclesLenghtindicators)*allCyclesPeriodLenght;
cyclesLenghtinfo += cyclesLength[currentCycle]
+\
currentCycle++;

}

/I3 lenght indicator [1 - 4]
double cyclesLengthindicatorsTotal = newValues[15] + newValues[16]

+ newValues[17];
double cpllengthFraction =
newValues[15]/cyclesLengthindicatorsTotal;
double cp2lengthFraction =
newValues[16]/cyclesLengthindicatorsTotal;
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double cp3lengthFraction =
newValues[17]/cyclesLengthindicatorsTotal;

bWerte( Whkkkkkkkkkkkkkkkkkk START OF PHASE l kkkkkkkkkkkkkkkkkk \ n" ),
bw.newLine();

BufferedReader br = new BufferedReader( new FileReader( "pl.txt" ));
String currentRecord = copyUntil(br, bw, "OPERATE MAX STW");
currentRecord=currentRecord.replaceAll( B R R R R R T A R L

plinjRate+ ™ );
bw.write(currentRecord);
bw.newLine();
copyUntilEnd(br, bw);
br.close();

bw.newLine();

for (int i=l;i<=pll;i++){
bw.write( "TIME " +i);
bw.newLine();

}

bwwnte( "\ n****************** START OF PHASE 2 K*kkkkkkkkkkkkkkkkk \ nn )1
bw.newLine();

br=new BufferedReader( new FileReader( "p2.txt" ));

copyU ntilEnd(br, bw);

br.close();

bw.newLine();

for (int i=1;i<=p2li++){
bw.write(  "TIME" +(i+p1l));
bw.newLine();

}

bWWnte( ”\ n\ n****************** START OF PHASE 3 K*kkkkkkkkkkkkkkkkk \ nn )7
bw.newLine();
bw.write( "SHUTIN 'Well -1" );
bw.newLine();
for (int i=1;i<=p3l;i++){
bw.write(  "TIME" +(i+pll+p2l));
bw.newLine();

}
double currentCycleStartTime = pll+p2l+p3l;

String cyclesPeriodsLengthinfo = "
for (int i=0; iknumberOfCycles; i++){
/ICycles periods (3 periods one of them soaking)

double cpll = cyclesLengthli]*cpllengthFraction; /ITO BE OPTIMIZED
double cp2l = cyclesLength[i]*cp2lengthFraction; /ITO BE OPTIMIZED
double cp3l = cyclesLength[i]*cp3lengthFraction; /ITO BE OPTIMIZED
cyclesPeriodsLengthinfo += cpll + "\t +cp2l+ "\t +cp3l+ "\t

bw.newLine();
bw.write( "**C" +(i +1));
bw.newLine();

if (i==0){
bw.write( "\ n** PERIOD 1 INITIAL ** \n");
bw.newLine();
br=new BufferedReader( new FileReader( "cpli.txt" );
copyUntilEnd(br, bw);
br.close();
bw.newLine();

} else {
bw.write( "\ n* PERIOD 1** \n");
bw.newLine();
bw.write(  "TIME" +(currentCycleStartTime));
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}

bw.write(

bw.newL|
bw.write(
bw.newL

currentRecord = copyUntil(br, bw,
currentRecord=currentRecord.replaceAll(

rpinjRate+ ™ );
bw.write(
bw.newL|

bw.newLine();

bw.write( "shutin 'Well -3");
bw.newLine();
bw.write(  "open 'Well -1 );

bw.newLine();

bw.write( "\ n* PERIOD 2** \n");
bw.newLine();

bw.write( "TIME" +(currentCycleStartTime+cpll));

bw.newLine();
bw.write( "sh utin 'Well -1y
bw.newLine();

bw.write( "\ n* PERIOD 3** \n");
bw.newLine();

bw.write( "TIME" +(currentCycleStartTime+cpll+cp2l));

bw.newLine();
bw.write(  "open 'Well -3 );
bw.newLine();

currentCycleStartTime += cpll+cp2l+cp3l;

"\ n****************** START P5 *kkkkkkkkkkkkkkkkk

/IString pSLastP = readFile("p5_lastP.txt"); //read pl

ine();
"TIME" +(currentCycleStartTime));
ine();
br=new BufferedReader( new FileReader(

currentRecord);
ine();

copyUntilEnd(br, bw);
br.close();

bw.newL

for (int

ine();

i=1;i<=p5lLastP;i++)Y{
bw.write(  "TIME" +(i+currentCycleStartTime));
bw.newLine();

