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Abstract 

Heavy oil and bitumen recovery processes need to be optimized in order to increase the recovery, 

reduce costs, and minimize the environment impact. Most of the optimization studies published in 

petroleum engineering literature focus on a few design parameters by combining the elements of 

numerical flow simulation with graphical or analytical techniques. Limited efforts, particularly in 

the areas of enhanced heavy oil recovery design, combine global optimization techniques with 

flow simulation to achieve better performance and design. The challenge remains because of high 

computational costs and slow convergence efficiency of the algorithms. In this research, genetic 

algorithm and simulated annealing are considered first as a single optimization technique.  Then, 

the hybridization of these with the orthogonal arrays and response surface proxy techniques are 

tested.  Savings up to 85% on the execution time are obtained for steam and solvent applications in 

oilsands and fractured carbonates. 
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Chapter 1: Introduction  

Unconventional resources such as oil sands, heavy oil, coal-to-liquids, biofuels, gas-to-liquids, and 

shale oil rise on average by 4.6 percent per year over the coming 25 years. Canadian oil sands are 

the largest components of future unconventional production, which is about 4.8 million barrel per 

day (Conti and Holtberg 2011). Although there is an increase on unconventional resources 

production, still it faces production development difficulties such as high cost, complex processes, 

and environmental concerns. Canadian oil reserves, including oil sands, are about 175 billion 

barrels, (Conti and Holtberg 2011); however, the development difficulties limit the projects and 

investments. Higher recovery, lower cost, and less environmental impact can be achieved by better 

recovery processes design.  

Global optimization techniques are useful tools for process optimization and design in various 

petroleum engineering disciplines. One of the drawbacks, however, is that these techniques, such 

as genetic algorithm and simulated annealing, have very slow computation time because they have 

to evaluate large numbers of models to reach the optimum.   

This research focus on optimizing heavy oil and bitumen recovery processes,  SAGD, ES-SAGD, 

heterogeneous ES-SAGD, and thermal recovery process in fractured reservoirs SOS-FR, using 

global optimization techniques as well as hybrid algorithms to enhance the process efficiency with 

minimal computation overburden. The solution methodology applied in this research is elaborated 

in Chapter 3.  

Selecting an efficient algorithm is an important step toward achieving the best outcome in terms of 

accuracy and computation efficiency. Chapter 4 address this by comparing the performance of 

genetic algorithm and simulated annealing for SAGD and solvent additive SAGD optimization. 

The objective function was defined to obtain the lowest cumulative steam-oil ratio (cSOR) and 

highest recovery factor. It was used later as scoring function by changing operating pressure, 

solvent-to-steam ratio, and steam injection rates. The results in this chapter can be implemented 

directly in the efforts of minimization of cost and environmental impacts while accelerating the 

recovery in SAGD.  

Having an efficient and robust optimization technique is critical in the design of SAGD or solvent-

additive SAGD processes. Chapter 5 proposes a hybrid strategy that combines the elements of 

experimental design, response surface proxy, and genetic algorithm to investigate the effects of 

heterogeneity in the design process; optimization of solvent-assisted SAGD was performed on 

various synthetic heterogeneous reservoir models of varying porosity, permeability, and shale 

distributions. Computational time associated with flow simulations of heterogeneous reservoirs 

typically render most global optimization schemes rather challenging. It is shown that the 

proposed implementation of hybrid techniques can greatly enhance the proxy model predictability 
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and computational efficiency. Hexane was co-injected with steam. The objective function, defined 

based on cumulative steam-oil ratio (cSOR) and recovery factor, was optimized by changing 

injection pressures, production pressures, and injected solvent-to-steam ratio. The results from 

these hybrid approaches revealed that an optimized solution could be achieved with less CPU time 

(e.g. fewer number of full flow simulation) compared to the conventional GA method. Sensitivity 

analysis was also conducted on the choice of proxy model to study the robustness of the proposed 

methods. Our results highlight the potential application of the proposed techniques in other 

solvent-enhanced heavy oil recovery processes. 

Chapter 6 focuses on optimizing Steam-Over-Solvent Injection for Fractured Reservoirs (SOS-FR) 

process using a hybrid technique applied in Chapter 5. The complexity of the process suggests that 

our objective function, defined by the money recovery factor, can be increased significantly by 

adjusting the steam and solvent usage and their injection profiles.  

As this is a paper-based thesis, each chapter contains its own literature review, conclusion and 

references. The major contributions of this research are highlighted in Chapter 7. 

 

Nomenclature 

ES-SAGD: Expanded solvent steam assisted gravity drainage thermal recovery process also 

known as solvent additive SAGD. 

GA: Genetic Algorithm. 

NOA: Nearly-Orthogonal Array. 

OA: Orthogonal Array. 

SAGD: Steam assisted gravity drainage thermal recovery process. 

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs. 

 

References 

Conti J., and Holtberg P. 2011. International Energy Outlook 2011. A report published in U.S. Energy 

Information Administration. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf 
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Chapter 2: Problem Statement & Research 
Objectives 

In order to reach the ultimate heavy oil and bitumen recovery with minimal cost, efficient and 

optimized design for recovery processes operation strategies is necessary. Despite huge amount of 

heavy oil and bitumen reserves around the world, the production is limited due to the production 

development difficulties such as high cost, complex processes, and environmental concerns. Many 

design and performance evaluation studies published in the literature combine numerical 

simulation with graphical or analytical techniques; however, only few design elements are handled 

due to the difficulties of handling large number of factors. Because of high computation 

requirements, limited attention that integrated the simulation exercise with global optimization 

algorithms has been paid to handle more design elements. Without efficient and optimized 

recovery process design, the ultimate recovery from unconventional resources will not be 

achieved, or it could be achieved with great cost and large environmental impact. Thus, this 

research studies how global optimization techniques can be enhanced and upgraded to be a robust 

tool for the design and performance evaluation of unconventional recovery processes.   

The objective of this research is to develop an approach that combines the techniques of 

experimental design, proxy models, and global optimization for the design of key process elements 

in the thermal/solvent methods. It is well known that computing costs associated with flow 

simulation of complex recovery processes (solvent and steam injection) in heterogeneous 

reservoirs can pose significant challenges on the optimization procedure. The use of hybrid 

techniques, as implemented in this thesis, aims to minimize the computational costs and to 

improve the solution accuracy. 

 

  



4 

Chapter 3: Solution Methodology 

There are many techniques (either heuristic or mathematical) available to maximize an objective 

function for non-linear processes (Palke and Horne, 1997). Figure  3-1 presents a classification of 

these techniques. This chapter aims to provide additional details about the methodologies used in 

the research. 

 

Figure  3-1: Optimization algorithms classification 

 

Global Optimization Techniques 

In optimization algorithms, one needs to start with specifying the effective parameters (and their 

respective ranges of values) to be evaluated. Next, the algorithm proposes various trial solutions, 

and the objective (or scoring) function would be evaluated for each trial solution. This process is 

repeated until specified number of iterations is reached or once certain stopping or convergence 

criteria are met. Figure  3-2 shows the global optimization techniques process schematically.   
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Figure  3-2: Schematic representation of optimization process. 

Genetic Algorithm 

GA is a stochastic search technique based on the principle of ñsurvival of the fittestò (Guyaguler et 

al., 2002; Chen et al., 2010). Figure  3-3 shows the overall optimization process (as similar to 

Figure  3-2) using genetic terminology. Figure  3-4 summarizes the mechanisms of a typical GA 

algorithm. The population or genotype, a partial space solution, is picked initially and modified 

subsequently in each evolution, which is called iteration. In each evolution, the fitness of each 

chromosome, containing genes, is calculated; each gene represents a parameter and each 

chromosome represents a trial. Then, two parents are selected based on their fitness value to create 

an offspring or child by performing crossover, which is simply exchanging genes between parents 

(Figure  3-5). The newly generated offspring is mutated by changing some of its binary digits 

(Figure  3-6). The new offspring is inserted in the new population. 

 

Figure  3-3: Optimization process in genetic algorithm terminology 
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Figure  3-4: Genetic algorithm flow diagram 

 

Figure  3-5: Example of crossover of two parent chromosomes. 

 

Figure  3-6: Example of mutation of a parent chromosome. 

Initial 
ωGenerate an initial population/genotype (each member is called a chromosome) 

Fitness 
ωCalculate the fitness (objective function value) of each chromosome in genotype 

Selection 

ωSelect pairs of parent chromosomes from a population according to their fitness 
(the better fitness, the bigger chance to be selected) 

Crossover 

ωAccording to a crossover probability, parents are combined to form new 
offsprings (children). If no crossover was performed, offsprings are exact copies of 
parents. 

Mutation 

ωAccording to a mutation probability, mutate new offsprings at each locus 
(position in chromosome). 

Accepting 

ωFitness value of new offspring is calculated, and new population is generated by 
discarding chromosomes with low fitness values and replacing them with the 
new offsprings.  
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GA Advantages 

1. GA initiates the search with a population of parameter realizations, instead of a single 

realization. 

2. The used rules are probabilistic rather than deterministic. 

3. It manipulates a chromosome (or string of individual parameters) rather than changing 

each individual parameter.  

4. It uses function evaluations instead of derivatives or other secondary descriptors 

(Bittencourt and Horne, 1997) 

5. It has the ability to be combined with other algorithm in order to avoid suboptimal 

solution. (Guyaguler et al., 2002) 

6. It is easy to be parallelized which is a potential to accelerate the calculation (Guyaguler et 

al., 2002) 

GA Disadvantages 

1. Even though it is good that the initial population is randomly allocated, this may covers 

bad regions. This randomness continues on the generation process, which depends on the 

values of the initial members (Bittencourt and Horne, 1997). 

2. It can be time-consuming to apply GA to complex optimization problem because it 

suffers from potentially low convergence speed (Chen et al., 2010). 

 

GA Accelerators 

To avoid GA drawbacks, several techniques have been studied and chosen in this research. 

Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation 

Techniques from the experimental design literature, namely Orthogonal Array (OA) and Nearly-

Orthogonal Array (NOA), can be implemented with GA to improve the quality of initial 

population (Chen et al., 2010) by generating evenly distributed samples while reducing the 

redundancy between chromosomes. The objective is to design experiments or chromosomes by 

determining the levels at which the parameters should be varied. Instead of testing all 

combinations of parameters at all levels, only the ones containing principal information are 

included. This reduces the population size and the associated computational costs. In this research, 

we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to generate nearly 

orthogonal arrays based on the Taguchi method average and minimax criterion described by Ma 

et. al. (2000) and Lu et. al. (2003). Table  3-1 shows an example where there are 4 runs for 3 

factors with 4, 3, 2 levels, respectively. 

Table  3-1: Nearly orthogonal array example 

Run 
Factors 

Factor 1 Factor 2 Factor 3 

1 2 2 0 
2 3 0 0 
3 1 0 1 
4 0 1 1 
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Proxy Method for Objective Function Evaluation 

As can be seen in Figure  3-3, the fitness function must be evaluated for every chromosome at 

every evolution. In our particular application, evaluation of the fitness function involves 

calculation of the recovery factor, typically obtained from results of a numerical flow simulation. 

Depending on the level of complexity of the processes that are being modeled, each flow 

simulation could take up to days to complete. Hence, the costs of objective function evaluation are 

often the most important computational considerations in any optimization scheme. Proxy 

methods are viable ñcheaperò alternatives that approximate the actual fitness function to enhance 

computing efficiency. The technique implemented in this study was the response surface method. 

Response surface is a relationship between the parameter sets and the corresponding fitness 

function. Once calibrated in the form of regression, it can be used as a proxy for flow simulation 

and allows the fitness function to be evaluated rapidly. In particular, we compared the first-order 

linear model and the second-order (quadratic) non-linear model, as discussed in Myers and 

Montgomery (2002). Equations for the linear and non-linear models are shown in Eqs. 1 and 2, 

respectively, where J is the response (fitness function value), uiôs are the variables (optimization 

parameters), ɓiôs are the regression coefficients, and Ů is an error term. 

ὐ  ό Ễ ό  (1) 

ὐ  ό Ễ ό В ό В В όό  (2) 

The regression equation for both models, if the problem is over-determined, is expressed in Eq. 3: 

 ὟὟ Ὗὐ (3) 

If there are many factors, a U matrix is constructed with fewer experiments than the number of 

unknown parameters, the problem becomes under-determined and Eq. 4 is used: 

 Ὗ Ὗ Ὗ ὐ (4) 
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Proxy Method for Objective Function Evaluation with Periodic Updating 

In order to achieve a better representation of the solution space and regression accuracy, the proxy 

is re-calibrated or updated periodically by performing detailed flow simulation using parameters of 

the chromosome with the highest fitness value and incorporating its simulation result after each 

evolution. This updating step is illustrated in the flow chart as shown in Figure  3-7. 

 

Figure  3-7: Flow diagram for the periodic updating approach where proxy is updated with 

the additional flow simulation results of the fittest chromosomes after each evolution 

 

Initialize population using NOA 

ωfitness calucation using full flow simulations 

Build proxy using initial population 

Create New Population 

ωselection 

ωcrossover 

ωmutation 

ωAccepting 

ωFitness Value calculated using the proxy 

Update proxy 

ωusing full flow simulation of the fittest chromosome 

Stop 

 

Repeated for 

each evolution 
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Simulated Annealing 

Metropolis proposed a search algorithm called simulated annealing (SA), which, at a given 

temperature, finds the equilibrium configuration of a number of atoms. The key benefit of using 

the SA is avoiding local minimum (Gates and Chakrabarty, 2008). Figure  3-8 shows simulated 

annealing flow chart. 

  

Figure  3-8: Simulated annealing one iteration flow chart 
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Research optimization framework 

In this research, we have developed a framework that integrates the previously mentioned 

techniques with CMG STARS, a numerical flow simulation package for thermal recovery process, 

to optimize steam and solvent injection processes. A JGAP runner package is implemented to 

generate an initial population either randomly or using the NOA reader package and customize the 

genetic algorithm configuration, e.g. crossover and mutation rate. After that, JGAP runner calls 

JGAP package to start evolving the evolutions where each chromosome is evaluated using the 

objective function evaluation package. This package calls either the CMG agent package to fully 

execute a scenario or the response surface package to get an estimated value. Figure  3-9 shows the 

framework packages and the interaction within the framework (blue packages) and with external 

software. 

 

Figure  3-9: Optimization framework packages interaction. 

 

JGAP Runner for initialization and executing 

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website: 

http://jgap.sourceforge.net/) for the GA modeling. This package needs to be initialized by 

specifying GA configuration such as crossover and mutation rates, initial population, and objective 

function. Example code is shown in Appendix 1. 

JGAP JGAP Runner 

CMG 
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REPORT 
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Response 
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Objective function evaluation package 

Global optimization techniques rely mainly on objective function evaluation for the generated 

trials. In our framework, this package is responsible about calling the CMG Agent package to get 

the results that are needed in the objective function calculation. Example code from SOS-FR 

experiments is shown in Appendix 2. 

CMG Agents package 

This package handles the interaction between our software and CMG products. It has three stages 

pre-processing, processing, and post post-processing. Pre-processing is needed to build a new 

simulation model file (.dat) using old model file by changing the parts that need to be changed 

using the values provided by the optimization algorithm. In the processing stage, the simulation is 

executed. Post-processing stage extracts the relevant results from a *.rwo file, which is built by 

executing the *.rwd file generated using CMG ñResult Reportò tool. Example code from SOS-FR 

experiments is shown in Appendix 3. 

Response surface proxy package 

This package is used to build and calibrate the linear and non-linear proxy described before to 

approximate the objective function. This package code is shown in Appendix 4. 

Nearly Orthogonal Arr ays (NOA) reader package 

In this research, we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to 

generate the NOA arrays. This tool generates numbers that represent the level at which each factor 

(parameter) should be used in a particular trial. These numbers must be converted to values 

appropriate for the parameter ranges. For example, for injection rate ranging from 100 to 300 

units, five levels, indicated by 0, 1, 2, 3, and 4, would correspond to actual parameter values of 

100, 150, 200, 250, and 300 units, providing a 50-unit resolution for the parameter. This step can 

be done manually using excel spreadsheet. After that, the newly generated OA is copied into a text 

file to be read using this reader package. Example code from SOS-FR experiments is shown in 

Appendix 5. 

  

http://designcomputing.net/gendex
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Nomenclature 

ɓi : represent a regression coefficients for one trial. 

♫: a vector which contains all regression coefficients. 

F(u) or FX: objective function value. 

F: objective function. 

GA: Genetic Algorithm. 

J: the actual response or actual objective function value calculated based simulation output for 

one trial. 

Jô: the repose obtained from the regression model. 

J0: the best trial actual response in the initial population. 

╙: a vector that contains all the trials response. 

NOA: Nearly-Orthogonal Array. 

OA: Orthogonal Array. 

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs. 

u: a (1*n) vector which contains the optimization variables for a trial. 

ui : represent an optimization variable for one trial. 

╤: a matrix with all uôs.  
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Chapter 4: Optimization of SAGD and Solvent 
Additive SAGD Applications: Comparative Analysis 

of Optimization Techniques with Improved 
Algorithm Configuration 

Abstract 

Heavy oil and bitumen recovery cost is excessive mainly due to high energy requirement to 

generate heat and its environmental impacts. Steam Assisted Gravity Drainage (SAGD) is an 

example of this case. The determination of optimal operating conditions, such as injection rates 

and well locations, based on reservoir and fluid characteristics is essential in the design of field 

applications.  

Many Steam Assisted Gravity Drainage (SAGD) optimization studies published in the literature 

combined numerical simulation with graphical or analytical techniques for design and 

performance evaluation. There have been limited efforts that integrated the simulation exercise 

with global optimization algorithms. Some studies focused on optimization of cumulative steam-

to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on 

optimization of cumulative net energy-to-oil ratio (cEOR) in solvent-additive SAGD by altering 

injection pressures and fraction of solvent in the injection stream. Typical scoring functions were 

the net present value per hectare of land (NPV/ha) by controlling steam and solvent rates. Several 

studies also considered total project net present value calculation by changing total project area, 

capital cost intensities, solvent prices, discount rate, and risk factors to determine the well spacing 

and drilling schedule. Optimization techniques commonly used in those studies were scattered 

search, simulated annealing, and genetic algorithm (GA). In continuation of these efforts, we 

focused on optimizing the SAGD process and its extension to solvent-additive SAGD and several 

optimization techniques including simulated annealing and genetic algorithm were tested and 

compared. Additional procedures were incorporated to improve the implementation configuration 

and initial population or seed. The objective function was defined to obtain the lowest cumulative 

steam-oil ratio (cSOR) and highest recovery factor. It was used later as scoring function by 

changing solvent-to-steam ratio and steam injection rates. The results in this chapter can be 

implemented directly in the efforts of minimization of cost and environmental impacts while 

accelerating the recovery in SAGD.  
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Introduction 

A great portion of Albertaôs oil sand reserves can be produced only by in-situ recovery techniques 

(Al -Bahlani and Babadagli, 2009). Steam Assisted Gravity Drainage (SAGD) is the most widely 

applied in situ recovery method but the cost of this process is excessive because of the need to 

generate heat and its environmental effects. Maximizing the recovery with minimum impacts by 

determining the optimal process variables such as injection rate is essential in the design of field 

application.  

Most of the earlier studies focused on optimizing the SAGD process. Limited amount of work has 

been performed in the area of solvent-additive SAGD optimization. In particular, two groups of 

researchers performed studies that are interesting examples of this kind of optimization exercise. 

In the first group, Gates and Chakrabarty (2006) focused on SAGD optimization to reduce 

cumulative steam-to-oil ratio (cSOR) by altering steam injection rates. Later, they expanded their 

work to include solvent injection to reduce cumulative net energy-to-oil ratio (cEOR) by adjusting 

the injection pressures and fraction of solvent in the injection stream (Gates and Chakrabarty, 

2008). 

In the second group, Peterson et al. (2009) used net present value per hectare of land (NPV/ha) as 

scoring function by controlling steam and solvent rates. Later, they used total project net present 

value calculation as an objective function (Peterson et al., 2010). The user would specify total 

project area, capital cost intensities, solvent prices, discount rate and risk factors. The optimization 

process determines the well spacing, drilling schedule and facility size (Edmunds et al., 2010).  

