
Partial monitoring – classification, regret bounds, and algorithms∗

Gábor Bartók† Dean Foster‡ Dávid Pál§ Alexander Rakhlin¶

Csaba Szepesvári‖

May 16, 2014

Abstract

In a partial monitoring game, the learner repeatedly chooses an action, the environment
responds with an outcome, and then the learner suffers a loss and receives a feedback signal,
both of which are fixed functions of the action and the outcome. The goal of the learner is to
minimize his regret, which is the difference between his total cumulative loss and the total loss
of the best fixed action in hindsight. In this paper we characterize the minimax regret of any
partial monitoring game with finitely many actions and outcomes. It turns out that the minimax
regret of any such game is either zero, Θ̃(

√
T), Θ(T 2/3), or Θ(T). We provide computationally

efficient learning algorithms that achieve the minimax regret within logarithmic factor for any
game. In addition to the bounds on the minimax regret, if we assume that the outcomes are
generated in an i.i.d. fashion, we prove individual upper bounds on the expected regret.

1 Introduction.

Partial monitoring provides a mathematical framework for sequential decision making problems
with imperfect feedback. Various problems of interest can be modeled as partial monitoring in-
stances, such as learning with expert advice [20], the multi-armed bandit problem [6], dynamic
pricing [19], the dark pool problem [3], label efficient prediction [14], and linear and convex opti-
mization with full or bandit feedback [27, 2, 16].

In this paper we restrict ourselves to finite games, i.e., games where both the set of actions
available to the learner and the set of possible outcomes generated by the environment are finite.
A finite partial monitoring game G is described by a pair of N ×M matrices: the loss matrix L
and the feedback matrix H. The entries Li,j of L are real numbers lying in, say, the interval [0, 1].
The entries Hi,j of H belong to an alphabet Σ on which we do not impose any structure and we
only assume that learner is able to distinguish distinct elements of the alphabet.

The game proceeds in T rounds according to the following protocol. First, G = (L,H)
is announced for both players. In each round t = 1, 2, . . . , T , the learner chooses an action

∗This article is an extended version of Bartók, Pál, and Szepesvári [9], Bartók, Zolghadr, and Szepesvári [11], and
Foster and Rakhlin [17].
†Department of Computer Science, ETH Zürich, bartok@inf.ethz.ch
‡Department of Statistics, University of Pennsylvania, dean@foster.net
§Google, dpal@google.com
¶Department of Statistics, University of Pennsylvania, rakhlin@wharton.upenn.edu
‖Department of Computing Science, University of Alberta, szepesva@cs.ualberta.ca

1

bartok@inf.ethz.ch
dean@foster.net
dpal@google.com
rakhlin@wharton.upenn.edu
szepesva@cs.ualberta.ca

It ∈ {1, 2, . . . , N} and simultaneously, the environment, or opponent, chooses an outcome Jt ∈
{1, 2, . . . ,M}. Then, the learner receives as a feedback the entry HIt,Jt . The learner incurs in-
stantaneous loss LIt,Jt , which is not revealed to him. The feedback can be thought of as a masked
information about the outcome Jt. In some cases HIt,Jt might uniquely determine the outcome, in
other cases the feedback might give only partial or no information about the outcome.

The goal of the learner is to keep low his total loss
∑T

t=1 LIt,Jt . Since no non-trivial bound
can be given on the learner’s total loss, we resort to regret analysis in which the total loss of the
learner is compared with the loss of the best fixed action in hindsight. The regret is defined as the
difference of these two losses.

In general, the regret grows with the number of rounds T . If the regret is sublinear in T , the
learner is said to be Hannan consistent, and this means that the learner’s average per-round loss
approaches the average per-round loss of the best action in hindsight.

Piccolboni and Schindelhauer [24] were one of the first to study the regret of finite partial-
monitoring games. They proved that for any finite game (L,H), either for any algorithm the
regret can be Ω(T) in the worst case, or there exists an algorithm which has regret Õ(T 3/4) on any
outcome sequence1. This result was later improved by Cesa-Bianchi et al. [13] who showed that
the algorithm of Piccolboni and Schindelhauer has regret O(T 2/3). Furthermore, they provided an
example of a finite game, a variant of label-efficient prediction, for which any algorithm has regret
Θ(T 2/3) in the worst case.

