
University of Alberta

Optimization of steam/solvent injection methods: Application of hybrid

techniques with improved algorithm configuration

by

Muhammad Mugren Algosayir

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Petroleum Engineering

Department of Civil and Environmental Engineering

©Muhammad Mugren Algosayir

Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

I dedicate this work to Allah, and then to my parents, Mugren and Meznah, and my wife Manahel

who always motivate and encourage me toward the success with their countless support

Abstract

Heavy oil and bitumen recovery processes need to be optimized in order to increase the recovery,

reduce costs, and minimize the environment impact. Most of the optimization studies published in

petroleum engineering literature focus on a few design parameters by combining the elements of

numerical flow simulation with graphical or analytical techniques. Limited efforts, particularly in

the areas of enhanced heavy oil recovery design, combine global optimization techniques with

flow simulation to achieve better performance and design. The challenge remains because of high

computational costs and slow convergence efficiency of the algorithms. In this research, genetic

algorithm and simulated annealing are considered first as a single optimization technique. Then,

the hybridization of these with the orthogonal arrays and response surface proxy techniques are

tested. Savings up to 85% on the execution time are obtained for steam and solvent applications in

oilsands and fractured carbonates.

Acknowledgements

Usually you do not realize the wisdom behind advice of the people who experienced life until you

do them. I will never forget the encouragements and motivations of my parents, Mugren and

Meznah, to excel in my study, and the words would not express my gratitude toward them. In

addition, I do not forget Waleed Al-Awadh who supported and encouraged me to pursue my

master in petroleum engineering. Special appreciations for my advisors Dr. Tayfun Babadagli and

Dr. Juliana Leung for their support and advice that made this work see the lights. In addition, I

would like to acknowledge Abo Sagr who simplified petroleum engineering learning for me. The

wonderful time during my study would not be possible without my wife Manahel who always does

the best. Finally, I would like to thank Saudi Aramco for providing the scholarship for my MSc

study at the University of Alberta specially Claire Cardwell who coached me during my training

assignment (Ch. 14).

A partial support for this research was obtained from Dr. Tayfun Babadagliôs NSERC Industrial

Research Chair in Unconventional Oil Recovery (industrial partners are Schlumberger, CNRL,

SUNCOR, Petrobank, Sherritt Oil, and APEX Eng.). In addition, this research was partially

supported by Dr. Juliana Leungôs "NSERC Discovery Grant".

Table of Contents

Chapter 1: Introduction .. 1

Nomenclature ... 2

References .. 2

Chapter 2: Problem Statement & Research Objectives .. 3

Chapter 3: Solution Methodology .. 4

Global Optimization Techniques ... 4

Genetic Algorithm ... 5

GA Advantages .. 7

GA Disadvantages .. 7

GA Accelerators ... 7

Simulated Annealing ... 10

Research optimization framework ... 11

JGAP Runner for initialization and executing ... 11

CMG Agents package .. 12

Response surface proxy package ... 12

Nearly Orthogonal Arrays (NOA) reader package .. 12

Nomenclature ... 13

References .. 14

Chapter 4: Optimization of SAGD and Solvent Additive SAGD Applications: Comparative

Analysis of Optimization Techniques with Improved Algorithm Configuration 15

Abstract .. 15

Introduction .. 16

Global Optimization Techniques ... 17

Genetic Algorithm ... 17

Advantages ... 17

Disadvantages ... 18

GA Accelerators ... 18

Simulated Annealing ... 18

Objective function .. 19

Reservoir model ... 19

Results .. 20

Genetic Algorithm Case 1 (GA 1) ... 20

Simulated Annealing case (SA) ... 20

Optimized Genetic Algorithm Cases (OGA 1) .. 20

Hexane Additive SAGD Case (HA-GA) ... 21

Conclusions .. 22

Nomenclature ... 23

References .. 24

Tables ... 26

Figures ... 29

Chapter 5: Design of Solvent-Assisted SAGD Processes in Heterogeneous Reservoirs Using

Hybrid Optimization Techniques ... 33

Abstract .. 33

Introduction .. 34

Methodology .. 34

Global Optimization Techniques ... 34

Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation 35

Proxy Method for Objective Function Evaluation ... 35

Objective Function ... 36

Case Study ... 37

Model Description ... 37

Response Surface Proxy Models .. 37

Results and Discussion ... 37

Conclusions .. 40

Nomenclature ... 41

Tables ... 43

Figures ... 47

Chapter 6: Optimization of SOS-FR (Steam-Over-Solvent Injection in Fractured Reservoirs)

Method Using Hybrid Techniques: Testing Cyclic Injection Case ... 55

Abstract .. 55

Introduction .. 55

Optimization methodology... 57

Global Optimization Techniques ... 57

Orthogonal Arrays for Experimental Design ... 58

Proxy Method for Objective Function Evaluation with Periodic Updating 58

Objective Function .. 59

Benchmark (Base) Simulation Model .. 60

Results and Discussion ... 61

Experiment 1: .. 61

Experiment 2: .. 62

Experiment 3: .. 62

Experiment 4: .. 62

Conclusions and remarks ... 64

Nomenclature ... 65

References .. 67

Tables ... 69

Figures ... 72

Chapter 7: Contributions .. 78

Appendix 1: JGAP initializer code ... 79

Appendix 2: Objective function evaluation code .. 84

Appendix 3: CMG Agents Package .. 87

Appendix 4: Response surface proxy package .. 98

Appendix 5: NOA reading package .. 102

List of Tables

Table 3-1: Nearly orthogonal array example .. 7

Table 4-1: Reservoir simulation input parameters. ... 26

Table 4-2: Optimized parameters ranges. ... 26

Table 4-3: NOA Tables. ... 27

Table 4-4: Simulated annealing configuration. .. 27

Table 4-5: GA cases configuration. .. 28

Table 4-6: Comparison of the selected solution. .. 28

Table 4-7: Optimized Hexane Mole Fraction. .. 28

Table 5-1: Optimized parametersô ranges... 43

Table 5-2: GA configuration .. 43

Table 5-3: Reservoir simulation input parameters .. 43

Table 5-4: Nearly-Orthogonal Array (6 factors, 17 levels, and 30 runs) used for generating initial

population ... 44

Table 5-5: Comparison of the selected solution values .. 45

Table 5-6: Cases execution time ... 46

Table 6-1: Elements prices ... 69

Table 6-2: Reservoir properties used in the simulations. .. 69

Table 6-3: Optimized parametersô ranges... 69

Table 6-4: Optimal parameters values for all experiments. .. 70

Table 6-5: Optimal lengths indicators of the base case, experiment 1, 2, and 3. 70

Table 6-6: Comparison of the selected solution values .. 70

Table 6-7: Experiments huff-and-puff phases lengths in days ... 71

List of Figures

Figure 3-1: Optimization algorithms classification .. 4

Figure 3-2: Schematic representation of optimization process. .. 5

Figure 3-3: Optimization process in genetic algorithm terminology .. 5

Figure 3-4: Genetic algorithm flow diagram .. 6

Figure 3-5: Example of crossover of two parent chromosomes. .. 6

Figure 3-6: Example of mutation of a parent chromosome. ... 6

Figure 3-7: Flow diagram for the periodic updating approach where proxy is updated with the

additional flow simulation results of the fittest chromosomes after each evolution 9

Figure 3-8: Simulated annealing one iteration flow chart .. 10

Figure 3-9: Optimization framework packages interaction. ... 11

Figure 4-1: Schematic representation of optimization process. .. 29

Figure 4-2: Optimization process in Genetic Algorithm terminology. ... 29

Figure 4-3: Genetic Algorithm flow diagram. .. 30

Figure 4-4: Example of crossover of two parent chromosomes. .. 30

Figure 4-5: Example of mutation of a parent chromosome. ... 30

Figure 4-6: Function value for the GA with different ways of generating initial population. 31

Figure 4-7: Convergence speed comparison between SA and Optimized GA case. 31

Figure 4-8: Simulated Annealing (SA) function value (F(X)) and injection rates (X values). 32

Figure 4-9: Optimized Genetic Algorithm Case 1 (OGA-1) function value (F(X)) and injection

rates (X values). .. 32

Figure 5-1: Conventional Genetic Algorithm flow diagram (modified from Algosayir et al. 2011).

 .. 47

Figure 5-2: 30% shale sand distribution. .. 47

Figure 5-3: 10% shale sand distribution. .. 48

Figure 5-4: Optimized ES-SAGD homogeneous case oil production profile. 48

Figure 5-5: Proxies approximation for the homogeneous case: trials are sorted based on actual

flow simulation fitness value J. .. 49

Figure 5-6: Proxy approximation for the 30% shale case. .. 49

Figure 5-7: Proxy approximation for the 10% shale case. .. 50

Figure 5-8: Fitness value as a function of evolution for the homogeneous case. 50

Figure 5-9: Fitness value as a function of evolution for the 30% shale case. 51

Figure 5-10: Fitness value as a function of evolution for the 10% shale case. 51

Figure 5-11: Flow diagram for the modified approach where proxy is updated with the additional

flow simulation results of the fittest chromosomes after each evolution. 52

Figure 5-12: Fitness value as a function of evolution for the homogeneous case using the modified

approach with non-linear proxy updating. .. 53

Figure 5-13: Fitness value as a function of evolution for the 30% shale case using the modified

approach with non-linear proxy updating. .. 53

Figure 5-14: Fitness value as a function of evolution for the 10% shale case using the modified

approach with non-linear proxy updating. .. 54

Figure 6-1: Conventional genetic algorithm flow diagram... 72

Figure 6-2: Example of crossover of two parent chromosomes. .. 72

Figure 6-3: Example of mutation of a parent chromosome. ... 72

Figure 6-4: Flow diagram for the modified approach where proxy is updated with the additional

flow simulation results of the fittest chromosomes after each evolution. 73

Figure 6-5: Representation of multiple-matrix block with unity oil saturation in flow simulation.

 .. 74

Figure 6-6: Sensitivity analysis for some key parameters before starting the optimization. 74

Figure 6-7: Optimized money recovery factor, oil recovery factor, and cumulative steam oil ratio

of all experiment. .. 75

Figure 6-8: Optimized cost, revenue and profit of all experiments. ... 75

Figure 6-9: All experiments hydrocarbons and steam injected and produced. 76

Figure 6-10: Base case Gantt-chart .. 76

Figure 6-11: Experiment 4-d (best MRF) Gantt-chart. ... 77

Figure 6-12: Experiment 4-b (random initial population) Gantt-chart. .. 77

1

Chapter 1: Introduction

Unconventional resources such as oil sands, heavy oil, coal-to-liquids, biofuels, gas-to-liquids, and

shale oil rise on average by 4.6 percent per year over the coming 25 years. Canadian oil sands are

the largest components of future unconventional production, which is about 4.8 million barrel per

day (Conti and Holtberg 2011). Although there is an increase on unconventional resources

production, still it faces production development difficulties such as high cost, complex processes,

and environmental concerns. Canadian oil reserves, including oil sands, are about 175 billion

barrels, (Conti and Holtberg 2011); however, the development difficulties limit the projects and

investments. Higher recovery, lower cost, and less environmental impact can be achieved by better

recovery processes design.

Global optimization techniques are useful tools for process optimization and design in various

petroleum engineering disciplines. One of the drawbacks, however, is that these techniques, such

as genetic algorithm and simulated annealing, have very slow computation time because they have

to evaluate large numbers of models to reach the optimum.

This research focus on optimizing heavy oil and bitumen recovery processes, SAGD, ES-SAGD,

heterogeneous ES-SAGD, and thermal recovery process in fractured reservoirs SOS-FR, using

global optimization techniques as well as hybrid algorithms to enhance the process efficiency with

minimal computation overburden. The solution methodology applied in this research is elaborated

in Chapter 3.

Selecting an efficient algorithm is an important step toward achieving the best outcome in terms of

accuracy and computation efficiency. Chapter 4 address this by comparing the performance of

genetic algorithm and simulated annealing for SAGD and solvent additive SAGD optimization.

The objective function was defined to obtain the lowest cumulative steam-oil ratio (cSOR) and

highest recovery factor. It was used later as scoring function by changing operating pressure,

solvent-to-steam ratio, and steam injection rates. The results in this chapter can be implemented

directly in the efforts of minimization of cost and environmental impacts while accelerating the

recovery in SAGD.

Having an efficient and robust optimization technique is critical in the design of SAGD or solvent-

additive SAGD processes. Chapter 5 proposes a hybrid strategy that combines the elements of

experimental design, response surface proxy, and genetic algorithm to investigate the effects of

heterogeneity in the design process; optimization of solvent-assisted SAGD was performed on

various synthetic heterogeneous reservoir models of varying porosity, permeability, and shale

distributions. Computational time associated with flow simulations of heterogeneous reservoirs

typically render most global optimization schemes rather challenging. It is shown that the

proposed implementation of hybrid techniques can greatly enhance the proxy model predictability

2

and computational efficiency. Hexane was co-injected with steam. The objective function, defined

based on cumulative steam-oil ratio (cSOR) and recovery factor, was optimized by changing

injection pressures, production pressures, and injected solvent-to-steam ratio. The results from

these hybrid approaches revealed that an optimized solution could be achieved with less CPU time

(e.g. fewer number of full flow simulation) compared to the conventional GA method. Sensitivity

analysis was also conducted on the choice of proxy model to study the robustness of the proposed

methods. Our results highlight the potential application of the proposed techniques in other

solvent-enhanced heavy oil recovery processes.

Chapter 6 focuses on optimizing Steam-Over-Solvent Injection for Fractured Reservoirs (SOS-FR)

process using a hybrid technique applied in Chapter 5. The complexity of the process suggests that

our objective function, defined by the money recovery factor, can be increased significantly by

adjusting the steam and solvent usage and their injection profiles.

As this is a paper-based thesis, each chapter contains its own literature review, conclusion and

references. The major contributions of this research are highlighted in Chapter 7.

Nomenclature

ES-SAGD: Expanded solvent steam assisted gravity drainage thermal recovery process also

known as solvent additive SAGD.

GA: Genetic Algorithm.

NOA: Nearly-Orthogonal Array.

OA: Orthogonal Array.

SAGD: Steam assisted gravity drainage thermal recovery process.

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs.

References

Conti J., and Holtberg P. 2011. International Energy Outlook 2011. A report published in U.S. Energy

Information Administration. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf

http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf

3

Chapter 2: Problem Statement & Research
Objectives

In order to reach the ultimate heavy oil and bitumen recovery with minimal cost, efficient and

optimized design for recovery processes operation strategies is necessary. Despite huge amount of

heavy oil and bitumen reserves around the world, the production is limited due to the production

development difficulties such as high cost, complex processes, and environmental concerns. Many

design and performance evaluation studies published in the literature combine numerical

simulation with graphical or analytical techniques; however, only few design elements are handled

due to the difficulties of handling large number of factors. Because of high computation

requirements, limited attention that integrated the simulation exercise with global optimization

algorithms has been paid to handle more design elements. Without efficient and optimized

recovery process design, the ultimate recovery from unconventional resources will not be

achieved, or it could be achieved with great cost and large environmental impact. Thus, this

research studies how global optimization techniques can be enhanced and upgraded to be a robust

tool for the design and performance evaluation of unconventional recovery processes.

The objective of this research is to develop an approach that combines the techniques of

experimental design, proxy models, and global optimization for the design of key process elements

in the thermal/solvent methods. It is well known that computing costs associated with flow

simulation of complex recovery processes (solvent and steam injection) in heterogeneous

reservoirs can pose significant challenges on the optimization procedure. The use of hybrid

techniques, as implemented in this thesis, aims to minimize the computational costs and to

improve the solution accuracy.

4

Chapter 3: Solution Methodology

There are many techniques (either heuristic or mathematical) available to maximize an objective

function for non-linear processes (Palke and Horne, 1997). Figure 3-1 presents a classification of

these techniques. This chapter aims to provide additional details about the methodologies used in

the research.

Figure 3-1: Optimization algorithms classification

Global Optimization Techniques

In optimization algorithms, one needs to start with specifying the effective parameters (and their

respective ranges of values) to be evaluated. Next, the algorithm proposes various trial solutions,

and the objective (or scoring) function would be evaluated for each trial solution. This process is

repeated until specified number of iterations is reached or once certain stopping or convergence

criteria are met. Figure 3-2 shows the global optimization techniques process schematically.

Non Linear
Optimization
Techinque

Local

 (gradient-based)
Global

Genetic Algorithm

Accelerators

OA & NOA Proxy Methods

Respose Surface

Simulated
Annealing

5

Figure 3-2: Schematic representation of optimization process.

Genetic Algorithm

GA is a stochastic search technique based on the principle of ñsurvival of the fittestò (Guyaguler et

al., 2002; Chen et al., 2010). Figure 3-3 shows the overall optimization process (as similar to

Figure 3-2) using genetic terminology. Figure 3-4 summarizes the mechanisms of a typical GA

algorithm. The population or genotype, a partial space solution, is picked initially and modified

subsequently in each evolution, which is called iteration. In each evolution, the fitness of each

chromosome, containing genes, is calculated; each gene represents a parameter and each

chromosome represents a trial. Then, two parents are selected based on their fitness value to create

an offspring or child by performing crossover, which is simply exchanging genes between parents

(Figure 3-5). The newly generated offspring is mutated by changing some of its binary digits

(Figure 3-6). The new offspring is inserted in the new population.

Figure 3-3: Optimization process in genetic algorithm terminology

6

Figure 3-4: Genetic algorithm flow diagram

Figure 3-5: Example of crossover of two parent chromosomes.

Figure 3-6: Example of mutation of a parent chromosome.

Initial
ωGenerate an initial population/genotype (each member is called a chromosome)

Fitness
ωCalculate the fitness (objective function value) of each chromosome in genotype

Selection

ωSelect pairs of parent chromosomes from a population according to their fitness
(the better fitness, the bigger chance to be selected)

Crossover

ωAccording to a crossover probability, parents are combined to form new
offsprings (children). If no crossover was performed, offsprings are exact copies of
parents.

Mutation

ωAccording to a mutation probability, mutate new offsprings at each locus
(position in chromosome).

Accepting

ωFitness value of new offspring is calculated, and new population is generated by
discarding chromosomes with low fitness values and replacing them with the
new offsprings.

C
re

a
te

 n
e
w

 p
o

p
u

la
tio

n

7

GA Advantages

1. GA initiates the search with a population of parameter realizations, instead of a single

realization.

2. The used rules are probabilistic rather than deterministic.

3. It manipulates a chromosome (or string of individual parameters) rather than changing

each individual parameter.

4. It uses function evaluations instead of derivatives or other secondary descriptors

(Bittencourt and Horne, 1997)

5. It has the ability to be combined with other algorithm in order to avoid suboptimal

solution. (Guyaguler et al., 2002)

6. It is easy to be parallelized which is a potential to accelerate the calculation (Guyaguler et

al., 2002)

GA Disadvantages

1. Even though it is good that the initial population is randomly allocated, this may covers

bad regions. This randomness continues on the generation process, which depends on the

values of the initial members (Bittencourt and Horne, 1997).

2. It can be time-consuming to apply GA to complex optimization problem because it

suffers from potentially low convergence speed (Chen et al., 2010).

GA Accelerators

To avoid GA drawbacks, several techniques have been studied and chosen in this research.

Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation

Techniques from the experimental design literature, namely Orthogonal Array (OA) and Nearly-

Orthogonal Array (NOA), can be implemented with GA to improve the quality of initial

population (Chen et al., 2010) by generating evenly distributed samples while reducing the

redundancy between chromosomes. The objective is to design experiments or chromosomes by

determining the levels at which the parameters should be varied. Instead of testing all

combinations of parameters at all levels, only the ones containing principal information are

included. This reduces the population size and the associated computational costs. In this research,

we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to generate nearly

orthogonal arrays based on the Taguchi method average and minimax criterion described by Ma

et. al. (2000) and Lu et. al. (2003). Table 3-1 shows an example where there are 4 runs for 3

factors with 4, 3, 2 levels, respectively.

Table 3-1: Nearly orthogonal array example

Run
Factors

Factor 1 Factor 2 Factor 3

1 2 2 0
2 3 0 0
3 1 0 1
4 0 1 1

8

Proxy Method for Objective Function Evaluation

As can be seen in Figure 3-3, the fitness function must be evaluated for every chromosome at

every evolution. In our particular application, evaluation of the fitness function involves

calculation of the recovery factor, typically obtained from results of a numerical flow simulation.

Depending on the level of complexity of the processes that are being modeled, each flow

simulation could take up to days to complete. Hence, the costs of objective function evaluation are

often the most important computational considerations in any optimization scheme. Proxy

methods are viable ñcheaperò alternatives that approximate the actual fitness function to enhance

computing efficiency. The technique implemented in this study was the response surface method.

Response surface is a relationship between the parameter sets and the corresponding fitness

function. Once calibrated in the form of regression, it can be used as a proxy for flow simulation

and allows the fitness function to be evaluated rapidly. In particular, we compared the first-order

linear model and the second-order (quadratic) non-linear model, as discussed in Myers and

Montgomery (2002). Equations for the linear and non-linear models are shown in Eqs. 1 and 2,

respectively, where J is the response (fitness function value), uiôs are the variables (optimization

parameters), ɓiôs are the regression coefficients, and Ů is an error term.

ὐ ό Ễ ό (1)

ὐ ό Ễ ό В ό В В όό (2)

The regression equation for both models, if the problem is over-determined, is expressed in Eq. 3:

 ὟὟ Ὗὐ (3)

If there are many factors, a U matrix is constructed with fewer experiments than the number of

unknown parameters, the problem becomes under-determined and Eq. 4 is used:

 Ὗ Ὗ Ὗ ὐ (4)

9

Proxy Method for Objective Function Evaluation with Periodic Updating

In order to achieve a better representation of the solution space and regression accuracy, the proxy

is re-calibrated or updated periodically by performing detailed flow simulation using parameters of

the chromosome with the highest fitness value and incorporating its simulation result after each

evolution. This updating step is illustrated in the flow chart as shown in Figure 3-7.