One of the critical questions in the optimization of complex applications is to select an efficient 

algorithm. As seen, limited number of works in the area of SAGD optimization adopted and tested 

different techniques (Bittencourt et al., 1997). Yet, the selection of efficient algorithm is a critical 

issue to reduce the optimization time. This work focuses on testing and comparing different 

algorithms to demonstrate their efficiency for the optimization of SAGD and solvent additive 

SAGD applications and how they can help in selecting the optimal case for maximum recovery 

and minimum cSOR.  In addition, improvements in the implementation configuration and initial 

population (or seed) of the algorithms tested are also made.  
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Global Optimization Techniques 

In optimization algorithms, one needs to start with specifying the effective parameters (and their 

respective ranges of values) to be evaluated. Next, the algorithm proposes various trial solutions, 

and the objective (or scoring) function would be evaluated for each trial solution. This process is 

repeated until specified number of iterations is reached or once certain stopping or convergence 

criteria are met. Figure  4-1 shows the global optimization techniques process schematically. In 

this chapter, we adopted two algorithms as described below.  

Genetic Algorithm 

The Genetic Algorithm (GA) is a stochastic and structured search technique that uses the principle 

of ñsurvival of the fittestò and natural selection (Guyaguler et al., 2002; Chen et al., 2010). 

Figure  4-2 shows the overall optimization process (as similar to Figure  4-1) using genetic 

terminology. Figure  4-3 summarizes how the algorithm works. The population or genotype is 

partial space solution picked initially and modified in each evolution which is called iteration. In 

each evolution, the fitness of each chromosome, which consists of numerous genes, is calculated; 

each gene represents a parameter while each chromosome represents a trial. Subsequently, two 

parents are selected based on their fitness value to create an offspring or child by performing 

crossover which is simply exchanging genes between parents (Figure  4-4). The newly generated 

offspring is mutated by changing some of its binary digits (Figure  4-5). The new offspring is 

inserted in the new population.   

The GA is a popular optimization technique in the petroleum industry as one of the most powerful 

and robust optimization technique. Chen et al. (2010) used GA with nearly orthogonal arrays 

(NOA) to design a Water-Alternating-Gas (WAG) process in a CO2-Miscible Flooding project. 

Edmunds et al. (2010) applied GA for optimization of solvent-additive SAGD process. This 

technique was also used for non-thermal applications, mainly for the purpose of reservoir 

development (Palke and Horne, 1997; Bittencourt and Horne, 1997). On the basis of all these 

efforts, the advantages and disadvantages of this method can be summarized as follows:  

Advantages 

1. GA initiates the search with a population of parameter realizations, instead of a single 

realization. 

2. The rules used are probabilistic rather than deterministic. 

3. It manipulates a chromosome (or string of individual parameters) rather than changing 

each individual parameter.  

4. It uses function evaluations instead of derivatives or other secondary descriptors 

(Bittencourt and Horne, 1997) 

5. It has the ability to be combined with other algorithm to avoid suboptimal solution. 

(Guyaguler et al., 2002) 

6. It is easy to be parallelized which is a potential to accelerate the calculation (Guyaguler et 

al., 2002) 
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Disadvantages 

3. Even though it is good that the initial population is randomly allocated, this may covers 

bad regions. This randomness continues on the generation process, which depends on the 

values of the initial members (Bittencourt and Horne, 1997). 

4. It can be time-consuming to apply GA to complex optimization problem because it 

suffers from potentially low convergence speed (Chen et al., 2010). 

GA Accelerators 

To avoid GA drawbacks, several techniques have been proposed, yet many of them are at the 

initial development stage with room for improvements. 

Orthogonal Array and Nearly-Orthogonal Array 

Orthogonal Array (OA) and Nearly-Orthogonal Array (NOA) can be integrated with the GA to 

improve the quality of initial members. They are commonly used in the efficient experimental 

design process (Chen et al., 2010). Chen et al. (2010) used GA with nearly orthogonal arrays 

(NOA) to design a Water-Alternating-Gas (WAG) process. 

Proxy Method 

Proxy method is used to approximate the actual evaluation function and to increase the computing 

efficiency. Some of the techniques used as proxies are kriging, neural networks (Guyaguler et al., 

2002) and response surface methodology which is a relationship between the parameter sets and 

the corresponding fitness function. It can be used as a proxy for flow simulation for faster 

evaluation of the fitness function after calibration (Algosayir et. al. 2011). Myers and Montgomery 

(2002) showed that the first-order linear model and the second-order non-linear model are 

examples of such proxy. 

Simulated Annealing 

Metropolis et al. (1953) proposed a search algorithm called simulated annealing (SA), which, at a 

given temperature, finds the equilibrium configuration of a number of atoms. The key benefit of 

using the SA is avoiding local minimum (Gates and Chakrabarty, 2008). This technique was first 

used by Gates and Chakrabarty (2008) to optimize solvent additive SAGD. 

In this chapter, we implemented three different schemes including (1) the conventional GA, (2) 

GA with nearly orthogonal arrays, and (3) simulated annealing to optimize steam injection rate 

over four periods in SAGD and additive mole fraction in solvent-additive SAGD cases over 10 

period.  
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Objective function 

In many enhanced oil recovery applications, maximizing recovery is essential as it directly affects 

profit. Reduction of cost is also critical in profit maximization. Thus, the process optimization 

focused on the maximization of recovery factor and reduction of cumulative steam-oil-ratio which 

help to reduce costs and minimize environments impacts due to steam generation process. After 

several attempts, we proposed an equally weighted objective function (F(X)) for recovery factor 

(RF) and cumulative steam oil ratio (cSOR) as different from earlier works mentioned above. 

Ideally, objective function should be dimensionless. Therefore, RF is assigned a unit weight 

because its value ranges between 0 and 1, while cSOR has to be normalized to be between 0 and 1. 

This is achieved by dividing its value by the maximum observable cumulative steam oil ratio 

[max(cSOR)]. In order to minimize the cSOR, its weighted value should be subtracted from the 

recovery factor. The adopted GA implementation assesses the objective (fitness) function 

(equation 1) and aims to maximize its value:  

Ὂὼȟὼȟὼȟὼ ὙὊ  ρ (1) 

An adjusting factor of ñ1ò was added to the objective function to shift its range from [-1, 1] to [0, 

2], such that a positive objective function value would always be obtained.  

 On the other hand, our implementation of simulated annealing aims to minimize the objective 

function, which is defined in equation (2): 

Ὂὼȟὼȟὼȟὼ  ὙὊ ρ (2) 

where ὼȟὼȟὼȟὼ are the parameters explained in reservoir model section. 

 

Reservoir model 

A two-dimensional simulation model of laboratory-scale experiments provided by Ayodele et al. 

(2010) was constructed and used in the case studies. Then, this model was scaled-up to the field 

dimensions by changing the grid sizes. The simulation input properties are described in Table  4-1. 

The cases GA-1, SA and OGA-1 are SAGD optimization, while HA-GA case is an ES-SAGD 

application using the OGA-1 approach. The SAGD optimization process evaluates Eqs. 1 and 2 by 

adjusting the 2-year steam injection schedule (injection rates over four 6-month periods). On the 

other hand, ES-SAGD optimization process evaluates Eq. 1 by adjusting 2-year injection strategy 

by changing fluids injection rates and hexane mole fraction over four months period. These 

optimized parameters injection rate and hexane model fraction have been studied over reasonable 

range of values that are suitable for the reservoir model and research objective as shown in 

Table  4-2. 
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Results 

In all cases, [max(cSOR)] is fixed to 3 m
3
/m

3
. Results obtained with the various optimization 

algorithms are presented below. 

Genetic Algorithm Case 1 (GA 1) 

The purpose of this Genetic Algorithm case (GA-1) is to investigate the different ways of 

generating initial population. Three different options were used for this purpose. The first 

conventional way was to generate the initial population randomly using stock random generator 

providing by the JGAP package (Java Genetic Algorithm Package (JGAP) website: 

http://jgap.sourceforge.net/). The second and third ways use nearly orthogonal array (NOA) hybrid 

technique with GA. The array used is L40(17
4
) which have 4 factors, 17 levels, and 40 runs 

(Table  4-3). The factors are basically the parameters desired to be adjusted, hence, X values in our 

case are injection rates. The levels are how many cases each factor should have. The number of 

runs refers to the desired number of combined cases (i.e. number of chromosomes in GA 

terminology). The difference between the two NOAs is that the second way uses the average 

criterion (Ma et. al 2000, Lu et. al. 2003) while the third applies the minimax criterion (Lu et. al. 

2003). Among these, we observed that NOA minimax returned good fitness value after executing 

434 reservoir models which is the least number of trials among these cases. It also converged 

faster from the lowest fitness value to a good fitness value as seen in Figure  4-6.  

Simulated Annealing case (SA) 

The simulated annealing (SA) algorithm initial seed was selected based on the best value in NOA 

minimax run used in GA-1 minimax case. A better solution than GA-1 NOA Minimax was found 

after performing only 78% total number of trials. However, this does not necessarily mean that GA 

is less efficient, as GA can be improved with better configuration selection. The SA algorithm was 

initialized using the values given in Table  4-4.  

Optimized Genetic Algorithm Cases (OGA 1) 

In order to have a good configuration for genetic algorithm implementation, we ran full 

optimization experiments to optimize the mutation and crossover rates in addition to the 

population size and evolution count to have a higher objective function value. This experiment and 

the other experiments using GA and SA were performed through exhaustive number of 

simulations to reach the optimum. As a result, the best experiment optimum case objective 

function value was found to be 0.9548 with the least number of trials about 133 trials while SA 

reached the same solution after executing 169 trials. As seen in Table  4-6 all SAGD results using 

different algorithms and different configurations are very similar in terms of the objective 

function, recovery factor, and cSOR. The objective function value differs only after the third 

http://jgap.sourceforge.net/
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decimal number. However, the major difference is in the number of cases needed to reach an 

acceptable optimum value, which implies reducing the number of flow simulation runs needed and 

the execution time needed to reach the optimum. Fluid flow simulations in porous media under 

non-isothermal conditions usually require remarkable amount of time to execute comparing with 

other optimization operations. For example, in our applications, the average execution time of 

flow simulation is about 2 minutes and this saved about 80 minutes on running optimization using 

OGA compared to SA. Table  4-5 summarizes the configuration parameters for all the GA cases. 

All of these experiments were initialized with the same L40(17
4
) NOAs in order to make the results 

comparable. The convergence behaviour of SA and these optimized GA case are shown in 

Figure  4-7. Table  4-6 shows the final optimal solution for each case and at which trial the optimal 

solution was reached. Also tabulated are the corresponding injection periods, the final objective 

function value, recovery factor, and cumulative steam oil ratio.  

Figure  4-8 and Figure  4-9 show the steam injection rates with function value for all the periods 

for the SA and OGA case. It is interesting to note that SA reaches its optimal solution by gradually 

adjusting its parameter values; while GA attempts to identify the optimal solution by running 

different scenarios (because of the crossover feature) of adjusting the parameter values (hence the 

abrupt jumps in objective function values). Furthermore, the results suggest that the optimal 

injection rate for period one and three around 8 m
3
/day and increasing the injection in the second 

period to be around 8.5 m
3
/day while the last period should be decreased to around 7 m

3
/day. As a 

result, it appears that the optimal injection strategy would be to alternate between high and low 

values over several injection periods.  

Hexane Additive SAGD Case (HA-GA) 

After studying the optimization techniques using SAGD models, the good optimization 

methodology learned have been applied into Solvent-Additive SAGD case in order to show how 

the optimized Solvent-Additive SAGD have better recovery and cSOR. Hexane additive SAGD 

case was executed using GA with initial NOA minimax array L40(17
8
). The optimum solution has 

better fitness function value than all SAGD cases, which implies higher recovery (about 3.7% 

increase) and lower cSOR (about 1 m
3
/m

3
 decrease) as shown in Table  4-6, which also include the 

optimized fluid injection rate compared to the SAGD cases. Since Hexane additive is costly, it was 

optimized over the same periods and the optimized hexane mole fraction is shown in Table  4-7. 
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Conclusions 

The GA and SA techniques are powerful in finding an optimized solution; however, both require 

evaluating number of trials in order to reach the optimum solution which is in our case running 

simulation model. Execution of several models requires more computation time.  

In this chapter, several optimization techniques were tested to reduce the computational time such 

as choosing the right configuration and the initial population or seed. As a result, the SA 

converged faster than most of the GA cases. After optimizing the GA configuration, we obtained a 

case that converges in reasonable time. Even though the SA converged faster, the GA has some 

advantages such as having initial population, which can guide the algorithm to better solution, and 

the final population gives more than one scenario that can be used.  

On the other hand, the SA may end up being slower than GA if it is initialized with a very bad 

seed. In order to improve its performance, several other options can be implemented such as 

running the algorithm in parallel computing environment for one flow simulation or running 

multiple flow simulations simultaneously, which can be implemented in Genetic Algorithm.  

As seen, several options can be used to improve the performance. However, one has to answer the 

critical question eventually: what is the most time consuming part? Clearly, the answer is running 

time of the flow simulation. Reducing the number of runs by up to 40% is an optimal solution but 

it is difficult to obtain such percentage often times as it is hard to know in advance what the best 

configuration is. Hence, to reduce the time required for running a flow simulation, implementation 

of a proxy, which approximates the flow simulation result in fraction of second instead of two 

minutes in our cases, could be a solution. This implies that more than 95% of simulation run time 

is saved and all we need is to run a couple of cases to build the proxy.  
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Nomenclature 

ANN: Artificial Neural Networks. 

cEOR: cumulative net energy-to-oil ratio. 

CMG: Computer Modeling Group.  

cSOR: steam-to-oil ratio. 

F(X): objective function. 

GA-1: Genetic Algorithm SAGD cases. 

GA: Genetic Algorithm 

HA-GA: Hexane Additive SAGD Case executed using GA. 

JGAP: Java Genetic Algorithm Package. 

NOA: Nearly-Orthogonal Array. 

NPV: Net Present Value. 

OA: Orthogonal Array. 

OGA-1: Optimized Genetic Algorithm configuration SAGD case. 

P1, 2, 3, 4: four 6 months injection periods. 

RF: Recovery Factor. 

SA: Simulated Annealing Algorithm 

SAGD: Steam Assisted Gravity Drainage thermal recovery process. 

STARS: CMG thermal reservoir simulator. 

WAG: Water-Alternating-Gas recovery process. 
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Tables 

Table  4-1: Reservoir simulation input parameters. 

Item Value 

Grid Cartesian 40*1*15 

Grid Dimensions (I) 2 m 

Grid Dimensions (J) 50 m 

Grid Dimensions (K) 2 m 

  

Initial Reservoir Temperature 20 oC 

Initial Reservoir Pressure 2090 kPa 

Minimum Producer BHP 1500 kPa 

Injected steam temperature 200 oC 

Injected steam quality 1 

  

Porosity 20% 

Permeability 1 Darcy 

  

Rock heat capacity 2.35 J/cm3-C 

Rock thermal conductivity 2.5833 J/cm-min-C 

Water thermal conductivity 0.3715 J/cm-min-C 

Oil thermal conductivity 0.07986 J/cm-min-C 

Hexane k-value coefficients 

KV1 = 1.01x106 kPa 

KV4 = -2697.55 C 

KV5 = -224.37 C 

  

Mechanical Dispersivity (All components in all phases) 0.024 cm 

Molecular Diffusion of Hexane in oleic phase (All components) 0.000250596 cm2/min 

Molecular Diffusion of Hexane in vapour phase (All components) 0.0250596 cm2/min 

 

Table  4-2: Optimized parameters ranges. 

Item Range 

Injection Rate 0 ï 10 m
3
/day 

Hexane injection mole fraction 0 ï 0.3 
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Table  4-3: NOA Tables. 

Average Criterion Array 
 

Minimax Criterion Array 

 
Factors 

  
Factors 

Run 1 2 3 4 
 

Run 1 2 3 4 

1 3 7 7 9 
 

1 9 9 0 0 

2 3 8 5 8 
 

2 8 2 3 3 

3 9 9 1 0 
 

3 6 5 6 4 

4 4 2 5 4 
 

4 8 4 6 9 

5 1 4 1 1 
 

5 1 8 0 10 

6 2 0 4 6 
 

6 0 2 5 8 

7 6 0 1 2 
 

7 4 3 8 4 

8 3 5 3 8 
 

8 6 3 9 2 

9 9 1 3 8 
 

9 9 3 3 7 

10 1 10 3 7 
 

10 1 3 1 3 

11 4 3 6 9 
 

11 4 5 8 3 

12 0 9 9 10 
 

12 5 1 8 7 

13 10 5 8 3 
 

13 1 9 1 9 

14 5 1 4 1 
 

14 0 6 1 1 

15 0 6 3 2 
 

15 1 7 8 2 

16 7 6 1 4 
 

16 6 9 3 0 

17 1 1 9 5 
 

17 3 0 9 4 

18 9 3 8 0 
 

18 7 2 9 3 

19 8 1 6 8 
 

19 3 0 4 8 

20 8 4 3 4 
 

20 2 9 6 1 

21 4 10 9 3 
 

21 0 4 7 6 

22 7 2 1 1 
 

22 4 10 2 5 

23 2 6 6 1 
 

23 4 1 10 9 

24 3 1 9 0 
 

24 3 4 1 6 

25 3 3 10 6 
 

25 5 6 3 3 

26 2 4 4 3 
 

26 8 1 10 10 

27 1 8 2 3 
 

27 1 3 6 1 

28 10 3 2 4 
 

28 3 4 0 8 

29 5 4 2 1 
 

29 3 6 4 3 

30 4 3 3 9 
 

30 9 1 2 9 

31 6 6 10 6 
 

31 10 0 5 0 

32 6 9 0 9 
 

32 3 8 3 1 

33 1 0 6 7 
 

33 2 8 9 5 

34 9 8 7 3 
 

34 10 6 3 6 

35 0 3 8 1 
 

35 6 10 4 1 

36 6 7 0 3 
 

36 2 3 1 2 

37 3 2 0 2 
 

37 9 8 4 8 

38 1 8 8 6 
 

38 8 1 2 6 

39 8 1 1 10 
 

39 7 7 1 1 

40 8 9 4 5 
 

40 1 1 7 4 

 

Table  4-4: Simulated annealing configuration. 

Initial temperature  1 

Acceptance rule temperature  1 

Maximum temperature iterations  600 

Random moves  10 
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Table  4-5: GA cases configuration. 

 GA-1 OGA-1 HA-GA 

Crossover 0.35 0.85 0.85 

Mutation 12% 17% 17% 

Population 40 20 20 

Evolutions 30 7 30 

 

Table  4-6: Comparison of the selected solution. 

Case Trial# Evolution F(X) 

Steam/Fluids injection 
rates (m

3
/day) 

RF cSOR 

P1 P2 P3 P4 

GA-1 (Random) 445 27 0.9564 7.7 8.4 7.7 7.0 61.2% 1.967 

GA-1 (Average) 442 25 0.9535 7.8 8.4 7.7 6.7 60.9% 1.966 

GA-1 (Minimax) 434 22 0.9557 8.1 8.8 7.9 6.8 61.9% 1.991 

SA 341 - 0.9577 7.8 8.6 7.8 7.0 61.6% 1.976 

SA reached 0.9548 169 - 0.9548 8.5 8.7 7.7 6.9 62.1% 1.997 

OGA-1 133 5 0.9548 8.1 8.8 8.0 7.0 62.2% 2.003 

HA-GA 265 23 1.3448 8.8 9.0 8.1 6.7 65.3% 0.925 

 

Table  4-7: Optimized Hexane Mole Fraction. 

P1 P2 P3 P4 

0.30 0.24 0.29 0.26 
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Figures 

 

Figure  4-1: Schematic representation of optimization process. 

 

 

 

Figure  4-2: Optimization process in Genetic Algorithm terminology. 
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Figure  4-3: Genetic Algorithm flow diagram.  

 

Figure  4-4: Example of crossover of two parent chromosomes. 

 

Figure  4-5: Example of mutation of a parent chromosome. 

Initial 
ωGenerate random initial population 

Fitness 

ωCalculate the fitness of each chromosome in genotype 
 

Selection 

ωSelect two parent chromosomes from a population according to their fitness 
(the better fitness, the bigger chance to be selected) 
ωLow fitness chromosomes will die 

Crossover 

ωAccording to a crossover probability, parents are combined to form a new 
offspring (children). If no crossover was performed, offspring is an exact copy of 
parents. 

Mutation 

ωAccording to a mutation probability, mutate new offspring at each locus 
(position in chromosome). 