However, for many games O(T 2/3) is not optimal. For example, games with full feedback (i.e.,
when the feedback uniquely determines the outcome) can be viewed as a special instance of the
problem of learning with expert advice and in this case it is known that the “EWA forecaster” has
regret O(

√
T); see e.g. Lugosi and Cesa-Bianchi [22, Chapter 3]. Similarly, for games with “bandit

feedback” (i.e., when the feedback determines the instantaneous loss) the INF algorithm [5] and
the Exp3 algorithm [6] achieve O(

√
T) regret as well.2

A complete list of lower and upper bounds are presented in Table 1. As seen from the table,
previous works pioneered in characterizing three main game types: trivial games with minimax
regret (i.e., optimal worst-case regret) 0, “hopeless” games with minimax regret Θ(T), and all
other games with minimax regret between Ω(

√
T) and O(T 2/3). The main result of this work is

that it completes the characterization in the third class: we give an exact characterization on the
mimimax regret (up to logarithmic factors), based on the feedback structure of the game.

A partial progress was made towards characterizing all games by Bartók et al. [8] who charac-
terized (almost) all finite games with M = 2 outcomes. They showed that the minimax regret of
any “non-degenerate” finite game with two outcomes falls into one of four categories: zero, Θ̃(

√
T),

Θ(T 2/3) or Θ(T). They gave a combinatoric-geometric condition on the matrices L,H that deter-
mines the category a game belongs to. Additionally, they constructed an efficient algorithm that,
for any game, achieves the minimax regret rate associated to the game within poly-logarithmic
factor.

In this paper, we consider the general problem of classifying partial-monitoring games with any
finite number of actions and outcomes. We investigate the problem under two different opponent
models: the oblivious adversarial and the stochastic opponent. In the oblivious adversarial model,
the outcomes are arbitrarily generated by an adversary with the constraint that they cannot depend
on the actions chosen by the learner. Equivalently, an oblivious adversary can be thought of as an

1The notations Õ(·) and Θ̃(·) hide polylogarithmic factors.
2We ignore the dependence of regret on the number of actions or any other parameters.

2

Lower bounds

Games concerned Bound Known from

Games with insufficient feedback Ω(T) Piccolboni and Schindelhauer [24]

“Revealing action game” Ω(T 2/3) Cesa-Bianchi et al. [13]

Games with more than one potentially optimal action Ω(
√
T) Antos et al. [4]

Upper bounds

Games concerned Bound Known from

Games with only one potentially optimal action 0 Trivial

Full-information games O(
√
T) Littlestone and Warmuth [20], Vovk [26]

Bandit games O(
√
T) Auer et al. [6]

Games with sufficient feedback O(T 2/3) Cesa-Bianchi et al. [13]

Table 1: Lower and upper bounds from previous works. The games with sufficient and insufficient
feedback are more precisely characterized as games with (no) global observability (see 5).

oracle that chooses a sequence of outcomes before the game begins. In the stochastic model, the
outcomes are generated by a sequence of i.i.d. random variables.

In the stochastic model, an alternative definition of regret is used; instead of comparing the
cumulative loss of the learner of that of the best fixed action in hindsight, the base of the comparison
is the expected cumulative loss of the action with the smallest expected loss, given the distribution
the outcomes are generated from. More formally, the regret of an algorithm A under outcome
distribution p is defined as

RT (A, p) =

T∑

t=1

LIt,Jt − min
1≤i≤N

Ep

[
T∑

t=1

Li,Jt

]
.

This paper is based on the results of Bartók, Pál, and Szepesvári [9], Bartók, Zolghadr, and
Szepesvári [11], and Foster and Rakhlin [17]. We summarize the results of these works to create
a complete and self-contained reference for the recent advancements on finite partial monitoring.
The results include a characterization of non-degenerate games against adversarial opponents, a
full characterization of games as well as distribution dependent (individual) regret bounds against
stochastic opponents.

The characterization result, in both cases, shows that there are only four classes of games in
terms of the minimax regret:

• Trivial games with zero minimax regret,

• “Easy” games with Θ̃(
√
T) minimax regret,

• “Hard” games with Θ(T 2/3) minimax regret, and

• Hopeless games with Ω(T) minimax regret.

A visualization of the classification is depicted in Figure 1.

3

0 11/2

O(1) Θ(T 1/2) Θ(T)

Full informa-
tion games

Bandit
games

2/3

︷ ︸︸ ︷

No games
here

︷ ︸︸ ︷︷ ︸︸ ︷

Revealing action game

Figure 1: Diagram of the classification result. Points on the line segment represent the exponent
on the time horizon T in the minimax regret of games. The gap between 0 and 1/2 was proven by
Antos et al. [4], while the gap between 2/3 and 1 was shown by Piccolboni and Schindelhauer [24].
The minimax regret of the “revealing action game” was proven to be of Θ(T 2/3) by Cesa-Bianchi
et al. [13]. The gap between 1/2 and 2/3 is the result of this work, completing the characterization.