Figure 3-7: Flow diagram for the periodic updating approach where proxy is updated with

the additional flow simulation results of the fittest chromosomes after each evolution

Initialize population using NOA

ωfitness calucation using full flow simulations

Build proxy using initial population

Create New Population

ωselection

ωcrossover

ωmutation

ωAccepting

ωFitness Value calculated using the proxy

Update proxy

ωusing full flow simulation of the fittest chromosome

Stop

Repeated for

each evolution

10

Simulated Annealing

Metropolis proposed a search algorithm called simulated annealing (SA), which, at a given

temperature, finds the equilibrium configuration of a number of atoms. The key benefit of using

the SA is avoiding local minimum (Gates and Chakrabarty, 2008). Figure 3-8 shows simulated

annealing flow chart.

Figure 3-8: Simulated annealing one iteration flow chart

11

Research optimization framework

In this research, we have developed a framework that integrates the previously mentioned

techniques with CMG STARS, a numerical flow simulation package for thermal recovery process,

to optimize steam and solvent injection processes. A JGAP runner package is implemented to

generate an initial population either randomly or using the NOA reader package and customize the

genetic algorithm configuration, e.g. crossover and mutation rate. After that, JGAP runner calls

JGAP package to start evolving the evolutions where each chromosome is evaluated using the

objective function evaluation package. This package calls either the CMG agent package to fully

execute a scenario or the response surface package to get an estimated value. Figure 3-9 shows the

framework packages and the interaction within the framework (blue packages) and with external

software.

Figure 3-9: Optimization framework packages interaction.

JGAP Runner for initialization and executing

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:

http://jgap.sourceforge.net/) for the GA modeling. This package needs to be initialized by

specifying GA configuration such as crossover and mutation rates, initial population, and objective

function. Example code is shown in Appendix 1.

JGAP JGAP Runner

CMG

STARS

RESULT

REPORT

CMG Agents

Preprocessor
(5) Prepare new

model (dat)

Processor

Post-Processor
(8) Extract results

NOA Reader

(1) Get Initial

Population

(2) Start GA

evolutions

Objective

Function

Evaluator

(3) Evaluate chromosomes

(4) Fully
evaluate

a trial

Response

Surface

Proxy

(4b) approximate the

value of a trial

(6) Execute

a new model

(7) Execute rwd

to get results

12

Objective function evaluation package

Global optimization techniques rely mainly on objective function evaluation for the generated

trials. In our framework, this package is responsible about calling the CMG Agent package to get

the results that are needed in the objective function calculation. Example code from SOS-FR

experiments is shown in Appendix 2.

CMG Agents package

This package handles the interaction between our software and CMG products. It has three stages

pre-processing, processing, and post post-processing. Pre-processing is needed to build a new

simulation model file (.dat) using old model file by changing the parts that need to be changed

using the values provided by the optimization algorithm. In the processing stage, the simulation is

executed. Post-processing stage extracts the relevant results from a *.rwo file, which is built by

executing the *.rwd file generated using CMG ñResult Reportò tool. Example code from SOS-FR

experiments is shown in Appendix 3.

Response surface proxy package

This package is used to build and calibrate the linear and non-linear proxy described before to

approximate the objective function. This package code is shown in Appendix 4.

Nearly Orthogonal Arr ays (NOA) reader package

In this research, we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to

generate the NOA arrays. This tool generates numbers that represent the level at which each factor

(parameter) should be used in a particular trial. These numbers must be converted to values

appropriate for the parameter ranges. For example, for injection rate ranging from 100 to 300

units, five levels, indicated by 0, 1, 2, 3, and 4, would correspond to actual parameter values of

100, 150, 200, 250, and 300 units, providing a 50-unit resolution for the parameter. This step can

be done manually using excel spreadsheet. After that, the newly generated OA is copied into a text

file to be read using this reader package. Example code from SOS-FR experiments is shown in

Appendix 5.

http://designcomputing.net/gendex

13

Nomenclature

ɓi : represent a regression coefficients for one trial.

♫: a vector which contains all regression coefficients.

F(u) or FX: objective function value.

F: objective function.

GA: Genetic Algorithm.

J: the actual response or actual objective function value calculated based simulation output for

one trial.

Jô: the repose obtained from the regression model.

J0: the best trial actual response in the initial population.

╙: a vector that contains all the trials response.

NOA: Nearly-Orthogonal Array.

OA: Orthogonal Array.

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs.

u: a (1*n) vector which contains the optimization variables for a trial.

ui : represent an optimization variable for one trial.

╤: a matrix with all uôs.

14

References

Palke, M.R., and Horne, R.N. 1997. Determining the Value of Reservoir Data by Using Nonlinear Production

Optimization Techniques. Paper SPE 38047 presented at the SPE Asia Pacific Oil and Gas Conference

and Exhibition, Kuala Lumpur, Malaysia, 14-16 April. DOI: 10.2118/38047-MS.

Gates, I.D., and Chakrabarty, N.. 2008. Design of the Steam and Solvent Injection Strategy in Expanding

Solvent Steam-Assisted Gravity Drainage. Journal of Canadian Petroleum Technology 47 (9): 12-20.

DOI: 10.2118/08-09-12-CS.

Guyaguler, B., Horne, R.N., Rogers, L., and Rosenzweig, J.J. 2002. Optimization of Well Placement in a

Gulf of Mexico Waterflooding Project. SPE Reservoir Evaluation & Engineering 5 (3): 229-236. DOI:

10.2118/78266-PA.

Chen, S., Li, H., Yang, D., and Tontiwachwuthikul, P. 2010. Optimal Parametric Design for Water-

Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal of Canadian Petroleum

Technology 49 (10): 75-82. DOI: 10.2118/141650-PA.

Bittencourt, A.C., and Horne, R.N. 1997. Reservoir Development and Design Optimization. Paper 38895

presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 5-8 October.

DOI: 10.2118/38895-MS.

Lu, X., Hu, W. & Zheng, Y. 2003. A Systematical Procedure in the Construction of Multi-Level

Supersaturated Designs. J. of Statistical Planning & Inference 115 (1): 287-310. DOI: 10.1016/S0378-

3758(02)00116-7.

Ma, C-X., Fang, K-T & Liski, E. 2000. A New Approach in Constructing Orthogonal and Nearly Orthogonal

Arrays. Metrika 50: 255-268. DOI: 10.1007/s001840050049.

Myers, R.H. and Montgomery D.C. 2002. Response Surface Methodology: Process and Product in

Optimization using Designed Experiments, Wily, New York.

15

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Chapter 4: Optimization of SAGD and Solvent
Additive SAGD Applications: Comparative Analysis

of Optimization Techniques with Improved
Algorithm Configuration

Abstract

Heavy oil and bitumen recovery cost is excessive mainly due to high energy requirement to

generate heat and its environmental impacts. Steam Assisted Gravity Drainage (SAGD) is an

example of this case. The determination of optimal operating conditions, such as injection rates

and well locations, based on reservoir and fluid characteristics is essential in the design of field

applications.

Many Steam Assisted Gravity Drainage (SAGD) optimization studies published in the literature

combined numerical simulation with graphical or analytical techniques for design and

performance evaluation. There have been limited efforts that integrated the simulation exercise

with global optimization algorithms. Some studies focused on optimization of cumulative steam-

to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on

optimization of cumulative net energy-to-oil ratio (cEOR) in solvent-additive SAGD by altering

injection pressures and fraction of solvent in the injection stream. Typical scoring functions were

the net present value per hectare of land (NPV/ha) by controlling steam and solvent rates. Several

studies also considered total project net present value calculation by changing total project area,

capital cost intensities, solvent prices, discount rate, and risk factors to determine the well spacing

and drilling schedule. Optimization techniques commonly used in those studies were scattered

search, simulated annealing, and genetic algorithm (GA). In continuation of these efforts, we

focused on optimizing the SAGD process and its extension to solvent-additive SAGD and several

optimization techniques including simulated annealing and genetic algorithm were tested and

compared. Additional procedures were incorporated to improve the implementation configuration

and initial population or seed. The objective function was defined to obtain the lowest cumulative

steam-oil ratio (cSOR) and highest recovery factor. It was used later as scoring function by

changing solvent-to-steam ratio and steam injection rates. The results in this chapter can be

implemented directly in the efforts of minimization of cost and environmental impacts while

accelerating the recovery in SAGD.

16

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Introduction

A great portion of Albertaôs oil sand reserves can be produced only by in-situ recovery techniques

(Al -Bahlani and Babadagli, 2009). Steam Assisted Gravity Drainage (SAGD) is the most widely

applied in situ recovery method but the cost of this process is excessive because of the need to

generate heat and its environmental effects. Maximizing the recovery with minimum impacts by

determining the optimal process variables such as injection rate is essential in the design of field

application.

Most of the earlier studies focused on optimizing the SAGD process. Limited amount of work has

been performed in the area of solvent-additive SAGD optimization. In particular, two groups of

researchers performed studies that are interesting examples of this kind of optimization exercise.

In the first group, Gates and Chakrabarty (2006) focused on SAGD optimization to reduce

cumulative steam-to-oil ratio (cSOR) by altering steam injection rates. Later, they expanded their

work to include solvent injection to reduce cumulative net energy-to-oil ratio (cEOR) by adjusting

the injection pressures and fraction of solvent in the injection stream (Gates and Chakrabarty,

2008).

In the second group, Peterson et al. (2009) used net present value per hectare of land (NPV/ha) as

scoring function by controlling steam and solvent rates. Later, they used total project net present

value calculation as an objective function (Peterson et al., 2010). The user would specify total

project area, capital cost intensities, solvent prices, discount rate and risk factors. The optimization

process determines the well spacing, drilling schedule and facility size (Edmunds et al., 2010).

One of the critical questions in the optimization of complex applications is to select an efficient

algorithm. As seen, limited number of works in the area of SAGD optimization adopted and tested

different techniques (Bittencourt et al., 1997). Yet, the selection of efficient algorithm is a critical

issue to reduce the optimization time. This work focuses on testing and comparing different

algorithms to demonstrate their efficiency for the optimization of SAGD and solvent additive

SAGD applications and how they can help in selecting the optimal case for maximum recovery

and minimum cSOR. In addition, improvements in the implementation configuration and initial

population (or seed) of the algorithms tested are also made.

17

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Global Optimization Techniques

In optimization algorithms, one needs to start with specifying the effective parameters (and their

respective ranges of values) to be evaluated. Next, the algorithm proposes various trial solutions,

and the objective (or scoring) function would be evaluated for each trial solution. This process is

repeated until specified number of iterations is reached or once certain stopping or convergence

criteria are met. Figure 4-1 shows the global optimization techniques process schematically. In

this chapter, we adopted two algorithms as described below.

Genetic Algorithm

The Genetic Algorithm (GA) is a stochastic and structured search technique that uses the principle

of ñsurvival of the fittestò and natural selection (Guyaguler et al., 2002; Chen et al., 2010).

Figure 4-2 shows the overall optimization process (as similar to Figure 4-1) using genetic

terminology. Figure 4-3 summarizes how the algorithm works. The population or genotype is

partial space solution picked initially and modified in each evolution which is called iteration. In

each evolution, the fitness of each chromosome, which consists of numerous genes, is calculated;

each gene represents a parameter while each chromosome represents a trial. Subsequently, two

parents are selected based on their fitness value to create an offspring or child by performing

crossover which is simply exchanging genes between parents (Figure 4-4). The newly generated

offspring is mutated by changing some of its binary digits (Figure 4-5). The new offspring is

inserted in the new population.

The GA is a popular optimization technique in the petroleum industry as one of the most powerful

and robust optimization technique. Chen et al. (2010) used GA with nearly orthogonal arrays

(NOA) to design a Water-Alternating-Gas (WAG) process in a CO2-Miscible Flooding project.

Edmunds et al. (2010) applied GA for optimization of solvent-additive SAGD process. This

technique was also used for non-thermal applications, mainly for the purpose of reservoir

development (Palke and Horne, 1997; Bittencourt and Horne, 1997). On the basis of all these

efforts, the advantages and disadvantages of this method can be summarized as follows:

Advantages

1. GA initiates the search with a population of parameter realizations, instead of a single

realization.

2. The rules used are probabilistic rather than deterministic.

3. It manipulates a chromosome (or string of individual parameters) rather than changing

each individual parameter.

4. It uses function evaluations instead of derivatives or other secondary descriptors

(Bittencourt and Horne, 1997)

5. It has the ability to be combined with other algorithm to avoid suboptimal solution.

(Guyaguler et al., 2002)

6. It is easy to be parallelized which is a potential to accelerate the calculation (Guyaguler et

al., 2002)

18

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Disadvantages

3. Even though it is good that the initial population is randomly allocated, this may covers

bad regions. This randomness continues on the generation process, which depends on the

values of the initial members (Bittencourt and Horne, 1997).

4. It can be time-consuming to apply GA to complex optimization problem because it

suffers from potentially low convergence speed (Chen et al., 2010).

GA Accelerators

To avoid GA drawbacks, several techniques have been proposed, yet many of them are at the

initial development stage with room for improvements.

Orthogonal Array and Nearly-Orthogonal Array

Orthogonal Array (OA) and Nearly-Orthogonal Array (NOA) can be integrated with the GA to

improve the quality of initial members. They are commonly used in the efficient experimental

design process (Chen et al., 2010). Chen et al. (2010) used GA with nearly orthogonal arrays

(NOA) to design a Water-Alternating-Gas (WAG) process.

Proxy Method

Proxy method is used to approximate the actual evaluation function and to increase the computing

efficiency. Some of the techniques used as proxies are kriging, neural networks (Guyaguler et al.,

2002) and response surface methodology which is a relationship between the parameter sets and

the corresponding fitness function. It can be used as a proxy for flow simulation for faster

evaluation of the fitness function after calibration (Algosayir et. al. 2011). Myers and Montgomery

(2002) showed that the first-order linear model and the second-order non-linear model are

examples of such proxy.

Simulated Annealing

Metropolis et al. (1953) proposed a search algorithm called simulated annealing (SA), which, at a

given temperature, finds the equilibrium configuration of a number of atoms. The key benefit of

using the SA is avoiding local minimum (Gates and Chakrabarty, 2008). This technique was first

used by Gates and Chakrabarty (2008) to optimize solvent additive SAGD.

In this chapter, we implemented three different schemes including (1) the conventional GA, (2)

GA with nearly orthogonal arrays, and (3) simulated annealing to optimize steam injection rate

over four periods in SAGD and additive mole fraction in solvent-additive SAGD cases over 10

period.

19

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Objective function

In many enhanced oil recovery applications, maximizing recovery is essential as it directly affects

profit. Reduction of cost is also critical in profit maximization. Thus, the process optimization

focused on the maximization of recovery factor and reduction of cumulative steam-oil-ratio which

help to reduce costs and minimize environments impacts due to steam generation process. After

several attempts, we proposed an equally weighted objective function (F(X)) for recovery factor

(RF) and cumulative steam oil ratio (cSOR) as different from earlier works mentioned above.

Ideally, objective function should be dimensionless. Therefore, RF is assigned a unit weight

because its value ranges between 0 and 1, while cSOR has to be normalized to be between 0 and 1.

This is achieved by dividing its value by the maximum observable cumulative steam oil ratio

[max(cSOR)]. In order to minimize the cSOR, its weighted value should be subtracted from the

recovery factor. The adopted GA implementation assesses the objective (fitness) function

(equation 1) and aims to maximize its value:

Ὂὼȟὼȟὼȟὼ ὙὊ ρ (1)

An adjusting factor of ñ1ò was added to the objective function to shift its range from [-1, 1] to [0,

2], such that a positive objective function value would always be obtained.

 On the other hand, our implementation of simulated annealing aims to minimize the objective

function, which is defined in equation (2):

Ὂὼȟὼȟὼȟὼ ὙὊ ρ (2)

where ὼȟὼȟὼȟὼ are the parameters explained in reservoir model section.

Reservoir model

A two-dimensional simulation model of laboratory-scale experiments provided by Ayodele et al.

(2010) was constructed and used in the case studies. Then, this model was scaled-up to the field

dimensions by changing the grid sizes. The simulation input properties are described in Table 4-1.

The cases GA-1, SA and OGA-1 are SAGD optimization, while HA-GA case is an ES-SAGD

application using the OGA-1 approach. The SAGD optimization process evaluates Eqs. 1 and 2 by

adjusting the 2-year steam injection schedule (injection rates over four 6-month periods). On the

other hand, ES-SAGD optimization process evaluates Eq. 1 by adjusting 2-year injection strategy

by changing fluids injection rates and hexane mole fraction over four months period. These

optimized parameters injection rate and hexane model fraction have been studied over reasonable

range of values that are suitable for the reservoir model and research objective as shown in

Table 4-2.

20

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Results

In all cases, [max(cSOR)] is fixed to 3 m
3
/m

3
. Results obtained with the various optimization

algorithms are presented below.

Genetic Algorithm Case 1 (GA 1)

The purpose of this Genetic Algorithm case (GA-1) is to investigate the different ways of

generating initial population. Three different options were used for this purpose. The first

conventional way was to generate the initial population randomly using stock random generator

providing by the JGAP package (Java Genetic Algorithm Package (JGAP) website:

http://jgap.sourceforge.net/). The second and third ways use nearly orthogonal array (NOA) hybrid

technique with GA. The array used is L40(17
4
) which have 4 factors, 17 levels, and 40 runs

(Table 4-3). The factors are basically the parameters desired to be adjusted, hence, X values in our

case are injection rates. The levels are how many cases each factor should have. The number of

runs refers to the desired number of combined cases (i.e. number of chromosomes in GA

terminology). The difference between the two NOAs is that the second way uses the average

criterion (Ma et. al 2000, Lu et. al. 2003) while the third applies the minimax criterion (Lu et. al.

2003). Among these, we observed that NOA minimax returned good fitness value after executing

434 reservoir models which is the least number of trials among these cases. It also converged

faster from the lowest fitness value to a good fitness value as seen in Figure 4-6.

Simulated Annealing case (SA)

The simulated annealing (SA) algorithm initial seed was selected based on the best value in NOA

minimax run used in GA-1 minimax case. A better solution than GA-1 NOA Minimax was found

after performing only 78% total number of trials. However, this does not necessarily mean that GA

is less efficient, as GA can be improved with better configuration selection. The SA algorithm was

initialized using the values given in Table 4-4.

Optimized Genetic Algorithm Cases (OGA 1)

In order to have a good configuration for genetic algorithm implementation, we ran full

optimization experiments to optimize the mutation and crossover rates in addition to the

population size and evolution count to have a higher objective function value. This experiment and

the other experiments using GA and SA were performed through exhaustive number of

simulations to reach the optimum. As a result, the best experiment optimum case objective

function value was found to be 0.9548 with the least number of trials about 133 trials while SA

reached the same solution after executing 169 trials. As seen in Table 4-6 all SAGD results using

different algorithms and different configurations are very similar in terms of the objective

function, recovery factor, and cSOR. The objective function value differs only after the third

http://jgap.sourceforge.net/

21

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

decimal number. However, the major difference is in the number of cases needed to reach an

acceptable optimum value, which implies reducing the number of flow simulation runs needed and

the execution time needed to reach the optimum. Fluid flow simulations in porous media under

non-isothermal conditions usually require remarkable amount of time to execute comparing with

other optimization operations. For example, in our applications, the average execution time of

flow simulation is about 2 minutes and this saved about 80 minutes on running optimization using

OGA compared to SA. Table 4-5 summarizes the configuration parameters for all the GA cases.

All of these experiments were initialized with the same L40(17
4
) NOAs in order to make the results

comparable. The convergence behaviour of SA and these optimized GA case are shown in

Figure 4-7. Table 4-6 shows the final optimal solution for each case and at which trial the optimal

solution was reached. Also tabulated are the corresponding injection periods, the final objective

function value, recovery factor, and cumulative steam oil ratio.

Figure 4-8 and Figure 4-9 show the steam injection rates with function value for all the periods

for the SA and OGA case. It is interesting to note that SA reaches its optimal solution by gradually

adjusting its parameter values; while GA attempts to identify the optimal solution by running

different scenarios (because of the crossover feature) of adjusting the parameter values (hence the

abrupt jumps in objective function values). Furthermore, the results suggest that the optimal

injection rate for period one and three around 8 m
3
/day and increasing the injection in the second

period to be around 8.5 m
3
/day while the last period should be decreased to around 7 m

3
/day. As a

result, it appears that the optimal injection strategy would be to alternate between high and low

values over several injection periods.

Hexane Additive SAGD Case (HA-GA)

After studying the optimization techniques using SAGD models, the good optimization

methodology learned have been applied into Solvent-Additive SAGD case in order to show how

the optimized Solvent-Additive SAGD have better recovery and cSOR. Hexane additive SAGD

case was executed using GA with initial NOA minimax array L40(17
8
). The optimum solution has

better fitness function value than all SAGD cases, which implies higher recovery (about 3.7%

increase) and lower cSOR (about 1 m
3
/m

3
 decrease) as shown in Table 4-6, which also include the

optimized fluid injection rate compared to the SAGD cases. Since Hexane additive is costly, it was

optimized over the same periods and the optimized hexane mole fraction is shown in Table 4-7.

22

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Conclusions

The GA and SA techniques are powerful in finding an optimized solution; however, both require

evaluating number of trials in order to reach the optimum solution which is in our case running

simulation model. Execution of several models requires more computation time.

In this chapter, several optimization techniques were tested to reduce the computational time such

as choosing the right configuration and the initial population or seed. As a result, the SA

converged faster than most of the GA cases. After optimizing the GA configuration, we obtained a

case that converges in reasonable time. Even though the SA converged faster, the GA has some

advantages such as having initial population, which can guide the algorithm to better solution, and

the final population gives more than one scenario that can be used.

On the other hand, the SA may end up being slower than GA if it is initialized with a very bad

seed. In order to improve its performance, several other options can be implemented such as

running the algorithm in parallel computing environment for one flow simulation or running

multiple flow simulations simultaneously, which can be implemented in Genetic Algorithm.

As seen, several options can be used to improve the performance. However, one has to answer the

critical question eventually: what is the most time consuming part? Clearly, the answer is running

time of the flow simulation. Reducing the number of runs by up to 40% is an optimal solution but

it is difficult to obtain such percentage often times as it is hard to know in advance what the best

configuration is. Hence, to reduce the time required for running a flow simulation, implementation

of a proxy, which approximates the flow simulation result in fraction of second instead of two

minutes in our cases, could be a solution. This implies that more than 95% of simulation run time

is saved and all we need is to run a couple of cases to build the proxy.