Accepting 
ωPlace new offspring in a new population 

 Create a 
new 

population 
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Figure  4-6: Function value for the GA with different ways of generating initial population.  

 

Figure  4-7: Convergence speed comparison between SA and Optimized GA case. 
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Figure  4-8: Simulated Annealing (SA) function value (F(X)) and injection rates (X values).  

 

Figure  4-9: Optimized Genetic Algorithm Case 1 (OGA-1) function value (F(X)) and injection 

rates (X values). 
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Chapter 5: Design of Solvent-Assisted SAGD 
Processes in Heterogeneous Reservoirs Using 

Hybrid Optimization Techniques 

Abstract 

Many Steam Assisted Gravity Drainage (SAGD) optimization studies published in the literature 

combined numerical simulation with graphical or analytical techniques for design and 

performance evaluation. There have been numerous efforts that integrated the simulation exercise 

with global optimization algorithms. Some studies focused on optimization of cumulative steam-

to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on 

optimization of cumulative net energy-to-oil ratio (cEOR) in solvent-additive SAGD by altering 

injection pressures and fraction of solvent in the injection stream. Several studies also considered 

total project net present value calculation by changing total project area, capital cost intensities, 

solvent prices, and risk factors to determine the well spacing and drilling schedule. Optimization 

techniques commonly used in those studies were scattered search, simulated annealing, and 

genetic algorithm (GA). However, the applications of hybrid genetic algorithm were rarely found.  

In this chapter, we focused on optimization of solvent-assisted SAGD using various GA 

implementations. In our models, hexane was selected to be co-injected with steam. The objective 

function, defined based on cumulative steam-oil ratio (cSOR) and recovery factor, was optimized 

by changing injection pressures, production pressures, and injected solvent-to-steam ratio. 

Techniques including orthogonal arrays (OA) for experimental design (e.g. Taguchiôs arrays) and 

proxy models for objective function evaluations were incorporated with the GA method to 

improve computational and convergence efficiency. Results from these hybrid approaches 

revealed that an optimized solution could be achieved with less CPU time (e.g. fewer number of 

iterations) compared to the conventional GA method. Sensitivity analysis was also conducted on 

the choice of proxy model to study the robustness of the proposed methods. 

To investigate the effects of heterogeneity in the design process, optimization of solvent-assisted 

SAGD was performed on various synthetic heterogeneous reservoir models of porosity, 

permeability, and shale distributions. Our results highlight the potential application of the 

proposed techniques in other solvent-enhanced heavy oil recovery processes. 



34 

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of 

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in 
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian 

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS. 

Introduction 

Different versions of steam injection are used to extract most of Albertaôs oil sand reserves (Al-

Bahlani and Babadagli, 2009). The most common application is Steam Assisted Gravity Drainage 

(SAGD) recovery.  It, however, requires generation of excessive amount of steam, which is very 

costly and has adverse environmental impacts, and it is often considered as a limiting factor in the 

efficiency of the entire process.  One of the suggested ways to reduce steam consumption is 

addition of solvent to steam to maximize the recovery.  

Several studies focused on optimization of SAGD processes that are with or without solvent 

addition.  A number of efforts focused on utilizing global optimization techniques. Gates and 

Chakrabarty (2006) used genetic algorithm in order to optimize SAGD operating conditions such 

as steam injection rates to reduce cumulative steam-to-oil ratio (cSOR).  The same authors have 

also implemented simulated annealing to optimize expanded solvent SAGD (ES-SAGD) by 

altering the fraction of solvent in the injected steam and the injection pressures in order to reduce 

cumulative net energy-to-oil ratio (cEOR) (Gates and Chakrabarty, 2008). Yang et al. (2009) 

applied the Designed Exploration and Controlled Evolution (DECE) algorithm to optimize the net 

present value (NPV) of a three-dimensional model. Peterson et al. (2010) utilized genetic 

algorithm to optimize steam and solvent rates on solvent-additive SAGD to maximize NPV per 

hectare of land (NPV/ha).   

Having an efficient and robust optimization technique is critical in the design of SAGD or solvent-

additive SAGD processes.  Hence, this work focuses on hybrid techniques to enhance the 

computational efficiency of the Genetic Algorithm to design solvent-additive SAGD processes in 

heterogeneous reservoirs.  

Methodology 

Global Optimization Techniques 

In this chapter, we adopted the Genetic Algorithm (GA) and integrated it with two other 

techniques in a hybrid formulation. GA is a stochastic search technique based on the principle of 

ñsurvival of the fittestò (Guyaguler et al., 2002; Chen et al., 2010). An initial population or 

genotype is constructed by sampling the solution space randomly. Individual members of the 

population are called ñchromosomesò, and they define the parameter sets for the optimization 

problem. In each evolution, the fitness of each chromosome is calculated. Then, multiple pairs are 

selected based on their fitness value to create an offspring via crossover and mutation. The new 

offspring is inserted in the population, while the chromosomes with lowest fitness values are 

discarded. Figure  5-1 summarizes the mechanisms of a typical GA algorithm.  
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To improve the convergence behaviour and computational efficiency of GA, we proposed a hybrid 

formulation by integrating the following two techniques into the conventional framework of GA:  

Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation  

Techniques from the experimental design literature, namely Orthogonal Array (OA) and Nearly-

Orthogonal Array (NOA), can be implemented with GA to improve the quality of initial 

population (Chen et al., 2010) by generating evenly distributed samples while reducing the 

redundancy between chromosomes. The objective is to design experiments or chromosomes by 

determining the levels at which the parameters should be varied. Instead of testing all 

combinations of parameters at all levels, only the ones containing principal information are 

included. This reduces the population size and the associated computational costs. In this study, 

we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to generate nearly-

orthogonal arrays based on the Taguchi method average criterion described by Ma et. al. (2000) 

and Lu et. al. (2003).  

Proxy Method for Objective Function Evaluation 

As can be seen in Figure  5-1, the fitness function must be evaluated for every chromosome at 

every evolution. In our particular application, evaluation of the fitness function involves 

calculation of the recovery factor, typically obtained from results of a numerical flow simulation. 

Depending on the level of complexity of the processes that are being modeled, each flow 

simulation could take up to days to complete. Hence, costs of objective function evaluation are 

often the most important computational considerations in any optimization scheme. Proxy 

methods are viable ñcheaperò alternatives that approximate the actual fitness function to enhance 

computing efficiency. The technique implemented in this study was the response surface method. 

Response surface is a relationship between the parameter sets and the corresponding fitness 

function. Once calibrated in the form of regression, it can be used as a proxy for flow simulation 

and allows the fitness function to be evaluated rapidly. In particular, we compared the first-order 

linear model and the second-order non-linear model, as discussed in Myers and Montgomery 

(2002). Equations for the linear and non-linear models are shown in Eqs. 1 and 2, respectively, 

where J is the response (fitness function value), uiôs are the variables (optimization parameters), 

ɓiôs are the regression coefficients, and Ů is an error term. 

ὐ  ό Ễ ό  (1) 

ὐ  ό Ễ ό В ό В В όό  (2) 

The regression equation for both models is expressed in Eq. 3: 

ἣἢἣ ἣἢἔ (3) 
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where ╙ is a vector that contains all the response, ♫ is a vector which contains all regression 

coefficients and ╤ is a matrix with all the u vectors evaluated. 

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website: 

http://jgap.sourceforge.net/) for the GA modeling.  

 

Objective Function 

Profit maximization and cost reduction are important aspects in many engineering projects, 

especially in enhanced oil recovery applications.  In this chapter, our focus is to maximize the 

recovery and minimize cumulative steam-oil-ratio during SAGD application with solvent addition. 

After several trials (Algosayir et al., 2011), we proposed an equally-weighted objective function 

(F) for recovery factor (RF) and cumulative steam oil ratio (cSOR), which is different from earlier 

works mentioned previously. Ideally, the objective function should be dimensionless. Therefore, 

the RF is assigned a unit weight because its value ranges between 0 and 1, while cSOR has to be 

normalized to be between 0 and 1. This is achieved by dividing its value by a user-defined 

maximum observable cumulative steam oil ratio [max(cSOR)]. Assembling the various terms 

together, our proposed GA implementation assesses and aims to maximize the following objective 

(fitness) function: 

Ὂὼȟὼȟὼȟὼȟὼȟὼ ὙὊ  ρ (4) 

where ὼȟὼȟὼȟὼȟὼȟὼ are the optimized parameters. In our study, the optimization process 

evaluates Eq. 1 by adjusting the 10-year injection pressure, production pressure, and hexane mole 

fraction over two 5 years periods (a total of 6 model parameters). Ranges of these model 

parameters are shown in Table  5-1. The normalizing parameter [max(cSOR)] is set to a value of 

three (in m
3
/m

3
) for the homogenous Expanded Solvent SAGD (ES-SAGD) case, and a value of 

five (m
3
/m

3
) was used for the heterogeneous cases. It should be noted that an adjusting factor of 

ñ1ò is added to the fitness function in Eq. 6 to shift its range from [-1, 1] to [0, 2], such that a 

positive objective function value would always be obtained.  

All optimization cases follow the same Genetic Algorithm configuration as presented in 

Table  5-2. In each evolution, 35% of the population chromosomes are crossovered to generate 

new chromosomes, and 3% of them are mutated by changing parts of the bit in binary encoding. 

This crossover and mutation process is repeated 30 times per evolution and, in each evolution, a 

constant population size of 30 is maintained.  
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Case Study 

Model Description 

In our case studies, three two-dimensional simulation models were constructed originally based on 

the laboratory-scale simulation model with homogeneous and isotropic reservoir properties 

provided by Ayodele et al. (2010). These models were subsequently scaled-up to the field 

dimensions by adjusting the grid definition as described in Table  5-3. The homogenous model has 

a constant porosity of 20% and permeability of 1 Darcy for all cells. The homogeneous model was 

used to (1) investigate the sensitivity of the optimization results to the choice of response surface 

proxy models and (2) assess the computational savings with the use of proxy techniques as 

compared to the conventional method (no proxy). Success with the homogeneous case allows us to 

subsequently apply the proposed implementation to cases with heterogeneous reservoir properties. 

In particular, two heterogeneous models exhibiting different shale distributions (30% and 10% 

shale content) were used in our study, and they are shown in Figure  5-2 and Figure  5-3, 

respectively.  

Response Surface Proxy Models 

To reduce the computation time required, a linear first-order (Eq. 1) and non-linear second-order 

(Eq. 2) response surface models were constructed for the three reservoir models. These proxies (or 

response surfaces) were calibrated using flow simulations results of an initial population, 

constructed using the nearly-orthogonal array (NOA) L30(17
6
) consists of 6 factors, 17 levels, and 

30 runs (Table  5-4) and applying Eqs. 1-3. 

Results and Discussion 

The primary objective of this chapter is to study the impacts of reservoir heterogeneities on the 

optimization of solvent-assisted SAGD recovery process. Given that objective function 

evaluations using detailed flow simulation results are extremely time consuming, particularly for 

heterogeneous reservoirs, our first step is to evaluate various response surface proxy techniques 

that can be easily integrated for GA optimization.  

First, we established a base case by performing conventional GA optimization (no proxy) for a 

homogenous reservoir with an initial population constructed using the NOA in Table  5-4. The 

entire experiment required a total of 52 hours to execute about 900 simulation cases to obtain the 

optimum, which has 1.31 fitness value, 68% recovery and 1.13 (m
3
/m

3
) cSOR. Figure  5-4 shows 

the oil production profile for the optimum field scale case. In order to evaluate the reproducibility 

of our optimization results, we repeated the optimization experiment and similar results were 

obtained: 1.32 fitness value, 69% recovery and 1.14 (m
3
/m

3
) cSOR. Results of the two trials are 

labelled as ñConventional (1)ò and ñConventional (2)ò, respectively in Table  5-5. Next, linear and 
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non-linear response surface proxies were tested. The proxies were constructed based on flow 

simulation results of the initial population generated using the NOA. In other words, the 

computation requirement was reduced significantly to only that was required to execute the cases 

of the initial population. It was observed that the non-linear proxy approximated the initial data 

actual responses closely while the match with the linear proxy was not satisfactory as shown in 

Figure  5-5. The trials are sorted based on the fitness values obtained from actual flow simulations. 

Similarly, we built linear and non-linear proxies for the 30% and 10% shale content 

(heterogeneous) cases as shown in Figure  5-6 and Figure  5-7, respectively. In the 30% case, the 

non-linear shows excellent match, while in the 10% case, it did not yield a satisfactory match.  

In the homogenous case, optimization performed with the linear proxy was completely 

unsuccessful as it was not able to improve the fitness during the evolutions. On the other hand, the 

non-linear proxy showed very good improvement in the fitness function value during the 

evolutions as shown in Figure  5-8. In order to compare the optimal solution obtained using the 

proxy to that of the conventional approach, we performed flow simulation on the final optimized 

solution to obtain the actual response J, instead of the proxy estimated value Jô. In the case of 

linear proxy, the actual response J was lower than the best case in the initial population J0, 

indicating that the fitness function was not maximized. In contrast, for the case of non-linear 

proxy, the actual response J matched closely with the conventional optimization result even 

though the proxy was amplifying the response values. This is due to the extrapolation of the 

response surface corresponding to parts of parameter space. The actual response value for the 

optimum case Jopt was 1.3 with 68% recovery and 1.15 (m
3
/m

3
) cSOR as shown in Table  5-5. It is 

important to note that this result was obtained in 105 minutes where we saved about 97% of the 

computational efforts from the conventional optimization as indicated in Table  5-6. 

This improvement in computational efficiency becomes particularly important in applications for 

heterogeneous reservoirs because of the increase in flow simulation execution time with reservoir 

heterogeneity. On average, a single flow simulation in this study takes about five minutes for the 

30% shale case and about 6 minutes for the 10% shale case to execute. If optimization of these 

heterogeneous models was performed with the conventional GA implementation, the 

computational time would have been over three days, thus rendering the method unfeasible due to 

computational constraints. This consideration motivates the use of proxy for objective function 

evaluation and allows optimization to be performed efficiently in the case of heterogeneous 

reservoirs. Our proposed hybrid approach took 138 minutes for the 30% shale case and 187 

minutes for 10% shale case to complete (Table  5-6). This is equivalent to a savings of 152 hours 

(or approximately 97%) of the total computational time.  
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Our results suggest that the performance of the linear proxy in the heterogeneous cases was better 

than the homogenous case; the fitness function increased with evolution shown in Figure  5-9 and 

Figure  5-10 as opposed to staying constant in Figure  5-8. However, the non-linear proxy was still 

providing better results. For the 30% shale case, the linear proxy actual response value for the 

optimum case Jopt was 0.65 with 5% recovery and 1.98 (m
3
/m

3
) cSOR while the non-linear proxy 

actual response value for the optimum case Jopt was 0.71 with 7% recovery and 1.77 (m
3
/m

3
) 

cSOR. Similarly, in the 10% shale case, the linear proxy actual response value for the optimum 

case Jopt was 1.13 with 40% recovery and 1.28 (m
3
/m

3
) cSOR while the non-linear proxy actual 

response value for the optimum case Jopt was 1.14 with 42% recovery and 1.38 (m
3
/m

3
) cSOR. 

Optimization results of all cases are shown in Table  5-5.  It is worthwhile to point out that the 

calculated response value Jô of the linear proxy is similar in range to the actual value J, while 

higher degree of extrapolation in the non-linear proxy model leads to a larger deviation from this 

range. 

Several ways were investigated to reduce the degree of extrapolation and to obtain more accurate 

approximation of the fitness function using the non-linear proxy. The approach that gave the most 

promising results was the one where flow simulation was performed for the fittest chromosome 

after every evolution, and the corresponding simulation result would be incorporated to fit a new 

proxy. It was observed that updating the proxy after evolution with an additional flow simulation 

output using the fittest chromosome could significantly improve the predictability of the non-

linear proxy. The flow diagram of the modified approach is shown in Figure  5-11. It is noted from 

Figure  5-12 that each time the proxy was updated using the fittest chromosomeôs simulation 

results, more accurate proxy values (as compared to the actual flow simulation outputs) were 

achieved. Figure  5-12 also shows that towards the end of the optimization exercise, there was no 

noticeable differences between the proxy values and actual flow simulation outputs, indicating that 

the predictability of the non-linear was significantly improved. Finally, as shown in Table  5-5, 

applying this modified approach to the homogeneous case achieved a better (more optimized) 

scenario than the conventional method with a higher fitness value of 1.4, a higher recovery of 76% 

and a lower cSOR of 1.07 (m
3
/m

3
). 

The modified approach was also applied to the 10% and 30% shale cases to update the non-linear 

proxy after every evolution. Similar improvement as in the homogeneous case was achieved: 

updating the proxy using the fittest chromosome after every evolution gave the best optimized 

parameters among all scenarios, while the proxy predictability was excellent (as evidenced by the 

identical values for J and Jô in Table  5-5). The optimization results (fitness value as a function of 

evolution) are shown in Figure  5-13 and Figure  5-14. It should be noted that the total number of 

flow simulation runs performed in this modified approach was 90 (30 for the initial population 
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plus an additional one per every evolution). The increased computational expenses could easily be 

justified given the considerable improvements in the predictability of the response surface models 

and the final optimized scenario. Furthermore, the computational savings as compared to the 

conventional approach is still important (Table  5-6). 

 

Conclusions 

Proxy methods are convenient ways to improve efficiency of an optimization algorithm. In our 

application, we observed that the execution time for objective function evaluation is the largest. 

Other factors like the algorithm convergence speed and the input/output (I/O) processing that 

serves as an interface between the flow simulator and the rest of the algorithm implementation are 

negligible in comparison to the time needed to execute the simulation. This computational 

consideration becomes particularly important for heterogeneous reservoirs. To alleviate the 

computational burden, we constructed the initial population by the process of experimental design 

using nearly-orthogonal arrays. Flow simulations were performed on this initial population to 

calibrate a response surface, which was subsequently used as a proxy for fitness function 

evaluation. Our initial results verified the applicability of the proxy for the homogeneous case. It is 

important to note that a proxy should be chosen with care such that it gives an accurate 

representation of the relationship between the objective function and its control variables; we 

found in our cases that the non-linear proxy is better for this purpose. Although it yields better 

optimal solution, it does not necessarily reflect the true fitness function value precisely due to non-

linear extrapolation corresponding to parts of the parameter space. Therefore, a proxy-updating 

step was introduced after evolution in which flow simulation results of the fittest chromosome 

were added to fit a new proxy. Our results indicated that this updating step not only improves the 

predictability of the response surface model, it also enhances the capability of the GA algorithm to 

identify a more optimized set of model parameters than the conventional approach in a 

computationally-efficient manner. This improvement (as compared to the case where the proxy 

was calibrated using only simulation runs of the initial population) should justify the incremental 

costs incurred because of additional flow simulation runs being performed in the updating step.  
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Nomenclature 

cEOR: cumulative net energy-to-oil ratio. 

cSOR: steam-to-oil ratio. 

F(X): objective function value. 

GA: Genetic Algorithm. 

HMF: Hexane injection mole fraction. 

IBHP: Injector maximum Bottom-hole Pressure. 

J: the actual response or actual objective function value calculated based simulation output for 

one trial. 

Jô: the repose obtained from the regression model. 

J0: the best trial actual response in the initial population. 

NL: Nonlinear Proxy 

NOA: Nearly-Orthogonal Array. 

NPV: Net Present Value. 

OA: Orthogonal Array. 

PBHP: Producer minimum Bottom-hole Pressure. 

RF: Recovery Factor. 

SAGD: Steam Assisted Gravity Drainage thermal recovery process. 

u: a (1*n) vector which contains the optimization variables for a trial. 

ui : represent an optimization variable for one trial. 

ɓi : represent a regression coefficients for one trial. 

╙: a vector that contains all the trials response. 

╤: a matrix with all uôs. 