\n\n");

"p5_lastP.txt" ));

"OPERATE MAX STW");
O -9\, VLA AN -

br=new BufferedReader( new FileReader( ‘"lastPart.txt" ));

bw.newL

copyUntilEnd(br, bw);
br.close();
ine();

bw.close();

System. out .printin( "Filelnfo  \t" +pll+ "\t" +plinjRate+ "\t" +rplnjRate+ "\t"

"\'t" +cp3lengthFraction+

yclesPeriodLenght+ "\'t" +numberOfCycles
+"\ t" +cpllengthFraction+ "\'t" +cp2lengthFraction+
cyclesLenghtinfo+ "CyclesPeriodsLength \ t* +cyclesPeriodsLengthinfo);
}
@Override
public  String generateModelFile(String baseFilePat

boolean isTighterModel) throws
String generatedFilePath =

getGeneratedFileName(baseFilePath,newValues);

if (checkFileAvailability(generatedFilePath, isTighterModel))

return  generatedFilePath;

h, double [] newValues,
Exception {

+allC

N+
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BufferedReader br = new BufferedReader( new FileReader(baseFilePath));

BufferedWriter bw = new BufferedWriter( new FileWriter(generatedFilePath));
String currentRecord = "
if  (isTighterModel) {

String searchText = "NUMERICAL";

currentRecord = copyUntil(br, bw, searchText);
bw.write(currentRecord);
bw.newLine();
bw.write(  "CONVERGE TOTRES TIGHTER);
bw.newLine();

currentRecord = copyUntil(br, bw, "RUN");
this .generateRUNSection(bw, newValues, lastTime );
br.close();

bw.close();

return  generatedFilePath;

}
}

package mmm.cmgAgents;

public class GenericModelResult {
private  double [] lastLineValues ;
private double N;
private  boolean isError ;

/**

* the lastLineValues

*/

public  double [] getLastLineValues() {
return  lastLineValues ;

}
/**
* lastLineValues the lastLineValues to set
*/
public  void setlLastLineValues( double [] lastLineValues) {
this . lastLineValues = lastLineValues;
}
/**
* lastLineValues the lastLineValues to set
*/
public  void setLastLineValues(String[] lastLineValues) {
this . lastLineValues = new double [lastLineValues. length J;
for (int i=0;i<lastLineValues. length ;i++){
String string = lastLineValues][i];
this . lastLineValues [i] = Double. parseDouble (string);
}
}
/**
* the lastTime
*

public  double getLastTime() {
return  lastLineValues [O];
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/**

* @return then

*/

public  double getN() {
return N,

}

/**

* @param n the n to set

*/

public  void setN( double n){
N =n;

}

/**

* @return  the isError

*/

public  boolean isError() {
return  isError

}
/~k~k
* @param isError the isError to set
*/
public  void setError(  boolean isError) {
this . isError = isError;
}

/* (non - Javadoc )
* @see java.lang.Object#toString()

*/

@Override

public  String toString() {
String s = "
for (double d: lastLineValues ){

s+=d+ "\t';

}
return s+ N,

}

}

package mmm.cmgAgents;
import  java.io.;

public  class SimulatorExecuter {

private  String  simulatorPath  ;
private  String  workDirectoryPath ;
private String  resultReportPath ;
private String  baseModelPath ;
private  int numberOfCores ;

private  boolean useParallelSolver ;
private  Preprossor  preprossor
private  Postprossor  postprossor
private  double lastTime ;

public  SimulatorExecuter(String simulatorPath, String workDirectoryPath,
String resultReportPath,

String baseModelPath, double lastTime, Pr
preprossor, Postprossor postprossor) {
this . simulatorPath = simulatorPath;
this . workDirectoryPath = workDirectoryPath;
this . resultReportPath = resultReportPath;

this . baseModelPath = baseModelPath;
this . numberOfCores =1;

this . useParallelSolver = false ;
this . preprossor = preprossor;

this . postprossor = postprossor;

eprossor
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this . lastTime = lastTime;

}

public  SimulatorExecuter(String simulatorPath, String workDirectoryPath,
String resultReportPath,