23

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Nomenclature

ANN: Artificial Neural Networks.

cEOR: cumulative net energy-to-oil ratio.

CMG: Computer Modeling Group.

cSOR: steam-to-oil ratio.

F(X): objective function.

GA-1: Genetic Algorithm SAGD cases.

GA: Genetic Algorithm

HA-GA: Hexane Additive SAGD Case executed using GA.

JGAP: Java Genetic Algorithm Package.

NOA: Nearly-Orthogonal Array.

NPV: Net Present Value.

OA: Orthogonal Array.

OGA-1: Optimized Genetic Algorithm configuration SAGD case.

P1, 2, 3, 4: four 6 months injection periods.

RF: Recovery Factor.

SA: Simulated Annealing Algorithm

SAGD: Steam Assisted Gravity Drainage thermal recovery process.

STARS: CMG thermal reservoir simulator.

WAG: Water-Alternating-Gas recovery process.

24

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

References

Al-Bahlani, A.M. and Babadagli, T. 2009. SAGD Laboratory Experimental and Numerical Simulation

Studies: A Review of Current Status and Future Issues. J. Petr. Sci. and Eng., 68(3-4): 135-150.

Algosayir, M., Leung, J., and Babadagli, T. 2011. Design of Solvent-Assisted SAGD Processes in

Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the

Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 15ï17 November. DOI:

10.2118/149010-MS

Ayodele, O. R., Nasr, T. N., Ivory, J., Beaulieu, G. and Heck, G. 2010. Testing and History Matching of ES-

SAGD (Using Hexane). Paper 134002 presented at the SPE Western Regional Meeting, Anaheim,

California, USA, 27-29 May. DOI: 10.2118/134002-MS.

Bittencourt, A.C. and Horne, R.N. 1997. Reservoir Development and Design Optimization. Paper 38895

presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 5-8 October.

DOI: 10.2118/38895-MS.

Chen, S., Li, H., Yang, D., and Tontiwachwuthikul, P. 2010. Optimal Parametric Design for Water-

Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal of Canadian Petroleum

Technology 49 (10): 75-82. DOI: 10.2118/141650-PA

Computer Modeling Group (CMG) Ltd. STARS Userôs Manual, Version 2009.10. Calgary, Alberta, Canada.

Edmunds N., Moini B., and Peterson J. 2010. Advanced Solvent-Additive Processes by Genetic

Optimization. Journal of Canadian Petroleum Technology 49 (9): 34-41. DOI: 10.2118/140659-PA.

Gates, I.D. and Chakrabarty, N. 2006. Optimization of Steam Assisted Gravity Drainage in McMurray

Reservoir. Journal of Canadian Petroleum Technology 45 (9): 55-62. DOI: 10.2118/06-09-05.

Gates, I.D. and Chakrabarty, N.. 2008. Design of the Steam and Solvent Injection Strategy in Expanding

Solvent Steam-Assisted Gravity Drainage. Journal of Canadian Petroleum Technology 47 (9): 12-20.

DOI: 10.2118/08-09-12-CS.

Guyaguler, B., Horne, R.N., Rogers, L., and Rosenzweig, J.J. 2002. Optimization of Well Placement in a

Gulf of Mexico Waterflooding Project. SPE Reservoir Evaluation & Engineering 5 (3): 229-236. DOI:

10.2118/78266-PA.

Lu, X., Hu, W., and Zheng, Y. 2003. A systematical procedure in the construction of multi-level

supersaturated designs. J. of Statistical Planning & Inference 115 (1): 287-310. DOI: 10.1016/S0378-

3758(02)00116-7.

Ma, C-X., Fang, K-T., and Liski, E. 2000. A new approach in constructing orthogonal and nearly orthogonal

arrays. Metrika 50: 255-268.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., 1953. Equation of State

Calculations by Fast Computing Machines; Journal of Chemical Physics 21: 1087-1092, June.

DOI:10.1063/1.1699114.

Myers, R.H. and Montgomery D.C. 2002. Response Surface Methodology: Process and Product in

Optimization using Designed Experiments, Wily, New York.

Palke, M.R. and Horne, R.N. 1997. Determining the Value of Reservoir Data by Using Nonlinear Production

Optimization Techniques. Paper SPE 38047 presented at the SPE Asia Pacific Oil and Gas Conference

and Exhibition, Kuala Lumpur, Malaysia, 14-16 April. DOI: 10.2118/38047-MS.

25

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Peterson, J., Riva, D., Edmunds, N., and Solanki, S. 2010. The Application of Solvent-Additive SAGD

Processes in Reservoirs With Associated Basal Water. Paper SPE 137833 presented at Canadian

Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, 19-21

October. DOI: 10.2118/137833-MS.

26

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Tables

Table 4-1: Reservoir simulation input parameters.

Item Value

Grid Cartesian 40*1*15

Grid Dimensions (I) 2 m

Grid Dimensions (J) 50 m

Grid Dimensions (K) 2 m

Initial Reservoir Temperature 20 oC

Initial Reservoir Pressure 2090 kPa

Minimum Producer BHP 1500 kPa

Injected steam temperature 200 oC

Injected steam quality 1

Porosity 20%

Permeability 1 Darcy

Rock heat capacity 2.35 J/cm3-C

Rock thermal conductivity 2.5833 J/cm-min-C

Water thermal conductivity 0.3715 J/cm-min-C

Oil thermal conductivity 0.07986 J/cm-min-C

Hexane k-value coefficients

KV1 = 1.01x106 kPa

KV4 = -2697.55 C

KV5 = -224.37 C

Mechanical Dispersivity (All components in all phases) 0.024 cm

Molecular Diffusion of Hexane in oleic phase (All components) 0.000250596 cm2/min

Molecular Diffusion of Hexane in vapour phase (All components) 0.0250596 cm2/min

Table 4-2: Optimized parameters ranges.

Item Range

Injection Rate 0 ï 10 m
3
/day

Hexane injection mole fraction 0 ï 0.3

27

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Table 4-3: NOA Tables.

Average Criterion Array

Minimax Criterion Array

Factors

Factors

Run 1 2 3 4

Run 1 2 3 4

1 3 7 7 9

1 9 9 0 0

2 3 8 5 8

2 8 2 3 3

3 9 9 1 0

3 6 5 6 4

4 4 2 5 4

4 8 4 6 9

5 1 4 1 1

5 1 8 0 10

6 2 0 4 6

6 0 2 5 8

7 6 0 1 2

7 4 3 8 4

8 3 5 3 8

8 6 3 9 2

9 9 1 3 8

9 9 3 3 7

10 1 10 3 7

10 1 3 1 3

11 4 3 6 9

11 4 5 8 3

12 0 9 9 10

12 5 1 8 7

13 10 5 8 3

13 1 9 1 9

14 5 1 4 1

14 0 6 1 1

15 0 6 3 2

15 1 7 8 2

16 7 6 1 4

16 6 9 3 0

17 1 1 9 5

17 3 0 9 4

18 9 3 8 0

18 7 2 9 3

19 8 1 6 8

19 3 0 4 8

20 8 4 3 4

20 2 9 6 1

21 4 10 9 3

21 0 4 7 6

22 7 2 1 1

22 4 10 2 5

23 2 6 6 1

23 4 1 10 9

24 3 1 9 0

24 3 4 1 6

25 3 3 10 6

25 5 6 3 3

26 2 4 4 3

26 8 1 10 10

27 1 8 2 3

27 1 3 6 1

28 10 3 2 4

28 3 4 0 8

29 5 4 2 1

29 3 6 4 3

30 4 3 3 9

30 9 1 2 9

31 6 6 10 6

31 10 0 5 0

32 6 9 0 9

32 3 8 3 1

33 1 0 6 7

33 2 8 9 5

34 9 8 7 3

34 10 6 3 6

35 0 3 8 1

35 6 10 4 1

36 6 7 0 3

36 2 3 1 2

37 3 2 0 2

37 9 8 4 8

38 1 8 8 6

38 8 1 2 6

39 8 1 1 10

39 7 7 1 1

40 8 9 4 5

40 1 1 7 4

Table 4-4: Simulated annealing configuration.

Initial temperature 1

Acceptance rule temperature 1

Maximum temperature iterations 600

Random moves 10

28

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Table 4-5: GA cases configuration.

 GA-1 OGA-1 HA-GA

Crossover 0.35 0.85 0.85

Mutation 12% 17% 17%

Population 40 20 20

Evolutions 30 7 30

Table 4-6: Comparison of the selected solution.

Case Trial# Evolution F(X)

Steam/Fluids injection
rates (m

3
/day)

RF cSOR

P1 P2 P3 P4

GA-1 (Random) 445 27 0.9564 7.7 8.4 7.7 7.0 61.2% 1.967

GA-1 (Average) 442 25 0.9535 7.8 8.4 7.7 6.7 60.9% 1.966

GA-1 (Minimax) 434 22 0.9557 8.1 8.8 7.9 6.8 61.9% 1.991

SA 341 - 0.9577 7.8 8.6 7.8 7.0 61.6% 1.976

SA reached 0.9548 169 - 0.9548 8.5 8.7 7.7 6.9 62.1% 1.997

OGA-1 133 5 0.9548 8.1 8.8 8.0 7.0 62.2% 2.003

HA-GA 265 23 1.3448 8.8 9.0 8.1 6.7 65.3% 0.925

Table 4-7: Optimized Hexane Mole Fraction.

P1 P2 P3 P4

0.30 0.24 0.29 0.26

29

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Figures

Figure 4-1: Schematic representation of optimization process.

Figure 4-2: Optimization process in Genetic Algorithm terminology.

30

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Figure 4-3: Genetic Algorithm flow diagram.

Figure 4-4: Example of crossover of two parent chromosomes.

Figure 4-5: Example of mutation of a parent chromosome.

Initial
ωGenerate random initial population

Fitness

ωCalculate the fitness of each chromosome in genotype

Selection

ωSelect two parent chromosomes from a population according to their fitness
(the better fitness, the bigger chance to be selected)
ωLow fitness chromosomes will die

Crossover

ωAccording to a crossover probability, parents are combined to form a new
offspring (children). If no crossover was performed, offspring is an exact copy of
parents.

Mutation

ωAccording to a mutation probability, mutate new offspring at each locus
(position in chromosome).

Accepting
ωPlace new offspring in a new population

 Create a
new

population

31

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Figure 4-6: Function value for the GA with different ways of generating initial population.

Figure 4-7: Convergence speed comparison between SA and Optimized GA case.

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0 5 10 15 20 25 30

F
(X

)

Evolution

Stock Random NOA Minimax NOA Average

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41 51 61 71 81 91 101 111 121

F
(X

)

Trial #

SA F(X) OGA 1 F(X)

32

A version of this chapter was submitted and accepted by Journal of Petroleum Science and Engineering and it is a revision

of the conference paper: Al-Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD
Applications using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Figure 4-8: Simulated Annealing (SA) function value (F(X)) and injection rates (X values).

Figure 4-9: Optimized Genetic Algorithm Case 1 (OGA-1) function value (F(X)) and injection

rates (X values).

0.75

0.8

0.85

0.9

0.95

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 101 201 301 401 501 601

F
(X

)

S
te

a
m

 I
n

je
ct

io
n

 R
a

te
 (

m3
/d

a
y)

Trial #

SA P1 SA P2 SA P3 SA P4 SA F(X)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 11 21 31 41 51 61 71 81 91 101

F
(X

)

S
te

a
m

 I
n

je
ct

io
n

 R
a

te
 (

m3
/d

a
y)

Trial #

P1 P2 P3 P4 F(X)

33

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Chapter 5: Design of Solvent-Assisted SAGD
Processes in Heterogeneous Reservoirs Using

Hybrid Optimization Techniques

Abstract

Many Steam Assisted Gravity Drainage (SAGD) optimization studies published in the literature

combined numerical simulation with graphical or analytical techniques for design and

performance evaluation. There have been numerous efforts that integrated the simulation exercise

with global optimization algorithms. Some studies focused on optimization of cumulative steam-

to-oil ratio (cSOR) in SAGD by altering steam injection rates, while others focused on

optimization of cumulative net energy-to-oil ratio (cEOR) in solvent-additive SAGD by altering

injection pressures and fraction of solvent in the injection stream. Several studies also considered

total project net present value calculation by changing total project area, capital cost intensities,

solvent prices, and risk factors to determine the well spacing and drilling schedule. Optimization

techniques commonly used in those studies were scattered search, simulated annealing, and

genetic algorithm (GA). However, the applications of hybrid genetic algorithm were rarely found.

In this chapter, we focused on optimization of solvent-assisted SAGD using various GA

implementations. In our models, hexane was selected to be co-injected with steam. The objective

function, defined based on cumulative steam-oil ratio (cSOR) and recovery factor, was optimized

by changing injection pressures, production pressures, and injected solvent-to-steam ratio.

Techniques including orthogonal arrays (OA) for experimental design (e.g. Taguchiôs arrays) and

proxy models for objective function evaluations were incorporated with the GA method to

improve computational and convergence efficiency. Results from these hybrid approaches

revealed that an optimized solution could be achieved with less CPU time (e.g. fewer number of

iterations) compared to the conventional GA method. Sensitivity analysis was also conducted on

the choice of proxy model to study the robustness of the proposed methods.

To investigate the effects of heterogeneity in the design process, optimization of solvent-assisted

SAGD was performed on various synthetic heterogeneous reservoir models of porosity,

permeability, and shale distributions. Our results highlight the potential application of the

proposed techniques in other solvent-enhanced heavy oil recovery processes.

34

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Introduction

Different versions of steam injection are used to extract most of Albertaôs oil sand reserves (Al-

Bahlani and Babadagli, 2009). The most common application is Steam Assisted Gravity Drainage

(SAGD) recovery. It, however, requires generation of excessive amount of steam, which is very

costly and has adverse environmental impacts, and it is often considered as a limiting factor in the

efficiency of the entire process. One of the suggested ways to reduce steam consumption is

addition of solvent to steam to maximize the recovery.

Several studies focused on optimization of SAGD processes that are with or without solvent

addition. A number of efforts focused on utilizing global optimization techniques. Gates and

Chakrabarty (2006) used genetic algorithm in order to optimize SAGD operating conditions such

as steam injection rates to reduce cumulative steam-to-oil ratio (cSOR). The same authors have

also implemented simulated annealing to optimize expanded solvent SAGD (ES-SAGD) by

altering the fraction of solvent in the injected steam and the injection pressures in order to reduce

cumulative net energy-to-oil ratio (cEOR) (Gates and Chakrabarty, 2008). Yang et al. (2009)

applied the Designed Exploration and Controlled Evolution (DECE) algorithm to optimize the net

present value (NPV) of a three-dimensional model. Peterson et al. (2010) utilized genetic

algorithm to optimize steam and solvent rates on solvent-additive SAGD to maximize NPV per

hectare of land (NPV/ha).

Having an efficient and robust optimization technique is critical in the design of SAGD or solvent-

additive SAGD processes. Hence, this work focuses on hybrid techniques to enhance the

computational efficiency of the Genetic Algorithm to design solvent-additive SAGD processes in

heterogeneous reservoirs.

Methodology

Global Optimization Techniques

In this chapter, we adopted the Genetic Algorithm (GA) and integrated it with two other

techniques in a hybrid formulation. GA is a stochastic search technique based on the principle of

ñsurvival of the fittestò (Guyaguler et al., 2002; Chen et al., 2010). An initial population or

genotype is constructed by sampling the solution space randomly. Individual members of the

population are called ñchromosomesò, and they define the parameter sets for the optimization

problem. In each evolution, the fitness of each chromosome is calculated. Then, multiple pairs are

selected based on their fitness value to create an offspring via crossover and mutation. The new

offspring is inserted in the population, while the chromosomes with lowest fitness values are

discarded. Figure 5-1 summarizes the mechanisms of a typical GA algorithm.

35

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

To improve the convergence behaviour and computational efficiency of GA, we proposed a hybrid

formulation by integrating the following two techniques into the conventional framework of GA:

Orthogonal Array and Nearly-Orthogonal Array for Initial Population Generation

Techniques from the experimental design literature, namely Orthogonal Array (OA) and Nearly-

Orthogonal Array (NOA), can be implemented with GA to improve the quality of initial

population (Chen et al., 2010) by generating evenly distributed samples while reducing the

redundancy between chromosomes. The objective is to design experiments or chromosomes by

determining the levels at which the parameters should be varied. Instead of testing all

combinations of parameters at all levels, only the ones containing principal information are

included. This reduces the population size and the associated computational costs. In this study,

we used Gendex DOE Toolkit (website: http://designcomputing.net/gendex) to generate nearly-

orthogonal arrays based on the Taguchi method average criterion described by Ma et. al. (2000)

and Lu et. al. (2003).

Proxy Method for Objective Function Evaluation

As can be seen in Figure 5-1, the fitness function must be evaluated for every chromosome at

every evolution. In our particular application, evaluation of the fitness function involves

calculation of the recovery factor, typically obtained from results of a numerical flow simulation.

Depending on the level of complexity of the processes that are being modeled, each flow

simulation could take up to days to complete. Hence, costs of objective function evaluation are

often the most important computational considerations in any optimization scheme. Proxy

methods are viable ñcheaperò alternatives that approximate the actual fitness function to enhance

computing efficiency. The technique implemented in this study was the response surface method.

Response surface is a relationship between the parameter sets and the corresponding fitness

function. Once calibrated in the form of regression, it can be used as a proxy for flow simulation

and allows the fitness function to be evaluated rapidly. In particular, we compared the first-order

linear model and the second-order non-linear model, as discussed in Myers and Montgomery

(2002). Equations for the linear and non-linear models are shown in Eqs. 1 and 2, respectively,

where J is the response (fitness function value), uiôs are the variables (optimization parameters),

ɓiôs are the regression coefficients, and Ů is an error term.

ὐ ό Ễ ό (1)

ὐ ό Ễ ό В ό В В όό (2)

The regression equation for both models is expressed in Eq. 3:

ἣἢἣ ἣἢἔ (3)

36

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

where ╙ is a vector that contains all the response, ♫ is a vector which contains all regression

coefficients and ╤ is a matrix with all the u vectors evaluated.

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:

http://jgap.sourceforge.net/) for the GA modeling.

Objective Function

Profit maximization and cost reduction are important aspects in many engineering projects,

especially in enhanced oil recovery applications. In this chapter, our focus is to maximize the

recovery and minimize cumulative steam-oil-ratio during SAGD application with solvent addition.

After several trials (Algosayir et al., 2011), we proposed an equally-weighted objective function

(F) for recovery factor (RF) and cumulative steam oil ratio (cSOR), which is different from earlier

works mentioned previously. Ideally, the objective function should be dimensionless. Therefore,

the RF is assigned a unit weight because its value ranges between 0 and 1, while cSOR has to be

normalized to be between 0 and 1. This is achieved by dividing its value by a user-defined

maximum observable cumulative steam oil ratio [max(cSOR)]. Assembling the various terms

together, our proposed GA implementation assesses and aims to maximize the following objective

(fitness) function:

Ὂὼȟὼȟὼȟὼȟὼȟὼ ὙὊ ρ (4)

where ὼȟὼȟὼȟὼȟὼȟὼ are the optimized parameters. In our study, the optimization process

evaluates Eq. 1 by adjusting the 10-year injection pressure, production pressure, and hexane mole

fraction over two 5 years periods (a total of 6 model parameters). Ranges of these model

parameters are shown in Table 5-1. The normalizing parameter [max(cSOR)] is set to a value of

three (in m
3
/m

3
) for the homogenous Expanded Solvent SAGD (ES-SAGD) case, and a value of

five (m
3
/m

3
) was used for the heterogeneous cases. It should be noted that an adjusting factor of

ñ1ò is added to the fitness function in Eq. 6 to shift its range from [-1, 1] to [0, 2], such that a

positive objective function value would always be obtained.

All optimization cases follow the same Genetic Algorithm configuration as presented in

Table 5-2. In each evolution, 35% of the population chromosomes are crossovered to generate

new chromosomes, and 3% of them are mutated by changing parts of the bit in binary encoding.

This crossover and mutation process is repeated 30 times per evolution and, in each evolution, a

constant population size of 30 is maintained.

37

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Case Study

Model Description

In our case studies, three two-dimensional simulation models were constructed originally based on

the laboratory-scale simulation model with homogeneous and isotropic reservoir properties

provided by Ayodele et al. (2010). These models were subsequently scaled-up to the field

dimensions by adjusting the grid definition as described in Table 5-3. The homogenous model has

a constant porosity of 20% and permeability of 1 Darcy for all cells. The homogeneous model was

used to (1) investigate the sensitivity of the optimization results to the choice of response surface

proxy models and (2) assess the computational savings with the use of proxy techniques as

compared to the conventional method (no proxy). Success with the homogeneous case allows us to

subsequently apply the proposed implementation to cases with heterogeneous reservoir properties.

In particular, two heterogeneous models exhibiting different shale distributions (30% and 10%

shale content) were used in our study, and they are shown in Figure 5-2 and Figure 5-3,

respectively.

Response Surface Proxy Models

To reduce the computation time required, a linear first-order (Eq. 1) and non-linear second-order

(Eq. 2) response surface models were constructed for the three reservoir models. These proxies (or

response surfaces) were calibrated using flow simulations results of an initial population,

constructed using the nearly-orthogonal array (NOA) L30(17
6
) consists of 6 factors, 17 levels, and

30 runs (Table 5-4) and applying Eqs. 1-3.

Results and Discussion

The primary objective of this chapter is to study the impacts of reservoir heterogeneities on the

optimization of solvent-assisted SAGD recovery process. Given that objective function

evaluations using detailed flow simulation results are extremely time consuming, particularly for

heterogeneous reservoirs, our first step is to evaluate various response surface proxy techniques

that can be easily integrated for GA optimization.