♫: a vector which contains all regression coefficients. 
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Tables 

Table  5-1: Optimized parametersô ranges 

Optimization Parameters  Range 

Injector maximum Bottom-hole Pressure (IBHP) 2100-2800 kPa 

Producer minimum Bottom-hole Pressure (PBHP) 1500-2000 kPa 

Hexane injection mole fraction (HMF) 0-0.2 

 

Table  5-2: GA configuration 

Item Value 

Crossover 0.35 

Mutation 3% 

Population 30 

Evolutions 30 

 

Table  5-3: Reservoir simulation input parameters 

Item Value 

Grid Cartesian 40*1*15 

Grid Dimensions (I) 2 m 

Grid Dimensions (J) 50 m 

Grid Dimensions (K) 2 m 

  

Initial Reservoir Temperature 20 oC 

Initial Reservoir Pressure 2090 kPa 
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Table  5-4: Nearly-Orthogonal Array (6 factors, 17 levels, and 30 runs) used for 
generating initial population 

Run 

Factors  

Run 

Factors 

1 2 3 4 5 6  1 2 3 4 5 6 

1 0.06 2275 1563 0.13 2581 2000  16 0.10 2188 1688 0.01 2188 1656 

2 0.14 2319 1750 0.06 2144 1906  17 0.05 2450 1719 0.16 2450 1594 

3 0.01 2538 1781 0.06 2406 1531  18 0.15 2625 1875 0.15 2669 1625 

4 0.18 2144 1625 0.01 2319 1938  19 0.11 2494 1781 0.08 2494 1719 

5 0.01 2756 1656 0.04 2713 1844  20 0.19 2494 1813 0.04 2100 1875 

6 0.14 2669 1719 0.00 2800 1688  21 0.10 2581 1594 0.14 2144 1875 

7 0.00 2713 2000 0.15 2494 1781  22 0.15 2538 1688 0.09 2538 1969 

8 0.16 2100 1750 0.14 2625 1781  23 0.13 2100 1875 0.10 2406 1594 

9 0.08 2144 1563 0.18 2231 1750  24 0.13 2800 1594 0.03 2275 1750 

10 0.04 2450 1906 0.03 2231 1625  25 0.11 2188 1844 0.05 2625 1813 

11 0.09 2231 1531 0.11 2450 1688  26 0.04 2231 1844 0.19 2581 1531 

12 0.20 2363 1625 0.13 2363 1500  27 0.00 2275 1656 0.05 2275 1656 

13 0.08 2581 1500 0.08 2100 1563  28 0.03 2625 1969 0.10 2363 1813 

14 0.03 2406 1531 0.00 2319 1719  29 0.09 2363 1938 0.09 2188 1563 

15 0.05 2319 1813 0.11 2756 1500  30 0.06 2406 1500 0.20 2538 1844 
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Table  5-5: Comparison of the selected solution values 

Case J0 J Jô 

Period 1 Period 2 

RF 
cSOR 

(m3/m3) 
HMF 

IBH
P 

PBH
P 

HMF 
IBH
P 

PBH
P 

H
o

m
o

g
e

n
e

o
u

s
 

Conventional 
(1) 

1.04 1.31 - 0.20 2616 1651 0.16 2669 1669 68% 1.13 

Conventional 
(2) 

1.04 1.32 - 
0.19 2756 1624 0.18 2650 1842 

69% 1.14 

Linear Proxy 1.04 0.93 1.04 0.15 2625 1875 0.05 2756 1635 39% 1.38 

Non-Linear 
(NL) Proxy 

1.04 1.30 3.66 0.20 2800 1512 0.19 2800 1506 68% 1.15 

Updated NL 
Proxy 

1.04 1.4 1.4 
0.20 2795 1515 0.16 2800 1576 

76% 1.07 

             

30% 
shale 
sand 

Linear Proxy 0.58 0.65 0.75 0.20 2115 1986 0.20 2109 2000 5% 1.98 

Non-Linear 
Proxy 

0.58 0.71 1.33 0.00 2124 2000 0.19 2286 1927 7% 1.77 

Updated NL 
Proxy 

0.58 0.73 0.73 
0 2104 1970 0.20 2116 1814 7% 1.69 

             

10% 
shale 
sand 

Linear Proxy 1.04 1.13 1.15 0.20 2793 1504 0.20 2756 1500 40% 1.23 

Non-Linear 
Proxy 

1.04 1.14 5.15 0.20 2777 1536 0.19 2756 1523 42% 1.38 

Updated NL 
Proxy 

1.04 1.2 1.2 
0.05 2450 1718 0.16 2450 1593 

39% 0.96 
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Table  5-6: Cases execution time 

Case 
# Actual 

Simulation 
runs 

Average time 
per 

simulation 
run 

Total Execution Time 

Homogenous 

Conventional 900 3.5 minutes 2 Days, 4 hours and 23 minutes 

Linear Proxy 30 3.5 minutes              1 hours and 45 minutes 

Non-Linear (NL) 
Proxy 

30 3.5 minutes              1 hours and 45 minutes 

Updated NL Proxy 90 3.5 minutes              5 hours and 15 minutes 

     

30% shale 
sand 

Linear Proxy 30 4.6 minutes              2 hours and 18 minutes 

Non-Linear Proxy 30 4.6 minutes              2 hours and 18 minutes 

Updated NL Proxy 90 4.6 minutes              6 hours and 54 minutes 

     

10% shale 
sand 

Linear Proxy 30 6.3 minutes              3 hours and 07 minutes 

Non-Linear Proxy 30 6.3 minutes              3 hours and 07 minutes 

Updated NL Proxy 90 6.3 minutes              9 hours and 27 minutes 

* The homogenous cases executed by utilizing all the two 6 cores and 2.66 GHz processors of total 12 cores, where the 

heterogeneous cases was executed in 6 cores 2.66 GHz processor.  
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Figures 

 

Figure  5-1: Conventional Genetic Algorithm flow diagram (modified from Algosayir et al. 

2011).  

 

Figure  5-2: 30% shale sand distribution. 

Initial 
ωGenerate an initial population/genotype (each member is called a chromosome) 

Fitness 
ωCalculate the fitness (objective function value) of each chromosome in genotype 

Selection 

ωSelect pairs of parent chromosomes from a population according to their fitness 
(the better fitness, the bigger chance to be selected) 

Crossover 

ωAccording to a crossover probability, parents are combined to form new 
offsprings (children). If no crossover was performed, offsprings are exact copies of 
parents. 

Mutation 

ωAccording to a mutation probability, mutate new offsprings at each locus 
(position in chromosome). 

Accepting 

ωFitness value of new offspring is calculated, and new population is generated by 
discarding chromosomes with low fitness values and replacing them with the 
new offsprings.  

 

Create a 
new 

population 

Shale 

Sand 
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Figure  5-3: 10% shale sand distribution. 

 

 

 

Figure  5-4: Optimized ES-SAGD homogeneous case oil production profile. 
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Figure  5-5: Proxies approximation for the homogeneous case: trials are sorted based on 

actual flow simulation fitness value J.  

 

Figure  5-6: Proxy approximation for the 30% shale case. 
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Figure  5-7: Proxy approximation for the 10% shale case.  

 

 

Figure  5-8: Fitness value as a function of evolution for the homogeneous case. 
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Figure  5-9: Fitness value as a function of evolution for the 30% shale case. 

 

Figure  5-10: Fitness value as a function of evolution for the 10% shale case. 
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Figure  5-11: Flow diagram for the modified approach where proxy is updated with the 

additional flow simulation results of the fittest chromosomes after each evolution. 

Initialize population using NOA 

ωfitness calucation using full flow simulations 

Build proxy using initial population 
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ωselection 
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ωmutation 
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ωFitness Value calculated using the proxy 
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ωusing fall flow simulation of the fittest chromosome 
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Figure  5-12: Fitness value as a function of evolution for the homogeneous case using the 

modified approach with non-linear proxy updating. 

 

Figure  5-13: Fitness value as a function of evolution for the 30% shale case using the 

modified approach with non-linear proxy updating. 
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Figure  5-14: Fitness value as a function of evolution for the 10% shale case using the 

modified approach with non-linear proxy updating. 
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Chapter 6: Optimization of SOS-FR (Steam-Over-
Solvent Injection in Fractured Reservoirs) Method 
Using Hybrid Techniques:  Testing Cyclic Injection 

Case 

Abstract 

Many processes and techniques have been proposed to improve the heavy oil recovery from 

fractured reservoirs. Such complex processes require careful operation planning and management 

to achieve optimal efficiency with minimal costs and environmental impacts.  Steam injection is 

one of the options for heavy-oil recovery from fractured reservoirs but significant steam 

requirement for effective matrix heating due to heterogeneous structure poses important challenges 

in terms of cost, water availability, and environment impacts due to water processing and steam 

generation. Al-Bahlani and Babadagli (2008, 2009a) proposed a new process called Steam-Over-

Solvent in Fractured Reservoirs (SOS-FR) by adding solvent component to minimize the heat 

needed. The SOS-FR technique consists of a heating phase using steam injection, subsequent 

solvent injection, and low temperature steam injection for solvent retrieval and additional oil 

recovery.   Optimization of this process is a critical step to determine optimal injection (and 

soaking) schedules as the heterogeneous structure of this kind of reservoirs may easily yield an 

inefficient process due to high cost and excessive use of steam and solvent.  In this study, we 

adopted a global optimization scheme, where genetic algorithm is integrated with orthogonal 

arrays and response surface proxies for better convergence behavior and higher computational 

efficiency, to optimize the SOS-FR process for cyclic injection option.  The results show that one 

may be able to double the profit obtained with the benchmark model using the optimal injection 

scheme suggested by our optimization procedure.   

 

Introduction 

Unconventional solutions are needed to overcome the challenge of heavy oil production.  In high 

permeability non-fractured sand reservoirs, steam injection processes showed acceptable 

production, however, they require the availability of a large amount of water that is a major 

challenge in remote areas with limited water accessibility, and this water consumption has to be 

managed and processed in an environment friendly manner (Al-Bahlani and Babadagli, 2011).  

Alternative to steam injection, Butler and Mokrys (1991) introduced the VAPEX (vapor 

extraction) process, which is pure solvent injection from a horizontal well to displace the oil by 

gravity drainage to another horizontal producer.  Later, different schemes of steam/solvent 

injection were tested at laboratory or simulation conditions as well as field pilots. Nasr et al. 
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(2003) developed Expanding Solvent-SAGD (ES-SAGD) method to minimize the use of steam in 

heavy-oil production. This method relies on addition of small percentage of gas or liquid solvent 

into steam during steam assisted gravity drainage process (SAGD).  Subsequently, steam-

alternating-solvent (SAS) technique was introduced as an application of alternative injection of 

steam and solvent (Zhao et al., 2005; Zhao, 2007). Leaute and Carey (2007) demonstrated that 

addition of small amount solvent into steam during cyclic steam injection improves the recovery.  

Their technique called Liquid Addition to Steam for Enhancing Recovery (LASER) showed a 

success in a pilot scale field application.    

A major consideration for these advanced recovery processes is that the recovery performance is 

highly influenced by factors such as steam and solvent injection rate, solvent concentration, 

injection pressure, and injection schedule. This matter of optimal design was addressed in the 

literature for several processes. For example, several studies employed global optimization 

techniques and detailed flow simulations. Gates and Chakrabarty (2006, 2008) used genetic 

algorithm and simulated annealing for SAGD and ES-SAGD (expanding solvent SAGD) 

optimization. Peterson et al. (2010) utilized genetic algorithm for solvent-additive SAGD 

optimization. Al-Gosayir et. al. (2011b) studied the design of solvent-assisted SAGD processes in 

heterogeneous reservoirs using hybrid genetic algorithm.  A more common approach has been the 

design and performance evaluation of these processes using a combination of numerical 

simulations, sensitivity analysis, and graphical or analytical techniques. 

Optimization of steam/solvent methods in fractured carbonate reservoirs is more challenging as 

the efficiency becomes critically important due to excessive steam/solvent requirement for matrix 

oil recovery.  Although ample amount of lab studies exist, steam injection in fractured carbonates 

is limited to a few field scale applications due to inefficiency of the process (Al-Bahlani and 

Babadagli, 2008).  Al-Bahlani and Babadagli (2009a-b) suggested the use of solvent to reduce the 

cost of steam and improve the recovery for fractured carbonates with oil-wet matrix containing 

heavy-oil.  Accordingly, they proposed Steam-Over-Solvent Injection for Fractured Reservoirs 

(SOS-FR) process to enhance the recovery efficiency by injection of both steam and solvent.  The 

SOS-FR process consists of three main phases (Al-Bahlani and Babadagli, 2008, 2009a-b): 

Phase 1: It consist of pre-heating by steam (or hot water) injection.  In this phase, thermal 

expansion of oil (expected recovery is ~10% as reported by Al-Bahlani and Babadagli, 2008) is 

the main recovery mechanism and no water capillary imbibition is expected if matrix is not 

strongly water-wet, which is a common situation in carbonates.  The matrix oil is also conditioned 

for the subsequent solvent injection.   
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Phase 2: Solvent injection phase: Solvent (heptane was used by Al-Bahlani and Babadagli [2008, 

2009a]) is injected to be diffused into matrix and further reduce the viscosity of oil.  Then, the 

matrix oil is produced by gravity drainage caused by the density difference between original oil 

and oil diluted by the solvent.  Al-Bahlani and Babadagli (2011) numerically tested two scenarios: 

(1) Continuous solvent injection and (2) cyclic solvent simulation (CSoS) which consist of three 

stages: (a) solvent injection, (b) solvent soaking, and (c) production. 

Phase 3: Solvent retrieval period: To retrieve the solvent (and recover additional oil); steam is 

injected at a temperature near to the boiling point of the solvent, which causes rapid thermal 

expansion of solvent. 

Al -Bahlani and Babadagli (2011) compared, by building each case manually, the injection of 

exclusively steam or solvent for the whole period with the two scenarios of SOS-FR process at the 

field scale; continuous solvent injection and cyclic solvent injection (Huff-and-Puff) in a single 

fracture and multiple fractures system. Their results showed that cyclic application of the SOS-FR 

technique gives promising result for multiple fracture models in terms of the economics of the 

process. The cyclic solvent SOS-FR process has numerous operating parameters that could affect 

the recovery including duration of heating period during Phase 1, steam injection rate and 

duration, solvent cycles schedule ï duration of injection and soaking cycles as well as the number 

of cycles for Phase 2, and the steam injection rate for Phase 3. Such a large number of factors 

require testing remarkably large number of scenarios to reach an optimal solution, which would be 

very exhaustive to achieve manually.  

In this paper, we focus on optimizing the (SOS-FR) process and apply a hybrid technique 

introduced in our previous publication for ES-SAGD optimization (Al-Gosayir et al., 2011b) to 

propose optimal application conditions that maximized the recovery and profit. 

 

Optimization methodology 

Global Optimization Techniques 

Similar to our work on ES-SAGD optimization (Al-Gosayir et. al., 2011b), we integrated the 

Genetic Algorithm (GA) with two other techniques in a hybrid formulation.  The GA is a 

probabilistic search technique based on the principle of ñsurvival of the fittestò (Guyaguler et al., 

2002; Chen et al., 2010). An initial population or genotype can be constructed by sampling the 

solution space randomly or by utilizing an experimental design strategy such nearly orthogonal 

arrays. Additional scenarios constructed manually can be incorporated to accommodate the 

engineerôs judgement and to accelerate the convergence. Each population contains members called 

ñchromosomesò which define the parameters for the optimization problem. In each evolution, each 

chromosomeôs fitness is calculated. Then, pairs of parent chromosomes are selected based on their 
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fitness values to create new offsprings (children) via crossover and mutation as illustrated in 

Figure  6-1. Examples for crossover and mutation genetic operations that are used to generate new 

offsprings are shown Figure  6-2 in and Figure  6-3. The new chromosomes are added to the 

population, while the chromosomes with low fitness values are discarded.  

Computational behavior of genetic algorithm is highly sensitive to the choice of initial population. 

Thus, we proposed a hybrid formulation to improve the computational and convergence efficiency 

by integrating the following experimental design and response surface techniques into the 

conventional framework of GA.  

Orthogonal Arrays for Experimental Design 

Orthogonal Array (OA) and Nearly-Orthogonal Array (NOA) experimental design techniques can 

be integrated with GA to improve the quality of initial population (Chen et al., 2010) by 

generating evenly distributed samples and reducing the redundancy between chromosomes. 

Instead of trying all combinations of parameters at all levels, just the ones that contain principal 

information are included by determining the levels at which parameters should be varied. In this 

paper, we utilized Gendex DOE Toolkit (website: http://designcomputing.net/gendex) for NOAs 

generation based on the Taguchi method minimax criterion described by Ma et. al. (2000) and Lu 

et. al. (2003). 

Proxy Method for Objective Function Evaluation with Periodic Updating 

For each chromosome in each evolution, its fitness function must be evaluated. In our application, 

the money recovery factor as defined in the next section is calculated from the results of a 

numerical flow simulation. Depending on the reservoir size and process complexity, each flow 

simulation could take up to days to complete. Proxy methods are feasible and computationally 

efficient alternatives for fitness value estimation.  The response surface technique, a method in 

which a relationship between the parameter sets and the corresponding fitness function is 

approximated via regression, has been implemented in this study. Once calibrated using the results 

obtained from detailed flow simulations, this response surface can be used as a proxy for flow 

simulation. Results presented in our previous work demonstrated that a second-order non-linear 

proxy model typically provides satisfactory performance for our optimization applications (Al-

Gosayir et. al., 2011b, Myers and Montgomery, 2002).  The equations for non-linear (quadratic) 

models are shown in Eq. 1, where J is the response (fitness function value), uiôs are the variables 

(optimization parameters), ɓiôs are the regression coefficients, and Ů is an error term. 

ὐ  ό Ễ ό В ό В В όό  (1) 

Eq. 2 is the regression equation for over-determined problem:  

ɼ 55 5* (2) 
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When the number of optimization parameters is larger than the number of experiments, the 

problem becomes under-determined and Eq. 3 should be used:  

ɼ 5 5 5 * (3) 

where ╙ is a vector that contains all the response, ♫ is a vector which contains all regression 

coefficients and ╤ is a matrix with all the u vectors evaluated. 

In order to achieve a better representation of the solution space and regression accuracy, the proxy 

is re-calibrated or updated periodically by performing detailed flow simulation using parameters of 

the chromosome with the highest fitness value and incorporating its simulation result after each 

evolution (Al-Gosayir et al., 2011b). This updating step is illustrated in the flow chart given in 

Figure  6-4.   

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website: 

http://jgap.sourceforge.net/) for the GA modeling.  

 

Objective Function 

Efficiency of recovery processes can be assessed by their profit by calculating the Money 

Recovery Factor, MRF, (Al-Bahlani and Babadagli, 2011) which incorporate the major elements 

(mainly steam, solvent, and oil), which influence the profit.  The MRF focuses on the key 

elements and omits the other factors, which may vary from one field to another. The MRF is 

defined as follows: 

ὓὙὊ  
ὙὩὺὩὲόὩὅέίὸ

ὛὝὕὍὍὖ ὕὭὰ ὖὶὭὧὩ
 

where the cost is: 

ὅέίὸ ὅόάόὰὥὸὭὺὩ ὛὸὩὥά ὍὲὮὩὧὸὩὨ z ὛὸὩὥά ὅέίὸ  ὅόάόὰὥὸὭὺὩ ὛέὰὺὩὲὸ ὍὲὮὩὧὸὩὨ 

 zὛέὰὺὩὲὸ ὖὶὭὧὩ 

and the revenue is: 

ὙὩὺὩὲόὩ ὅόάόὰὥὸὭὺὩ ὕὭὰ ὖὶέὨόὧὩὨ z ὕὭὰ ὖὶὭὧὩ  ὅόάόὰὥὸὭὺὩ ὛέὰὺὩὲὸ ὖὶέὨόὧὩὨ 

 zὛέὰὺὩὲὸ ὖὶὭὧὩ 

The steam cost and solvent and oil prices are shown in Table  6-1. 

This objective function eliminates the revenue of the steam since it is not a common practice to 

treat the produced water and re-inject it again as steam. One the other hand, solvent is considered 

to have the same price for revenue and cost even if it is not extracted from the oil because it 

upgrades the oil and reduces the need to add solvent for pipeline transportation and it is recovered 
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in the distillation tower. The capital expenditures (CAPEX) are considered the same for all 

scenarios (Al-Bahlani and Babadagli, 2011). 

 

Benchmark (Base) Simulation Model 

Since Al-Bahlani and Babadagli (2011), results indicated that cyclic solvent SOS-FR in reservoirs 

with multiple fractures yielded the highest money recovery factor (see Figure 16 of this reference), 

we considered this as a base case for our optimization study. This model is an IK Cartesian 2D 

single porosity-single permeability model with the dimensions of 20×30×15 m that contains 

multiple fractures of 1 cm aperture. Geological features of the model are provided in Table  6-2. 