String baseModelPath, double lastTime, int  numberOfCores,

Preprossor preprossor, Postprossor postprossor) {

this (simulatorPath, workDirectoryPath, resultReportPath,
baseModelPath, lastTime, preprossor, postprossor);

this . numberOfCores = numberOfCores;

this . useParallelSolver = true;
}
private  void execute(String filePath, int  numberOfCores) {
/I'lF the output file exist it means model executed before!
/I and not repeated in less number of cores because of ERROR
/I No need to repeat execution
String irfFilePath = filePath.replace( "dat" , "irf" ),
File irfFile = new File(irfFilePath);
if  (irfFile.exists() && numberOfCores == this . numberOfCores ) {
return
}
try {
String  line ;
String command = null ;
if  (useParallelSolver ) {
command = "\"™ + simulatorPath + "\ -+
filePath
+ "\" -wd \"™ + workDirectoryPath +
e
+ "-log -doms - parasol" +
numberOfCores + " -wait" ;
} else {
command = "\"™ + simulatorPath + "\ -+
filePath
+ "\" -wd \"™ + workDirectoryPath +
"\"" 4+ "-log"
+ " -wait"
}
/I System.out.printin(command);
Process p = Runtime. getRuntime ().exec(command);
/I p.waitFor();
BufferedReader input = new BufferedReader( new
InputStreamReader(
p.getinputStream()));
while  ((line = input.readLine()) != null ) {
/I System.out.printin(line);
input.close();
} catch (Exception err) {
err.printStackTrace();
}
}
private String executeGenericResultReport(String irfFilePath, int
numberOfCores)  throws Exception {
/I create command file . rwd
String generatedFilePath = irfFilePath.replace( irf" "orwd" );
String baseFileRWDFilePath = baseModelPath .replace( “".dat" , ".rwd" );
String outputFilePath = irfFilePath.replace( irf" , .rwo" );
I'if output is executed before don't repeat it
File of = new File(outputFilePath);
if  (of.exists() && numberOfCores == this . numberOfCores )

return  outputFilePath;

FileReader fr = new FileReader(baseFileRWDFilePath);
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BufferedReader br = new BufferedRe ader(fr);
String currentRecord;

FileWriter fw = new FileWriter(generatedFilePath);
BufferedWriter bw = new BufferedWriter(fw);
while  ((currentRecord = br.readLine()) != null ) {
if  (currentRecord.contains( "*FILES" )){
currentRecord = "*FILES " + irfFilePath +
}

bw.write(currentRecord);
bw.newLine();

}

br.close();
bw.close();

// run command file section

/I generate output file

try {
String command = resultReportPath + " -+
generatedFilePath
+ " \" -0 \"™ +outputFilePath +
Process p = Runtime. getRuntime ().exec(command);
BufferedReader input = new BufferedReader( new
InputStreamReader(

p.getinputStream()));
String  line =" ;
while  ((line = input.readLine()) != null ) {
/I System.out.printin(line);

input.close();
} catch (Exception err) {
err.printStackTrace();

}
return  outputFilePath;
}
public  GenericModelResult getGenericModelResults( double [] values)

throws  Exception {

GenericModelResult r = getGenericModelResults(values,
this . numberOfCores , false );
return = r;
}

private  GenericModelResult getGenericModelResults( double [] values,
numberOfCores,  boolean isTighterModel)
throws  Exception {
GenericModelResult r = new GenericModelResult();

/I create model file
String generatedModelFilePath = null ;
try {
generatedModelFilePath =
preprossor .generateModelFile( baseModelPath , values, isTighterModel);
} catch (IncorrectModelFileException ex){

String genesV  aluesText = ;

for (double g:values)y
genesValuesText += g+ "\t

generatedModelFilePath =
preprossor .getGeneratedFileName( baseModelPath , values);

AN

int
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File f= new File(generatedModelFilePath);
f.delete();

System. out .printin( "EXCEPTION\ t" +ex.getMessage()+ "; Unable
to generate a model for \t* +genesValuesText);

r.setError( true );

return  r;
}
/I execute generated model file
execute(generatedModelFilePath, numberOfCores);