First, we established a base case by performing conventional GA optimization (no proxy) for a

homogenous reservoir with an initial population constructed using the NOA in Table 5-4. The

entire experiment required a total of 52 hours to execute about 900 simulation cases to obtain the

optimum, which has 1.31 fitness value, 68% recovery and 1.13 (m
3
/m

3
) cSOR. Figure 5-4 shows

the oil production profile for the optimum field scale case. In order to evaluate the reproducibility

of our optimization results, we repeated the optimization experiment and similar results were

obtained: 1.32 fitness value, 69% recovery and 1.14 (m
3
/m

3
) cSOR. Results of the two trials are

labelled as ñConventional (1)ò and ñConventional (2)ò, respectively in Table 5-5. Next, linear and

38

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

non-linear response surface proxies were tested. The proxies were constructed based on flow

simulation results of the initial population generated using the NOA. In other words, the

computation requirement was reduced significantly to only that was required to execute the cases

of the initial population. It was observed that the non-linear proxy approximated the initial data

actual responses closely while the match with the linear proxy was not satisfactory as shown in

Figure 5-5. The trials are sorted based on the fitness values obtained from actual flow simulations.

Similarly, we built linear and non-linear proxies for the 30% and 10% shale content

(heterogeneous) cases as shown in Figure 5-6 and Figure 5-7, respectively. In the 30% case, the

non-linear shows excellent match, while in the 10% case, it did not yield a satisfactory match.

In the homogenous case, optimization performed with the linear proxy was completely

unsuccessful as it was not able to improve the fitness during the evolutions. On the other hand, the

non-linear proxy showed very good improvement in the fitness function value during the

evolutions as shown in Figure 5-8. In order to compare the optimal solution obtained using the

proxy to that of the conventional approach, we performed flow simulation on the final optimized

solution to obtain the actual response J, instead of the proxy estimated value Jô. In the case of

linear proxy, the actual response J was lower than the best case in the initial population J0,

indicating that the fitness function was not maximized. In contrast, for the case of non-linear

proxy, the actual response J matched closely with the conventional optimization result even

though the proxy was amplifying the response values. This is due to the extrapolation of the

response surface corresponding to parts of parameter space. The actual response value for the

optimum case Jopt was 1.3 with 68% recovery and 1.15 (m
3
/m

3
) cSOR as shown in Table 5-5. It is

important to note that this result was obtained in 105 minutes where we saved about 97% of the

computational efforts from the conventional optimization as indicated in Table 5-6.

This improvement in computational efficiency becomes particularly important in applications for

heterogeneous reservoirs because of the increase in flow simulation execution time with reservoir

heterogeneity. On average, a single flow simulation in this study takes about five minutes for the

30% shale case and about 6 minutes for the 10% shale case to execute. If optimization of these

heterogeneous models was performed with the conventional GA implementation, the

computational time would have been over three days, thus rendering the method unfeasible due to

computational constraints. This consideration motivates the use of proxy for objective function

evaluation and allows optimization to be performed efficiently in the case of heterogeneous

reservoirs. Our proposed hybrid approach took 138 minutes for the 30% shale case and 187

minutes for 10% shale case to complete (Table 5-6). This is equivalent to a savings of 152 hours

(or approximately 97%) of the total computational time.

39

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Our results suggest that the performance of the linear proxy in the heterogeneous cases was better

than the homogenous case; the fitness function increased with evolution shown in Figure 5-9 and

Figure 5-10 as opposed to staying constant in Figure 5-8. However, the non-linear proxy was still

providing better results. For the 30% shale case, the linear proxy actual response value for the

optimum case Jopt was 0.65 with 5% recovery and 1.98 (m
3
/m

3
) cSOR while the non-linear proxy

actual response value for the optimum case Jopt was 0.71 with 7% recovery and 1.77 (m
3
/m

3
)

cSOR. Similarly, in the 10% shale case, the linear proxy actual response value for the optimum

case Jopt was 1.13 with 40% recovery and 1.28 (m
3
/m

3
) cSOR while the non-linear proxy actual

response value for the optimum case Jopt was 1.14 with 42% recovery and 1.38 (m
3
/m

3
) cSOR.

Optimization results of all cases are shown in Table 5-5. It is worthwhile to point out that the

calculated response value Jô of the linear proxy is similar in range to the actual value J, while

higher degree of extrapolation in the non-linear proxy model leads to a larger deviation from this

range.

Several ways were investigated to reduce the degree of extrapolation and to obtain more accurate

approximation of the fitness function using the non-linear proxy. The approach that gave the most

promising results was the one where flow simulation was performed for the fittest chromosome

after every evolution, and the corresponding simulation result would be incorporated to fit a new

proxy. It was observed that updating the proxy after evolution with an additional flow simulation

output using the fittest chromosome could significantly improve the predictability of the non-

linear proxy. The flow diagram of the modified approach is shown in Figure 5-11. It is noted from

Figure 5-12 that each time the proxy was updated using the fittest chromosomeôs simulation

results, more accurate proxy values (as compared to the actual flow simulation outputs) were

achieved. Figure 5-12 also shows that towards the end of the optimization exercise, there was no

noticeable differences between the proxy values and actual flow simulation outputs, indicating that

the predictability of the non-linear was significantly improved. Finally, as shown in Table 5-5,

applying this modified approach to the homogeneous case achieved a better (more optimized)

scenario than the conventional method with a higher fitness value of 1.4, a higher recovery of 76%

and a lower cSOR of 1.07 (m
3
/m

3
).

The modified approach was also applied to the 10% and 30% shale cases to update the non-linear

proxy after every evolution. Similar improvement as in the homogeneous case was achieved:

updating the proxy using the fittest chromosome after every evolution gave the best optimized

parameters among all scenarios, while the proxy predictability was excellent (as evidenced by the

identical values for J and Jô in Table 5-5). The optimization results (fitness value as a function of

evolution) are shown in Figure 5-13 and Figure 5-14. It should be noted that the total number of

flow simulation runs performed in this modified approach was 90 (30 for the initial population

40

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

plus an additional one per every evolution). The increased computational expenses could easily be

justified given the considerable improvements in the predictability of the response surface models

and the final optimized scenario. Furthermore, the computational savings as compared to the

conventional approach is still important (Table 5-6).

Conclusions

Proxy methods are convenient ways to improve efficiency of an optimization algorithm. In our

application, we observed that the execution time for objective function evaluation is the largest.

Other factors like the algorithm convergence speed and the input/output (I/O) processing that

serves as an interface between the flow simulator and the rest of the algorithm implementation are

negligible in comparison to the time needed to execute the simulation. This computational

consideration becomes particularly important for heterogeneous reservoirs. To alleviate the

computational burden, we constructed the initial population by the process of experimental design

using nearly-orthogonal arrays. Flow simulations were performed on this initial population to

calibrate a response surface, which was subsequently used as a proxy for fitness function

evaluation. Our initial results verified the applicability of the proxy for the homogeneous case. It is

important to note that a proxy should be chosen with care such that it gives an accurate

representation of the relationship between the objective function and its control variables; we

found in our cases that the non-linear proxy is better for this purpose. Although it yields better

optimal solution, it does not necessarily reflect the true fitness function value precisely due to non-

linear extrapolation corresponding to parts of the parameter space. Therefore, a proxy-updating

step was introduced after evolution in which flow simulation results of the fittest chromosome

were added to fit a new proxy. Our results indicated that this updating step not only improves the

predictability of the response surface model, it also enhances the capability of the GA algorithm to

identify a more optimized set of model parameters than the conventional approach in a

computationally-efficient manner. This improvement (as compared to the case where the proxy

was calibrated using only simulation runs of the initial population) should justify the incremental

costs incurred because of additional flow simulation runs being performed in the updating step.

41

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Nomenclature

cEOR: cumulative net energy-to-oil ratio.

cSOR: steam-to-oil ratio.

F(X): objective function value.

GA: Genetic Algorithm.

HMF: Hexane injection mole fraction.

IBHP: Injector maximum Bottom-hole Pressure.

J: the actual response or actual objective function value calculated based simulation output for

one trial.

Jô: the repose obtained from the regression model.

J0: the best trial actual response in the initial population.

NL: Nonlinear Proxy

NOA: Nearly-Orthogonal Array.

NPV: Net Present Value.

OA: Orthogonal Array.

PBHP: Producer minimum Bottom-hole Pressure.

RF: Recovery Factor.

SAGD: Steam Assisted Gravity Drainage thermal recovery process.

u: a (1*n) vector which contains the optimization variables for a trial.

ui : represent an optimization variable for one trial.

ɓi : represent a regression coefficients for one trial.

╙: a vector that contains all the trials response.

╤: a matrix with all uôs.

♫: a vector which contains all regression coefficients.

42

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

References

Al-Bahlani, A.M. and Babadagli, T. 2009. SAGD Laboratory Experimental and Numerical Simulation

Studies: A Review of Current Status and Future Issues. Journal of Petroleum Science and Engineering,

68(3-4): 135-150. DOI: 10.1016/j.petrol.2009.06.011.

Al -Gosayir, M., Babadagli, T., and Leung, J. 2011. Optimization of Solvent Additive SAGD Applications

using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Ayodele, O. R., Nasr, T. N., Ivory, J., Beaulieu, G. and Heck, G. 2010. Testing and History Matching of ES-

SAGD (Using Hexane). Paper 134002 presented at the SPE Western Regional Meeting, Anaheim,

California, USA, 27-29 May. DOI: 10.2118/134002-MS.

Chen, S., Li, H., Yang, D., and Tontiwachwuthikul, P. 2010. Optimal Parametric Design for Water-

Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal of Canadian Petroleum

Technology 49 (10): 75-82. DOI: 10.2118/141650-PA

Computer Modeling Group (CMG) Ltd. STARS Userôs Manual, Version 2009.10. Calgary, Alberta, Canada.

Gates, I.D., and Chakrabarty, N. 2006. Optimization of Steam Assisted Gravity Drainage in McMurray

Reservoir. Journal of Canadian Petroleum Technology 45 (9): 55-62. DOI: 10.2118/06-09-05.

Gates, I.D., and Chakrabarty, N. 2008. Design of the Steam and Solvent Injection Strategy in Expanding

Solvent Steam-Assisted Gravity Drainage. Journal of Canadian Petroleum Technology 47 (9): 12-20.

DOI: 10.2118/08-09-12-CS.

Guyaguler, B., Horne, R.N., Rogers, L., and Rosenzweig, J.J. 2002. Optimization of Well Placement in a

Gulf of Mexico Waterflooding Project. SPE Reservoir Evaluation & Engineering 5 (3): 229-236. DOI:

10.2118/78266-PA.

Lu, X., Hu, W. & Zheng, Y. 2003. A Systematical Procedure in the Construction of Multi-Level

Supersaturated Designs. J. of Statistical Planning & Inference 115 (1): 287-310. DOI: 10.1016/S0378-

3758(02)00116-7.

Ma, C-X., Fang, K-T & Liski, E. 2000. A New Approach in Constructing Orthogonal and Nearly Orthogonal

Arrays. Metrika 50: 255-268. DOI: 10.1007/s001840050049.

Myers, R.H. and Montgomery D.C. 2002. Response Surface Methodology: Process and Product in

Optimization using Designed Experiments, Wily, New York.

Peterson, J., Riva, D., Edmunds, N., and Solanki, S. 2010. The Application of Solvent-Additive SAGD

Processes in Reservoirs With Associated Basal Water. Paper 137833 presented at Canadian

Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, 19-21

October. DOI: 10.2118/137833-MS.

Yang, C., Card, C., and Nghiem, L. 2009. Economic Optimization and Uncertainty Assessment of

Commercial SAGD Operations. Journal of Canadian Petroleum Technology 48 (9): 33-40. DOI:

10.2118/09-09-33.

43

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Tables

Table 5-1: Optimized parametersô ranges

Optimization Parameters Range

Injector maximum Bottom-hole Pressure (IBHP) 2100-2800 kPa

Producer minimum Bottom-hole Pressure (PBHP) 1500-2000 kPa

Hexane injection mole fraction (HMF) 0-0.2

Table 5-2: GA configuration

Item Value

Crossover 0.35

Mutation 3%

Population 30

Evolutions 30

Table 5-3: Reservoir simulation input parameters

Item Value

Grid Cartesian 40*1*15

Grid Dimensions (I) 2 m

Grid Dimensions (J) 50 m

Grid Dimensions (K) 2 m

Initial Reservoir Temperature 20 oC

Initial Reservoir Pressure 2090 kPa

44

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Table 5-4: Nearly-Orthogonal Array (6 factors, 17 levels, and 30 runs) used for
generating initial population

Run

Factors

Run

Factors

1 2 3 4 5 6 1 2 3 4 5 6

1 0.06 2275 1563 0.13 2581 2000 16 0.10 2188 1688 0.01 2188 1656

2 0.14 2319 1750 0.06 2144 1906 17 0.05 2450 1719 0.16 2450 1594

3 0.01 2538 1781 0.06 2406 1531 18 0.15 2625 1875 0.15 2669 1625

4 0.18 2144 1625 0.01 2319 1938 19 0.11 2494 1781 0.08 2494 1719

5 0.01 2756 1656 0.04 2713 1844 20 0.19 2494 1813 0.04 2100 1875

6 0.14 2669 1719 0.00 2800 1688 21 0.10 2581 1594 0.14 2144 1875

7 0.00 2713 2000 0.15 2494 1781 22 0.15 2538 1688 0.09 2538 1969

8 0.16 2100 1750 0.14 2625 1781 23 0.13 2100 1875 0.10 2406 1594

9 0.08 2144 1563 0.18 2231 1750 24 0.13 2800 1594 0.03 2275 1750

10 0.04 2450 1906 0.03 2231 1625 25 0.11 2188 1844 0.05 2625 1813

11 0.09 2231 1531 0.11 2450 1688 26 0.04 2231 1844 0.19 2581 1531

12 0.20 2363 1625 0.13 2363 1500 27 0.00 2275 1656 0.05 2275 1656

13 0.08 2581 1500 0.08 2100 1563 28 0.03 2625 1969 0.10 2363 1813

14 0.03 2406 1531 0.00 2319 1719 29 0.09 2363 1938 0.09 2188 1563

15 0.05 2319 1813 0.11 2756 1500 30 0.06 2406 1500 0.20 2538 1844

45

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Table 5-5: Comparison of the selected solution values

Case J0 J Jô

Period 1 Period 2

RF
cSOR

(m3/m3)
HMF

IBH
P

PBH
P

HMF
IBH
P

PBH
P

H
o

m
o

g
e

n
e

o
u

s

Conventional
(1)

1.04 1.31 - 0.20 2616 1651 0.16 2669 1669 68% 1.13

Conventional
(2)

1.04 1.32 -
0.19 2756 1624 0.18 2650 1842

69% 1.14

Linear Proxy 1.04 0.93 1.04 0.15 2625 1875 0.05 2756 1635 39% 1.38

Non-Linear
(NL) Proxy

1.04 1.30 3.66 0.20 2800 1512 0.19 2800 1506 68% 1.15

Updated NL
Proxy

1.04 1.4 1.4
0.20 2795 1515 0.16 2800 1576

76% 1.07

30%
shale
sand

Linear Proxy 0.58 0.65 0.75 0.20 2115 1986 0.20 2109 2000 5% 1.98

Non-Linear
Proxy

0.58 0.71 1.33 0.00 2124 2000 0.19 2286 1927 7% 1.77

Updated NL
Proxy

0.58 0.73 0.73
0 2104 1970 0.20 2116 1814 7% 1.69

10%
shale
sand

Linear Proxy 1.04 1.13 1.15 0.20 2793 1504 0.20 2756 1500 40% 1.23

Non-Linear
Proxy

1.04 1.14 5.15 0.20 2777 1536 0.19 2756 1523 42% 1.38

Updated NL
Proxy

1.04 1.2 1.2
0.05 2450 1718 0.16 2450 1593

39% 0.96

46

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Table 5-6: Cases execution time

Case
Actual

Simulation
runs

Average time
per

simulation
run

Total Execution Time

Homogenous

Conventional 900 3.5 minutes 2 Days, 4 hours and 23 minutes

Linear Proxy 30 3.5 minutes 1 hours and 45 minutes

Non-Linear (NL)
Proxy

30 3.5 minutes 1 hours and 45 minutes

Updated NL Proxy 90 3.5 minutes 5 hours and 15 minutes

30% shale
sand

Linear Proxy 30 4.6 minutes 2 hours and 18 minutes

Non-Linear Proxy 30 4.6 minutes 2 hours and 18 minutes

Updated NL Proxy 90 4.6 minutes 6 hours and 54 minutes

10% shale
sand

Linear Proxy 30 6.3 minutes 3 hours and 07 minutes

Non-Linear Proxy 30 6.3 minutes 3 hours and 07 minutes

Updated NL Proxy 90 6.3 minutes 9 hours and 27 minutes

* The homogenous cases executed by utilizing all the two 6 cores and 2.66 GHz processors of total 12 cores, where the

heterogeneous cases was executed in 6 cores 2.66 GHz processor.

47

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figures

Figure 5-1: Conventional Genetic Algorithm flow diagram (modified from Algosayir et al.

2011).

Figure 5-2: 30% shale sand distribution.

Initial
ωGenerate an initial population/genotype (each member is called a chromosome)

Fitness
ωCalculate the fitness (objective function value) of each chromosome in genotype

Selection

ωSelect pairs of parent chromosomes from a population according to their fitness
(the better fitness, the bigger chance to be selected)

Crossover

ωAccording to a crossover probability, parents are combined to form new
offsprings (children). If no crossover was performed, offsprings are exact copies of
parents.

Mutation

ωAccording to a mutation probability, mutate new offsprings at each locus
(position in chromosome).

Accepting

ωFitness value of new offspring is calculated, and new population is generated by
discarding chromosomes with low fitness values and replacing them with the
new offsprings.

Create a
new

population

Shale

Sand

48

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-3: 10% shale sand distribution.

Figure 5-4: Optimized ES-SAGD homogeneous case oil production profile.

Shale

Sand

49

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-5: Proxies approximation for the homogeneous case: trials are sorted based on

actual flow simulation fitness value J.

Figure 5-6: Proxy approximation for the 30% shale case.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

F
itn

e
ss

 V
a
lu

e

Trial#

J J' (Non Linear) J' (Linear)

0.05

0.15

0.25

0.35

0.45

0.55

0.65

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

F
itn

e
s
s

V
a

lu
e

Trial#

J J' (Non Linear) J' (Linear)

50

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-7: Proxy approximation for the 10% shale case.

Figure 5-8: Fitness value as a function of evolution for the homogeneous case.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

F
itn

e
ss

 V
a
lu

e

Trial#

J J' (Non linear) J' (linear)

0

0.5

1

1.5

2

2.5

3

3.5

4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30

F
itn

e
ss

 V
a

lu
e

 (
N

o
n-l
in

e
a

r)

F
itn

e
ss

 V
a
lu

e
 (

C
o

n
ve

n
tio

n
a

l
a

n
d

 L
in

e
a

r)

Evolution

Conventional Linear Non-Linear

51

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-9: Fitness value as a function of evolution for the 30% shale case.

Figure 5-10: Fitness value as a function of evolution for the 10% shale case.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0 5 10 15 20 25 30

F
itn

e
ss

 V
a

lu
e

 (
N

o
n-L

in
e

a
r)

F
itn

e
ss

 V
a
lu

e
 (

L
in

e
a

r)

Evolution

Linear Non-Linear

0

0.5

1

1.5

2

2.5

3

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

0 5 10 15 20 25 30

F
itn

e
ss

 V
a

lu
e

 (
N

o
n-L

in
e

a
r)

F
itn

e
ss

 V
a
lu

e
 (

L
in

e
a

r)

Evolution

Linear Non-Linear

52

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-11: Flow diagram for the modified approach where proxy is updated with the

additional flow simulation results of the fittest chromosomes after each evolution.

Initialize population using NOA

ωfitness calucation using full flow simulations

Build proxy using initial population

Create New Population

ωselection

ωcrossover

ωmutation

ωAccepting

ωFitness Value calculated using the proxy

Update proxy

ωusing fall flow simulation of the fittest chromosome

Stop

Repeated for 60

evolutions

53

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-12: Fitness value as a function of evolution for the homogeneous case using the

modified approach with non-linear proxy updating.

Figure 5-13: Fitness value as a function of evolution for the 30% shale case using the

modified approach with non-linear proxy updating.

0.5

0.7

0.9

1.1

1.3

1.5

0 10 20 30 40 50 60

F
itn

e
ss

 V
a

lu
e

Evolution
FX (Proxy) FX (Actual)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 10 20 30 40 50 60

F
itn

e
ss

 V
a
lu

e

Evolution

FX (Proxy) FX (Actual)

54

A version of this chapter was submitted and accepted by Journal of Canadian Petroleum Technology and it is a revision of

the conference paper: Al-Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in
Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the Canadian

Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI: 10.2118/149010-MS.

Figure 5-14: Fitness value as a function of evolution for the 10% shale case using the

modified approach with non-linear proxy updating.

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

F
itn

e
ss

 V
a
lu

e

Evolution

FX (Proxy) FX (Actual)

55

A version of this chapter was submitted for publication.

Chapter 6: Optimization of SOS-FR (Steam-Over-
Solvent Injection in Fractured Reservoirs) Method
Using Hybrid Techniques: Testing Cyclic Injection

Case

Abstract

Many processes and techniques have been proposed to improve the heavy oil recovery from

fractured reservoirs. Such complex processes require careful operation planning and management

to achieve optimal efficiency with minimal costs and environmental impacts. Steam injection is

one of the options for heavy-oil recovery from fractured reservoirs but significant steam

requirement for effective matrix heating due to heterogeneous structure poses important challenges

in terms of cost, water availability, and environment impacts due to water processing and steam

generation. Al-Bahlani and Babadagli (2008, 2009a) proposed a new process called Steam-Over-

Solvent in Fractured Reservoirs (SOS-FR) by adding solvent component to minimize the heat

needed. The SOS-FR technique consists of a heating phase using steam injection, subsequent

solvent injection, and low temperature steam injection for solvent retrieval and additional oil

recovery. Optimization of this process is a critical step to determine optimal injection (and

soaking) schedules as the heterogeneous structure of this kind of reservoirs may easily yield an

inefficient process due to high cost and excessive use of steam and solvent. In this study, we

adopted a global optimization scheme, where genetic algorithm is integrated with orthogonal

arrays and response surface proxies for better convergence behavior and higher computational

efficiency, to optimize the SOS-FR process for cyclic injection option. The results show that one

may be able to double the profit obtained with the benchmark model using the optimal injection

scheme suggested by our optimization procedure.