Representation of the fracture-matrix model in a flow simulation is shown in Figure  6-5. This 

base case gives a money recovery factor (MRF) value of approximately 28. This base case gives a 

money recovery factor (MRF) value of approximately 28. This model was an implementation of 

cyclic option of the SOS-FR Process. This model has total process duration of three years and six 

months, and it is designed as follows (Al-Bahlani and Babadagli, 2011): 

1. Phase 1: Heating period (HP) has 395 days length. 

2. Phase 1: Heating period where steam is injected with rate of 20 m
3
/day. 

3. Phase 1: Cooling period (CP) has 175 days length with cold-water injection with rate of 5 

m3/day.  This was included by Al-Bahlani and Babadagli (2001) in their simulation to 

simulate their laboratory experiments (Al-Bahlani and Babadagli, 2008, 2009a), which 

had a cooling period between Phase 1 (heating) and Phase 2 (solvent injection).  In 

practice, this corresponds to the period switching to Phase 2 and a short period of soaking 

the reservoir with injected steam to condition the matrix oil for solvent diffusion. 

4. Wells shut-in after the cooling period for 6 days. 

5. Phase 2: 14 Cycles each cycle contains three periods: One week solvent injection, two 

weeks soaking, and two weeks production.  

6. Phase 3: Recovery phase where the steam is injected with rate of 20 m
3
/day. 

7. Phase 3: Recovery phase length is 198 days. 

Semi-compositional commercial simulator (CMG STARS) was used for full flow simulations 

evaluation.  
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Results and Discussion 

In order to identify the parameters that have the greatest impacts on the objective (fitness) 

function, a sensitivity analysis was carried out first. In particular, we varied the steam injection 

rate in the heating period (Phase 1), solvent injection rate, durations of soaking phase during the 

huff-and-puff stage (Phase 2), and the steam injection rate in the final recovery phase (Phase 3). 

As shown in Figure  6-6, for each of these parameters, except the solvent injection rate, an 

optimum value can be easily identified. However, MRF continues to increase as the solvent 

injection rate increase.  

Experiment 1: 

Based on the result of the sensitivity analysis we have developed an updated proxy and genetic 

algorithm experiment to increase the MRF by varying: 

1. Phase 1: Heating period (HP) length between 60 to 790 days with 30 days resolution. 

2. Phase 1: Heating period (HP) steam injection rate from 10 to 40 m
3
/day. 

3. Phase 2: Cycle length indicators each cycle contains three periods: 

a. 4 mandatory cycles [1-5]. 

b. 9 optional cycles [0-5]. 

4. Phase 2: 3 Cycles periods length indicators (Solvent Injection, Soaking, and Production) 

[1-3].  

5. Phase 3: Recovery phase steam injection rate from 10 to 40 m
3
/day. 

While the other properties fixed such as: 

1. Phase 1: Cooling period (CP) length is 175 days 

2. Phase 1: Cooling period (CP) injection rate is 5 m
3
/day. 

3. Phase 3: Recovery phase length 198 days. 

A comprehensive list of optimization parameters for all experiments carried out in this chapter is 

shown in Table  6-3. 

This experiment gave better results than the base case; a value of 48 for the money recovery factor 

instead of 28 is obtained, with an increase of about two hundred thousand dollars in the profit. The 

result of this experiment suggests, as shown in Table  6-4, that the optimal solution can be 

achieved by reducing the length of the heating period (phase 1), with a minimum value of 60 days 

as the total length for heating period. Similarly, as in Table  6-5, the optimal length indicators for 

the soaking and production periods in each cycle (phase 2) were the minimum value of 1, while 

the optimized solvent injection period is the maximum value. 
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Analyzing the result of this experiment and noting that numerous optimized parameters coincide 

with either the lower or upper limits of the optimization range raise a few interesting questions: (1) 

Can we optimize the MRF by further reducing the duration of the phase 1 by adjusting the length 

of cooling period? Is it necessary to soak or produce in each cycle? To address such questions, two 

additional experiments were executed simultaneously (experiments 2 and 3).  

Experiment 2: 

Based on experiment 1 results, cooling period was eliminated and only optional heating period 

(with a minimum value of zero) was kept, cycles phaseôs length indicators were also made 

optional, allowing them to be eliminated for better flexibility. Ranges for other parameters are 

shown in Table  6-3. 

Comparing with previous experiment, the MRF was increased by 4.2 with profit increase of about 

fifty thousand dollars. This experiment suggests that the optimal the heating period (phase 1) 

should be around three months.  

Experiment 3: 

Similarly, based on experiment 1 results, both phase 1 periods were optimized and the cyclesô 

periodsô length indicator range increased to 5. Cycles length indicators from the best case of 

experiment 1 were used in this experiment to minimize number of optimized parameters. Ranges 

for other parameters are listed in Table  6-3. 

A MRF value of 58.4 and three hundred thousand dollars increase in the profit from base case 

were observed.  This is better than the results obtained from the previous experiments as presented 

in Table  6-6. The result indicates that keeping two phase 1 periods are worthy, and similar to the 

previous experiments, the solvent injection phase is the dominant on all cycles. Based on the 

results from experiments 2 and 3, one might wonder if the process can be further optimized by 

varying the periodsô duration in each cycle individually. This idea is explored in experiment 4. 

Experiment 4: 

A length indicator for each period in each cycle was introduced which result in 30 length 

parameters to represent 10 cycles, instead of 13 parameters in all the previous setups. Increasing 

the number of parameters increases the size of the solution space, which in turn reduces the 

convergence speed and accuracy of the proxy regression. In order to facilitate the convergence 

efficiency, we repeated the optimization scheme multiple times sequentially such that optimized 

models from the previous step are placed in the initial population for the next step. In other words, 

instead of taking a big step along the descent direction, a few smaller steps are taken.  
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First, two experiments (4-a and 4-b) with different initial populations, constructed based on nearly 

orthogonal arrays (minimax criterion) and randomly generated population (Al-Gosayir et. al., 

2011b), were executed concurrently. Next, these two initial populations and the fully evaluated 

flow simulation models of their respective optimized solution in each evolution were combined 

into one initial population for experiment 4-c. Finally, even though satisfactory results were 

achieved, we repeated the optimization again using the initial population and flow simulation 

results from experiment 4-c as an initial population for a conventional genetic algorithm 

experiment (4-d) which takes longer time to ensure sampling more scenarios in the solution space 

to achieve the best result. 

These experiments provided only slight improvement compared to experiments 2 and 3, as 

expressed in Table  6-6. The last experiment result was the best with a 65.5 money recovery factor, 

82.2% oil recovery factor, and $675,512 profit, which is more than double of the base case 

scenario as shown in Figure  6-7 and Figure  6-8; and the cumulative solvent injected volume was 

lower than the optimized case from experiment 3 as in Figure  6-9. Based on the result of this 

experiment, we noticed that some periods could be eliminated from certain cycles, while the phase 

1 cannot be eliminated though it can be shorter than the base case. Figure  6-10 and Figure  6-11 

compare the injection and production schedules of the base case and best-case (experiment 4-d) 

scenarios, respectively, while Table  6-7 shows all cases schedule. Figure  6-11 shows that we need 

to start and finish with longer cycles of solvent injection. The solvent injection rate is low (5 

m
3
/day), and it has already started to diffuse through the system during the injection period. In the 

middle cycles, one should adjust the lengths of the soaking or production periods alternatively 

between cycles. It is also noted that the solvent injection duration in the middle cycles is about 40 

weeks, which is approximately equal to the other two periodsô total.  

Solvent injection in the optimum cases is much higher than the amount of steam injection. An 

important assumption in our simulation model is that the reservoir is confined such that we are 

able to recover most of the solvent, as shown in Figure  6-9. However, Experiment 4-b shows an 

interesting result, which has the least solvent injection and consequently the least cost as shown in 

Figure  6-9, Figure  6-8, and Table  6-6. At the same time, this experiment gives a good money 

recovery factor of about 51 and a profit of 526 thousand dollars. This experiment illustrates the 

benefit of soaking period in each cycle, which gives more time for the solvent to diffuse into the 

reservoir with less amount of solvent as shown in Figure  6-12. Since this experiment was 

initialized using random initial population that is different from the other experiments where 

minimax criterion nearly orthogonal array is used, the solution space was investigated from 

different angle. Minimax criterion tends to combine the parameters by maximizing some while 

minimizing the others.  



64 

A version of this chapter was submitted for publication. 

Conclusions and remarks 

Despite the challenge of optimizing the injection time and cycles of the SOS-FR process using 

hybrid genetic algorithm, the outcome was very promising and better results than the benchmark 

case were achieved. The money recovery factor and the profit were doubled and about 30% oil 

recovery increase was obtained. The results suggest that steam heating period should be decreased, 

while the solvent injection time to be increased without eliminating the necessity of having solvent 

soaking or production periods. Handling such complex process optimization is a challenge, which 

could be overcome by implementing a hybrid optimization scheme that incorporates a detailed 

sensitivity analysis with experimental design methods for initial population construction, followed 

by a global optimization scheme of genetic algorithm, whose convergence efficiency was 

improved with the use of response surfaces. In addition, the accuracy of the proxy model was 

further enhanced with a periodic updating step in which additional flow simulation results using 

the most optimal case were used to re-calibrate the response surface at each evolution. 

Furthermore, we noticed that hybrid genetic algorithm is a useful tool designing the operating 

strategy of a complex recovery process by optimizing the time required for each phase of the SOS-

FR method.  
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Nomenclature 

BC: Base/Benchmark case. 

ɓi : represent a regression coefficients for one trial. 

♫: a vector which contains all regression coefficients. 

CP: Cooling period in phase 1. 

cSOR: cumulative steam-to-oil ratio (m
3
/m

3
). 

CSoS: Cyclic Solvent Stimulation. 

cSVOR: cumulative net solvent injected (difference between cumulative solvent injected and 

produced) to oil ratio (m
3
/m

3
). 

EIF: Economic Impact Factor. 

F(u) or FX: objective function value. 

F: objective function. 

GA: Genetic Algorithm. 

HMF: Hexane injection mole fraction. 

HnP: Huff and Puff. 

HP: Heating Period in phase 1. 

IAV: Initial Asset Value. 

IBHP: Injector maximum Bottom-hole Pressure (kPa). 

J: the actual response or actual objective function value calculated based simulation output for 

one trial. 

Jô: the repose obtained from the regression model. 

J0: the best trial actual response in the initial population. 

╙: a vector that contains all the trials response. 

MRF: Money Recovery Factor. 

NA: Not applicable. 

NL: Nonlinear Proxy 

NOA: Nearly-Orthogonal Array. 

NPV: Net Present Value. 



66 

A version of this chapter was submitted for publication. 

OA: Orthogonal Array. 

PBHP: Producer minimum Bottom-hole Pressure. 

PP: Production period in each cycle. 

RF: Recovery Factor. 

RP: Recovery phase 3. 

SAGD: Steam Assisted Gravity Drainage thermal recovery process. 

SIP: Solvent Injection period in each cycle. 

SOP: Solvent Soaking period in each cycle. 

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs. 

STOIIP: Stock Tank Oil Initially In Place. 

u: a (1*n) vector which contains the optimization variables for a trial. 

ui : represent an optimization variable for one trial. 

╤: a matrix with all uôs. 

USD United States Dollar. 

 

 

  



67 

A version of this chapter was submitted for publication. 

References 

Al-Bahlani, A.M., and Babadagli, T., 2008. Heavy-Oil Recovery in Naturally Fractured Reservoirs with 

Varying Wettability by Steam Solvent Co-Injection. Paper 117626 presented at SPE International 

Thermal Operations and Heavy Oil Symposium, Calgary, Canada, 20ï23 October. DOI: 

10.2118/117626-MS. 

Al -Bahlani, A.M., and Babadagli, T., 2009a. Steam-Over-Solvent Injection in Fractured Reservoirs (SOS-

FR) for Heavy-Oil Recovery: Experimental Analysis of the Mechanism. Paper 123568 presented at SPE 

Asia Paciýc Oil and Gas Conference & Exhibition, Jakarta, Indonesia, 4ï6 August. DOI: 

10.2118/123568-MS. 

Al -Bahlani, A.M., and Babadagli, T., 2009b. Laboratory and Field Scale Analysis of Steam-Over-Solvent 

Injection in Fractured Reservoirs (SOS-FR) for Heavy-Oil Recovery. Paper 124047 presented at SPE 

Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4ï7 October. DOI: 

10.2118/124047-MS. 

Al -Bahlani, A.M., and Babadagli, T., 2011, Field scale applicability and efýciency analysis of Steam-Over-

Solvent Injection in Fractured Reservoirs (SOS-FR) method for heavy oil recovery. Journal of 

Petroleum Science and Engineering, 78(2): 338ï346. DOI: 10.1016/j.petrol.2011.07.001 

Al -Gosayir, M., Babadagli, T., and Leung, J. 2011a. Optimization of Solvent Additive SAGD Applications 

using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery 

Conference, Kuala Lumpur, Malaysia, 19ï21 July. 

Al -Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in 

Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the 

Canadian Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 

10.2118/149010-MS. 

Chen, S., Li, H., Yang, D., and Tontiwachwuthikul, P. 2010. Optimal Parametric Design for Water-

Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal of Canadian Petroleum 

Technology 49(10): 75-82. DOI: 10.2118/141650-PA 

Gates, I.D., and Chakrabarty, N. 2006. Optimization of Steam Assisted Gravity Drainage in McMurray 

Reservoir. Journal of Canadian Petroleum Technology 45(9): 55-62. DOI: 10.2118/06-09-05. 

Gates, I.D., and Chakrabarty, N. 2008. Design of the Steam and Solvent Injection Strategy in Expanding 

Solvent Steam-Assisted Gravity Drainage. Journal of Canadian Petroleum Technology 47(9): 12-20. 

DOI: 10.2118/08-09-12-CS. 

Guyaguler, B., Horne, R.N., Rogers, L., and Rosenzweig, J.J. 2002. Optimization of Well Placement in a 

Gulf of Mexico Waterflooding Project. SPE Reservoir Evaluation & Engineering 5(3): 229-236. DOI: 

10.2118/78266-PA. 

Lu, X., Hu, W. & Zheng, Y. 2003. A Systematical Procedure in the Construction of Multi-Level 

Supersaturated Designs. J. of Statistical Planning & Inference 115 (1): 287-310. DOI: 10.1016/S0378-

3758(02)00116-7. 

Ma, C-X., Fang, K-T & Liski, E. 2000. A New Approach in Constructing Orthogonal and Nearly Orthogonal 

Arrays. Metrika 50: 255-268. DOI: 10.1007/s001840050049. 

Myers, R.H. and Montgomery D.C. 2002. Response Surface Methodology: Process and Product in 

Optimization using Designed Experiments, Wily, New York. 

Nasr, T.N., Beaulieu, G., Golbeck, H., Heck, G., 2003. Novel Expanding Solvent-SAGD Process ñES-

SAGDò. Journal of Canadian Petroleum Technology. 42(1). DOI: 10.2118/03-01-TN.  



68 

A version of this chapter was submitted for publication. 

Peterson, J., Riva, D., Edmunds, N., and Solanki, S. 2010. The Application of Solvent-Additive SAGD 

Processes in Reservoirs With Associated Basal Water. Paper 137833 presented at Canadian 

Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, 19-21 

October. DOI: 10.2118/137833-MS. 

 

 

 

  



69 

A version of this chapter was submitted for publication. 

Tables 

Table  6-1: Elements prices 

Element Price 

Steam 18 $/m
3
 

Solvent 1000 $/m
3
 

Oil 80 $/bbl 

 

Table  6-2: Reservoir properties used in the simulations. (Al-Bahlani and Babadagli, 2011) 

Item Value 
Reservoir depth 500 m 
Matrix porosity 0.30 

Fracture porosity 0.99 
Matrix permeability 10 mD 

Fracture permeability 550 D 
Initial reservoir pressure 8 MPa 

Initial reservoir temperature 50 °C 
Oil density SC 965 
Solvent type Heptane 

Initial water saturation 0.00 
Solvent diffusion coefficient 2.88eï5m2/day 

Wettability Oil wet 

 

Table  6-3: Optimized parametersô ranges 

Experiment 

HP 
Length 
(days) 

HP 
Injection 

Rate 
(m3/day) 

CP 
Length 
(days) 

CP 
Injection 

Rate 
(m

3
/day) 

Recovery 
phase 

Injection 
Rate 

(m
3
/day) 

3 
Cycles 
periods 

LIs 
(Same 
for all 

Cycles) 

Cycles 
Lengths 

Indicators 
(LIs) 

Each 
Cycle 
period 

LIs 
(Different 
in each 
cycle) 

Exp. 1 
[60-
790] 

[1-40] 175 5 [10-40] [1-3] 
4*[1-5] 

and 9*[0-
5] 

NA 

Exp. 2 [0-346] [0-30] NA NA [10-40] [0-3] 13*[0-5] NA 

Exp. 3 [1-120] [1-30] [1-180] [1-6] 40 [1-5] 
Exp. 1 

Best case 
setup 

NA 

Exp. 4-a [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5] 

Exp. 4-b [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5] 

Exp. 4-c [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5] 

Exp. 4-d [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5] 
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Table  6-4: Optimal parameters values for all experiments. 

Experiment 
Number of 
Evolutions 

FX 
(MRF) 

HP 
Length 
(days) 

HP 
Injection 

Rate 
(m

3
/day) 

CP 
Length 
(days) 

CP 
Injection 

Rate 
(m

3
/day) 

Recovery 
phase 

Injection 
Rate (m

3
/day) 

Base Case - 28.0 395 20 175 5 20 

Exp. 1 80 48.0 60 25 175 5 40 

Exp. 2 85 52.8 90 26 - - 36 

Exp. 3 26 58.4 45 30 15 1 40 

Exp. 4-a 72 56.9 120 29 1 2 40 

Exp. 4-b 89 51.0 15 28 180 5 40 

Exp. 4-c 10 58.7 120 29 1 2 40 

Exp. 4-d 87 65.5 120 29 1 2 40 

 

Table  6-5: Optimal lengths indicators of the base case, experiment 1, 2, and 3.  

Experiment 

Period Length Indicator of Length indicator of Cycle: 

Solvent 
Inj. 

Soaking Production 1 2 3 4 5 6 7 8 9 10 11 é 14 

Base Case 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

Exp. 1 3 1 1 3 1 1 1 3 5 5 1 1 1 5 0 

Exp. 2 3 1 1 5 3 4 1 1 5 1 5 0 0 0 0 

Exp. 3 5 1 1 3 1 1 1 3 5 5 1 1 1 5 0 

 

Table  6-6: Comparison of the selected solution values 

Exp. MRF 
Cum. 
Steam 

Inj. 

Cum. 
Solvent 

Inj. 

Cum. 
Solvent 
Prod. 

Cum. 
Oil 

Prod. 
RF cSOR 

IAV 
(mln $) 

Cost 
(mln 

$) 

Revenue 
(mln $) 

Profit ($) 

Base 
Case 

28.5 12355 990 952 1099 53.7 6.3 1.03 1.21 1.51 $290,000 

Exp. 1 48.0 10277 2475 2468 1363 66.3 2.7 1.03 2.7 3.2 $494,830 

Exp. 2 52.8 9546 2910 2910 1422 69.5 2.2 1.03 3.1 3.6 $545,005 

Exp. 3 58.4 9286 3571 3584 1501 74.0 1.8 1.03 3.7 4.3 $602,544 

Exp. 4-
a 

56.9 11397 3201 3225 1525 75.7 2.4 1.03 3.4 4.0 $586,785 

Exp. 4-
b 

51.0 9261 2042 2067 1325 66.0 2.7 1.03 2.2 2.7 $526,110 

Exp. 4-
c 

58.7 11397 3245 3269 1560 77.4 2.4 1.03 3.5 4.1 $605,337 

Exp. 4-
d 

65.5 11397 3183 3250 1614 82.2 2.3 1.03 3.4 4.1 $675,512 
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Table  6-7: Experiments huff-and-puff phases lengths in days 

 
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 

Exp. SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP 

BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 

1 55 18 18 18 6 6 18 6 6 18 6 6 55 18 18 92 31 31 

2 116 39 39 70 23 23 93 31 31 23 8 8 23 8 8 116 39 39 

3 79 16 16 26 5 5 26 5 5 26 5 5 79 16 16 132 26 26 

4-a 142 14 0 43 43 14 57 0 28 71 14 0 28 43 0 71 57 28 

4-b 48 36 0 48 60 24 48 60 0 60 36 36 36 12 48 24 24 0 

4-c 138 14 0 41 41 14 55 0 28 69 14 0 69 41 0 69 55 28 

4-d 159 16 0 32 64 16 64 0 16 80 16 0 80 48 0 16 64 32 

                   

 
Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 é Cycle 14 

Exp. SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP 

BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 

1 92 31 31 18 6 6 18 6 6 18 6 6 92 31 31 
   

2 23 8 8 116 39 39 
            

3 132 26 26 26 5 5 26 5 5 26 5 5 132 26 26 
   

4-a 57 0 14 57 28 0 71 43 14 
         

4-b 60 24 0 60 48 0 24 48 0 
         

4-c 55 14 14 124 41 14 
            

4-d 16 0 16 159 48 0 
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Figures 

 

Figure  6-1: Conventional genetic algorithm flow diagram (Al-Gosayir et al. 2011b).  