I get result -~ result report
String  irfFilePath = generatedModelFilePath.replace( "dat"
i)
String generatedOutputFilePath = executeGenericResultReport(
irfFilePath, numberOfCores);
String]] lastLineValues = postprossor  .getLastLine(
generatedOutputFilePath, "\t );
r.set LastLineValues(lastLineValues);
String outFilePath = generatedModelFilePath.replace( ".dat" ,
"out" );
r.setN( postprossor .getlnitialOilinPlace(outFilePath));
if  (r.getLastTime() != lastTime ) {
if  (isTighterModel && numberOfCores == 1){
r.setError( true );
} else if (numberOfCores ==1) {
r = getGenericModelResults(values, numberOfCores,
true );

if  (r.getLastTime() != lastTime )
r.setError( true );

} else {
r = getGenericModelResults(values, numberOfCores/2,
isTigh terModel);

}

return  r;

/*
*(non - Javadoc )

*

* @see java.lang.Object#toString()

*/
@Override
public  String toString() {
return  "SimulatorExecuter \ nsimulatorPath= \t* + simulatorPath
+ "\ nworkDirectoryPath= \t* + workDirectoryPath
+ "\ nresultReportPath= \t* + resultReportPath

+ "\ nbaseModelPath= \t" + baseModelPath +
"\ tPreprossor= \t"

}
}

package mmm.cmgAgents;

+ preprossor

import  java.io.*;
import  java.util.regex.Matcher;
import  java.util.regex.Pattern;

public  class Postprossor {
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public  String[] getLastLine(String filePath, String delimiter) throws
Exception {
FileReader fr = new FileReader(filePath);
BufferedReader br = new BufferedReader(fr);

}

String  currentRecord,;
String lastRecord =

while ((currentRecord = br.readLine()) != null )
lastRecord = currentRecord;

br.close();
return  lastRecord.split(delimiter);

public  double getlnitialOilinPlace(String filePath) throws  Exception {

FileReader fr = new FileReader(filePath);
BufferedReader br = new BufferedReader(fr);
String currentRecord;

boolean initialComponentinPlaceSectionFound= false ;
double initialOillnPlace = -1;

while ((currentRecord = br.readLine()) != null
if (currentRecord.contains( "TOTAL INITIAL COMPONENTS IN PLACE"
initialComponentinPlaceSectionFound = true ;

if (initialComponentinPlaceSectionFound &&

currentRecord.toUpperCase().contains( "OIL" )
String scPattern = [0 -9\ VAR - JH)([Ee]0 SO VANV

Pattern p = Pattern. compile (scPattern);

Matcher m = p.matcher(currentRecord);

if  (m.find()) {
initialOillnPlace = Double. parseDouble (m.group());
br.close();
return  initialOillnPlace;

}

br.close();
return initialQillnPlace;

)
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Appendix4: Response surface proxy package

package mmm.responseSurfaceProxy;

import  java.util.Hashtable;
public  abstract class ResponseSurfaceProxy {
protected Hashtable< double [], Double> userValuesList  ;

public  ResponseSurfaceProxy() {
userValuesList = new Hashtable< double [], Double>();
}

public  abstract double getLinearResponse(  double u[]);
public  abstract  double getNonLinearResponse(  double [] useru);
public  abstract  void calculateLinearModel();

public  abstract void calculateNonLinearModel();

public  abstract void loadDynamicData();

public  void addTrial( double [] uValues, double jValue){
if (! userValuesList .containsKey(uValues))
userValuesList .put(uValues, jValue);

}
package mmm.responseSurfaceProxy;

import  java.io.*;
import  java.util.Hashtable;

import  Jama.*;
public class ResponseSurfaceProxyJama extends ResponseSurfaceProxy {
private  Matrix  Ulinear ;
private  Matrix  UNonlinear ;
private Matrix  J;
private Matrix ~ BetalLinear ;
private  Matrix BetaNonLinear ;

public  ResponseSurfaceProxyJama(String UfilePath, String JfilePath) throws
FileNotFoundException, IOException{
Matrix userMatrixU = Matrix. read (new BufferedReader( new
FileReader(UfilePath)));

Ulinear =getU FromUserMatrix(userMatrixU);

J =Matrix. read (new BufferedReader( new FileReader(JfilePath)));
}
public  ResponseSurfaceProxyJama() {

userValuesList = new Hashtable< double [], Double>();
}
public  double getLinearResponse(  double u[]){

Matrix U = new Matrix(1, u. length +1);

for (int i=0;i<u. length  +1; i++) {

if (i==0)
U.set(0,i, 1);
else
U.set(0,i, ufi - 1));

b .