2 Definitions and notations.

Let N denote the set {1, . . . , N}. For a subset S ⊂ N we use 1{S} ∈ {0, 1}N to denote the vector

with ones on the coordinates in S and zeros outside. A vector a ∈ RN indexed by j is sometimes
denoted by [aj]j∈N , while the jth coordinate of a is denoted by either aj or a(j). Standard basis
vectors are denoted by {ei}.

Recall from the introduction that an instance of partial monitoring with N actions and M
outcomes is defined by the pair of matrices L ∈ RN×M and H ∈ ΣN×M , where Σ is an arbitrary
set of symbols. In each round t, the opponent chooses an outcome Jt ∈M and simultaneously the
learner chooses an action It ∈ N . Then, the feedback HIt,Jt is revealed and the learner suffers the
loss LIt,Jt . It is important to note that the loss is not revealed to the learner, whereas L and H
are revealed before the game begins.

The following definitions are essential for understanding how the structure of L and H de-
termines the “hardness” of a game. Let ∆M denote the probability simplex in RM . That is,
∆M = {p ∈ RM : ∀1 ≤ i ≤M,pi ≥ 0,

∑M
i=1 pi = 1}. Elements of ∆M will also be called opponent

strategies as p ∈ ∆M represents an outcome distribution that a stochastic opponent can use to
generate outcomes. Let `i denote the column vector consisting of the ith row of L. Action i is
called optimal under strategy p if its expected loss is not greater than that of any other action
i′ ∈ N . That is, `Ti p ≤ `Ti′p. Determining which action is optimal under opponent strategies yields
the cell decomposition3 of the probability simplex ∆M :

Definition 1 (Cell decomposition). For every action i ∈ N , let Ci = {p ∈ ∆M : action i is
optimal under p}. The sets C1, . . . , CN constitute the cell decomposition of ∆M .

Now we can define the following important properties of actions:

Definition 2 (Properties of actions). • Action i is called dominated if Ci = ∅. If an action is
not dominated then it is called non-dominated.

3The concept of cell decomposition also appears in Piccolboni and Schindelhauer [24].

4

• Action i is called degenerate if it is non-dominated and there exists an action i′ such that
Ci (Ci′.

• If an action is neither dominated nor degenerate then it is called Pareto-optimal. The set of
Pareto-optimal actions is denoted by P.

• Action i is called duplicate if there exists another action j 6= i such that `i = `j.

From the definition of cells we see that a cell is either empty or it is a closed polytope. Further-
more, Pareto-optimal actions have (M − 1)-dimensional cells. The following definition, important
for our analyses, also uses the dimensionality of polytopes:

Definition 3 (Neighbors). Two Pareto-optimal actions i and j are neighbors if Ci ∩ Cj is an
(M−2)-dimensional polytope. Let N be the set of unordered pairs over N that contains neighboring
action-pairs. The neighborhood action set of two neighboring actions i, j is defined as N+

i,j = {k ∈
N : Ci ∩ Cj ⊆ Ck}.

Note that the neighborhood action set N+
i,j naturally contains i and j. If N+

i,j contains some
other action k then either Ck = Ci, Ck = Cj , or Ck = Ci ∩ Cj .

Now we turn our attention to how the feedback matrix H is used. In general, the elements of the
feedback matrix H can be arbitrary symbols. Nevertheless, the nature of the symbols themselves
does not matter in terms of the structure of the game. What determines the feedback structure
of a game is the occurrence of identical symbols in each row of H. To “standardize” the feedback
structure, the signal matrix is defined for each action:

Definition 4. Let si be the number of distinct symbols in the ith row of H and let σ1, . . . , σsi ∈ Σ
be an enumeration of those symbols. Then the signal matrix Si ∈ {0, 1}si×M of action i is defined
as (Si)k,l = I {Hi,l = σk}.

Note that the signal matrix of action i is just the incidence matrix of symbols and outcomes,
assuming action i is chosen. Furthermore, if p ∈ ∆M is the opponent’s strategy (or in the adversarial
setting, the relative frequency of outcomes in time steps when action i is chosen), then Sip gives
the distribution (or relative frequency) of the symbols underlying action i. In fact, it is also true
that observing HIt,Jt is equivalent to observing the vector SIteJt , where ek is the kth unit vector
in the standard basis of RM . From now on we assume without loss of generality that the learner’s
observation at time step t is the random vector Yt = SIteJt . Note that the dimensionality of this
vector depends on the action chosen by the learner, namely Yt ∈ RsIt .