Introduction

Unconventional solutions are needed to overcome the challenge of heavy oil production. In high

permeability non-fractured sand reservoirs, steam injection processes showed acceptable

production, however, they require the availability of a large amount of water that is a major

challenge in remote areas with limited water accessibility, and this water consumption has to be

managed and processed in an environment friendly manner (Al-Bahlani and Babadagli, 2011).

Alternative to steam injection, Butler and Mokrys (1991) introduced the VAPEX (vapor

extraction) process, which is pure solvent injection from a horizontal well to displace the oil by

gravity drainage to another horizontal producer. Later, different schemes of steam/solvent

injection were tested at laboratory or simulation conditions as well as field pilots. Nasr et al.

56

A version of this chapter was submitted for publication.

(2003) developed Expanding Solvent-SAGD (ES-SAGD) method to minimize the use of steam in

heavy-oil production. This method relies on addition of small percentage of gas or liquid solvent

into steam during steam assisted gravity drainage process (SAGD). Subsequently, steam-

alternating-solvent (SAS) technique was introduced as an application of alternative injection of

steam and solvent (Zhao et al., 2005; Zhao, 2007). Leaute and Carey (2007) demonstrated that

addition of small amount solvent into steam during cyclic steam injection improves the recovery.

Their technique called Liquid Addition to Steam for Enhancing Recovery (LASER) showed a

success in a pilot scale field application.

A major consideration for these advanced recovery processes is that the recovery performance is

highly influenced by factors such as steam and solvent injection rate, solvent concentration,

injection pressure, and injection schedule. This matter of optimal design was addressed in the

literature for several processes. For example, several studies employed global optimization

techniques and detailed flow simulations. Gates and Chakrabarty (2006, 2008) used genetic

algorithm and simulated annealing for SAGD and ES-SAGD (expanding solvent SAGD)

optimization. Peterson et al. (2010) utilized genetic algorithm for solvent-additive SAGD

optimization. Al-Gosayir et. al. (2011b) studied the design of solvent-assisted SAGD processes in

heterogeneous reservoirs using hybrid genetic algorithm. A more common approach has been the

design and performance evaluation of these processes using a combination of numerical

simulations, sensitivity analysis, and graphical or analytical techniques.

Optimization of steam/solvent methods in fractured carbonate reservoirs is more challenging as

the efficiency becomes critically important due to excessive steam/solvent requirement for matrix

oil recovery. Although ample amount of lab studies exist, steam injection in fractured carbonates

is limited to a few field scale applications due to inefficiency of the process (Al-Bahlani and

Babadagli, 2008). Al-Bahlani and Babadagli (2009a-b) suggested the use of solvent to reduce the

cost of steam and improve the recovery for fractured carbonates with oil-wet matrix containing

heavy-oil. Accordingly, they proposed Steam-Over-Solvent Injection for Fractured Reservoirs

(SOS-FR) process to enhance the recovery efficiency by injection of both steam and solvent. The

SOS-FR process consists of three main phases (Al-Bahlani and Babadagli, 2008, 2009a-b):

Phase 1: It consist of pre-heating by steam (or hot water) injection. In this phase, thermal

expansion of oil (expected recovery is ~10% as reported by Al-Bahlani and Babadagli, 2008) is

the main recovery mechanism and no water capillary imbibition is expected if matrix is not

strongly water-wet, which is a common situation in carbonates. The matrix oil is also conditioned

for the subsequent solvent injection.

57

A version of this chapter was submitted for publication.

Phase 2: Solvent injection phase: Solvent (heptane was used by Al-Bahlani and Babadagli [2008,

2009a]) is injected to be diffused into matrix and further reduce the viscosity of oil. Then, the

matrix oil is produced by gravity drainage caused by the density difference between original oil

and oil diluted by the solvent. Al-Bahlani and Babadagli (2011) numerically tested two scenarios:

(1) Continuous solvent injection and (2) cyclic solvent simulation (CSoS) which consist of three

stages: (a) solvent injection, (b) solvent soaking, and (c) production.

Phase 3: Solvent retrieval period: To retrieve the solvent (and recover additional oil); steam is

injected at a temperature near to the boiling point of the solvent, which causes rapid thermal

expansion of solvent.

Al -Bahlani and Babadagli (2011) compared, by building each case manually, the injection of

exclusively steam or solvent for the whole period with the two scenarios of SOS-FR process at the

field scale; continuous solvent injection and cyclic solvent injection (Huff-and-Puff) in a single

fracture and multiple fractures system. Their results showed that cyclic application of the SOS-FR

technique gives promising result for multiple fracture models in terms of the economics of the

process. The cyclic solvent SOS-FR process has numerous operating parameters that could affect

the recovery including duration of heating period during Phase 1, steam injection rate and

duration, solvent cycles schedule ï duration of injection and soaking cycles as well as the number

of cycles for Phase 2, and the steam injection rate for Phase 3. Such a large number of factors

require testing remarkably large number of scenarios to reach an optimal solution, which would be

very exhaustive to achieve manually.

In this paper, we focus on optimizing the (SOS-FR) process and apply a hybrid technique

introduced in our previous publication for ES-SAGD optimization (Al-Gosayir et al., 2011b) to

propose optimal application conditions that maximized the recovery and profit.

Optimization methodology

Global Optimization Techniques

Similar to our work on ES-SAGD optimization (Al-Gosayir et. al., 2011b), we integrated the

Genetic Algorithm (GA) with two other techniques in a hybrid formulation. The GA is a

probabilistic search technique based on the principle of ñsurvival of the fittestò (Guyaguler et al.,

2002; Chen et al., 2010). An initial population or genotype can be constructed by sampling the

solution space randomly or by utilizing an experimental design strategy such nearly orthogonal

arrays. Additional scenarios constructed manually can be incorporated to accommodate the

engineerôs judgement and to accelerate the convergence. Each population contains members called

ñchromosomesò which define the parameters for the optimization problem. In each evolution, each

chromosomeôs fitness is calculated. Then, pairs of parent chromosomes are selected based on their

58

A version of this chapter was submitted for publication.

fitness values to create new offsprings (children) via crossover and mutation as illustrated in

Figure 6-1. Examples for crossover and mutation genetic operations that are used to generate new

offsprings are shown Figure 6-2 in and Figure 6-3. The new chromosomes are added to the

population, while the chromosomes with low fitness values are discarded.

Computational behavior of genetic algorithm is highly sensitive to the choice of initial population.

Thus, we proposed a hybrid formulation to improve the computational and convergence efficiency

by integrating the following experimental design and response surface techniques into the

conventional framework of GA.

Orthogonal Arrays for Experimental Design

Orthogonal Array (OA) and Nearly-Orthogonal Array (NOA) experimental design techniques can

be integrated with GA to improve the quality of initial population (Chen et al., 2010) by

generating evenly distributed samples and reducing the redundancy between chromosomes.

Instead of trying all combinations of parameters at all levels, just the ones that contain principal

information are included by determining the levels at which parameters should be varied. In this

paper, we utilized Gendex DOE Toolkit (website: http://designcomputing.net/gendex) for NOAs

generation based on the Taguchi method minimax criterion described by Ma et. al. (2000) and Lu

et. al. (2003).

Proxy Method for Objective Function Evaluation with Periodic Updating

For each chromosome in each evolution, its fitness function must be evaluated. In our application,

the money recovery factor as defined in the next section is calculated from the results of a

numerical flow simulation. Depending on the reservoir size and process complexity, each flow

simulation could take up to days to complete. Proxy methods are feasible and computationally

efficient alternatives for fitness value estimation. The response surface technique, a method in

which a relationship between the parameter sets and the corresponding fitness function is

approximated via regression, has been implemented in this study. Once calibrated using the results

obtained from detailed flow simulations, this response surface can be used as a proxy for flow

simulation. Results presented in our previous work demonstrated that a second-order non-linear

proxy model typically provides satisfactory performance for our optimization applications (Al-

Gosayir et. al., 2011b, Myers and Montgomery, 2002). The equations for non-linear (quadratic)

models are shown in Eq. 1, where J is the response (fitness function value), uiôs are the variables

(optimization parameters), ɓiôs are the regression coefficients, and Ů is an error term.

ὐ ό Ễ ό В ό В В όό (1)

Eq. 2 is the regression equation for over-determined problem:

ɼ 55 5* (2)

59

A version of this chapter was submitted for publication.

When the number of optimization parameters is larger than the number of experiments, the

problem becomes under-determined and Eq. 3 should be used:

ɼ 5 5 5 * (3)

where ╙ is a vector that contains all the response, ♫ is a vector which contains all regression

coefficients and ╤ is a matrix with all the u vectors evaluated.

In order to achieve a better representation of the solution space and regression accuracy, the proxy

is re-calibrated or updated periodically by performing detailed flow simulation using parameters of

the chromosome with the highest fitness value and incorporating its simulation result after each

evolution (Al-Gosayir et al., 2011b). This updating step is illustrated in the flow chart given in

Figure 6-4.

In this research, we used the JGAP package (Java Genetic Algorithm Package (JGAP) website:

http://jgap.sourceforge.net/) for the GA modeling.

Objective Function

Efficiency of recovery processes can be assessed by their profit by calculating the Money

Recovery Factor, MRF, (Al-Bahlani and Babadagli, 2011) which incorporate the major elements

(mainly steam, solvent, and oil), which influence the profit. The MRF focuses on the key

elements and omits the other factors, which may vary from one field to another. The MRF is

defined as follows:

ὓὙὊ
ὙὩὺὩὲόὩὅέίὸ

ὛὝὕὍὍὖ ὕὭὰ ὖὶὭὧὩ

where the cost is:

ὅέίὸ ὅόάόὰὥὸὭὺὩ ὛὸὩὥά ὍὲὮὩὧὸὩὨ z ὛὸὩὥά ὅέίὸ ὅόάόὰὥὸὭὺὩ ὛέὰὺὩὲὸ ὍὲὮὩὧὸὩὨ

 zὛέὰὺὩὲὸ ὖὶὭὧὩ

and the revenue is:

ὙὩὺὩὲόὩ ὅόάόὰὥὸὭὺὩ ὕὭὰ ὖὶέὨόὧὩὨ z ὕὭὰ ὖὶὭὧὩ ὅόάόὰὥὸὭὺὩ ὛέὰὺὩὲὸ ὖὶέὨόὧὩὨ

 zὛέὰὺὩὲὸ ὖὶὭὧὩ

The steam cost and solvent and oil prices are shown in Table 6-1.

This objective function eliminates the revenue of the steam since it is not a common practice to

treat the produced water and re-inject it again as steam. One the other hand, solvent is considered

to have the same price for revenue and cost even if it is not extracted from the oil because it

upgrades the oil and reduces the need to add solvent for pipeline transportation and it is recovered

60

A version of this chapter was submitted for publication.

in the distillation tower. The capital expenditures (CAPEX) are considered the same for all

scenarios (Al-Bahlani and Babadagli, 2011).

Benchmark (Base) Simulation Model

Since Al-Bahlani and Babadagli (2011), results indicated that cyclic solvent SOS-FR in reservoirs

with multiple fractures yielded the highest money recovery factor (see Figure 16 of this reference),

we considered this as a base case for our optimization study. This model is an IK Cartesian 2D

single porosity-single permeability model with the dimensions of 20×30×15 m that contains

multiple fractures of 1 cm aperture. Geological features of the model are provided in Table 6-2.

Representation of the fracture-matrix model in a flow simulation is shown in Figure 6-5. This

base case gives a money recovery factor (MRF) value of approximately 28. This base case gives a

money recovery factor (MRF) value of approximately 28. This model was an implementation of

cyclic option of the SOS-FR Process. This model has total process duration of three years and six

months, and it is designed as follows (Al-Bahlani and Babadagli, 2011):

1. Phase 1: Heating period (HP) has 395 days length.

2. Phase 1: Heating period where steam is injected with rate of 20 m
3
/day.

3. Phase 1: Cooling period (CP) has 175 days length with cold-water injection with rate of 5

m3/day. This was included by Al-Bahlani and Babadagli (2001) in their simulation to

simulate their laboratory experiments (Al-Bahlani and Babadagli, 2008, 2009a), which

had a cooling period between Phase 1 (heating) and Phase 2 (solvent injection). In

practice, this corresponds to the period switching to Phase 2 and a short period of soaking

the reservoir with injected steam to condition the matrix oil for solvent diffusion.

4. Wells shut-in after the cooling period for 6 days.

5. Phase 2: 14 Cycles each cycle contains three periods: One week solvent injection, two

weeks soaking, and two weeks production.

6. Phase 3: Recovery phase where the steam is injected with rate of 20 m
3
/day.

7. Phase 3: Recovery phase length is 198 days.

Semi-compositional commercial simulator (CMG STARS) was used for full flow simulations

evaluation.

61

A version of this chapter was submitted for publication.

Results and Discussion

In order to identify the parameters that have the greatest impacts on the objective (fitness)

function, a sensitivity analysis was carried out first. In particular, we varied the steam injection

rate in the heating period (Phase 1), solvent injection rate, durations of soaking phase during the

huff-and-puff stage (Phase 2), and the steam injection rate in the final recovery phase (Phase 3).

As shown in Figure 6-6, for each of these parameters, except the solvent injection rate, an

optimum value can be easily identified. However, MRF continues to increase as the solvent

injection rate increase.

Experiment 1:

Based on the result of the sensitivity analysis we have developed an updated proxy and genetic

algorithm experiment to increase the MRF by varying:

1. Phase 1: Heating period (HP) length between 60 to 790 days with 30 days resolution.

2. Phase 1: Heating period (HP) steam injection rate from 10 to 40 m
3
/day.

3. Phase 2: Cycle length indicators each cycle contains three periods:

a. 4 mandatory cycles [1-5].

b. 9 optional cycles [0-5].

4. Phase 2: 3 Cycles periods length indicators (Solvent Injection, Soaking, and Production)

[1-3].

5. Phase 3: Recovery phase steam injection rate from 10 to 40 m
3
/day.

While the other properties fixed such as:

1. Phase 1: Cooling period (CP) length is 175 days

2. Phase 1: Cooling period (CP) injection rate is 5 m
3
/day.

3. Phase 3: Recovery phase length 198 days.

A comprehensive list of optimization parameters for all experiments carried out in this chapter is

shown in Table 6-3.

This experiment gave better results than the base case; a value of 48 for the money recovery factor

instead of 28 is obtained, with an increase of about two hundred thousand dollars in the profit. The

result of this experiment suggests, as shown in Table 6-4, that the optimal solution can be

achieved by reducing the length of the heating period (phase 1), with a minimum value of 60 days

as the total length for heating period. Similarly, as in Table 6-5, the optimal length indicators for

the soaking and production periods in each cycle (phase 2) were the minimum value of 1, while

the optimized solvent injection period is the maximum value.

62

A version of this chapter was submitted for publication.

Analyzing the result of this experiment and noting that numerous optimized parameters coincide

with either the lower or upper limits of the optimization range raise a few interesting questions: (1)

Can we optimize the MRF by further reducing the duration of the phase 1 by adjusting the length

of cooling period? Is it necessary to soak or produce in each cycle? To address such questions, two

additional experiments were executed simultaneously (experiments 2 and 3).

Experiment 2:

Based on experiment 1 results, cooling period was eliminated and only optional heating period

(with a minimum value of zero) was kept, cycles phaseôs length indicators were also made

optional, allowing them to be eliminated for better flexibility. Ranges for other parameters are

shown in Table 6-3.

Comparing with previous experiment, the MRF was increased by 4.2 with profit increase of about

fifty thousand dollars. This experiment suggests that the optimal the heating period (phase 1)

should be around three months.

Experiment 3:

Similarly, based on experiment 1 results, both phase 1 periods were optimized and the cyclesô

periodsô length indicator range increased to 5. Cycles length indicators from the best case of

experiment 1 were used in this experiment to minimize number of optimized parameters. Ranges

for other parameters are listed in Table 6-3.

A MRF value of 58.4 and three hundred thousand dollars increase in the profit from base case

were observed. This is better than the results obtained from the previous experiments as presented

in Table 6-6. The result indicates that keeping two phase 1 periods are worthy, and similar to the

previous experiments, the solvent injection phase is the dominant on all cycles. Based on the

results from experiments 2 and 3, one might wonder if the process can be further optimized by

varying the periodsô duration in each cycle individually. This idea is explored in experiment 4.

Experiment 4:

A length indicator for each period in each cycle was introduced which result in 30 length

parameters to represent 10 cycles, instead of 13 parameters in all the previous setups. Increasing

the number of parameters increases the size of the solution space, which in turn reduces the

convergence speed and accuracy of the proxy regression. In order to facilitate the convergence

efficiency, we repeated the optimization scheme multiple times sequentially such that optimized

models from the previous step are placed in the initial population for the next step. In other words,

instead of taking a big step along the descent direction, a few smaller steps are taken.

63

A version of this chapter was submitted for publication.

First, two experiments (4-a and 4-b) with different initial populations, constructed based on nearly

orthogonal arrays (minimax criterion) and randomly generated population (Al-Gosayir et. al.,

2011b), were executed concurrently. Next, these two initial populations and the fully evaluated

flow simulation models of their respective optimized solution in each evolution were combined

into one initial population for experiment 4-c. Finally, even though satisfactory results were

achieved, we repeated the optimization again using the initial population and flow simulation

results from experiment 4-c as an initial population for a conventional genetic algorithm

experiment (4-d) which takes longer time to ensure sampling more scenarios in the solution space

to achieve the best result.

These experiments provided only slight improvement compared to experiments 2 and 3, as

expressed in Table 6-6. The last experiment result was the best with a 65.5 money recovery factor,

82.2% oil recovery factor, and $675,512 profit, which is more than double of the base case

scenario as shown in Figure 6-7 and Figure 6-8; and the cumulative solvent injected volume was

lower than the optimized case from experiment 3 as in Figure 6-9. Based on the result of this

experiment, we noticed that some periods could be eliminated from certain cycles, while the phase

1 cannot be eliminated though it can be shorter than the base case. Figure 6-10 and Figure 6-11

compare the injection and production schedules of the base case and best-case (experiment 4-d)

scenarios, respectively, while Table 6-7 shows all cases schedule. Figure 6-11 shows that we need

to start and finish with longer cycles of solvent injection. The solvent injection rate is low (5

m
3
/day), and it has already started to diffuse through the system during the injection period. In the

middle cycles, one should adjust the lengths of the soaking or production periods alternatively

between cycles. It is also noted that the solvent injection duration in the middle cycles is about 40

weeks, which is approximately equal to the other two periodsô total.

Solvent injection in the optimum cases is much higher than the amount of steam injection. An

important assumption in our simulation model is that the reservoir is confined such that we are

able to recover most of the solvent, as shown in Figure 6-9. However, Experiment 4-b shows an

interesting result, which has the least solvent injection and consequently the least cost as shown in

Figure 6-9, Figure 6-8, and Table 6-6. At the same time, this experiment gives a good money

recovery factor of about 51 and a profit of 526 thousand dollars. This experiment illustrates the

benefit of soaking period in each cycle, which gives more time for the solvent to diffuse into the

reservoir with less amount of solvent as shown in Figure 6-12. Since this experiment was

initialized using random initial population that is different from the other experiments where

minimax criterion nearly orthogonal array is used, the solution space was investigated from

different angle. Minimax criterion tends to combine the parameters by maximizing some while

minimizing the others.

64

A version of this chapter was submitted for publication.

Conclusions and remarks

Despite the challenge of optimizing the injection time and cycles of the SOS-FR process using

hybrid genetic algorithm, the outcome was very promising and better results than the benchmark

case were achieved. The money recovery factor and the profit were doubled and about 30% oil

recovery increase was obtained. The results suggest that steam heating period should be decreased,

while the solvent injection time to be increased without eliminating the necessity of having solvent

soaking or production periods. Handling such complex process optimization is a challenge, which

could be overcome by implementing a hybrid optimization scheme that incorporates a detailed

sensitivity analysis with experimental design methods for initial population construction, followed

by a global optimization scheme of genetic algorithm, whose convergence efficiency was

improved with the use of response surfaces. In addition, the accuracy of the proxy model was

further enhanced with a periodic updating step in which additional flow simulation results using

the most optimal case were used to re-calibrate the response surface at each evolution.

Furthermore, we noticed that hybrid genetic algorithm is a useful tool designing the operating

strategy of a complex recovery process by optimizing the time required for each phase of the SOS-

FR method.

65

A version of this chapter was submitted for publication.

Nomenclature

BC: Base/Benchmark case.

ɓi : represent a regression coefficients for one trial.

♫: a vector which contains all regression coefficients.

CP: Cooling period in phase 1.

cSOR: cumulative steam-to-oil ratio (m
3
/m

3
).

CSoS: Cyclic Solvent Stimulation.

cSVOR: cumulative net solvent injected (difference between cumulative solvent injected and

produced) to oil ratio (m
3
/m

3
).

EIF: Economic Impact Factor.

F(u) or FX: objective function value.

F: objective function.

GA: Genetic Algorithm.

HMF: Hexane injection mole fraction.

HnP: Huff and Puff.

HP: Heating Period in phase 1.

IAV: Initial Asset Value.

IBHP: Injector maximum Bottom-hole Pressure (kPa).

J: the actual response or actual objective function value calculated based simulation output for

one trial.

Jô: the repose obtained from the regression model.

J0: the best trial actual response in the initial population.

╙: a vector that contains all the trials response.

MRF: Money Recovery Factor.

NA: Not applicable.

NL: Nonlinear Proxy

NOA: Nearly-Orthogonal Array.

NPV: Net Present Value.

66

A version of this chapter was submitted for publication.

OA: Orthogonal Array.

PBHP: Producer minimum Bottom-hole Pressure.

PP: Production period in each cycle.

RF: Recovery Factor.

RP: Recovery phase 3.

SAGD: Steam Assisted Gravity Drainage thermal recovery process.

SIP: Solvent Injection period in each cycle.

SOP: Solvent Soaking period in each cycle.

SOS-FR: Steam-Over-Solvent for Fractured Reservoirs.