Matrix r = getLinearResponse(U);

return  r.get(0, 0);
}
/**
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*
private Matrix getLinearResponse(Matrix U) {
Matrix r = U.times( BetaLinear );
return  r;

}

public  double getNonLinearResponse(  double [] useru) {

double ]

du = new double

[useru. length +1];

double [] unl = getNonLinearDs(useru);
new Matrix(unl, 1);
Matrix r = getNonLinearResponse(u);
return  r.get(0, 0);

Matrix u =

}

private Matrix getNonLinearResponse(Matrix U) {
Matrix r = U.times( BetaNonLinear );
return  r;

}

private  Matrix getUFromUserMatrix(Matrix userMatrixU) {

double [][] uma

Matrix u = new Matrix(uma.
for (int i=0;i<uma.
for (int j=0;j<u
it (==0){
u.
} else {
u.
}
}
}
return  u;

}

public  void calculateLinearModel(){
if (Ulinear ==null && J==null ¥

}

loadDynamicData();

BetaLinear = calculateBeta(

i {

Math. pow(summation, 0.5) );

}

System. out .printin(
/lprint Y' values of

= userMatrixU.getArray();

length ,umal0]. length +1);

length ; i++) {

mali]. length +1; j++) {

set(i, j, 1);

set(i, j, umalilfj

Ulinear , J);

"JandU \ t \ tActual J
initial data

Matrix r = getLinearResponse( Ulinear
double [] rd = r.getColumnPackedCopy();
J.getColumnPackedCopy();

double [] actuald =

double summation = 0;

for (int i=0;i<

System. out .print(

-1]);

\ tProxy J

);

\ tUs" );

Ulinear .getRowDimension(); i++) {

System. out .print( "\ t* +rd[i]);
double dY1 = actualJ[i] - rd[i];
summation += Math.  pow(dY1,2);

for (int

System. out .print(

}

j=0;j< Ulinear

System. out .println();

}

System. out .printin(

"Linear Proxy L2[E]="

public  void calculateNonLinearModel(){
if (Ulinear ==null && J==null ¥

}

loadDynamicData();

calculateNonLinearU();
inear = calculateBeta( UNonlinear ,

BetaNonL

"JandU \ t\ t"

+actualJ[i]);

.getColumnDimension();

"\ t" +Ulinear

J);

-get(i, ));
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double [b= BetaNonLinear .getColumnPackedCopy();
for (double d:b){

System. out .printin( "Beta \t\t" +d);
}

System. out .printin( "JandU \ t\ tActual J \tProxyJ \tUs");

/lprint Y values of initial data

Matrix r = getNonLinearResponse(  UNonlinear );

double [] rd = r.getColumnPackedCopy();

double [] actuald = J.getColumnPackedCopy();

double  summation = 0;

for (int i=0;i< UNonlinear .getRowDimension(); i++) {
System. out .print(  "JandU \ t\ t" +actualJ[i]);
System. out .print(  "\t" +rd[i]);
double dY1 = actualJ[i] - rd[i];
summation += Math.  pow(dY1,2);

for (int j=0;j< UNonlinear .getColumnDimension(); j++) {
System. out .print(  "\t" +UNonlinear .get(, j));
}
System. out .printin();
}
System. out .printin( "Nonlinear Proxy L2[E]=" + Math. pow(summation,
0.5));
/**
*
*/
public  void loadDynamicData() {
/Ithis means dynamic way is used
Matrix userMatrixU = null ;
int currentCase = 0;
for (double [Ju: userValuesList keySet()) {
double response =  userValuesList .get(u);
if (userMatrixU == null X
userMatrixU = new
Matrix( userValuesList .size(),u. length );
J = new Matrix( userValuesList .size(), 1);
}
for (int j=0;j<u. length ; j++) {
userMatrixU.set(currentCase, j, u[j]);
}
J.set(currentCase, 0, response);
currentCase++;
}
Ulinear = getUFromUserMatrix(userMatrixU);
}
/**
U is the x or u values vector
* Jis the y orj or the response vector
*
*

private Matrix calculateBeta(Matrix U, Matrix J) {
if (U.getColumnDimension()<J.getRowDimension()){
/IOver - determined
/INull space of U =0

//U'U non - singular positive - definite matrix: (U'U)™ -1 exists
IIM<N -- U data less than J data
/1B = U un -1.U0.3