Let ImM denote the image space (or column space) of a matrix M , and X ⊕ Y denote the
direct product of linear spaces X and Y . The following two definitions play a key role in classifying
partial-monitoring games.

Definition 5 (Global observability [24]). A partial-monitoring game (L,H) admits the global
observability condition, if for all pairs i, j of actions, `i − `j ∈ ⊕k∈N ImST

k .

Definition 6 (Local observability). A pair of neighboring actions i, j is said to be locally observable
if `i − `j ∈ ⊕k∈N+

i,j
ImST

k . We denote by L ⊂ N the set of locally observable pairs of actions (the

pairs are unordered). A game satisfies the local observability condition if every pair of neighboring
actions is locally observable, i.e., if L = N .

5

The intuition behind these definitions is that if `i−`j ∈ ⊕k∈D ImST
k for some subset D of actions

then the expected difference of the losses of actions i and j can be estimated with observations from
actions in D. We will later see that the above condition is necessary for having unbiased estimates
for the loss differences.

It is easy to see that local observability implies global observability. Also, from Piccolboni
and Schindelhauer [24] we know that if global observability does not hold then the game has
linear minimax regret. From now on, we only deal with games that admit the global observability
condition.

2.1 Examples.

To illustrate the concepts of global and local observability, we present some examples of partial-
monitoring games.

Full-information games Consider a game G = (L,H), where every row of the feedback matrix
consists of pairwise different symbols. Without loss of generality we may assume that

H =

1 2 · · · M
1 2 · · · M
...

...
...

1 2 · · · M

 .

In this case the learner receives the outcome as feedback at the end of every time step, hence we call
it the full-information case. It is easy to see that the signal matrix of any action i is the identity
matrix of dimension M . Consequently, for any ` ∈ RM , ` ∈ ImST

i and thus any full-information
game is locally observable.

Bandit games The next games we consider are games G = (L,H) with L = H. In this case the
feedback the learner receives is identical to the loss he suffers at every time step. For this reason,
we call these types of games bandit games.

For an action i, let the the rows of Si correspond to the symbols σ1, σ2, . . . , σsi , where si is the
number of different symbols in the ith row of H. Since we assumed that L = H, we know that
these symbols are real numbers (losses). It follows from the construction of the signal matrix that

`i = ST
i

σ1

σ2
...
σsi

for all i ∈ N . It follows that all bandit games are locally observable.

A hopeless game We define the following game G = (L,H) by

L =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
, H =

(
α1 α2 α3 α4 ∗ ∗
β1 β2 β3 β4 ∗ ∗

)
.

We make the following observations:

6

1. Neither of actions 1 and 2 are dominated. Thus the game is not trivial.

2. The difference of the loss vectors `2 − `1 =
(
5 3 1 −1 −3 −5

)T
.

3. The image space of the signal matrices ImS1 = ImS2 = {` ∈ R6 : `[5] = `[6]}.

The three points together imply that the game is not globally observable.

Dynamic pricing In dynamic pricing, a vendor (learner) tries to sell his product to a buyer
(opponent). The buyer secretly chooses a maximum price (outcome) while the seller tries to sell it
at some price (action). If the outcome is lower than the action then no transaction happens and the
seller suffers some constant loss. Otherwise the buyer buys the product and the seller’s loss is the
difference between the seller’s price and the buyer’s price. The feedback for the seller is, however,
only the binary observation if the transaction happened (y for yes and n for no). The finite version
of the game can be described with the following matrices:

L =

0 1 2 · · · N − 1
c 0 1 · · · N − 2
c c 0 · · · N − 3
...

...
. . .

. . .
...

c · · · · · · c 0

; H =

y y · · · y
n y · · · y
...

. . .
. . .

...
n · · · n y

 .

Simple algebra gives that all action pairs are neighbors. In fact, there is a single point on the
probability simplex that is common to all of the cells, namely

p =
(

1
c+1

c
(c+1)2

· · · ci−1

(c+1)i
· · · cN−2

(c+1)N−1
cN−1

(c+1)N−1

)T

.

We show that the locally observable action pairs are the “consecutive” actions ({i, i + 1}). The
difference `i+1 − `i is

`i+1 − `i =
(
0 · · · 0 c −1 · · · −1

)

with i− 1 zeros at the beginning. The signal matrix Si is

Si =

(
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)
,

where the “switch” is after i− 1 columns. Thus,

`i+1 − `i = ST
i

(
−c
0

)
+ ST

i+1

(
c
−1

)
.