STOIIP: Stock Tank Oil Initially In Place.

u: a (1*n) vector which contains the optimization variables for a trial.

ui : represent an optimization variable for one trial.

╤: a matrix with all uôs.

USD United States Dollar.

67

A version of this chapter was submitted for publication.

References

Al-Bahlani, A.M., and Babadagli, T., 2008. Heavy-Oil Recovery in Naturally Fractured Reservoirs with

Varying Wettability by Steam Solvent Co-Injection. Paper 117626 presented at SPE International

Thermal Operations and Heavy Oil Symposium, Calgary, Canada, 20ï23 October. DOI:

10.2118/117626-MS.

Al -Bahlani, A.M., and Babadagli, T., 2009a. Steam-Over-Solvent Injection in Fractured Reservoirs (SOS-

FR) for Heavy-Oil Recovery: Experimental Analysis of the Mechanism. Paper 123568 presented at SPE

Asia Paciýc Oil and Gas Conference & Exhibition, Jakarta, Indonesia, 4ï6 August. DOI:

10.2118/123568-MS.

Al -Bahlani, A.M., and Babadagli, T., 2009b. Laboratory and Field Scale Analysis of Steam-Over-Solvent

Injection in Fractured Reservoirs (SOS-FR) for Heavy-Oil Recovery. Paper 124047 presented at SPE

Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4ï7 October. DOI:

10.2118/124047-MS.

Al -Bahlani, A.M., and Babadagli, T., 2011, Field scale applicability and efýciency analysis of Steam-Over-

Solvent Injection in Fractured Reservoirs (SOS-FR) method for heavy oil recovery. Journal of

Petroleum Science and Engineering, 78(2): 338ï346. DOI: 10.1016/j.petrol.2011.07.001

Al -Gosayir, M., Babadagli, T., and Leung, J. 2011a. Optimization of Solvent Additive SAGD Applications

using Hybrid Optimization Techniques. Paper 144963 presented at the SPE Enhanced Oil Recovery

Conference, Kuala Lumpur, Malaysia, 19ï21 July.

Al -Gosayir, M., Leung, J., and Babadagli, T., 2011b. Design of Solvent-Assisted SAGD Processes in

Heterogeneous Reservoirs Using Hybrid Optimization Techniques. Paper 149010 presented at the

Canadian Unconventional Resources Conference, Calgary, Canada, 15ï17 November. DOI:

10.2118/149010-MS.

Chen, S., Li, H., Yang, D., and Tontiwachwuthikul, P. 2010. Optimal Parametric Design for Water-

Alternating-Gas (WAG) Process in a CO2-Miscible Flooding Reservoir. Journal of Canadian Petroleum

Technology 49(10): 75-82. DOI: 10.2118/141650-PA

Gates, I.D., and Chakrabarty, N. 2006. Optimization of Steam Assisted Gravity Drainage in McMurray

Reservoir. Journal of Canadian Petroleum Technology 45(9): 55-62. DOI: 10.2118/06-09-05.

Gates, I.D., and Chakrabarty, N. 2008. Design of the Steam and Solvent Injection Strategy in Expanding

Solvent Steam-Assisted Gravity Drainage. Journal of Canadian Petroleum Technology 47(9): 12-20.

DOI: 10.2118/08-09-12-CS.

Guyaguler, B., Horne, R.N., Rogers, L., and Rosenzweig, J.J. 2002. Optimization of Well Placement in a

Gulf of Mexico Waterflooding Project. SPE Reservoir Evaluation & Engineering 5(3): 229-236. DOI:

10.2118/78266-PA.

Lu, X., Hu, W. & Zheng, Y. 2003. A Systematical Procedure in the Construction of Multi-Level

Supersaturated Designs. J. of Statistical Planning & Inference 115 (1): 287-310. DOI: 10.1016/S0378-

3758(02)00116-7.

Ma, C-X., Fang, K-T & Liski, E. 2000. A New Approach in Constructing Orthogonal and Nearly Orthogonal

Arrays. Metrika 50: 255-268. DOI: 10.1007/s001840050049.

Myers, R.H. and Montgomery D.C. 2002. Response Surface Methodology: Process and Product in

Optimization using Designed Experiments, Wily, New York.

Nasr, T.N., Beaulieu, G., Golbeck, H., Heck, G., 2003. Novel Expanding Solvent-SAGD Process ñES-

SAGDò. Journal of Canadian Petroleum Technology. 42(1). DOI: 10.2118/03-01-TN.

68

A version of this chapter was submitted for publication.

Peterson, J., Riva, D., Edmunds, N., and Solanki, S. 2010. The Application of Solvent-Additive SAGD

Processes in Reservoirs With Associated Basal Water. Paper 137833 presented at Canadian

Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, 19-21

October. DOI: 10.2118/137833-MS.

69

A version of this chapter was submitted for publication.

Tables

Table 6-1: Elements prices

Element Price

Steam 18 $/m
3

Solvent 1000 $/m
3

Oil 80 $/bbl

Table 6-2: Reservoir properties used in the simulations. (Al-Bahlani and Babadagli, 2011)

Item Value
Reservoir depth 500 m
Matrix porosity 0.30

Fracture porosity 0.99
Matrix permeability 10 mD

Fracture permeability 550 D
Initial reservoir pressure 8 MPa

Initial reservoir temperature 50 °C
Oil density SC 965
Solvent type Heptane

Initial water saturation 0.00
Solvent diffusion coefficient 2.88eï5m2/day

Wettability Oil wet

Table 6-3: Optimized parametersô ranges

Experiment

HP
Length
(days)

HP
Injection

Rate
(m3/day)

CP
Length
(days)

CP
Injection

Rate
(m

3
/day)

Recovery
phase

Injection
Rate

(m
3
/day)

3
Cycles
periods

LIs
(Same
for all

Cycles)

Cycles
Lengths

Indicators
(LIs)

Each
Cycle
period

LIs
(Different
in each
cycle)

Exp. 1
[60-
790]

[1-40] 175 5 [10-40] [1-3]
4*[1-5]

and 9*[0-
5]

NA

Exp. 2 [0-346] [0-30] NA NA [10-40] [0-3] 13*[0-5] NA

Exp. 3 [1-120] [1-30] [1-180] [1-6] 40 [1-5]
Exp. 1

Best case
setup

NA

Exp. 4-a [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]

Exp. 4-b [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]

Exp. 4-c [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]

Exp. 4-d [1-120] [1-30] [1-180] [1-6] 40 NA NA 30*[0-5]

70

A version of this chapter was submitted for publication.

Table 6-4: Optimal parameters values for all experiments.

Experiment
Number of
Evolutions

FX
(MRF)

HP
Length
(days)

HP
Injection

Rate
(m

3
/day)

CP
Length
(days)

CP
Injection

Rate
(m

3
/day)

Recovery
phase

Injection
Rate (m

3
/day)

Base Case - 28.0 395 20 175 5 20

Exp. 1 80 48.0 60 25 175 5 40

Exp. 2 85 52.8 90 26 - - 36

Exp. 3 26 58.4 45 30 15 1 40

Exp. 4-a 72 56.9 120 29 1 2 40

Exp. 4-b 89 51.0 15 28 180 5 40

Exp. 4-c 10 58.7 120 29 1 2 40

Exp. 4-d 87 65.5 120 29 1 2 40

Table 6-5: Optimal lengths indicators of the base case, experiment 1, 2, and 3.

Experiment

Period Length Indicator of Length indicator of Cycle:

Solvent
Inj.

Soaking Production 1 2 3 4 5 6 7 8 9 10 11 é 14

Base Case 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1

Exp. 1 3 1 1 3 1 1 1 3 5 5 1 1 1 5 0

Exp. 2 3 1 1 5 3 4 1 1 5 1 5 0 0 0 0

Exp. 3 5 1 1 3 1 1 1 3 5 5 1 1 1 5 0

Table 6-6: Comparison of the selected solution values

Exp. MRF
Cum.
Steam

Inj.

Cum.
Solvent

Inj.

Cum.
Solvent
Prod.

Cum.
Oil

Prod.
RF cSOR

IAV
(mln $)

Cost
(mln

$)

Revenue
(mln $)

Profit ($)

Base
Case

28.5 12355 990 952 1099 53.7 6.3 1.03 1.21 1.51 $290,000

Exp. 1 48.0 10277 2475 2468 1363 66.3 2.7 1.03 2.7 3.2 $494,830

Exp. 2 52.8 9546 2910 2910 1422 69.5 2.2 1.03 3.1 3.6 $545,005

Exp. 3 58.4 9286 3571 3584 1501 74.0 1.8 1.03 3.7 4.3 $602,544

Exp. 4-
a

56.9 11397 3201 3225 1525 75.7 2.4 1.03 3.4 4.0 $586,785

Exp. 4-
b

51.0 9261 2042 2067 1325 66.0 2.7 1.03 2.2 2.7 $526,110

Exp. 4-
c

58.7 11397 3245 3269 1560 77.4 2.4 1.03 3.5 4.1 $605,337

Exp. 4-
d

65.5 11397 3183 3250 1614 82.2 2.3 1.03 3.4 4.1 $675,512

71

A version of this chapter was submitted for publication.

Table 6-7: Experiments huff-and-puff phases lengths in days

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Exp. SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP

BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14

1 55 18 18 18 6 6 18 6 6 18 6 6 55 18 18 92 31 31

2 116 39 39 70 23 23 93 31 31 23 8 8 23 8 8 116 39 39

3 79 16 16 26 5 5 26 5 5 26 5 5 79 16 16 132 26 26

4-a 142 14 0 43 43 14 57 0 28 71 14 0 28 43 0 71 57 28

4-b 48 36 0 48 60 24 48 60 0 60 36 36 36 12 48 24 24 0

4-c 138 14 0 41 41 14 55 0 28 69 14 0 69 41 0 69 55 28

4-d 159 16 0 32 64 16 64 0 16 80 16 0 80 48 0 16 64 32

Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 é Cycle 14

Exp. SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP SIP SOP PP

BC 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14 7 14 14

1 92 31 31 18 6 6 18 6 6 18 6 6 92 31 31

2 23 8 8 116 39 39

3 132 26 26 26 5 5 26 5 5 26 5 5 132 26 26

4-a 57 0 14 57 28 0 71 43 14

4-b 60 24 0 60 48 0 24 48 0

4-c 55 14 14 124 41 14

4-d 16 0 16 159 48 0

72

A version of this chapter was submitted for publication.

Figures

Figure 6-1: Conventional genetic algorithm flow diagram (Al-Gosayir et al. 2011b).

Figure 6-2: Example of crossover of two parent chromosomes (Al-Gosayir et al. 2011a).

Figure 6-3: Example of mutation of a parent chromosome (Al-Gosayir et al. 2011a).

Initial
ωGenerate an initial population/genotype (each member is called a chromosome)

Fitness
ωCalculate the fitness (objective function value) of each chromosome in genotype

Selection

ωSelect pairs of parent chromosomes from a population according to their fitness
(the better fitness, the bigger chance to be selected)

Crossover

ωAccording to a crossover probability, parents are combined to form new offsprings
(children). If no crossover was performed, offsprings are exact copies of parents.

Mutation

ωAccording to a mutation probability, mutate new offsprings at each locus (position
in chromosome).

Accepting

ωFitness value of new offspring is calculated, and new population is generated by
discarding chromosomes with low fitness values and replacing them with the new
offsprings.

C
re

a
te

 a
 n

e
w

p
o
p
u
la

tio
n

73

A version of this chapter was submitted for publication.

Figure 6-4: Flow diagram for the modified approach where proxy is updated with the

additional flow simulation results of the fittest chromosomes after each evolution. (Al-
Gosayir et al. 2011b)

Initialize population using NOA

ωfitness calucation using full flow simulations

Build proxy using initial population

Create New Population

ωselection

ωcrossover

ωmutation

ωAccepting

ωFitness Value calculated using the proxy

Update proxy

ωusing full flow simulation of the fittest chromosome

Stop

Repeated for 90

evolutions

74

A version of this chapter was submitted for publication.

Figure 6-5: Representation of multiple-matrix block with unity oil saturation in flow

simulation. (Al-Bahlani and Babadagli, 2011)

Figure 6-6: Sensitivity analysis for some key parameters before starting the optimization.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

10 20 30 5 10 20 30 40 50 60 14 30 60 5 10 20 30

Steam
Injection
(m3/day)

Solvent Injection (m3/day) Length (days)Steam Injection
(m3/day)

Phase 1:
Heating
Period

Phase 2: Solvent Injection
Period

Phase 2:
Soaking
period

Phase 3: Recovery
Phase

M
o

n
e

y
R

e
c
o

ve
ry

 F
a
ct

o
r

75

A version of this chapter was submitted for publication.

Figure 6-7: Optimized money recovery factor, oil recovery factor, and cumulative steam oil

ratio of all experiment.

Figure 6-8: Optimized cost, revenue and profit of all experiments.

0

1

2

3

4

5

6

7

20

30

40

50

60

70

80

90

Base
Case

Exp. 1 Exp. 2 Exp. 3 Exp. 4-a Exp. 4-b Exp. 4-c Exp. 4-d

c
S

O
R

 (
m3
/m

3)

M
R

F
 a

n
d

 R
F

Money Recovery Factor Recovery Factor cSOR

0

100

200

300

400

500

600

700

800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

28.45 48.0 51.0 52.8 56.9 58.4 58.7 65.5

Base
Case

Exp. 1 Exp. 4-b Exp. 2 Exp. 4-a Exp. 3 Exp. 4-cExp. 4-d

P
ro

fit
 (

T
h

o
u

sa
n

d
s

o
f

U
S

D
)

C
o

st
 a

n
d

 R
e

ve
n

u
e

 (
M

ill
io

n
 U

S
D

)

Cost Revenue Profit ($)

MRF =

76

A version of this chapter was submitted for publication.

Figure 6-9: All experiments hydrocarbons and steam injected and produced.

Figure 6-10: Base case Gantt-chart

0

2000

4000

6000

8000

10000

12000

14000

0

500

1000

1500

2000

2500

3000

3500

4000

28.45 48.0 51.0 52.8 56.9 58.4 58.7 65.5

Base
Case

Exp. 1 Exp. 4-b Exp. 2 Exp. 4-aExp. 3 Exp. 4-cExp. 4-d

S
te

a
m

 (
m3

)

S
o

lv
e

n
t

a
n

d
 O

il
(m

3
)

Cum. Solvent Injected Cum. Solvent Produced

Cum. Oil Produced Cum. Steam Injected

MRF =

56 25

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

28

0 15 30 45 60 75 90 105 120 135 150 165 180

Phase 1

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 14

Phase 3

Weeks

HP CP Solvent Injection Soaking Production RP

77

A version of this chapter was submitted for publication.

Figure 6-11: Experiment 4-d (best MRF) Gantt-chart.

Figure 6-12: Experiment 4-b (random initial population) Gantt-chart.

17

23

5

9

11

11

2

2

23

2

9

2

7

9

7

2

2

5

2

28

0 20 40 60 80 100 120 140 160 180

Phase 1

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Phase 3

Weeks

HP CP Solvent Injection Soaking Production RP

2 26
7

7
7

9
5

3
9

9
3

5
9

9
5

2
3

3
7

7

3

5
7

28

0 20 40 60 80 100 120 140 160 180

Phase 1
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Phase 3

Weeks

HP CP Solvent Injection Soaking Production RP

78

Chapter 7: Contributions

There are several major contributions gained out of this thesis as listed below:

1. A hybrid optimization strategy, integrating elements of experimental design (orthogonal

arrays) and response surface proxy into a global genetic algorithm optimization

workflow, was developed. The adopted proxy provided a saving of 95% computational

time, while the use of orthogonal arrays (with minimax criterion) was shown to improve

the algorithmôs convergence behavior in seeking the optimal solution.

2. It was observed that non-linear response surface proxy can potentially give a more

accurate representation of the true objective function value, but it also tends to over-shoot

during extrapolations. Therefore, a periodic updating scheme was proposed and

implemented. The success of this step was illustrated by the improved predictability of

the objective function and minimal increase in computational time.

3. The proposed technique was applied to construct optimal designs for three different

heavy oil recovery processes using steam and solvent. In particular, the computational

efficiency of the technique allows optimization to be carried out successfully for

heterogeneous reservoirs. These case studies illustrated that the hybrid optimization

framework is a useful tool for designing complex recovery processes and increasing the

profit.

 79

Appendix 1: JGAP initializer code

package mmm.ga.tests;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.List;

import java.util.Vector;

import mmm.ga.MyGenericChromosome;

import org.jgap.*;

import org.jgap.audit.ChainedMonitors;

import org.jgap.audit.EvolutionMonitor;

import org.jgap.audit.FitnessImprovementMonitor;

import org.jgap.audit.IEvoluti onMonitor;

import org.jgap.audit.TimedMonitor;

import org.jgap.impl.*;

import Jama.Matrix;

public abstract class GenericRunner {

 int evolutions ;

 Genotype population ;

 IEvolutionMonitor monitor ;

 FitnessFunction objectiveFunction ;

 public GenericRunner(String runTitle, int evolutions, int

a_sizeOfPopulation, FitnessFunction objectiveFunction) throws Exception {

 System. out .println(runTitle);

 this . evolutions = evolutions;

 this . objectiveFunction = objectiveFunction;

 // Start with a DefaultConfiguration, which comes setup with the

 // most common settings.

 // ---

 Configuration gaConf = new DefaultConfiguration();

 // Care that the fittest individual of the current population is

 // always taken to the next generation.

 // ---

 boolean preservFittestIndividual = false ;

 gaConf.setPreservFittestIndividual(preservFittestIndividual) ;

 System. out .println("setPreservFittestIndividual \ t"

 + preservFittestIndividual);

 // Set the fitness function we want to use, which is our

 // --

 gaConf.setFitnessFunction(this . objectiveFunction);

 boolean alwaysCaculateFitness = true ;

 System. out .println("alwaysCaculateFitness \ t" +

alwaysCaculateFitness);

 gaConf.setAlwaysCaculateFitness(alwaysCaculateFitness);

 double crossoverRatePercentage = 0.35d;

 int mutationRate = 3;

 gaConf.getGeneticOperators().clear();

 gaConf.addGeneticOperator(new CrossoverOperator(gaConf,

 crossoverRatePercentage));

 gaConf.addGeneticOperator(new MutationOperator(gaConf,

mutationRate));

 System. out .println("Crossover rate \ t" + crossoverRatePercentage);

 80

 System. out .println("Mutation rate \ t" + mutationRate);

 boolean allowDoubllette = false ;

 double originalRate = 0.9;

 BestChromosomesSelector s = (BestChromosomesSelector) gaConf

 . getNaturalSelector () ;

 s.setDoubletteChromosomesAllowed(allowDoubllette);

 s.setOriginalRate(originalRate);

 System. out .println("allowDoubllette \ t" + allowDoubllette);

 System. out .println("originalRate \ t" + originalRate);

 List monitors = new Vector ();

 monitors.add(new Ti medMonitor(6)) ;

 monitors.add(new FitnessImprovementMonitor(1, 3, 5.0d)) ;

 monitors.add(new EvolutionMonitor()) ;

 monitor = new ChainedMonitors(monitors , 3);

 System. out .println("Monitors on.");

 IChromosome sampleChromosome = getSampleChromosome(gaConf);

 gaConf.setSampleChromosome(sampleChromosome);

 System. out .println("Sample Genes:");

 for (Gene gene : sampleChromosome.getGenes()) {

 System. out .println(gene);

 }

 // Finally, we need to tell the Configuration object how many

 // Chromosomes we want in our population. The more Chromosomes,

 // the larger the number of potential solutions (which is good

 // for finding the answer), but the longer it will take to evolve

 // the population each round.

 gaConf.setPopulationSize(a_sizeOfPopulation);

 System. out .println("Population Size \ t" + a_sizeOfPopulation);

 // Create random initial population of Chromosomes.