Matrix AA = U.transpose().times(U).inverse();
Matrix BB = U.transpose().times(J);
Matrix Beta = AA.times(BB);
return  Beta;
} else {
/lUnder - determined
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/Irank of U =N
/INull space of U >0

//lUU" non - singular positive - definite matrix: (GG)" - 1 exists
/IM>N
IB=U".(U.U)M -1.3

Matrix AA = U.times(U.transpose()).inverse();
Matrix BB = U.transpose().times(AA);

Matrix Beta = BB.times(J);

return  Beta;

}
}
private  void calculateNonLinearU() {
Matrix subUL = Ulinear .getMatrix(0, Ulinear .getRowDimension() -1,1,
Ulinear .getColumnDimension() - 1);
double [][] u = subUL.getArray();
double [][] nonLinearU = new double [u. length ][];
for (int i=0;i<u. length ; i++) {
nonLinearU[i] = getNonLinearDs(u[i]);
}
UNonlinear = new Matrix(nonLinearU);
}

private  double [] getNonLinearDs( double [} ds){
int  countOfUUs=0;

for (int i=1;i<ds. length  +1; i++) {
for (int jj=1;jj<ds. length +1; jj++) {
it (i<ii}{
countOfUUs++;
/ISystem.out.print(" \tU"+i+"U"+ i),
}
}
double [] nonLinearDs = new double [ds. length *2+countOfUUs+1];

int  indexOfUUs=0;
nonLinearDs[0]=1;

for (int i=1;i<ds. length  +1; i++) {
nonLinearDs[i]=ds[i -1];
nonLinearDs[i+ds. length ]=ds[i -1]*ds[i -1J;
for (int jj=1;jj<ds. length  +1; jj++) {
if (i<ji{
indexOfUUs++;
nonLinearDs[ds.  length *2+indexOfUUs]=ds]i -
1Pdsfij - 1];
}
}
}
return  nonLinearDs;
}
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Appendix 5:

NOA reading package

public  static
Jama.Matrix m = Matrix. read (new BufferedReader( new
FileReader(filePath)));

return

public  static
throws  InvalidConfigurationException, IOException {

String filePath)

30 days

MutipleIntegerGene(

double ][] getNOAArray (String filePath) throws

m.getArray();

Population getlnitiaINAOPopulation(Configuration config,

Population p = new Population(config);
double [][Jd = getNOAArray (filePath);
for (int i=0;i<d. length ; i++){

Gene[] garr = new Gene[d[i]. length 1;

/I Heating Phase length: multiple integer [60

/I level length

garr[0] = new MutipleIntegerGene(config, 60, 790, 30);
/I Heating Phase steam injection rate

garr[1] = new DoubleGene(config, 10, 40);

/I Cycles lengths indicators

garr[2] = new IntegerGene(config, 1, 5);

garr[3] = new IntegerGene(config, 1, 5);

garr[4] = new IntegerGene(config, 1, 5);

garr[5] = new IntegerGene(config, 1, 5);

garr[6] = new | ntegerGene(config, 0, 5);

garr[7] = new IntegerGene(config, 0, 5);

garr[8] = new IntegerGene(config, 0, 5);

garr[9] = new IntegerGene(config, 0, 5);

garr[10] = new IntegerGene(config, 0, 5);
garr[11] = new IntegerGene(config, 0, 5);

garr[ 12]= new IntegerGene(config, 0, 5);
garr[13] = new IntegerGene(config, 0, 5);
garr[14] = new IntegerGene(config, 0, 5);

/I garr [15] = new IntegerGene( config ,0,5);

/I Cycles periods (3 periods one of them soaking)
garr[15] = new IntegerGene(config, 1, 3);
garr[16] = new IntegerGene(config, 1, 3);

garr[17] new IntegerGene(config, 1, 3);

/I Recovery Phase steam injection rate

garr[18] = new DoubleGene(config, 10, 40);
for (int j=0;j<d[]. length ; j++) {

Il garr [j] = new

config ,a_lowerBound,a_upperBound,a_significance);

if (==1|| j==18) N
double v =d[i][j];
garr[j].setAllele(v);
} else {
int v=( int )[lfl;
garr[j].setAllele(v);
}
}

IChromosome c =  new MyGenericChromosome(config,garr.
c.setGenes(garr);
p.addChromosome(c);

return

p;

IOException {

- 790] days with

length