 

 

Figure  6-2: Example of crossover of two parent chromosomes (Al-Gosayir et al. 2011a). 

 

 

Figure  6-3: Example of mutation of a parent chromosome (Al-Gosayir et al. 2011a). 

 

 

 

Initial 
ωGenerate an initial population/genotype (each member is called a chromosome) 

Fitness 
ωCalculate the fitness (objective function value) of each chromosome in genotype 

Selection 

ωSelect pairs of parent chromosomes from a population according to their fitness 
(the better fitness, the bigger chance to be selected) 

Crossover 

ωAccording to a crossover probability, parents are combined to form new offsprings 
(children). If no crossover was performed, offsprings are exact copies of parents. 

Mutation 

ωAccording to a mutation probability, mutate new offsprings at each locus (position 
in chromosome). 

Accepting 

ωFitness value of new offspring is calculated, and new population is generated by 
discarding chromosomes with low fitness values and replacing them with the new 
offsprings.  
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Figure  6-4: Flow diagram for the modified approach where proxy is updated with the 

additional flow simulation results of the fittest chromosomes after each evolution. (Al-
Gosayir et al. 2011b) 

Initialize population using NOA 

ωfitness calucation using full flow simulations 

Build proxy using initial population 

Create New Population 

ωselection 

ωcrossover 

ωmutation 

ωAccepting 

ωFitness Value calculated using the proxy 

Update proxy 

ωusing full flow simulation of the fittest chromosome 

Stop 

 

 

 

Repeated for 90 

evolutions 
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Figure  6-5:  Representation of multiple-matrix block with unity oil saturation in flow 

simulation. (Al-Bahlani and Babadagli, 2011) 

 

 

Figure  6-6: Sensitivity analysis for some key parameters before starting the optimization. 
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Figure  6-7: Optimized money recovery factor, oil recovery factor, and cumulative steam oil 

ratio of all experiment. 

 

Figure  6-8: Optimized cost, revenue and profit of all experiments. 
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Figure  6-9: All experiments hydrocarbons and steam injected and produced. 

 

Figure  6-10: Base case Gantt-chart 
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Figure  6-11: Experiment 4-d (best MRF) Gantt-chart. 

 

Figure  6-12: Experiment 4-b (random initial population) Gantt-chart. 
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Chapter 7: Contributions 

There are several major contributions gained out of this thesis as listed below: 

1. A hybrid optimization strategy, integrating elements of experimental design (orthogonal 

arrays) and response surface proxy into a global genetic algorithm optimization 

workflow, was developed. The adopted proxy provided a saving of 95% computational 

time, while the use of orthogonal arrays (with minimax criterion) was shown to improve 

the algorithmôs convergence behavior in seeking the optimal solution. 

2. It was observed that non-linear response surface proxy can potentially give a more 

accurate representation of the true objective function value, but it also tends to over-shoot 

during extrapolations. Therefore, a periodic updating scheme was proposed and 

implemented. The success of this step was illustrated by the improved predictability of 

the objective function and minimal increase in computational time. 

3. The proposed technique was applied to construct optimal designs for three different 

heavy oil recovery processes using steam and solvent. In particular, the computational 

efficiency of the technique allows optimization to be carried out successfully for 

heterogeneous reservoirs. These case studies illustrated that the hybrid optimization 

framework is a useful tool for designing complex recovery processes and increasing the 

profit. 
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Appendix 1: JGAP initializer code  

 

package  mmm.ga.tests;  

 

import  java.io.BufferedReader;  

import  java.io.FileReader;  

import  java.io.IOException;  

import  java.util.List;  

import  java.util.Vector;  

 

import  mmm.ga.MyGenericChromosome;  

 

import  org.jgap.*;  

import  org.jgap.audit.ChainedMonitors;  

import  org.jgap.audit.EvolutionMonitor;  

import  org.jgap.audit.FitnessImprovementMonitor;  

import  org.jgap.audit.IEvoluti onMonitor;  

import  org.jgap.audit.TimedMonitor;  

import  org.jgap.impl.*;  

 

import  Jama.Matrix;  

 

public  abstract  class  GenericRunner  {  

 int  evolutions ;  

 Genotype population ;  

 IEvolutionMonitor monitor ;  

 FitnessFunction objectiveFunction ;  

  

 

 public  GenericRunner(String runTitle, int  evolutions, int  

a_sizeOfPopulation, FitnessFunction objectiveFunction) throws  Exception {  

  System. out .println(runTitle);  

  this . evolutions  = evolutions;  

  this . objectiveFunction  = objectiveFunction;  

 

  // Start with a DefaultConfiguration, which comes setup with the  

  // most common settings.  

  // -------------------------------------------------------------  

  Configuration gaConf = new DefaultConfiguration();  

 

  // Care that the fittest  individual of the current population is  

  // always taken to the next generation.  

  // -------------------------------------------------------------  

  boolean  preservFittestIndividual = false ;  

  gaConf.setPreservFittestIndividual(preservFittestIndividual) ;  

  System. out .println( "setPreservFittestIndividual \ t"  

    + preservFittestIndividual);  

 

  // Set the fitness function we want to use, which is our  

  // ------------------------------------------------------------  

  gaConf.setFitnessFunction( this . objectiveFunction );  

 

 

  boolean  alwaysCaculateFitness = true ;  

  System. out .println( "alwaysCaculateFitness \ t"  + 

alwaysCaculateFitness);  

 

  gaConf.setAlwaysCaculateFitness(alwaysCaculateFitness);  

 

  double  crossoverRatePercentage = 0.35d;  

  int  mutationRate = 3;  

  gaConf.getGeneticOperators().clear();  

  gaConf.addGeneticOperator( new CrossoverOperator(gaConf,  

    crossoverRatePercentage));  

  gaConf.addGeneticOperator( new MutationOperator(gaConf, 

mutationRate));  

 

  System. out .println( "Crossover rate \ t"  + crossoverRatePercentage);  
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  System. out .println( "Mutation rate \ t"  + mutationRate);  

 

  boolean  allowDoubllette = false ;  

  double  originalRate = 0.9;  

  BestChromosomesSelector s = (BestChromosomesSelector) gaConf  

    . getNaturalSelector () ;  

  s.setDoubletteChromosomesAllowed(allowDoubllette);  

  s.setOriginalRate(originalRate);  

  System. out .println( "allowDoubllette \ t"  + allowDoubllette);  

  System. out .println( "originalRate \ t"  + originalRate);  

 

  List  monitors = new Vector ();  

  monitors.add( new Ti medMonitor(6)) ;  

  monitors.add( new FitnessImprovementMonitor(1, 3, 5.0d)) ;  

  monitors.add( new EvolutionMonitor()) ;  

  monitor  = new ChainedMonitors( monitors , 3);  

  System. out .println( "Monitors on." );  

 

  IChromosome sampleChromosome = getSampleChromosome(gaConf);  

  gaConf.setSampleChromosome(sampleChromosome);  

 

  System. out .println( "Sample Genes:" );  

  for  (Gene gene : sampleChromosome.getGenes()) {  

   System. out .println(gene);  

  }  

 

  // Finally, we need to tell the Configuration object how many  

  // Chromosomes we want in our population. The more Chromosomes,  

  // the larger the number of potential solutions (which is good  

  // for finding the answer), but the longer it will take to evolve  

  // the population each round.  

  gaConf.setPopulationSize(a_sizeOfPopulation);  

  System. out .println( "Population Size \ t"  + a_sizeOfPopulation);  

 

  // Create random initial population of Chromosomes.  

  System. out .println( "Random Initial Population Generated" );  

  population  = Genotype. random InitialGenotype (gaConf);  

 

  //population = new 

Genotype (gaConf,NoaArrayImporter.getInitialNAOPopulation(gaConf, 0, 0));  

 

 }  

 

 protected  IChromosome getSampleChromosome(Configuration gaConf)  

   throws  InvalidConfigurationException {  

  // Now we need to tell  the Configuration object how we want our  

  // Chromosomes to be setup. We do that by actually creating a  

  // sample Chromosome and then setting it on the Configuration  

  // object.  

  int  chromeSize = 19; //  

   

  Gene[] sampleGenes = new Gene[chromeSize];  

 

  //Heating Phase length: multiple integer [60 - 790] days with 30 days 

level length  

  sampleGenes[0] = new MutipleIntegerGene(gaConf, 60, 790, 30);  

  //Heating Phase steam injection rate  

  sampleGenes[1] = new DoubleGene(gaConf, 10, 40);  

   

  //Cycles lengths indicators  

  sampleGenes[2]  = new IntegerGene(gaConf,1,5);  

  sampleGenes[3]  = new IntegerGene(gaConf,1,5);  

  sampleGenes[4]  = new IntegerGene(gaConf,1,5);  

  sampleGenes[5]  = new IntegerGene(gaConf,1,5);  

  sampleGenes[6]  = new IntegerGene(gaCon f,0,5);  

  sampleGenes[7]  = new IntegerGene(gaConf,0,5);  

  sampleGenes[8]  = new IntegerGene(gaConf,0,5);  

  sampleGenes[9]  = new IntegerGene(gaConf,0,5);  

  sampleGenes[10] = new IntegerGene(gaConf,0,5);  

  sampleGenes[11] = new IntegerGene(gaConf,0,5);  
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  sampleGenes[12] = new IntegerGene(gaConf,0,5);  

  sampleGenes[13] = new IntegerGene(gaConf,0,5);  

  sampleGenes[14] = new IntegerGene(gaConf,0,5);  

  //sampleGenes[15] = new IntegerGene(gaConf,0,5);  

 

  //Cycles periods (3 periods one of them soaking)  

  sampleGenes[15] = new IntegerGene(gaConf,1,3);  

  sampleGenes[16] = new IntegerGene(gaConf,1,3);  

  sampleGenes[17] = new IntegerGene(gaConf,1,3);  

   

  //Recovery Phase steam injection rate  

  sampleGenes[18] = new DoubleGene(gaConf, 10, 40);  

   

   

  IChromosome sampleChromosome = new MyGenericChromosome(gaConf, 

chromeSize);  

  sampleChromosome.setGenes(sampleGenes);  

   

   

  return  sampleChromosome;  

 }  

 

package  mmm.ga.tests;  

 

import  java.io.IOException;  

import  java.util.List;  

 

import  mmm.cmgAgents.*;  

import  mmm.ga.MyGenericChromosome;  

import  mmm.ga.objectiveFunctions.NonLinearProxyObjectiveFunction;  

import  mmm.sosfr.SosFrPreprossor2;  

 

import  org.jgap.*;  

import  org.jgap.impl.DoubleGene;  

import  org.jgap.impl.IntegerGene;  

import  org.jgap.impl.MutipleIntegerGene;  

 

public  class  ProxyEvolutionFittestRun3 extends  GenericRunner {  

 

 

 public  ProxyEvolutionFittestRun3(String runTitle, int  evolutions, int  

a_sizeOfPopulation, FitnessFunction objectiveFunction) throws  Exception {  

  super (ru nTitle, evolutions, a_sizeOfPopulation, objectiveFunction);  

  Configuration gaConf = super . population .getConfiguration();  

 

  //Override the random population with an old population to avoid 

re - running the simulations  

  population  = new 

Genotype(gaConf, getInitialNAOPopulation (gaConf, "ex3_good_62cases.txt" ));  

 }  

 

 @Override  

 public  void  run() throws  Exception {  

  System. out .println( "Evolution Start \ t"  + evolutions  + 

" \ tevoluions" );  

  System. out .println();  

  System. out  

    .println( "Location \ tEvolution \ tFX \ tmaxEN\ t" );  

 

 System. out .println( "FileInfo \ tp1l \ tp1injRate \ tRPInjRate \ tAllCyclesLength \ tC

yclesCount \ tcp1 \ tcp2 \ tcp3 \ tCyclesLengths" );  

 

 System. out .println( "ObjValues \ tmoneyRecoveryFactor \ tCumSteamInj \ tCumSolInj \

tCumSolProd \ tCumOilPr od\ tRF \ tcSOR\ tiav \ tcost \ trevenue \ tgrossProfit" );  

   

  long  startTime = System. currentTimeMillis ();  

  NonLinearProxyObjectiveFunction obj = 

(NonLinearProxyObjectiveFunction) objectiveFunction ;  

 

  for  ( int  i = 0; i < evolutions ; i++) {  
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   for  (IChromosome c1 : 

population .getPopulation().getChromosomes()) {  

    MyGenericChromosome c = (MyGenericChromosome) c1;  

    System. out .println( "****PC***** \ t"  + i + " \ t"  

      + c.getFitnessValue() + " \ t \ t"  + c);  

   }  

 

   if  (!uniqueChromosomes( population .getPopulation())) {  

    System. out .println( "Invalid state in generation \ t"  + 

i);  

   }  

   if  ( monitor  != null ) {  

    List<String> messages = population .evolve( monitor );  

    if  (messages.size() > 0) {  

     for  (String msg : messages) {  

      System. out .prin tln( "Monitor: \ t"  + i + 

msg);  

     }  

    }  

   } else  {  

    population .evolve();  

   }  

 

   MyGenericChromosome fittest = (MyGenericChromosome) 

population  

     .getFittestChromosome();  

 

   System. out .println( "Currently fittest Chromosome \ t"  + i + 

" \ t"  

     + fittest.getFitnessValue() + " \ t"  + 

fittest);  

 

   long  simStartTime = System. currentTimeMillis ();  

 

    

   double  actualFitnessValue = 

obj.performActualEvaluation(fittest);  

 

   long  simEndTime = System. currentTimeMillis ();  

   if  (fittest.isError())  

    System. out .println( "ACTUAL_EVAL_ERROR\ t"  + i + " \ t"  

      + actualFitnessValue + " \ t"  + fittest 

+ " \ t"  + (simEndTime -  simStartTime)  

      + " \ tms \ t" );  

   else  {  

    System. out .println( "ACTUAL_EVAL_NEW\ t"  + i + " \ t"  

      + actualFitnessValue + " \ t"  + fittest 

+ " \ t"  + (simEndTime -  simStartTime)  

      + " \ tms \ t" );  

    obj.getProxy().addTrial(fittest.getGenesValues(),  

      actualFitnessValue);  

 

    // /After adding new cases Proxy  updating  

    obj.getProxy().loadDynamicData();  

    try {  

    obj.getPro xy().calculateNonLinearModel();  

    } catch (Exception e){  

     e.printStackTrace();  

    }  

   }  

  }  

 

  long  endTime = System. currentTimeMillis ();  

  System. out .println( " \ n\ nTotal evolution time: \ t"  

    + ((endTime -  startTime) / (1000 * 60)) + 

" \ tminutes" );  

 

  // Print summary.  

  // --------------  

  MyGenericChromosome fittest = (MyGenericChromosome) population  
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    .getFittestChromosome();  

 

  System. out .println( "Fittest Chromosome \ t"  + 

fittest.getFitnessValue()  

    + " \ t"  + fittest);  

  //double[] g = fittest.g etGenesValues();  

 

  double  actualfitnessValue = obj.performActualEvaluation(fittest); 

//  

 

  System. out .println( "Currently Fittest Chromosome Actual Values \ t"  

    + actualfitnessValue + " \ t"  + fittest + " \ tLast 

Time"  

    + fittest.getGenericModelResult().getLastTime());  

 

 }  

 

 /**  

  * @param args  

  * @throws  Exception  

  */  

 public  static  void  main(String[] args) throws  Exception {  

  String simulatorPath = "C:/Program Files 

(x86)/CMG/STARS/2010.11/Win_x64/EXE/st201011.exe" ;  

  String workDirectoryPath = "C: \ \ algosayir \ \ runs_files \ \ sosFr \ \ 2" ;  

  String resultReportPath = "C:/Program Files 

(x86)/CMG/BR/2010.12/Win_x64/EXE/report.exe" ;  

  String baseModelFilePath = workDirectoryPath  

    + " \ \ sosfr2.dat" ;  

 

  double  lastTime = 1264;  

  Preprossor prep = new SosFrPreprossor2(lastTime);  

  Postprossor postp = new Postprossor();  

   

  SimulatorExecuter sim = new SimulatorExecuter(simulatorPath,  

    workDirectoryPath, resultReportPath, 

baseModelFilePath,lastTime, 3, prep, postp);  

  System. out .println(sim);  

 

  int  numberOfActualEvalutions = 62;  

 

  System. out .println( "Last time \ t"  + lastTime);  

  NonLinearProxyObjectiveFunction obj = new 

NonLinearProxyObjectiveFunction(  

    sim, numberOfActualEvalutions);  

   

  ProxyEvolutionFittestRun3 r = new 

ProxyEvolutionFittestRun3( "Experiment 3: Updated Nonlinear Proxy, using 0 lenght 

periods " , 90, 60, obj);  

   

  r.run();  

 }  
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Appendix 2: Objective function evaluation code  

This example of a non-linear objective function code, when exclude proxy calling it become for 

conventional GA. 

package  mmm.ga.objectiveFunctions;  

 

import  java.util.ArrayList;  

 

import  mmm.cmgAgents.*;  

import  mmm.ga.*;  

 

import  org.jgap.*;  

 

public  abstract  class  GenericObjectiveFunction  extends  FitnessFunction {  

 /* /** String containing the CVS revision. Read out via reflection! */  

 // private final static String CVS_REVISION = "$Revision: 1.6 $";  

 protected  ArrayList<MyGenericChromosome> listOfEvaluatedChromosomes  = new 

ArrayList<MyGenericChromosome>();  

 protected  SimulatorExecuter sim ;  

 

 public  GenericObjectiveFunction(SimulatorExecuter sim)  

   throws  Exception {  

  this . sim  = sim;  

 }  

 

 public  double  performActualEvaluation(MyGenericChromosome a_subject)  

   throws  Exception {  

  double  fitnessValue;  

  double [] genesValues = a_subject.getGenesValue s();  

  GenericModelResult r = sim .getGenericModelResults(genesValues);  

 

  a_subject.setGenericModelResult(r);  

  if  (r.isError()) {  

   fitnessValue = 1e - 300;  

  } else  {  

   fitnessValue = calculateFitness(r);  

  }  

 

  return  fitnessValue;  

 }  

 

 protected  double  calculateFitness(GenericModelResult r) {  

  int  steamCost = 18;  

  int  solventCost = 1000;  

  int  oilPrice = 504;  

  int  million = 1000000;  

 

  double  CumSteamInj = r.getLastLineValues()[1];  

  double  CumSolInj = r.getLastLineValues()[2];  

  double  CumSolProd = r.getLastLineValues()[3];  

  double  CumOilProd = r.getLastLineValues()[4];  

  double  RF = r.getLastLineValues()[5];  

  double  cSOR = r.getLastLineValues()[6];  

 

  double  iav = r.getN() * oilPrice / million;  

  double  cost = (CumSteamInj * steamCos t + CumSolInj * solventCost)  

    / million;  

  double  revenue = (CumOilProd * oilPrice + CumSolProd * solventCost)  

    / million;  

  double  grossProfit = revenue -  cost;  

 

  double  moneyRecoveryFactor = (grossProfit / iav) * 100;  

 

 

 System. out .println( "ObjValues \ t" +moneyRecoveryFactor+ " \ t" +CumSteamInj+ " \ t" +

CumSolInj+ " \ t" +CumSolProd+ " \ t" +CumOilProd+ " \ t"  



 85 

 

   

 +RF+" \ t" +cSOR+" \ t" +iav+ " \ t" +cost+ " \ t" +revenue+ " \ t" +grossProfit);  

  if (moneyRecoveryFactor<0)  

   moneyRecoveryFactor=0;  