On the other hand, action pairs that are not consecutive are not locally observable. For example,

`3 − `1 =
(
c c− 1 −2 · · · −2

)T
,

while both ImST
1 and ImST

3 contain only vectors whose first two coordinates are identical. Thus,
dynamic pricing is not a locally observable game. Nevertheless, it is easy to see that global observ-
ability holds.

7

3 Summary of results.

In this paper we present new algorithms for finite partial-monitoring games—NeigborhoodWatch
for the adversarial case and CBP for the stochastic case—and provide regret bounds. Our results
on the minimax regret, together with the previous works summarized in Table 1, yield the following
two classification theorems.

Theorem (Classification for games against stochastic opponents). Let G = (L,H) be a finite
partial-monitoring game. Let K be the number of non-dominated actions in G. The minimax
expected regret of G against stochastic opponents is

E[RT (G)] =

0, K = 1;

Θ̃(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

To state our classification theorem for the case of adversarial opponents, we need a definition.

Definition 7 (Degenerate games). A partial-monitoring game G is called degenerate if it has
degenerate or duplicate actions. A game is called non-degenerate if it is not degenerate.

Theorem (Classification for games against adversarial opponents). Let G = (L,H) be a non-
degenerate finite partial-monitoring game. Let K be the number of non-dominated actions in G.
The minimax expected regret of G against adversarial opponents is

E[RT (G)] =

0, K = 1;

Θ(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

For the stochastic case, we additionally present individual bounds on the regret of any finite
partial-monitoring game, i.e., bounds that depend on the strategy of the opponent. For details, see
Theorem 5.2. The bound stated in that theorem is used to derive all the upper bounds that concern
the regret of games against stochastic environments: It translates to a logarithmic individual upper
bound on the regret of locally observable games (Corollary 5.2); it gives the minimax upper bound
of Õ(

√
T) for locally observable games (Corollary 5.2), the minimax upper bound of Õ(T 2/3) for

globally observable games (Corollary 5.2). Additionally and quite surprisingly, it also follows from
Theorem 5.2 that even for not locally observable games, if we assume that the opponent is “benign”
in some sense, the minimax regret of Õ(

√
T) still holds. For the precise statement, see Theorem 5.2.

Remark 1. Note that our classification results do not consider the dependence of the minimax
regret on the number of actions N . In the case of stochastic opponents, our analysis yields a
dependence of Õ(N3/2), which we conjecture to be suboptimal. For non-degenerate games, even
for non-stochastic opponents, Theorem 6.2.1 states that the dependence is of O(N). This result
has been recently tightened to O(

√
N ′) by Bartók [7]4, where N ′ denotes the size of the largest

“point-local game”, which is always less than or equal to N . Apart from lower bounds for specific
examples (like bandit games), no lower bounds concerning the dependence on the number of actions
are known.

4This result appeared after the initial submission of the present article.

8

In the next section we give a lower bound on the minimax regret for games that are not locally
observable. This bound is valid for both the stochastic and the adversarial settings and is necessary
for proving the classification theorems. Then, in Sections 5 and 6, we describe and analyze the
algorithms CBP and NeigborhoodWatch. The first algorithm, CBP for Confidence Bound
Partial monitoring, is shown to achieve the desired regret upper bounds for any finite partial-
monitoring game against stochastic opponents. The second algorithm, NeigborhoodWatch,
works for locally observable non-degenerate games. We show that for these games, the algorithm
achieves the desired O(

√
T) regret bound against adversarial opponents.

4 A lower bound for not locally observable games.

In this section we prove that for any game that does not satisfy the local observability condition
has expected minimax regret of Ω(T 2/3).

Theorem. Let G = (L,H) be an N by M partial-monitoring game. Assume that there exist two
neighboring actions i and j that are not locally observable. Then there exists a problem dependent
constant c(G) such that for any algorithm A and time horizon T there exists an opponent strategy
p such that the expected regret satisfies

E [RT (A, p)] ≥ c(G)T 2/3 .

Proof. Without loss of generality we can assume that the two neighbor cells in the condition are C1

and C2. Let C3 = C1 ∩C2. For i = 1, 2, 3, let Ni be the set of actions associated with cell Ci. Note
that N3 may be the empty set. Let N4 = N \ (N1 ∪ N2 ∪ N3). By our convention for naming loss
vectors, `1 and `2 are the loss vectors for C1 and C2, respectively. Let L3 collect the loss vectors
of actions which lie on the open segment connecting `1 and `2. It is easy to see that L3 is the set
of loss vectors that correspond to the cell C3. We define L4 as the set of all the other loss vectors.
For i = 1, 2, 3, 4, let ki = |Ni|.