 System. out .println("Random Initial Population Generated");

 population = Genotype. random InitialGenotype (gaConf);

 //population = new

Genotype (gaConf,NoaArrayImporter.getInitialNAOPopulation(gaConf, 0, 0));

 }

 protected IChromosome getSampleChromosome(Configuration gaConf)

 throws InvalidConfigurationException {

 // Now we need to tell the Configuration object how we want our

 // Chromosomes to be setup. We do that by actually creating a

 // sample Chromosome and then setting it on the Configuration

 // object.

 int chromeSize = 19; //

 Gene[] sampleGenes = new Gene[chromeSize];

 //Heating Phase length: multiple integer [60 - 790] days with 30 days

level length

 sampleGenes[0] = new MutipleIntegerGene(gaConf, 60, 790, 30);

 //Heating Phase steam injection rate

 sampleGenes[1] = new DoubleGene(gaConf, 10, 40);

 //Cycles lengths indicators

 sampleGenes[2] = new IntegerGene(gaConf,1,5);

 sampleGenes[3] = new IntegerGene(gaConf,1,5);

 sampleGenes[4] = new IntegerGene(gaConf,1,5);

 sampleGenes[5] = new IntegerGene(gaConf,1,5);

 sampleGenes[6] = new IntegerGene(gaCon f,0,5);

 sampleGenes[7] = new IntegerGene(gaConf,0,5);

 sampleGenes[8] = new IntegerGene(gaConf,0,5);

 sampleGenes[9] = new IntegerGene(gaConf,0,5);

 sampleGenes[10] = new IntegerGene(gaConf,0,5);

 sampleGenes[11] = new IntegerGene(gaConf,0,5);

 81

 sampleGenes[12] = new IntegerGene(gaConf,0,5);

 sampleGenes[13] = new IntegerGene(gaConf,0,5);

 sampleGenes[14] = new IntegerGene(gaConf,0,5);

 //sampleGenes[15] = new IntegerGene(gaConf,0,5);

 //Cycles periods (3 periods one of them soaking)

 sampleGenes[15] = new IntegerGene(gaConf,1,3);

 sampleGenes[16] = new IntegerGene(gaConf,1,3);

 sampleGenes[17] = new IntegerGene(gaConf,1,3);

 //Recovery Phase steam injection rate

 sampleGenes[18] = new DoubleGene(gaConf, 10, 40);

 IChromosome sampleChromosome = new MyGenericChromosome(gaConf,

chromeSize);

 sampleChromosome.setGenes(sampleGenes);

 return sampleChromosome;

 }

package mmm.ga.tests;

import java.io.IOException;

import java.util.List;

import mmm.cmgAgents.*;

import mmm.ga.MyGenericChromosome;

import mmm.ga.objectiveFunctions.NonLinearProxyObjectiveFunction;

import mmm.sosfr.SosFrPreprossor2;

import org.jgap.*;

import org.jgap.impl.DoubleGene;

import org.jgap.impl.IntegerGene;

import org.jgap.impl.MutipleIntegerGene;

public class ProxyEvolutionFittestRun3 extends GenericRunner {

 public ProxyEvolutionFittestRun3(String runTitle, int evolutions, int

a_sizeOfPopulation, FitnessFunction objectiveFunction) throws Exception {

 super (ru nTitle, evolutions, a_sizeOfPopulation, objectiveFunction);

 Configuration gaConf = super . population .getConfiguration();

 //Override the random population with an old population to avoid

re - running the simulations

 population = new

Genotype(gaConf, getInitialNAOPopulation (gaConf, "ex3_good_62cases.txt"));

 }

 @Override

 public void run() throws Exception {

 System. out .println("Evolution Start \ t" + evolutions +

" \ tevoluions");

 System. out .println();

 System. out

 .println("Location \ tEvolution \ tFX \ tmaxEN\ t");

 System. out .println("FileInfo \ tp1l \ tp1injRate \ tRPInjRate \ tAllCyclesLength \ tC

yclesCount \ tcp1 \ tcp2 \ tcp3 \ tCyclesLengths");

 System. out .println("ObjValues \ tmoneyRecoveryFactor \ tCumSteamInj \ tCumSolInj \

tCumSolProd \ tCumOilPr od\ tRF \ tcSOR\ tiav \ tcost \ trevenue \ tgrossProfit");

 long startTime = System. currentTimeMillis ();

 NonLinearProxyObjectiveFunction obj =

(NonLinearProxyObjectiveFunction) objectiveFunction ;

 for (int i = 0; i < evolutions ; i++) {

 82

 for (IChromosome c1 :

population .getPopulation().getChromosomes()) {

 MyGenericChromosome c = (MyGenericChromosome) c1;

 System. out .println("****PC***** \ t" + i + " \ t"

 + c.getFitnessValue() + " \ t \ t" + c);

 }

 if (!uniqueChromosomes(population .getPopulation())) {

 System. out .println("Invalid state in generation \ t" +

i);

 }

 if (monitor != null) {

 List<String> messages = population .evolve(monitor);

 if (messages.size() > 0) {

 for (String msg : messages) {

 System. out .prin tln("Monitor: \ t" + i +

msg);

 }

 }

 } else {

 population .evolve();

 }

 MyGenericChromosome fittest = (MyGenericChromosome)

population

 .getFittestChromosome();

 System. out .println("Currently fittest Chromosome \ t" + i +

" \ t"

 + fittest.getFitnessValue() + " \ t" +

fittest);

 long simStartTime = System. currentTimeMillis ();

 double actualFitnessValue =

obj.performActualEvaluation(fittest);

 long simEndTime = System. currentTimeMillis ();

 if (fittest.isError())

 System. out .println("ACTUAL_EVAL_ERROR\ t" + i + " \ t"

 + actualFitnessValue + " \ t" + fittest

+ " \ t" + (simEndTime - simStartTime)

 + " \ tms \ t");

 else {

 System. out .println("ACTUAL_EVAL_NEW\ t" + i + " \ t"

 + actualFitnessValue + " \ t" + fittest

+ " \ t" + (simEndTime - simStartTime)

 + " \ tms \ t");

 obj.getProxy().addTrial(fittest.getGenesValues(),

 actualFitnessValue);

 // /After adding new cases Proxy updating

 obj.getProxy().loadDynamicData();

 try {

 obj.getPro xy().calculateNonLinearModel();

 } catch (Exception e){

 e.printStackTrace();

 }

 }

 }

 long endTime = System. currentTimeMillis ();

 System. out .println(" \ n\ nTotal evolution time: \ t"

 + ((endTime - startTime) / (1000 * 60)) +

" \ tminutes");

 // Print summary.

 // --------------

 MyGenericChromosome fittest = (MyGenericChromosome) population

 83

 .getFittestChromosome();

 System. out .println("Fittest Chromosome \ t" +

fittest.getFitnessValue()

 + " \ t" + fittest);

 //double[] g = fittest.g etGenesValues();

 double actualfitnessValue = obj.performActualEvaluation(fittest);

//

 System. out .println("Currently Fittest Chromosome Actual Values \ t"

 + actualfitnessValue + " \ t" + fittest + " \ tLast

Time"

 + fittest.getGenericModelResult().getLastTime());

 }

 /**

 * @param args

 * @throws Exception

 */

 public static void main(String[] args) throws Exception {

 String simulatorPath = "C:/Program Files

(x86)/CMG/STARS/2010.11/Win_x64/EXE/st201011.exe" ;

 String workDirectoryPath = "C: \ \ algosayir \ \ runs_files \ \ sosFr \ \ 2" ;

 String resultReportPath = "C:/Program Files

(x86)/CMG/BR/2010.12/Win_x64/EXE/report.exe" ;

 String baseModelFilePath = workDirectoryPath

 + " \ \ sosfr2.dat" ;

 double lastTime = 1264;

 Preprossor prep = new SosFrPreprossor2(lastTime);

 Postprossor postp = new Postprossor();

 SimulatorExecuter sim = new SimulatorExecuter(simulatorPath,

 workDirectoryPath, resultReportPath,

baseModelFilePath,lastTime, 3, prep, postp);

 System. out .println(sim);

 int numberOfActualEvalutions = 62;

 System. out .println("Last time \ t" + lastTime);

 NonLinearProxyObjectiveFunction obj = new

NonLinearProxyObjectiveFunction(

 sim, numberOfActualEvalutions);

 ProxyEvolutionFittestRun3 r = new

ProxyEvolutionFittestRun3("Experiment 3: Updated Nonlinear Proxy, using 0 lenght

periods " , 90, 60, obj);

 r.run();

 }

 84

Appendix 2: Objective function evaluation code

This example of a non-linear objective function code, when exclude proxy calling it become for

conventional GA.

package mmm.ga.objectiveFunctions;

import java.util.ArrayList;

import mmm.cmgAgents.*;

import mmm.ga.*;

import org.jgap.*;

public abstract class GenericObjectiveFunction extends FitnessFunction {

 /* /** String containing the CVS revision. Read out via reflection! */

 // private final static String CVS_REVISION = "$Revision: 1.6 $";

 protected ArrayList<MyGenericChromosome> listOfEvaluatedChromosomes = new

ArrayList<MyGenericChromosome>();

 protected SimulatorExecuter sim ;

 public GenericObjectiveFunction(SimulatorExecuter sim)

 throws Exception {

 this . sim = sim;

 }

 public double performActualEvaluation(MyGenericChromosome a_subject)

 throws Exception {

 double fitnessValue;

 double [] genesValues = a_subject.getGenesValue s();

 GenericModelResult r = sim .getGenericModelResults(genesValues);

 a_subject.setGenericModelResult(r);

 if (r.isError()) {

 fitnessValue = 1e - 300;

 } else {

 fitnessValue = calculateFitness(r);

 }

 return fitnessValue;

 }

 protected double calculateFitness(GenericModelResult r) {

 int steamCost = 18;

 int solventCost = 1000;

 int oilPrice = 504;

 int million = 1000000;

 double CumSteamInj = r.getLastLineValues()[1];

 double CumSolInj = r.getLastLineValues()[2];

 double CumSolProd = r.getLastLineValues()[3];

 double CumOilProd = r.getLastLineValues()[4];

 double RF = r.getLastLineValues()[5];

 double cSOR = r.getLastLineValues()[6];

 double iav = r.getN() * oilPrice / million;

 double cost = (CumSteamInj * steamCos t + CumSolInj * solventCost)

 / million;

 double revenue = (CumOilProd * oilPrice + CumSolProd * solventCost)

 / million;

 double grossProfit = revenue - cost;

 double moneyRecoveryFactor = (grossProfit / iav) * 100;

 System. out .println("ObjValues \ t" +moneyRecoveryFactor+ " \ t" +CumSteamInj+ " \ t" +

CumSolInj+ " \ t" +CumSolProd+ " \ t" +CumOilProd+ " \ t"

 85

 +RF+" \ t" +cSOR+" \ t" +iav+ " \ t" +cost+ " \ t" +revenue+ " \ t" +grossProfit);

 if (moneyRecoveryFactor<0)

 moneyRecoveryFactor=0;

 return moneyRecoveryFacto r;

 }

}

package mmm.ga.objectiveFunctions;

import java.util.ArrayList;

import mmm.cmgAgents.*;

import mmm.ga.*;

import mmm.responseSurfaceProxy.ResponseSurfaceProxy;

import mmm.responseSurfaceProxy.ResponseSurfaceProxyJama;

import org.jgap.*;

public class NonLinearProxyObjectiveFunction extends GenericObjectiveFunction {

 /** String containing the CVS revision. Read out via reflection! */

 // private final static String CVS_REVISION = "$Revision: 1.6 $";

 private ArrayList<MyGenericChromosome> listOfE valuatedChromosomes = new

ArrayList<MyGenericChromosome>();

 private ResponseSurfaceProxy p;

 private int numberOfAcutalEvaluation ;

 private int actualEvaluationCount ;

 public NonLinearProxyObjectiveFunction(SimulatorExecuter sim, int

numberOfAcutalEvaluation) throws Exception {

 super (sim);

 this . numberOfAcutalEvaluation = numberOfAcutalEvaluation;

 this . actualEvaluationCount = 0;

 this . p = new ResponseSurfaceProxyJama();

 }

 public double evaluate(IChromosome c) {

 MyGenericCh romosome a_subject = (MyGenericChromosome) c;

 int evolution = a_subject.getConfiguration().getGenerationNr();

 double fitnessValue = 1e - 300;

 double [] genesValues = a_subject.getGenesValues();

 if (listOfEvaluatedChromosomes .contains(a_subject)) {

 MyGenericChromosome cc = listOfEvaluatedChromosomes

 .get(listOfEvaluatedChromosomes .indexOf(a_subject));

 if (cc.isError())

 System. out .println("evaluateEOLD \ t" + evolution +

" \ t"

 + fitnessValue + " \ t" + a_subject);

 else {

 a_subjec t.setGenericModelResult(cc.getGenericModelResult());

 fitnessValue =

calculateFitness(cc.getGenericModelResult());

 System. out .println("evaluateOLD \ t" + evolution +

" \ t"

 + fitnessValue + " \ t" + a_subject);

 }

 return fitnessValue;

 } else {

 long startTime = System. currentTimeMillis ();

 if (actualEvaluationCount < numberOfAcutalEvaluation) {

 86

 try {

 fitnessValue =

performActualEvaluation(a_subject);

 long endTime = System. currentTimeMillis ();

 if (a_subject.isError())

 System. out .println("evaluateERROR \ t"

+ evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime -

startTime) + " \ tms \ t");

 else {

 p.addTrial(genesValues,

fitnessValue);

 System. out .println("evaluateNEW \ t" +

evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime - startTime)

+ " \ tms \ t");

 }

 listOfEvaluatedChromosomes .add(a_subject);

 actualEvaluationCount ++;

 return fitnessValue;

 } catch (Exception e) {

 e.printStackTrace();

 return - 1;

 }

 } else if (actualEvaluationCount ==

numberOfAcutalEvaluation) {

// initialize and use the proxy

 p.calculateNonLinearModel();

 fitnessValue = p.getNonLinearResponse(genesValues);

 long endTime = System. currentTimeMillis ();

 actualEvaluationCount ++; // Just to stop

recalculating the proxy

 if (fitnessValue < 0) {

 fitnessValue = 1e - 300;

 System. out .println("evaluateProxyNLErr \ t" +

evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime - startTime)

+ " \ tms \ t");

 } else {

 System. out .println("evaluateProxyNL \ t" +

evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime - startTime)

+ " \ tms \ t");

 }

 return fitnessValue;

 } else { // use the proxy

 fitnessValue = p.getNonLinearResponse(genesValues);

 long endTime = System. currentTimeMillis ();

 if (fitnessValue < 0) {

 fitnessValue = 1e - 300;

 System. out .println("evaluateProxyNLErr \ t" +

evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime - startTime)

+ " \ tms \ t");

 } else {

 System. out .println("evaluateProxyNL \ t" +

evolution + " \ t" + fitnessValue + " \ t" + a_subject + " \ t" + (endTime - startTime)

+ " \ tms \ t");

 }

 return fitnessValue;

 }

 }

 }

 public ResponseSurfaceProxy getProxy() {

 return p;

 }

}

 87

Appendix 3: CMG Agents Package

package mmm.cmgAgents;

import java.io.*;

public abstract class Preprossor {

 /**

 * Copy from baseFile to generatedFile until searchText is found

 * @param br

 * @param bw

 * @param searchText

 * @return last line found

 * @throws IOException

 */

 protected String copyUntil(BufferedReader br, BufferedWriter bw,

 String searchText) throws IOException {

 String currentRecord;

 while ((currentRecord = br.readLine()) != null){

 if (searchText!= null &&

currentRecord.trim().toUpperCase().contains(searchText)){

 break ;

 }

 else {

 bw.write(currentRecord);

 bw.newLine();

 }

 }

 return currentRecord;

 }

 protected void copyUntilEnd(BufferedReader br, BufferedWriter bw) throws

IOException{

 copyUntil(br, bw, null);

 }

 protected boolean checkFile Availability(String filePath, boolean

isTighterModel) throws IOException {

 //if the file exist don't regenerate it

 File gf = new File(filePath);

 if (isTighterModel){

 if (gf.exists())

 if (isFileContians(filePath, "CONVERGE TOTRES TIGHTER"))

 return true ;

 else

 return false ;

 else

 return false ;

 } else {

 return gf.exists();

 }

 }

 protected boolean isFileContians(String filePath, String searchString)

throws IOException {

 FileReader fr = new FileReader(filePath);

 BufferedReader br = new BufferedReader(fr);

 String currentRecord;

 while ((currentRecord = br.readLine()) != null){

 if (

currentRecord.trim().toUpperCase().contains(searchString .trim().toUpperCase())){

 br.close();

 return true ;

 }

 88

 }

 br.close();

 return false ;

 }

 protected String getGeneratedFileName(String baseFilePath, double []

newValues) {

 String valuesText = "" ;

 for (double g : newValues){

 valuesText += "_" + g;

 }

 String generatedFilePath = baseFilePath.replace(".dat" , valuesText+ ".dat");

 return generatedFilePath;

 }

 /**

 * Implement this method to Generate new model file based on baseFilePa th

using algorithm generated values newValues

 *

 * Example implementation:

 * <code> String generatedFilePath =

getGeneratedFileName(baseFilePath,newValues);

 <p>

 if(checkFileAvailability(generatedFilePath, isTighterModel))

 return genera tedFilePath;

 <p>

 BufferedReader br = new BufferedReader(new FileReader(baseFilePath));

 <p>

 BufferedWriter bw = new BufferedWriter(new FileWriter(generatedFilePath));

<p>

 String searchText = "PERMI ALL";

 <p>String currentRecord = copyUntil(br , bw, searchText);

 <p>bw.write(currentRecord);

 <p>bw.newLine();

 <p>if (isTighterModel) {

 <p> searchText = "NUMERICAL";

 <p> currentRecord = copyUntil(br , bw, searchText);

 <p> bw.write(currentRecord);

 <p> bw.newLine();

 <p> bw.write("CONVERGE TOTRES TIGHTER");

 <p> bw.newLine();

 <p>}

 <p>currentRecord = copyUntil(br , bw, "OPERATE");

 <p>//Replace number

 <p>currentRecord=currentRecord.replaceAll("[0 - 9\ \ , \ \ . \ \ +\ \ -]+",

newValues[0]+"");

 <p>bw.write(currentRecord);

 <p>bw.newLine();

 <p>copyUntilEnd(br , bw);

 <p>br.close();

 <p>bw.close();

 <p>return generatedFilePa th;

</code>

 * @param baseFilePath

 * @param newValues

 * @param isTighterModel

 * @return generated file path

 * @throws Exception

 */

 89

 public abstract String generateModelFile(String baseFilePath, double []

newValues, boolean isTighterModel) throws Exception;

}

package mmm.sosfr;

import java.io.*;

import mmm.cmgAgents.Preprossor;

public class SosFrPreprossor extends Preprossor {

 private double lastTime ;

 public SosFrPreprossor(double lastTime) {

 this . lastTime = lastTime;

 }

 /**

 * @param args

 * @throws IOException

 */

 private void generateRUNSection(BufferedWriter bw, double [] newValues,

double lastTime) throws IOException {

 double p1l = newValues[0];

 double p1InjRate = newValues[1];

 double rpInjRate = newValues[18];

 int p2l = 175; //fix this

 int p3l = 6; //fix this

 int p5lLastP = 198; //fix this

 double allCyclesPeriodLenght = lastTime - (p1l+p2l+p3l+p5lLastP);

 //To optimize this create 13 length indicators

 //Five of them multiple integer [1 - 5]

 //R emaining [0 - 5]

 int numberOfCycles = 0; //TO BE OPTIMIZED

 int sumCyclesLenghtIndicators = 0;

 for (int i = 2; i < 15; i++) {

 if (newValues[i]>0) {

 numberOfCycles++;

 }

 sumCyclesLenghtIndicators += newValues[i];

 }

 double [] cyclesLength = new double [numberOfCycles];

 int currentCycle = 0;

 String cyclesLenghtInfo = "" ;

 for (int i = 2; i < 15; i++) {

 if (newValues[i]>0) {

 cyclesLength[currentCycle] =

(newValues[i]/sumCyclesLenghtIndicators)*allCyclesPeriodLenght;

 cyclesLenghtInfo += cyclesLength[currentCycle]

+" \ t" ;

 currentCycle++;

 }

 }

 //3 lenght indicator [1 - 4]

 double cyclesLengthIndicatorsTotal = newValues[15] + newValues[16]

+ newValues[17];

 double cp1lengthFraction =

newValues[15]/cyclesLengthIndicatorsTotal;

 double cp2lengthFraction =

newValues[16]/cyclesLengthIndicatorsTotal;

 90

 double cp3lengthFraction =

newValues[17]/cyclesLengthIndicatorsTotal;

 bw.write("****************** START OF PHASE 1 ****************** \ n");

 bw.newLine();

 BufferedReader br = new BufferedReader(new FileReader("p1.txt"));

 String currentRecord = copyUntil(br, bw, "OPERATE MAX STW");

 currentRecord=currentRecord.replaceAll("[0 - 9\ \ , \ \ . \ \ +\ \ -]+" ,

p1InjRate+ "");

 bw.write(currentRecord);

 bw.newLine();

 copyUntilEnd(br, bw);

 br.close();

 bw.newLine();

 for (int i=1;i<=p1l;i++){

 bw.write("TIME " +i);

 bw.newLine();

 }

 bw.write(" \ n****************** START OF PHASE 2 ****************** \ n");

 bw.newLine();

 br = new BufferedReader(new FileReader("p2.txt"));

 copyU ntilEnd(br, bw);

 br.close();

 bw.newLine();

 for (int i=1;i<=p2l;i++){

 bw.write("TIME " +(i+p1l));

 bw.newLine();

 }

 bw.write(" \ n\ n****************** START OF PHASE 3 ****************** \ n");

 bw.newLine();

 bw.write("SHUTIN 'Well - 1'");

 bw.newLine();

 for (int i=1;i<=p3l;i++){

 bw.write("TIME " +(i+p1l+p2l));

 bw.newLine();

 }

 double currentCycleStartTime = p1l+p2l+p3l;

 String cyclesPeriodsLengthInfo = "" ;

 for (int i=0; i<numberOfCycles; i++){

 //Cycles periods (3 periods one of them soaking)

 double cp1l = cyclesLength[i]*cp1lengthFraction; //TO BE OPTIMIZED

 double cp2l = cyclesLength[i]*cp2lengthFraction; //TO BE OPTIMIZED

 double cp3l = cyclesLength[i]*cp3lengthFraction; //TO BE OPTIMIZED

 cyclesPeriodsLengthInfo += cp1l + " \ t" + cp2l + " \ t" + cp3l + " \ t" ;

 bw.newLine();

 bw.write("** C" +(i +1));

 bw.newLine();

 if (i==0){

 bw.write(" \ n** PERIOD 1 INITIAL ** \ n");

 bw.newLine();

 br = new BufferedReader(new FileReader("cp1i.txt"));

 copyUntilEnd(br, bw);

 br.close();

 bw.newLine();

 } else {

 bw.write(" \ n** PERIOD 1 ** \ n");

 bw.newLine();

 bw.write("TIME " +(currentCycleStartTime));

 91

 bw.newLine();

 bw.write("shutin 'Well - 3'");

 bw.newLine();

 bw.write("open 'Well - 1'");

 bw.newLine();

 }

 bw.write(" \ n** PERIOD 2 ** \ n");

 bw.newLine();

 bw.write("TIME " +(currentCycleStartTime+cp1l));

 bw.newLine();

 bw.write("sh utin 'Well - 1'");

 bw.newLine();

 bw.write(" \ n** PERIOD 3 ** \ n");

 bw.newLine();

 bw.write("TIME " +(currentCycleStartTime+cp1l+cp2l));

 bw.newLine();

 bw.write("open 'Well - 3'");

 bw.newLine();

 currentCycleStartTime += cp1l+cp2l+cp3l;

 }

 bw.write(" \ n****************** START P5 ****************** \ n\ n");

 //String p5LastP = readFile("p5_lastP.txt"); //read p1

 bw.newLine();

 bw.write("TIME " +(currentCycleStartTime));

 bw.newLine();

 br = new BufferedReader(new FileReader("p5_lastP.txt"));

 currentRecord = copyUntil(br, bw, "OPERATE MAX STW");

 currentRecord=currentRecord.replaceAll("[0 - 9\ \ , \ \ . \ \ +\ \ -]+" ,

rpInjRate+ "");

 bw.write(currentRecord);

 bw.newLine();

 copyUntilEnd(br, bw);

 br.close();

 bw.newLine();

 for (int i=1;i<=p5lLastP;i++){

 bw.write("TIME " +(i+currentCycleStartTime));

 bw.newLine();