   

  return  moneyRecoveryFacto r;  

 }  

}  

package  mmm.ga.objectiveFunctions;  

 

import  java.util.ArrayList;  

 

import  mmm.cmgAgents.*;  

import  mmm.ga.*;  

import  mmm.responseSurfaceProxy.ResponseSurfaceProxy;  

import  mmm.responseSurfaceProxy.ResponseSurfaceProxyJama;  

 

import  org.jgap.*;  

 

public  class  NonLinearProxyObjectiveFunction  extends  GenericObjectiveFunction {  

 /** String containing the CVS revision. Read out via reflection! */  

 // private final static String CVS_REVISION = "$Revision: 1.6 $";  

 private  ArrayList<MyGenericChromosome> listOfE valuatedChromosomes  = new 

ArrayList<MyGenericChromosome>();  

 private  ResponseSurfaceProxy p;  

 private  int  numberOfAcutalEvaluation ;  

 private  int  actualEvaluationCount ;  

 

 public  NonLinearProxyObjectiveFunction(SimulatorExecuter sim, int  

numberOfAcutalEvaluation) throws  Exception {  

  super (sim);  

  this . numberOfAcutalEvaluation  = numberOfAcutalEvaluation;  

  this . actualEvaluationCount  = 0;  

  this . p = new ResponseSurfaceProxyJama();  

 }  

 

 

 public  double  evaluate(IChromosome c) {  

  MyGenericCh romosome a_subject = (MyGenericChromosome) c;  

 

  int  evolution = a_subject.getConfiguration().getGenerationNr();  

  double  fitnessValue = 1e - 300;  

  double [] genesValues = a_subject.getGenesValues();  

 

  if  ( listOfEvaluatedChromosomes .contains(a_subject)) {  

   MyGenericChromosome cc = listOfEvaluatedChromosomes  

    

 .get( listOfEvaluatedChromosomes .indexOf(a_subject));  

   if  (cc.isError())  

    System. out .println( "evaluateEOLD \ t"  + evolution + 

" \ t"  

      + fitnessValue + " \ t"  + a_subject);  

   else  {  

   

 a_subjec t.setGenericModelResult(cc.getGenericModelResult());  

    fitnessValue = 

calculateFitness(cc.getGenericModelResult());  

     

    System. out .println( "evaluateOLD \ t"  + evolution + 

" \ t"  

      + fitnessValue  + " \ t"  + a_subject);  

   }  

   return  fitnessValue;  

  } else  {  

 

   long  startTime = System. currentTimeMillis ();  

 

   if  ( actualEvaluationCount  < numberOfAcutalEvaluation ) {  
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    try  {  

     fitnessValue = 

performActualEvaluation(a_subject);  

     long  endTime = System. currentTimeMillis ();  

 

     if  (a_subject.isError())  

      System. out .println( "evaluateERROR \ t"  

+ evolution + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  

startTime) + " \ tms \ t" );  

     else {  

      p.addTrial(genesValues, 

fitnessValue);  

      System. out .println( "evaluateNEW \ t"  + 

evolution + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  startTime) 

+ " \ tms \ t" );  

     }  

     listOfEvaluatedChromosomes .add(a_subject);  

     actualEvaluationCount ++;  

     return  fitnessValue;  

    } catch  (Exception e) {  

     e.printStackTrace();  

     return  - 1;  

    }  

   } else  if  ( actualEvaluationCount  == 

numberOfAcutalEvaluation ) {  

// initialize  and  use  the proxy  

    p.calculateNonLinearModel();  

    fitnessValue = p.getNonLinearResponse(genesValues);  

    long  endTime = System. currentTimeMillis ();  

    actualEvaluationCount ++; // Just to stop 

recalculating the proxy  

    if  (fitnessValue < 0) {  

     fitnessValue = 1e - 300;  

     System. out .println( "evaluateProxyNLErr \ t"  + 

evolution  + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  startTime) 

+ " \ tms \ t" );  

    } else  {  

     System. out .println( "evaluateProxyNL \ t"  + 

evolution + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  startTime)  

+ " \ tms \ t" );  

    }  

    return  fitnessValue;  

   } else  { // use the proxy  

    fitnessValue = p.getNonLinearResponse(genesValues);  

    long  endTime = System. currentTimeMillis ();  

    if  (fitnessValue < 0) {  

     fitnessValue = 1e - 300;  

     System. out .println( "evaluateProxyNLErr \ t"  + 

evolution  + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  startTime) 

+ " \ tms \ t" );  

    } else  {  

     System. out .println( "evaluateProxyNL \ t"  + 

evolution + " \ t"  + fitnessValue  + " \ t"  + a_subject + " \ t"  + (endTime -  startTime)  

+ " \ tms \ t" );  

    }  

    return  fitnessValue;  

   }  

  }  

 }  

 

 public  ResponseSurfaceProxy getProxy() {  

  return  p;  

 }  

}  
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Appendix 3: CMG Agents Package 

package  mmm.cmgAgents;  

 

import  java.io.*;  

 

public  abstract  class  Preprossor {  

 

 /**  

  * Copy from baseFile to generatedFile until searchText is found  

  * @param br  

  * @param bw 

  * @param searchText  

  * @return  last line found  

  * @throws  IOException  

  */  

 protected  String copyUntil(BufferedReader br, BufferedWriter bw,  

   String searchText) throws  IOException {  

  String currentRecord;  

        while ( (currentRecord = br.readLine()) != null  ){  

         if (searchText!= null  && 

currentRecord.trim().toUpperCase().contains(searchText)){  

          break ;  

         }  

         else {  

          bw.write(currentRecord);  

             bw.newLine();  

         }  

        }  

  return  currentRecord;  

 }  

 

 protected  void  copyUntilEnd(BufferedReader br, BufferedWriter bw) throws  

IOException{  

  copyUntil(br, bw, null );  

 }  

  

 protected  boolean  checkFile Availability(String filePath, boolean  

isTighterModel) throws  IOException {  

  //if the file exist don't regenerate it  

     File gf = new File(filePath);  

     if (isTighterModel){  

      if (gf.exists())  

       if (isFileContians(filePath, "CONVERGE TOTRES TIGHTER"))  

        return  true ;  

       else  

        return  false ;  

      else  

       return  false ;  

       

     } else  {  

      return  gf.exists();  

     }  

 }  

  

 protected  boolean  isFileContians(String filePath, String searchString) 

throws  IOException {  

        FileReader fr = new FileReader(filePath);  

        BufferedReader br = new BufferedReader(fr);  

 

  String currentRecord;  

 

        while ((currentRecord = br.readLine()) != null ){  

            if ( 

currentRecord.trim().toUpperCase().contains(searchString .trim().toUpperCase()) ){  

                br.close();  

 

             return  true ;  

            }  
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        }  

 

        br.close();  

 

  return  false ;  

 }  

  

 protected  String getGeneratedFileName(String baseFilePath, double [] 

newValues) {  

  String valuesText = "" ;  

  for ( double  g : newValues){  

   valuesText += "_"  + g;  

  }  

      

     String generatedFilePath = baseFilePath.replace( ".dat" , valuesText+ ".dat" );  

  return  generatedFilePath;  

 }  

 

 /**  

  * Implement this method to Generate new model file based on baseFilePa th 

using algorithm generated values newValues  

  *  

  * Example implementation:  

  * <code> String generatedFilePath = 

getGeneratedFileName(baseFilePath,newValues);  

     <p> 

     if(checkFileAvailability(generatedFilePath, isTighterModel))  

      return genera tedFilePath;  

     <p> 

        BufferedReader br  = new BufferedReader(new FileReader(baseFilePath));  

        <p> 

        BufferedWriter bw = new BufferedWriter(new FileWriter(generatedFilePath));  

<p> 

  String searchText = "PERMI ALL";  

  <p>String currentRecord = copyUntil( br , bw, searchText);  

 

        <p>bw.write(currentRecord);  

        <p>bw.newLine();  

         

 

  <p>if (isTighterModel) {  

  <p> searchText = "NUMERICAL";  

    

  <p> currentRecord = copyUntil( br , bw, searchText);  

        <p>    bw.write(currentRecord);  

        <p>    bw.newLine();  

        <p>    bw.write("CONVERGE TOTRES TIGHTER");  

        <p>    bw.newLine();  

  <p>}  

 

  <p>currentRecord = copyUntil( br , bw, "OPERATE");  

  <p>//Replace number  

        <p>currentRecord=currentRecord.replaceAll("[0 - 9\ \ , \ \ . \ \ +\ \ - ]+", 

newValues[0]+"");  

        <p>bw.write(currentRecord);  

        <p>bw.newLine();  

 

  <p>copyUntilEnd( br , bw);  

        <p>br.close();  

        <p>bw.close();  

         

        <p>return generatedFilePa th;  

</code>  

  * @param baseFilePath  

  * @param newValues  

  * @param isTighterModel  

  * @return  generated file path  

  * @throws  Exception  

  */  
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 public  abstract  String generateModelFile(String baseFilePath, double [] 

newValues, boolean  isTighterModel) throws  Exception;  

}  

package  mmm.sosfr;  

 

import  java.io.*;  

 

import  mmm.cmgAgents.Preprossor;  

 

 

public  class  SosFrPreprossor extends  Preprossor {  

 

 private  double  lastTime ;  

  

 public  SosFrPreprossor( double  lastTime) {  

  this . lastTime  = lastTime;  

 }  

 

 /**  

  * @param args  

  * @throws  IOException  

  */  

 private  void  generateRUNSection(BufferedWriter bw, double [] newValues, 

double  lastTime) throws  IOException {  

  double  p1l = newValues[0];  

  double  p1InjRate = newValues[1];  

  double  rpInjRate = newValues[18];  

  int  p2l = 175;   //fix this  

  int  p3l = 6;   //fix this  

  int  p5lLastP = 198;  //fix this  

   

  double  allCyclesPeriodLenght = lastTime -  (p1l+p2l+p3l+p5lLastP);  

   

  //To optimize this create 13 length indicators  

  //Five of them multiple integer [1 - 5]  

  //R emaining [0 - 5]  

  int  numberOfCycles = 0; //TO BE OPTIMIZED  

  int  sumCyclesLenghtIndicators = 0;  

   

  for  ( int  i = 2; i < 15; i++) {  

   if  (newValues[i]>0) {  

    numberOfCycles++;  

   }  

   sumCyclesLenghtIndicators += newValues[i];  

  }  

 

   

  double [] cyclesLength = new double [numberOfCycles];  

   

  int  currentCycle = 0;  

  String cyclesLenghtInfo = "" ;  

  for  ( int  i = 2; i < 15; i++) {  

   if  (newValues[i]>0) {  

    cyclesLength[currentCycle] = 

(newValues[i]/sumCyclesLenghtIndicators)*allCyclesPeriodLenght;  

    cyclesLenghtInfo += cyclesLength[currentCycle] 

+" \ t" ;  

    currentCycle++;  

   }  

  }  

   

  //3 lenght  indicator [1 - 4]  

  double  cyclesLengthIndicatorsTotal = newValues[15] + newValues[16] 

+ newValues[17];  

  double  cp1lengthFraction = 

newValues[15]/cyclesLengthIndicatorsTotal;  

  double  cp2lengthFraction = 

newValues[16]/cyclesLengthIndicatorsTotal;  
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  double  cp3lengthFraction = 

newValues[17]/cyclesLengthIndicatorsTotal;  

 

 

        bw.write( "****************** START OF PHASE 1 ****************** \ n" );  

        bw.newLine();  

  BufferedReader br = new BufferedReader( new FileReader( "p1.txt" ));  

        String currentRecord = copyUntil(br, bw,  "OPERATE  MAX  STW" );  

        currentRecord=currentRecord.replaceAll( "[0 - 9\ \ , \ \ . \ \ +\ \ - ]+" , 

p1InjRate+ "" );  

        bw.write(currentRecord);  

        bw.newLine();  

        copyUntilEnd(br, bw);  

        br.close();  

 

        bw.newLine();  

         

        for ( int  i=1;i<=p1l;i++){  

         bw.write( "TIME " +i);  

         bw.newLine();  

        }  

         

        bw.write( " \ n****************** START OF PHASE 2 ****************** \ n" );  

        bw.newLine();  

  br = new BufferedReader( new FileReader( "p2.txt" ));  

  copyU ntilEnd(br, bw);  

  br.close();  

        bw.newLine();  

         

        for ( int  i=1;i<=p2l;i++){  

         bw.write( "TIME " +(i+p1l));  

         bw.newLine();  

        }  

         

        bw.write( " \ n\ n****************** START OF PHASE 3 ****************** \ n" );  

        bw.newLine();  

        bw.write( "SHUTIN 'Well - 1'" );  

        bw.newLine();  

        for ( int  i=1;i<=p3l;i++){  

         bw.write( "TIME " +(i+p1l+p2l));  

         bw.newLine();  

        }  

         

        double  currentCycleStartTime = p1l+p2l+p3l;  

         

        String cyclesPeriodsLengthInfo = "" ;  

        for ( int  i=0; i<numberOfCycles; i++){  

      //Cycles periods (3 periods one of them soaking)  

 

      double  cp1l = cyclesLength[i]*cp1lengthFraction; //TO BE OPTIMIZED  

      double  cp2l = cyclesLength[i]*cp2lengthFraction; //TO BE OPTIMIZED  

      double  cp3l = cyclesLength[i]*cp3lengthFraction; //TO BE OPTIMIZED  

 

      cyclesPeriodsLengthInfo += cp1l + " \ t"  + cp2l + " \ t"  + cp3l + " \ t" ;  

      bw.newLine();  

         bw.write( "** C" +(i +1));  

         bw.newLine();  

          

         if (i==0){  

                bw.write( " \ n** PERIOD 1 INITIAL ** \ n" );  

   bw.newLine();  

                br = new BufferedReader( new FileReader( "cp1i.txt" ));  

          copyUntilEnd(br, bw);  

          br.close();  

                bw.newLine();  

 

         } else  {  

          bw.write( " \ n** PERIOD 1 ** \ n" );  

          bw.newLine();  

          bw.write( "TIME " +(currentCycleStartTime));  
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          bw.newLine();  

          bw.write( "shutin 'Well - 3'" );  

          bw.newLine();  

          bw.write( "open 'Well - 1'" );  

          bw.newLine();  

         }  

          

          

         bw.write( " \ n** PERIOD 2 ** \ n" );  

         bw.newLine();  

         bw.write( "TIME " +(currentCycleStartTime+cp1l));  

         bw.newLine();  

         bw.write( "sh utin 'Well - 1'" );  

         bw.newLine();  

          

         bw.write( " \ n** PERIOD 3 ** \ n" );  

      bw.newLine();  

         bw.write( "TIME " +(currentCycleStartTime+cp1l+cp2l));  

         bw.newLine();  

         bw.write( "open 'Well - 3'" );  

         bw.newLine();  

          

         currentCycleStartTime += cp1l+cp2l+cp3l;  

        }  

 

        bw.write( " \ n****************** START P5 ****************** \ n\ n" );  

  //String p5LastP = readFile("p5_lastP.txt"); //read p1  

   

        bw.newLine();  

        bw.write( "TIME " +(currentCycleStartTime));  

        bw.newLine();  

  br = new BufferedReader( new FileReader( "p5_lastP.txt" ));  

        currentRecord = copyUntil(br, bw, "OPERATE  MAX  STW" );  

        currentRecord=currentRecord.replaceAll( "[0 - 9\ \ , \ \ . \ \ +\ \ - ]+" , 

rpInjRate+ "" );  

        bw.write(currentRecord);  

        bw.newLine();  

        copyUntilEnd(br, bw);  

        br.close();  

        bw.newLine();  

         

        for ( int  i=1;i<=p5lLastP;i++){  

         bw.write( "TIME " +(i+currentCycleStartTime));  

         bw.newLine();  

        }  

 

 

        br = new BufferedReader( new FileReader( "lastPart.txt" ));  

  copyUntilEnd(br, bw);  

  br.close();  

        bw.newLine();  

         

        bw.close();  

  

 System. out .println( "FileInfo \ t" +p1l+ " \ t" +p1InjRate+ " \ t" +rpInjRate+ " \ t" +allC

yclesPeriodLenght+ " \ t" +numberOfCycles  

   

 +" \ t" +cp1lengthFraction+ " \ t" +cp2lengthFraction+ " \ t" +cp3lengthFraction+ " \ t" +

cyclesLenghtInfo+ "CyclesPeriodsLength \ t" +cyclesPeriodsLengthInfo);  

 }  

 

 

 @Override  

 public  String generateModelFile(String baseFilePat h, double [] newValues,  

   boolean  isTighterModel) throws  Exception {  

  String generatedFilePath = 

getGeneratedFileName(baseFilePath,newValues);  

      

     if (checkFileAvailability(generatedFilePath, isTighterModel))  

      return  generatedFilePath;  
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        BufferedReader br = new BufferedReader( new FileReader(baseFilePath));  

         

        BufferedWriter bw = new BufferedWriter( new FileWriter(generatedFilePath));  

 

        String currentRecord = "" ;  

  if  (isTighterModel) {  

   String searchText = "NUMERICAL";  

    

   currentRecord = copyUntil(br, bw, searchText);  

            bw.write(currentRecord);  

            bw.newLine();  

            bw.write( "CONVERGE TOTRES TIGHTER");  

            bw.newLine();  

  }  

 

  currentRecord = copyUntil(br, bw, "RUN");  

 

  this .generateRUNSection(bw, newValues, lastTime );  

 

  br.close();  

        bw.close();  

         

        return  generatedFilePath;  

 }  

 

}  

package  mmm.cmgAgents;  

 

public  class  GenericModelResult {  

 private  double [] lastLineValues ;  

 private  double  N;  

 private  boolean  isError ;  

  

 /**  

  * @return  the lastLineValues  

  */  

 public  double [] getLastLineValues() {  

  return  lastLineValues ;  

 }  

 

 

 /**  

  * @param lastLineValues the lastLineValues to set  

  */  

 public  void  setLastLineValues( double [] lastLineValues) {  

  this . lastLineValues  = lastLineValues;  

 }  

 

 /**  

  * @param lastLineValues the lastLineValues to set  

  */  

 public  void  setLastLineValues(String[] lastLineValues) {  

  this . lastLineValues  = new double [lastLineValues. length ];  

   

  for  ( int  i = 0; i < lastLineValues. length ; i++) {  

   String string = lastLineValues[i];  

    

   this . lastLineValues [i] = Double. parseDouble (string);  

  }  

 }  

 

 /**  

  * @return  the lastTime  

  */  

 public  double  getLastTime() {  

  return  lastLineValues [0];  

 }  
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 /**  

  * @return  the n  

  */  

 public  double  getN() {  

  return  N;  

 }  

 /**  

  * @param n the n to set  

  */  

 public  void  setN( double  n) {  

  N = n;  

 }  

 

 

 /**  

  * @return  the isError  

  */  

 public  boolean  isError() {  

  return  isError ;  

 }  

 

 

 /**  

  * @param isError the isError to set  

  */  

 public  void  setError( boolean  isError) {  

  this . isError  = isError;  

 }  

 

 

 /* (non - Javadoc )  

  * @see java.lang.Object#toString()  

  */  

 @Override  

 public  String toString() {  

  String s = "" ;  

   

  for  ( double  d : lastLineValues ) {  

   s += d + " \ t" ;  

  }  

  return  s + N;  

 }  

}  

package  mmm.cmgAgents;  

 

import  java.io.*;  

 

public  class  SimulatorExecuter {  

 private  String simulatorPath ;  

 private  String workDirectoryPath ;  

 private  String resultReportPath ;  

 private  String baseModelPath ;  

 private  int  numberOfCores ;  

 private  boolean  useParallelSolver ;  

 private  Preprossor preprossor ;  

 private  Postprossor postprossor ;  

 private  double  lastTime ;  

 

 public  SimulatorExecuter(String simulatorPath, String workDirectoryPath, 

String resultReportPath,  

   String baseModelPath, double  lastTime, Pr eprossor 

preprossor, Postprossor postprossor) {  

  this . simulatorPath  = simulatorPath;  

  this . workDirectoryPath  = workDirectoryPath;  

  this . resultReportPath  = resultReportPath;  

  this . baseModelPath  = baseModelPath;  

  this . numberOfCores  = 1;  

  this . useParallelSolver  = false ;  

  this . preprossor  = preprossor;  

  this . postprossor  = postprossor;  
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  this . lastTime  = lastTime;  

 }  

 

 public  SimulatorExecuter(String simulatorPath, String workDirectoryPath, 

String resultReportPath,  

   String baseModelPath, double  lastTime, int  numberOfCores, 

Preprossor preprossor, Postprossor postprossor) {  

  this (simulatorPath, workDirectoryPath, resultReportPath, 

baseModelPath, lastTime, preprossor, postprossor);  

  this . numberOfCores  = numberOfCores;  

  this . useParallelSolver  = t rue ;  

 }  

 private  void  execute(String filePath, int  numberOfCores) {  

 

  // IF the output file exist it means model executed before!  