According to the lack of local observability, `2 − `1 6∈ ImST
1 ⊕ ImST

2 . Thus, {ρ(`2 − `1) : ρ ∈
R} 6⊂ ImST

1 ⊕ ImST
2 , or equivalently, (`2 − `1)⊥ 6⊃ KerS1 ∩KerS2, where we used that (ImM)⊥ =

Ker(MT). Thus, there exists a vector v such that v ∈ KerS1 ∩ KerS2 and (`2 − `1)Tv 6= 0. By
scaling we can assume that (`2− `1)Tv = 1. Note that since v ∈ KerS1 ∩KerS2 and the rowspaces
of both S1 and S2 contain the vector (1, 1, . . . , 1), the coordinates of v sum up to zero.

Let p0 be an arbitrary probability vector in the relative interior of C3. It is easy to see that for
any ε > 0 small enough, p1 = p0 + εv ∈ C1 \ C2 and p2 = p0 − εv ∈ C2 \ C1.

In what follows, we restrict our attention to deterministic algorithms. The lower bound for the
more general case of randomized algorithms is implied by a standard argument (see e.g.Lugosi and
Cesa-Bianchi [22, page 168]): any randomized algorithm can be thought of as a random draw from
a set of deterministic algorithms.

Let us fix a deterministic algorithm A and a time horizon T . For i = 1, 2, let R
(i)
T denote the

expected regret of the algorithm under opponent strategy pi. For i = 1, 2 and j = 1, . . . , 4, let
N i
j denote the expected number of times the algorithm chooses an action from Nj , assuming the

opponent plays strategy pi.
From the definition of L3 we know that for any ` ∈ L3, ` − `1 = η`(`2 − `1) and ` − `2 =

(1 − η`)(`1 − `2) for some 0 < η` < 1. Let λ1 = min`∈L3 η` and λ2 = min`∈L3(1 − η`) and

9

λ = min(λ1, λ2) if L3 6= ∅ and let λ = 1/2, otherwise. Finally, let βi = min`∈L4(` − `i)Tpi and
β = min(β1, β2). Note that λ, β > 0.

As the first step of the proof, we lower bound the expected regret R
(1)
T and R

(2)
T in terms of the

values N i
j , ε, λ and β:

R
(1)
T ≥ N1

2

ε︷ ︸︸ ︷
(`2 − `1)Tp1 +N1

3λ(`2 − `1)Tp1 +N1
4β ≥ λ(N1

2 +N1
3)ε+N1

4β ,

R
(2)
T ≥ N2

1 (`1 − `2)Tp2︸ ︷︷ ︸
ε

+N2
3λ(`1 − `2)Tp2 +N2

4β ≥ λ(N2
1 +N2

3)ε+N2
4β .

(1)

For the next step, we need the following lemma.

Lemma. There exists a (problem dependent) constant c such that the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Using the above lemma we can lower bound the expected regret. Let r = argmini∈{1,2}N
i
4. It

is easy to see that for i = 1, 2 and j = 1, 2, 3,

N i
j ≥ N r

j − cTε
√
N r

4 .

If i 6= r then this inequality is one of the inequalities from Lemma 4. If i = r then it is a trivial
lower bounding by subtracting a positive value. From (1) we have

R
(i)
T ≥ λ(N i

3−i +N i
3)ε+N i

4β

≥ λ(N r
3−i − c2Tε

√
N r

4 +N r
3 − c2Tε

√
N r

4)ε+N r
4β

= λ(N r
3−i +N r

3 − 2c2Tε
√
N r

4)ε+N r
4β .

Now assume that, at the beginning of the game, the opponent randomly chooses between strategies
p1 and p2 with equal probability. The the expected regret of the algorithm is lower bounded by

RT =
1

2

(
R

(1)
T +R

(2)
T

)

≥ 1

2
λ(N r

1 +N r
2 + 2N r

3 − 4c2Tε
√
N r

4)ε+N r
4β

≥ 1

2
λ(N r

1 +N r
2 +N r

3 − 4c2Tε
√
N r

4)ε+N r
4β

=
1

2
λ(T −N r

4 − 4c2Tε
√
N r

4)ε+N r
4β .