 }

 br = new BufferedReader(new FileReader("lastPart.txt"));

 copyUntilEnd(br, bw);

 br.close();

 bw.newLine();

 bw.close();

 System. out .println("FileInfo \ t" +p1l+ " \ t" +p1InjRate+ " \ t" +rpInjRate+ " \ t" +allC

yclesPeriodLenght+ " \ t" +numberOfCycles

 +" \ t" +cp1lengthFraction+ " \ t" +cp2lengthFraction+ " \ t" +cp3lengthFraction+ " \ t" +

cyclesLenghtInfo+ "CyclesPeriodsLength \ t" +cyclesPeriodsLengthInfo);

 }

 @Override

 public String generateModelFile(String baseFilePat h, double [] newValues,

 boolean isTighterModel) throws Exception {

 String generatedFilePath =

getGeneratedFileName(baseFilePath,newValues);

 if (checkFileAvailability(generatedFilePath, isTighterModel))

 return generatedFilePath;

 92

 BufferedReader br = new BufferedReader(new FileReader(baseFilePath));

 BufferedWriter bw = new BufferedWriter(new FileWriter(generatedFilePath));

 String currentRecord = "" ;

 if (isTighterModel) {

 String searchText = "NUMERICAL";

 currentRecord = copyUntil(br, bw, searchText);

 bw.write(currentRecord);

 bw.newLine();

 bw.write("CONVERGE TOTRES TIGHTER");

 bw.newLine();

 }

 currentRecord = copyUntil(br, bw, "RUN");

 this .generateRUNSection(bw, newValues, lastTime);

 br.close();

 bw.close();

 return generatedFilePath;

 }

}

package mmm.cmgAgents;

public class GenericModelResult {

 private double [] lastLineValues ;

 private double N;

 private boolean isError ;

 /**

 * @return the lastLineValues

 */

 public double [] getLastLineValues() {

 return lastLineValues ;

 }

 /**

 * @param lastLineValues the lastLineValues to set

 */

 public void setLastLineValues(double [] lastLineValues) {

 this . lastLineValues = lastLineValues;

 }

 /**

 * @param lastLineValues the lastLineValues to set

 */

 public void setLastLineValues(String[] lastLineValues) {

 this . lastLineValues = new double [lastLineValues. length];

 for (int i = 0; i < lastLineValues. length ; i++) {

 String string = lastLineValues[i];

 this . lastLineValues [i] = Double. parseDouble (string);

 }

 }

 /**

 * @return the lastTime

 */

 public double getLastTime() {

 return lastLineValues [0];

 }

 93

 /**

 * @return the n

 */

 public double getN() {

 return N;

 }

 /**

 * @param n the n to set

 */

 public void setN(double n) {

 N = n;

 }

 /**

 * @return the isError

 */

 public boolean isError() {

 return isError ;

 }

 /**

 * @param isError the isError to set

 */

 public void setError(boolean isError) {

 this . isError = isError;

 }

 /* (non - Javadoc)

 * @see java.lang.Object#toString()

 */

 @Override

 public String toString() {

 String s = "" ;

 for (double d : lastLineValues) {

 s += d + " \ t" ;

 }

 return s + N;

 }

}

package mmm.cmgAgents;

import java.io.*;

public class SimulatorExecuter {

 private String simulatorPath ;

 private String workDirectoryPath ;

 private String resultReportPath ;

 private String baseModelPath ;

 private int numberOfCores ;

 private boolean useParallelSolver ;

 private Preprossor preprossor ;

 private Postprossor postprossor ;

 private double lastTime ;

 public SimulatorExecuter(String simulatorPath, String workDirectoryPath,

String resultReportPath,

 String baseModelPath, double lastTime, Pr eprossor

preprossor, Postprossor postprossor) {

 this . simulatorPath = simulatorPath;

 this . workDirectoryPath = workDirectoryPath;

 this . resultReportPath = resultReportPath;

 this . baseModelPath = baseModelPath;

 this . numberOfCores = 1;

 this . useParallelSolver = false ;

 this . preprossor = preprossor;

 this . postprossor = postprossor;

 94

 this . lastTime = lastTime;

 }

 public SimulatorExecuter(String simulatorPath, String workDirectoryPath,

String resultReportPath,

 String baseModelPath, double lastTime, int numberOfCores,

Preprossor preprossor, Postprossor postprossor) {

 this (simulatorPath, workDirectoryPath, resultReportPath,

baseModelPath, lastTime, preprossor, postprossor);

 this . numberOfCores = numberOfCores;

 this . useParallelSolver = t rue ;

 }

 private void execute(String filePath, int numberOfCores) {

 // IF the output file exist it means model executed before!

 // and not repeated in less number of cores because of ERROR

 // No need to repeat execution

 String irfFilePath = filePath.replace(".dat" , ".irf");

 File irfFile = new File(irfFilePath);

 if (irfFile.exists() && numberOfCores == this . numberOfCores) {

 return ;

 }

 try {

 String line ;

 String command = null ;

 if (useParallelSolver) {

 command = " \ "" + simulatorPath + " \ " - f \ "" +

filePath

 + " \ " - wd \ "" + workDirectoryPath +

" \ " "

 + " - log - doms - parasol " +

numberOfCores + " - wait" ;

 } else {

 command = " \ "" + simulatorPath + " \ " - f \ "" +

filePath

 + " \ " - wd \ "" + workDirectoryPath +

" \ " " + " - log"

 + " - wait" ;

 }

 // System.out.println(command);

 Process p = Runtime. getRuntime ().exec(command);

 // p.waitFor();

 BufferedReader input = new BufferedReader(new

InputStreamReader(

 p.getInputStream()));

 while ((line = input.readLine()) != null) {

 // System.out.println(line);

 }

 input.close();

 } catch (Exception err) {

 err.printStackTrace();

 }

 }

 private String executeGenericResultReport(String irfFilePath, int

numberOfCores) throws Exception {

 // create command file . rwd

 String generatedFilePath = irfFilePath.replace(".irf" , ".rwd");

 String baseFileRWDFilePath = baseModelPath .replace(".dat" , ".rwd");

 String outputFilePath = irfFilePath.replace(".irf" , ".rwo");

 // if output is executed before don't repeat it

 File of = new File(outputFilePath);

 if (of.exists() && numberOfCores == this . numberOfCores)

 return outputFilePath;

 FileReader fr = new FileReader(baseFileRWDFilePath);

 95

 BufferedReader br = new BufferedRe ader(fr);

 String currentRecord;

 FileWriter fw = new FileWriter(generatedFilePath);

 BufferedWriter bw = new BufferedWriter(fw);

 while ((currentRecord = br.readLine()) != null) {

 if (currentRecord.contains("*FILES")) {

 currentRecord = "*FILES '" + irfFilePath + "' " ;

 }

 bw.write(currentRecord);

 bw.newLine();

 }

 br.close();

 bw.close();

 // run command file section

 // generate output file

 try {

 String command = resultReportPath + " - f \ "" +

generatedFilePath

 + " \ " - o \ "" + outputFilePath + " \ "" ;

 Process p = Runtime. getRuntime ().exec(command);

 BufferedReader input = new BufferedReader(new

InputStreamReader(

 p.getInputStream()));

 String line = "" ;

 while ((line = input.readLine()) != null) {

 // System.out.println(line);

 }

 input.close();

 } catch (Exception err) {

 err.printStackTrace();

 }

 return outputFilePath;

 }

 public GenericModelResult getGenericModelResults(double [] values)

 throws Exception {

 GenericModelResult r = getGenericModelResults(values,

this . numberOfCores , false);

 return r;

 }

 private GenericModelResult getGenericModelResults(double [] values, int

numberOfCores, boolean isTighterModel)

 throws Exception {

 GenericModelResult r = new GenericModelResult();

 // create model file

 String generatedModelFilePath = null ;

 try {

 generatedModelFilePath =

preprossor .generateModelFile(baseModelPath , values, isTighterModel);

 } catch (IncorrectModelFileException ex){

 String genesV aluesText = "" ;

 for (double g : values){

 genesValuesText += g+ " \ t" ;

 }

 generatedModelFilePath =

preprossor .getGeneratedFileName(baseModelPath , values);

 96

 File f = new File(generatedModelFilePath);

 f.delete();

 System. out .println("EXCEPTION\ t" +ex.getMessage()+ "; Unable

to generate a model for \ t" +genesValuesText);

 r.setError(true);

 return r;

 }

 // execute generated model file

 execute(generatedModelFilePath, numberOfCores);

 // get result -- result report

 String irfFilePath = generatedModelFilePath.replace(".dat" ,

".irf");

 String generatedOutputFilePath = executeGenericResultReport(

 irfFilePath, numberOfCores);

 String[] lastLineValues = postprossor .getLastLine(

 generatedOutputFilePath, " \ t");

 r.set LastLineValues(lastLineValues);

 String outFilePath = generatedModelFilePath.replace(".dat" ,

".out");

 r.setN(postprossor .getInitialOilInPlace(outFilePath));

 if (r.getLastTime() != lastTime) {

 if (isTighterModel && numberOfCores == 1){

 r.setError(true);

 } else if (numberOfCores == 1) {

 r = getGenericModelResults(values, numberOfCores,

true);

 if (r.getLastTime() != lastTime){

 r.setError(true);

 }

 } else {

 r = getGenericModelResults(values, numberOfCores/2,

isTigh terModel);

 }

 }

 return r;

 }

 /*

 * (non - Javadoc)

 *

 * @see java.lang.Object#toString()

 */

 @Override

 public String toString() {

 return "SimulatorExecuter \ nsimulatorPath= \ t" + simulatorPath

 + " \ nworkDirectoryPath= \ t" + workDirectoryPath

 + " \ nresultReportPath= \ t" + resultReportPath

 + " \ nbaseModelPath= \ t" + baseModelPath +

" \ tPreprossor= \ t"

 + preprossor ;

 }

}

package mmm.cmgAgents;

import java.io.*;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class Postprossor {

 97

 public String[] getLastLine(String filePath, String delimiter) throws

Exception {

 FileReader fr = new FileReader(filePath);

 BufferedReader br = new BufferedReader(fr);

 String currentRecord;

 String lastRecord = "" ;

 while ((currentRecord = br.readLine()) != null)

 lastRecord = currentRecord;

 br.close();

 return lastRecord.split(delimiter);

 }

 public double getInitialOilInPlace(String filePath) throws Exception {

 FileReader fr = new FileReader(filePath);

 BufferedReader br = new BufferedReader(fr);

 String currentRecord;

 boolean initialComponentInPlaceSectionFound= false ;

 double initialOilInPlace = - 1;

 while ((currentRecord = br.readLine()) != null){

 if (currentRecord.contains("TOTAL INITIAL COMPONENTS IN PLACE"))

 initialComponentInPlaceSectionFound = true ;

 if (initialComponentInPlaceSectionFound &&

currentRecord.toUpperCase().contains("OIL")){

 String scPattern = "([0 - 9\ \ , \ \ . \ \ +\ \ -]+)([Ee][0 - 9\ \ , \ \ . \ \ +\ \ -]+)" ;

 Pattern p = Pattern. compile (scPattern);

 Matcher m = p.matcher(currentRecord);

 if (m.find()) {

 initialOilInPlace = Double. parseDouble (m.group());

 br.close();

 return initialOilInPlace;

 }

 }

 }

 br.close();

 return initialOilInPlace;

 }

}

 98

Appendix 4: Response surface proxy package

package mmm.responseSurfaceProxy;

import java.util.Hashtable;

public abstract class ResponseSurfaceProxy {

 protected Hashtable< double [], Double> userValuesList ;

 public ResponseSurfaceProxy() {

 userValuesList = new Hashtable< double [], Double>();

 }

 public abstract double getLinearResponse(double u[]);

 public abstract double getNonLinearResponse(double [] useru);

 public abstract void calculateLinearModel();

 public abstract void calculateNonLinearModel();

 public abstract void loadDynamicData();

 public void addTrial(double [] uValues, double jValue){

 if (! userValuesList .containsKey(uValues))

 userValuesList .put(uValues, jValue);

 }

}

package mmm.responseSurfaceProxy;

import java.io.*;

import java.util.Hashtable;

import Jama.*;

public class ResponseSurfaceProxyJama extends ResponseSurfaceProxy {

 private Matrix Ulinear ;

 private Matrix UNonlinear ;

 private Matrix J;

 private Matrix BetaLinear ;

 private Matrix BetaNonLinear ;

 public ResponseSurfaceProxyJama(String UfilePath, String JfilePath) throws

FileNotFoundException, IOException{

 Matrix userMatrixU = Matrix. read (new BufferedReader(new

FileReader(UfilePath)));

 Ulinear = getU FromUserMatrix(userMatrixU);

 J = Matrix. read (new BufferedReader(new FileReader(JfilePath)));

 }

 public ResponseSurfaceProxyJama() {

 userValuesList = new Hashtable< double [], Double>();

 }

 public double getLinearResponse(double u[]){

 Matrix U = new Matrix(1, u. length +1);

 for (int i = 0; i < u. length +1; i++) {

 if (i==0)

 U.set(0,i , 1);

 else

 U.set(0,i , u[i - 1]);

 }

 Matrix r = getLinearResponse(U);

 return r.get(0, 0);

 }

 /**

 * @param U

 * @return

 99

 */

 private Matrix getLinearResponse(Matrix U) {

 Matrix r = U.times(BetaLinear);

 return r;

 }

 public double getNonLinearResponse(double [] useru) {

 double [] du = new double [useru. length +1];

 double [] unl = getNonLinearDs(useru);

 Matrix u = new Matrix(unl, 1);

 Matrix r = getNonLinearResponse(u);

 return r.get(0, 0);

 }

 private Matrix getNonLinearResponse(Matrix U) {

 Matrix r = U.times(BetaNonLinear);

 return r;

 }

 private Matrix getUFromUserMatrix(Matrix userMatrixU) {

 double [][] uma = userMatrixU.getArray();

 Matrix u = new Matrix(uma. length , uma[0]. length +1);

 for (int i = 0; i < uma. length ; i++) {

 for (int j = 0; j < uma[i]. length +1; j++) {

 if (j==0) {

 u.set(i, j, 1);

 } else {

 u.set(i, j, uma[i][j - 1]);

 }

 }

 }

 return u;

 }

 public void calculateLinearModel(){

 if (Ulinear ==null && J==null){

 loadDynamicData();

 }

 BetaLinear = calculateBeta(Ulinear , J);

 System. out .println("JandU \ t \ tActual J \ tProxy J \ tUs");

 //print Y' values of initial data

 Matrix r = getLinearResponse(Ulinear);

 double [] rd = r.getColumnPackedCopy();

 double [] actualJ = J.getColumnPackedCopy();

 double summation = 0;

 for (int i = 0; i < Ulinear .getRowDimension(); i++) {

 System. out .print("JandU \ t \ t" +actualJ[i]);

 System. out .print(" \ t" +rd[i]);

 double dY1 = actualJ[i] - rd[i];

 summation += Math. pow(dY1,2);

 for (int j = 0; j < Ulinear .getColumnDimension();

j++) {

 System. out .print(" \ t" +Ulinear .get(i, j));

 }

 System. out .println();

 }

 System. out .println("Linear Proxy L2[E]=" +

Math. pow(summation, 0.5));

}

 public void calculateNonLinearModel(){

 if (Ulinear ==null && J==null){

 loadDynamicData();

 }

 calculateNonLinearU();

 BetaNonLinear = calculateBeta(UNonlinear , J);

 100

 double [] b = BetaNonLinear .getColumnPackedCopy();

 for (double d : b) {

 System. out .println("Beta \ t \ t" +d);

 }

 System. out .println("JandU \ t \ tActual J \ tProxy J \ tUs");

 //print Y' values of initial data

 Matrix r = getNonLinearResponse(UNonlinear);

 double [] rd = r.getColumnPackedCopy();

 double [] actualJ = J.getColumnPackedCopy();

 double summation = 0;

 for (int i = 0; i < UNonlinear .getRowDimension(); i++) {

 System. out .print("JandU \ t \ t" +actualJ[i]);

 System. out .print(" \ t" +rd[i]);

 double dY1 = actualJ[i] - rd[i];

 summation += Math. pow(dY1,2);

 for (int j = 0; j < UNonlinear .getColumnDimension(); j++) {

 System. out .print(" \ t" +UNonlinear .get(i, j));

 }

 System. out .println();

 }

 System. out .println("Nonlinear Proxy L2[E]=" + Math. pow(summation,

0.5));

 }

 /**

 *

 */

 public void loadDynamicData() {

 //this means dynamic way is used

 Matrix userMatrixU = null ;

 int currentCase = 0;

 for (double [] u : userValuesList .keySet()) {

 double response = userValuesList .get(u);

 if (userMatrixU == null){

 userMatrixU = new

Matrix(userValuesList .size(),u. length);

 J = new Matrix(userValuesList .size(), 1);

 }

 for (int j = 0; j < u. length ; j++) {

 userMatrixU.set(currentCase, j, u[j]);

 }

 J.set(currentCase, 0, response);

 currentCase++;

 }

 Ulinear = getUFromUserMatrix(userMatrixU);

 }

 /**

 * @param U is the x or u values vector

 * @param J is the y or j or the response vector

 * @return

 */

 private Matrix calculateBeta(Matrix U, Matrix J) {

 if (U.getColumnDimension()<J.getRowDimension()){

 //Over - determined

 //Null space of U = 0

 //U'U non - singular positive - definite matrix: (U'U)^ - 1 exists

 // M < N -- U data less than J data

 //B = (U' U)^ - 1 . U' . J

 Matrix AA = U.transpose().times(U).inverse();

 Matrix BB = U.transpose().times(J);

 Matrix Beta = AA.times(BB);

 return Beta;

 } else {

 //Under - determined

 101

 //rank of U = N

 //Null space of U > 0

 //UU' non - singular positive - definite matrix: (GG')^ - 1 exists

 // M > N

 //B = U' . (U . U')^ - 1 . J

 Matrix AA = U.times(U.transpose()).inverse();

 Matrix BB = U.transpose().times(AA);

 Matrix Beta = BB.times(J);

 return Beta;

 }

 }

 private void calculateNonLinearU() {

 Matrix subUL = Ulinear .getMatrix(0, Ulinear .getRowDimension() - 1, 1,

Ulinear .getColumnDimension() - 1);

 double [][] u = subUL.getArray();

 double [][] nonLinearU = new double [u. length][];

 for (int i = 0; i < u. length ; i++) {

 nonLinearU[i] = getNonLinearDs(u[i]);

 }

 UNonlinear = new Matrix(nonLinearU);

 }

 private double [] getNonLinearDs(double [] ds) {

 int countOfUUs=0;

 for (int i = 1; i < ds. length +1; i++) {

 for (int jj = 1; jj < ds. length +1; jj++) {

 if (i<jj){

 countOfUUs++;

 //System.out.print(" \ tU"+i+ "U"+ jj);

 }

 }

 }

 double [] nonLinearDs = new double [ds. length *2+countOfUUs+1];

 int indexOfUUs=0;

 nonLinearDs[0]=1;

 for (int i = 1; i < ds. length +1; i++) {

 nonLinearDs[i]=ds[i - 1];

 nonLinearDs[i+ds. length]=ds[i - 1]*ds[i - 1];

 for (int jj = 1; jj < ds. length +1; jj++) {

 if (i<jj){

 indexOfUUs++;

 nonLinearDs[ds. length *2+indexOfUUs]=ds[i -

1]*ds[jj - 1];

 }

 }

 }

 return nonLinearDs;

 }

}

 102

Appendix 5: NOA reading package

 public static double [][] getNOAArray (String filePath) throws IOException {

 Jama.Matrix m = Matrix. read (new BufferedReader(new

FileReader(filePath)));

 return m.getArray();

 }

 public static Population getInitialNAOPopulation(Configuration config,

String filePath) throws InvalidConfigurationException, IOException {

 Population p = new Population(config);

 double [][] d = getNOAArray (filePath);

 for (int i=0; i<d. length ; i++){

 Gene[] garr = new Gene[d[i]. length];

 // Heating Phase length: multiple integer [60 - 790] days with

30 days

 // level length

 garr[0] = new MutipleIntegerGene(config, 60, 790, 30);

 // Heating Phase steam injection rate

 garr[1] = new DoubleGene(config, 10, 40);

 // Cycles lengths indicators

 garr[2] = new IntegerGene(config, 1, 5);

 garr[3] = new IntegerGene(config, 1, 5);

 garr[4] = new IntegerGene(config, 1, 5);

 garr[5] = new IntegerGene(config, 1, 5);

 garr[6] = new I ntegerGene(config, 0, 5);

 garr[7] = new IntegerGene(config, 0, 5);

 garr[8] = new IntegerGene(config, 0, 5);

 garr[9] = new IntegerGene(config, 0, 5);

 garr[10] = new IntegerGene(config, 0, 5);

 garr[11] = new IntegerGene(config, 0, 5);

 garr[12] = new IntegerGene(config, 0, 5);

 garr[13] = new IntegerGene(config, 0, 5);

 garr[14] = new IntegerGene(config, 0, 5);

 // garr [15] = new IntegerGene(config , 0, 5);

 // Cycles periods (3 periods one of them soaking)

 garr[15] = new IntegerGene(config, 1, 3);

 garr[16] = new IntegerGene(config, 1, 3);

 garr[17] = new IntegerGene(config, 1, 3);

 // Recovery Phase steam injection rate

 garr[18] = new DoubleGene(config, 10, 40);

 for (int j = 0; j < d[i]. length ; j++) {

 // garr [j] = new

MutipleIntegerGene(config ,a_lowerBound,a_upperBound,a_significance);

 if (j==1 || j==18){

 double v = d[i][j];

 garr[j].setAllele(v);

 } else {

 int v = (int)d[i][j];

 garr[j].setAllele(v);

 }

 }

 IChromosome c = new MyGenericChromosome(config,garr. length);

 c.setGenes(garr);

 p.addChromosome(c);

 }

 return p;

 }