  // and not repeated in less number of cores because of ERROR  

  // No need to repeat execution  

  String irfFilePath = filePath.replace( ".dat" , ".irf" );  

  File irfFile = new File(irfFilePath);  

  if  (irfFile.exists() && numberOfCores == this . numberOfCores ) {  

   return ;  

  }  

 

  try  {  

   String line ;  

   String command = null ;  

   if  ( useParallelSolver ) {  

    command = " \ ""  + simulatorPath  + " \ " - f \ ""  + 

filePath  

      + " \ " - wd \ ""  + workDirectoryPath  + 

" \ " "  

      + " - log - doms - parasol "  + 

numberOfCores + " - wait" ;  

   } else  {  

    command = " \ ""  + simulatorPath  + " \ " - f \ ""  + 

filePath  

      + " \ " - wd \ ""  + workDirectoryPath  + 

" \ " "  + " - log"  

      + " - wait" ;  

   }  

 

   // System.out.println(command);  

   Process p = Runtime. getRuntime ().exec(command);  

   // p.waitFor();  

   BufferedReader input = new BufferedReader( new 

InputStreamReader(  

     p.getInputStream()));  

   while  ((line = input.readLine()) != null ) {  

    // System.out.println(line);  

   }  

   input.close();  

  } catch  (Exception err) {  

   err.printStackTrace();  

  }  

 }  

 

 private  String executeGenericResultReport(String irfFilePath, int  

numberOfCores) throws  Exception {  

 

  // create command file . rwd  

  String generatedFilePath = irfFilePath.replace( ".irf" , ".rwd" );  

  String baseFileRWDFilePath = baseModelPath .replace( ".dat" , ".rwd" );  

  String outputFilePath = irfFilePath.replace( ".irf" , ".rwo" );  

 

  // if output is executed before don't repeat it  

  File of = new File(outputFilePath);  

  if  (of.exists() && numberOfCores == this . numberOfCores )  

   return  outputFilePath;  

 

  FileReader fr = new FileReader(baseFileRWDFilePath);  
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  BufferedReader br = new BufferedRe ader(fr);  

  String currentRecord;  

 

  FileWriter fw = new FileWriter(generatedFilePath);  

  BufferedWriter bw = new BufferedWriter(fw);  

 

  while  ((currentRecord = br.readLine()) != null ) {  

   if  (currentRecord.contains( "*FILES" )) {  

    currentRecord = "*FILES '"  + irfFilePath + "' " ;  

   }  

   bw.write(currentRecord);  

   bw.newLine();  

  }  

 

  br.close();  

  bw.close();  

 

  // run command file section  

 

  // generate output file  

 

  try  {  

 

   String command = resultReportPath  + " - f \ ""  + 

generatedFilePath  

     + " \ " - o \ ""  + outputFilePath + " \ "" ;  

   Process p = Runtime. getRuntime ().exec(command);  

 

   BufferedReader input = new BufferedReader( new 

InputStreamReader(  

     p.getInputStream()));  

 

   String line  = "" ;  

   while  ((line = input.readLine()) != null ) {  

    // System.out.println(line);  

   }  

   input.close();  

  } catch  (Exception err) {  

   err.printStackTrace();  

  }  

 

  return  outputFilePath;  

 }  

 

 public  GenericModelResult getGenericModelResults( double [] values)  

   throws  Exception {  

   

  GenericModelResult r = getGenericModelResults(values, 

this . numberOfCores , false );  

  return  r;  

 }  

 

 private  GenericModelResult getGenericModelResults( double [] values, int  

numberOfCores, boolean  isTighterModel)  

   throws  Exception {  

  GenericModelResult r = new GenericModelResult();  

   

  // create model file  

  String generatedModelFilePath = null ;  

  try {  

   generatedModelFilePath = 

preprossor .generateModelFile( baseModelPath , values, isTighterModel);  

  } catch  (IncorrectModelFileException ex){  

   String genesV aluesText = "" ;  

 

   for ( double  g : values){  

    genesValuesText += g+ " \ t" ;  

   }  

   generatedModelFilePath = 

preprossor .getGeneratedFileName( baseModelPath , values);  
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   File f = new File(generatedModelFilePath);  

    

   f.delete();  

    

   System. out .println( "EXCEPTION\ t" +ex.getMessage()+ "; Unable 

to generate a model for \ t" +genesValuesText);  

    

   r.setError( true );  

   return  r;  

  }  

  // execute generated model file  

  execute(generatedModelFilePath, numberOfCores);  

 

  // get result --  result report  

  String irfFilePath = generatedModelFilePath.replace( ".dat" , 

".irf" );  

  String generatedOutputFilePath = executeGenericResultReport(  

    irfFilePath, numberOfCores);  

 

  String[] lastLineValues = postprossor .getLastLine(  

    generatedOutputFilePath, " \ t" );  

 

  r.set LastLineValues(lastLineValues);  

 

  String outFilePath = generatedModelFilePath.replace( ".dat" , 

".out" );  

  r.setN( postprossor .getInitialOilInPlace(outFilePath));  

 

  if  (r.getLastTime() != lastTime ) {  

   if  (isTighterModel && numberOfCores == 1){  

    r.setError( true );  

   } else  if (numberOfCores == 1) {  

    r = getGenericModelResults(values, numberOfCores, 

true );  

    if  (r.getLastTime() != lastTime ){  

     r.setError( true );  

    }  

   } else  {  

    r = getGenericModelResults(values, numberOfCores/2, 

isTigh terModel);  

   }  

  }  

   

  return  r;  

 }  

 

 

 /*  

  * (non - Javadoc )  

  *  

  * @see java.lang.Object#toString()  

  */  

 @Override  

 public  String toString() {  

  return  "SimulatorExecuter \ nsimulatorPath= \ t"  + simulatorPath  

    + " \ nworkDirectoryPath= \ t"  + workDirectoryPath  

    + " \ nresultReportPath= \ t"  + resultReportPath  

    + " \ nbaseModelPath= \ t"  + baseModelPath  + 

" \ tPreprossor= \ t"  

    + preprossor ;  

 }  

}  

package  mmm.cmgAgents;  

 

import  java.io.*;  

import  java.util.regex.Matcher;  

import  java.util.regex.Pattern;  

 

public  class  Postprossor {  
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    public  String[] getLastLine(String filePath, String delimiter) throws  

Exception {  

        FileReader fr = new FileReader(filePath);  

        BufferedReader br = new BufferedReader(fr);  

        String  currentRecord;  

        String lastRecord = "" ;  

 

        while ((currentRecord = br.readLine()) != null )  

            lastRecord = currentRecord;  

 

        br.close();  

        return  lastRecord.split(delimiter);  

    }  

 

    public  double  getInitialOilInPlace(String filePath) throws  Exception {  

        FileReader fr = new FileReader(filePath);  

        BufferedReader br = new BufferedReader(fr);  

        String currentRecord;  

 

        boolean  initialComponentInPlaceSectionFound= false ;  

        double  initialOilInPlace = - 1;  

         

        while ((currentRecord = br.readLine()) != null ){  

            if (currentRecord.contains( "TOTAL INITIAL COMPONENTS IN PLACE" ))  

             initialComponentInPlaceSectionFound = true ;  

             

            if (initialComponentInPlaceSectionFound && 

currentRecord.toUpperCase().contains( "OIL" )){  

                String scPattern = "([0 - 9\ \ , \ \ . \ \ +\ \ - ]+)([Ee][0 - 9\ \ , \ \ . \ \ +\ \ - ]+)" ;  

             Pattern p = Pattern. compile (scPattern);  

             Matcher  m = p.matcher(currentRecord);  

             if  (m.find()) {  

              initialOilInPlace = Double. parseDouble (m.group());  

              br.close();  

              return  initialOilInPlace;  

             }  

            }  

        }  

        br.close();  

        return  initialOilInPlace;  

    }  

 

}  
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Appendix 4: Response surface proxy package  

package  mmm.responseSurfaceProxy;  

 

import  java.util.Hashtable;  

public  abstract  class  ResponseSurfaceProxy {  

 protected  Hashtable< double [], Double> userValuesList ;  

 

 public  ResponseSurfaceProxy() {  

  userValuesList  = new Hashtable< double [], Double>();  

 }  

 

 public  abstract  double  getLinearResponse( double  u[]);  

 

 public  abstract  double  getNonLinearResponse( double [] useru);  

 

 public  abstract  void  calculateLinearModel();  

 

 public  abstract  void  calculateNonLinearModel();  

  

 public  abstract  void  loadDynamicData();  

 

 public  void  addTrial( double [] uValues, double  jValue){  

  if (! userValuesList .containsKey(uValues))  

   userValuesList .put(uValues, jValue);  

 }  

}  

 

package  mmm.responseSurfaceProxy;  

 

import  java.io.*;  

import  java.util.Hashtable;  

 

import  Jama.*;  

public  class  ResponseSurfaceProxyJama extends  ResponseSurfaceProxy {  

 private  Matrix Ulinear ;  

 private  Matrix UNonlinear ;  

 private  Matrix J;  

 private  Matrix BetaLinear ;  

 private  Matrix BetaNonLinear ;  

  

 public  ResponseSurfaceProxyJama(String UfilePath, String JfilePath) throws  

FileNotFoundException, IOException{  

  Matrix userMatrixU = Matrix. read ( new BufferedReader( new 

FileReader(UfilePath)));  

  Ulinear  = getU FromUserMatrix(userMatrixU);  

  J = Matrix. read ( new BufferedReader( new FileReader(JfilePath)));  

 }  

  

 public  ResponseSurfaceProxyJama() {  

  userValuesList  = new Hashtable< double [], Double>();  

 }  

 

 public  double  getLinearResponse( double  u[]){  

  Matrix U = new Matrix(1, u. length +1);  

  for  ( int  i = 0; i < u. length +1; i++) {  

   if (i==0)  

    U.set(0,i , 1);  

   else  

    U.set(0,i , u[i - 1]);  

    

  }  

  Matrix r = getLinearResponse(U);  

  return  r.get(0, 0);  

 }  

 

 /**  

  * @param U 

  * @return  
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  */  

 private  Matrix getLinearResponse(Matrix U) {  

  Matrix r = U.times( BetaLinear );  

  return  r;  

 }  

 

 public  double  getNonLinearResponse( double [] useru) {  

  double [] du = new double [useru. length +1];  

  double [] unl = getNonLinearDs(useru);  

  Matrix u = new Matrix(unl, 1);  

  Matrix r = getNonLinearResponse(u);  

  return  r.get(0, 0);  

 }  

 

 private  Matrix getNonLinearResponse(Matrix U) {  

  Matrix r = U.times( BetaNonLinear );  

  return  r;  

 }  

 

 private  Matrix getUFromUserMatrix(Matrix userMatrixU) {  

  double [][] uma  = userMatrixU.getArray();  

  Matrix u = new Matrix(uma. length , uma[0]. length +1);  

  for  ( int  i = 0; i < uma. length ; i++) {  

   for  ( int  j = 0; j < uma[i]. length +1; j++) {  

    if  (j==0) {  

     u.set(i, j, 1);  

    } else  {  

     u.set(i, j, uma[i][j - 1]);  

    }  

   }  

  }  

  return  u;  

 }  

 

 public  void  calculateLinearModel(){  

  if ( Ulinear ==null  && J==null ){  

   loadDynamicData();  

  }  

   

  BetaLinear  = calculateBeta( Ulinear , J);  

   

  

   System. out .println( "JandU \ t \ tActual J \ tProxy J \ tUs" );  

   //print Y' values of initial data  

   Matrix r = getLinearResponse( Ulinear );  

   double [] rd = r.getColumnPackedCopy();  

   double [] actualJ = J.getColumnPackedCopy();  

   double  summation = 0;  

   for  ( int  i = 0; i < Ulinear .getRowDimension(); i++) {  

    System. out .print( "JandU \ t \ t" +actualJ[i]);  

    System. out .print( " \ t" +rd[i]);  

    double  dY1 = actualJ[i] -  rd[i];  

    summation += Math. pow(dY1,2);  

    for  ( int  j = 0; j < Ulinear .getColumnDimension(); 

j++) {  

     System. out .print( " \ t" +Ulinear .get(i, j));  

    }  

    System. out .println();  

   }  

   System. out .println( "Linear Proxy L2[E]="  + 

Math. pow(summation, 0.5) );  

}  

 

 public  void  calculateNonLinearModel(){  

  if ( Ulinear ==null  && J==null ){  

   loadDynamicData();  

  }  

  

  calculateNonLinearU();  

  BetaNonLinear  = calculateBeta( UNonlinear , J);  
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  double [] b = BetaNonLinear .getColumnPackedCopy();  

  for  ( double  d : b) {  

   System. out .println( "Beta \ t \ t" +d);  

  }  

   

  System. out .println( "JandU \ t \ tActual J \ tProxy J \ tUs" );  

  //print Y' values of initial data  

  Matrix r = getNonLinearResponse( UNonlinear );  

  double [] rd = r.getColumnPackedCopy();  

  double [] actualJ = J.getColumnPackedCopy();  

  double  summation = 0;  

  for  ( int  i = 0; i < UNonlinear .getRowDimension(); i++) {  

   System. out .print( "JandU \ t \ t" +actualJ[i]);  

   System. out .print( " \ t" +rd[i]);  

   double  dY1 = actualJ[i] -  rd[i];  

   summation += Math. pow(dY1,2);  

 

   for  ( int  j = 0; j < UNonlinear .getColumnDimension(); j++) {  

    System. out .print( " \ t" +UNonlinear .get(i, j));  

   }  

   System. out .println();  

  }  

   

  System. out .println( "Nonlinear Proxy L2[E]="  + Math. pow(summation, 

0.5) );  

 }  

 

 /**  

  *  

  */  

 public  void  loadDynamicData() {  

  //this means dynamic way is used  

   Matrix userMatrixU = null ;  

   int  currentCase = 0;  

   for  ( double [] u : userValuesList .keySet()) {  

    double  response = userValuesList .get(u);  

    if (userMatrixU == null ){  

     userMatrixU = new 

Matrix( userValuesList .size(),u. length );  

     J = new Matrix( userValuesList .size(), 1);  

    }  

     

    for  ( int  j = 0; j < u. length ; j++) {  

     userMatrixU.set(currentCase, j, u[j]);  

    }  

     

    J.set(currentCase, 0, response);  

    currentCase++;  

   }  

   Ulinear  = getUFromUserMatrix(userMatrixU);  

 }  

  

 /**  

  * @param U is the x or u values vector  

  * @param J is the y or j or the response vector  

  * @return  

  */  

 private  Matrix calculateBeta(Matrix U, Matrix J) {  

  if (U.getColumnDimension()<J.getRowDimension()){  

   //Over - determined  

   //Null space of U = 0  

   //U'U non - singular positive - definite matrix: (U'U)^ - 1 exists  

   // M < N --  U data less than J data  

   //B = (U' U)^ - 1 . U' . J  

   Matrix AA = U.transpose().times(U).inverse();  

   Matrix BB = U.transpose().times(J);  

   Matrix Beta = AA.times(BB);  

   return  Beta;  

  } else  {  

   //Under - determined  
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   //rank of U = N  

   //Null space of U > 0  

   //UU' non - singular positive - definite matrix: (GG')^ - 1 exists  

   // M > N  

   //B = U' . (U . U')^ - 1 . J  

   Matrix AA = U.times(U.transpose()).inverse();  

   Matrix BB = U.transpose().times(AA);  

   Matrix Beta = BB.times(J);  

   return  Beta;  

  }  

 }  

 

 private  void  calculateNonLinearU() {  

  Matrix subUL = Ulinear .getMatrix(0, Ulinear .getRowDimension() - 1, 1, 

Ulinear .getColumnDimension() - 1);  

  double [][] u = subUL.getArray();  

  double [][] nonLinearU = new double [u. length ][];  

  for  ( int  i = 0; i < u. length ; i++) {  

   nonLinearU[i] = getNonLinearDs(u[i]);  

  }  

   

  UNonlinear  = new Matrix(nonLinearU);  

 }  

 

 private  double [] getNonLinearDs( double [] ds) {  

  int  countOfUUs=0;  

  for  ( int  i = 1; i < ds. length +1; i++) {  

   for  ( int  jj = 1; jj < ds. length +1; jj++) {  

    if (i<jj){  

     countOfUUs++;  

     //System.out.print(" \ tU"+i+ "U"+ jj );  

    }  

   }  

  }  

  double [] nonLinearDs = new double [ds. length *2+countOfUUs+1];  

   

  int  indexOfUUs=0;  

  nonLinearDs[0]=1;  

  for  ( int  i = 1; i < ds. length +1; i++) {  

   nonLinearDs[i]=ds[i - 1];  

   nonLinearDs[i+ds. length ]=ds[i - 1]*ds[i - 1];  

    

   for  ( int  jj = 1; jj < ds. length +1; jj++) {  

    if (i<jj){  

     indexOfUUs++;  

     nonLinearDs[ds. length *2+indexOfUUs]=ds[i -

1]*ds[jj - 1];  

    }  

   }  

  }  

   

  return  nonLinearDs;  

 }  

}  
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Appendix 5: NOA reading package  

 public  static  double [][] getNOAArray (String filePath) throws  IOException {  

  Jama.Matrix m = Matrix. read ( new BufferedReader( new 

FileReader(filePath)));  

 

  return  m.getArray();  

 }  

 public  static  Population getInitialNAOPopulation(Configuration config, 

String filePath) throws  InvalidConfigurationException, IOException {  

  Population p = new Population(config);  

     double [][] d = getNOAArray (filePath);  

     for ( int  i=0; i<d. length ; i++){  

      Gene[] garr = new Gene[d[i]. length ];  

   // Heating Phase length: multiple integer [60 - 790] days with 

30 days  

   // level length  

   garr[0] = new MutipleIntegerGene(config, 60, 790, 30);  

   // Heating Phase steam injection rate  

   garr[1] = new DoubleGene(config, 10, 40);  

 

   // Cycles lengths indicators  

   garr[2] = new IntegerGene(config, 1, 5);  

   garr[3] = new IntegerGene(config, 1, 5);  

   garr[4] = new IntegerGene(config, 1, 5);  

   garr[5] = new IntegerGene(config, 1, 5);  

   garr[6] = new I ntegerGene(config, 0, 5);  

   garr[7] = new IntegerGene(config, 0, 5);  

   garr[8] = new IntegerGene(config, 0, 5);  

   garr[9] = new IntegerGene(config, 0, 5);  

   garr[10] = new IntegerGene(config, 0, 5);  

   garr[11] = new IntegerGene(config, 0, 5);  

   garr[ 12] = new IntegerGene(config, 0, 5);  

   garr[13] = new IntegerGene(config, 0, 5);  

   garr[14] = new IntegerGene(config, 0, 5);  

   // garr [15] = new IntegerGene( config , 0, 5);  

 

   // Cycles periods (3 periods one of them soaking)  

   garr[15] = new IntegerGene(config, 1, 3);  

   garr[16] = new IntegerGene(config, 1, 3);  

   garr[17] = new IntegerGene(config, 1, 3);  

 

   // Recovery Phase steam injection rate  

   garr[18] = new DoubleGene(config, 10, 40);  

      for  ( int  j = 0; j < d[i]. length ; j++) {  

       // garr [j] = new 

MutipleIntegerGene( config ,a_lowerBound,a_upperBound,a_significance);  

       if (j==1 || j==18){  

        double  v = d[i][j];  

     garr[j].setAllele(v);  

       } else  {  

        int  v = ( int )d[i][j];  

     garr[j].setAllele(v);  

       }  

   }  

       

      IChromosome c = new MyGenericChromosome(config,garr. length );  

      c.setGenes(garr);  

      p.addChromosome(c);  

     }  

  return  p;  

 }  

 

 