Choosing ε = c3T
−1/3 we get

RT ≥
1

2
λc3T

2/3 − 1

2
λN r

4 c3T
−1/3 − 2λc2c

2
3T

1/3
√
N r

4 +N r
4β

≥ T 2/3

((
β − 1

2
λc3

)
N r

4

T 2/3
− 2λc2c

2
3

√
N r

4

T 2/3
+

1

2
λc3

)

= T 2/3

((
β − 1

2
λc3

)
x2 − 2λc2c

2
3x+

1

2
λc3

)
,

10

where x =
√
N r

4/T
2/3. Now with noting that λ > 0 by definition, we see that c3 > 0 can be chosen

to be small enough, independently of T so that, for any choice of x, the quadratic expression in the
parenthesis is bounded away from zero, and simultaneously, ε is small enough so that the threshold
condition in Lemma 8 is satisfied, completing the proof of Theorem 4.

5 The stochastic case.

In this section we present and analyze our algorithm CBP for Confidence Bound Partial moni-
toring that achieves near optimal regret for any finite partial-monitoring game against stochastic
opponents. In particular, we show that CBP achieves Õ(

√
T) regret for locally observable games

and O(T 2/3) regret for globally observable games.

5.1 The proposed algorithm.

In the core of the algorithm lie the concepts of observer action sets and observer vectors:

Definition 8 (Observer sets and observer vectors). The observer set Vi,j ⊂ N underlying a pair
of neighboring actions {i, j} ∈ N is a set of actions such that

`i − `j ∈ ⊕k∈Vi,j ImST
k .

The observer vectors (vi,j,k)k∈Vi,j underlying Vi,j are defined to satisfy the equation `i − `j =∑
k∈Vi,j S

T
kvi,j,k. In particular, vi,j,k ∈ Rsk . In what follows, the choice of the observer sets and

vectors is restricted so that Vi,j = Vj,i and vi,j,k = −vj,i,k. Furthermore, the observer set Vi,j is
constrained to be a superset of N+

i,j and, in particular, when a pair {i, j} is locally observable,

Vi,j = N+
i,j must hold. Finally, for any action k ∈ ⋃{i,j}∈N Vi,j, let Wk = maxi,j:k∈Vi,j ‖vi,j,k‖∞.

In a nutshell, CBP works as follows. For every neighboring action pair it maintains an unbiased
estimate of the expected difference of their losses. It also keeps a confidence width for these
estimates. If at time step t an estimate is “confident enough” to determine which action is better,
the algorithm excludes some actions from the set of potentially optimal actions.

For two actions i, j, let δi,j denote the expected difference of their losses. That is, δi,j =
(`i−`j)Tp∗ where p∗ is the opponent strategy. At any time step t, the estimate of the loss difference
of actions i and j is calculated as

δ̃i,j(t) =
∑

k∈Vi,j

vT
i,j,k

∑t−1
s=1 I {Is = k}Ys∑t−1
s=1 I {Is = k}

.

The confidence bound of the loss difference estimate is defined as

ci,j(t) =
∑

k∈Vi,j

‖vi,j,k‖∞
√

α log t∑t−1
s=1 I {Is = k}

with some preset parameter α. We call the estimate δ̃i,j(t) confident if |δ̃i,j(t)| ≥ ci,j(t).
In every time step t, the algorithm uses the estimates and the widths to select a set of candidate

actions. If an estimate δ̃i,j(t) is confident then the algorithm assumes that the opponent strategy

11

p∗ lies in the halfspace defined as {p ∈ ∆M : sgn(δ̃i,j(t))(`i − `j)Tp > 0}. Taking the intersection
of these halfspaces for all the action pairs with confident estimates, we arrive at a polytope that
contains the opponent strategy with high probability. Then, the set of potentially optimal actions
P(t) is defined as the actions whose cells intersect with the above polytope. We also need to
maintain the set N (t) of neighboring actions, since it may happen that action pairs that are
originally neighbors do not share an M − 2 dimensional facet in this polytope. Then, the actions
candidate for choosing by the algorithm is defined as the union of observer action sets of current
neighboring pairs: Q(t) = ∪{i,j}∈N (t)Vi,j . Finally, the action is chosen to be the one that potentially
reduces the remaining uncertainty the most:

It = argmaxk∈Q(t)

W 2
k∑t−1

s=1 I {Is = k}
,

where Wk = max{‖vi,j,k‖∞ : k ∈ N+
i,j} with fixed vi,j,k precomputed and used by the algorithm.

Decaying exploration. The algorithm depicted above could be shown to achieve low regret
for locally observable games. However, for a game that is only globally observable, the opponent
can choose a strategy that causes the algorithm to suffer linear regret: Let action 1 and 2 be a
neighboring action pair that is not locally observable. It follows that their observer action set must
contain a third action 3 with C3 6⊆ C1 ∩ C2. If the opponent chooses a strategy p ∈ C1 ∩ C2 then
actions 1 and 2 are optimal while action 3 is not. Unfortunately, the algorithm will choose action
3 linearly many times in its effort to (futilely) estimate the loss difference of actions 1 and 2.

To prevent the algorithm from falling in the above trap, we introduce the decaying exploration
rule. This rule, described below, upper bounds the number of times an action can be chosen for
only information seeking purposes. For this, we introduce the set of rarely chosen actions,

R(t) = {k ∈ N : nk(t) ≤ ηkf(t)} ,

where ηk ∈ R, f : N → R are tuning parameters to be chosen later. Then, the set of actions
available at time t is restricted to

Q(t) =
⋃

{i,j}∈N (t)

N+
i,j ∪

 ⋃

{i,j}∈N (t)

Vi,j ∩R(t)

 .

We will show that with these modifications, the algorithm achieves O(T 2/3) regret on globally
observable games, while it will also be shown to achieve an O(

√
T) regret when the opponent uses

a benign strategy. Pseudocode for the algorithm is given in Algorithm 1.
It remains to specify the function getPolytope. It gets the array halfSpace as input. The

array halfSpace stores which neighboring action pairs have a confident estimate on the difference
of their expected losses, along with the sign of the difference (if confident). Each of these confident
pairs define an open halfspace, namely

∆{i,j} = {p ∈ ∆M : halfSpace(i, j)(`i − `j)Tp > 0} .

The function getPolytope calculates the open polytope defined as the intersection of the above
halfspaces. Then for all i ∈ P it checks if Ci intersects with the open polytope. If so, then i will

12

Symbol Definition Found in/at

N,M ∈ N number of actions and outcomes

N {1, . . . , N}, set of actions

∆M ⊂M M -dim. simplex, set of opponent strategies

p∗ ∈ ∆M opponent strategy

L ∈ RN×M loss matrix

H ∈ ΣN×M feedback matrix

`i ∈ RM `i = Li,:, loss vector underlying action i

Ci ⊆ ∆M cell of action i Definition 1

P ⊆ N set of Pareto-optimal actions Definition 2

N ⊆ N2 set of unordered neighboring action-pairs Definition 3

N+
i,j ⊆ N neighborhood action set of {i, j} ∈ N Definition 3

Si ∈ {0, 1}si×M signal matrix of action i Definition 4

 L ⊆ N set of locally observable action pairs Definition 6

Vi,j ⊆ N observer actions underlying {i, j} ∈ N Definition 8

vi,j,k ∈sk , k ∈ Vi,j observer vectors Definition 8

Wi ∈ R confidence width for action i ∈ N Definition 8

Table 2: List of basic symbols

be an element of P(t). Similarly, for every {i, j} ∈ N , it checks if Ci ∩Cj intersects with the open
polytope and puts the pair in N (t) if it does.

For the convenience of the reader, we include a list of symbols used in this Chapter in Table 2.
The list of symbols used in the algorithm is shown in Table 3.

Computational complexity. The computationally heavy parts of the algorithm are the initial
calculation of the cell decomposition and the function getPolytope. All of these require linear
programming. In the preprocessing phase we need to solve N + N2 linear programs to determine
cells and neighboring pairs of cells. Then in every round, at most N2 linear programs are needed.
The algorithm can be sped up by “caching” previously solved linear programs.

5.2 Analysis of the algorithm.

The first theorem in this section is an individual upper bound on the regret of CBP.

Theorem. Let (L,H) be an N by M partial-monitoring game. For a fixed opponent strategy
p∗ ∈ ∆M , let δi denote the difference between the expected loss of action i and an optimal action.

For any time horizon T , algorithm CBP with parameters α > 1, νk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t

13

Algorithm 1 CBP

1: Input: L, H, α, η1, . . . , ηN , f = f(·)
2: Calculate P, N , Vi,j , vi,j,k, Wk

3: for t = 1 to N do
4: Choose It = t and observe Yt {Initialization}
5: nIt ← 1 {# times the action is chosen}
6: νIt ← Yt {Cumulative observations}
7: end for
8: for t = N + 1, N + 2, . . . do
9: for each {i, j} ∈ N do

10: δ̃i,j ←
∑

k∈Vi,j v
T
i,j,k

νk
nk

{Loss diff. estimate}
11: ci,j ←

∑
k∈Vi,j ‖vi,j,k‖∞

√
α log t
nk

{Confidence}
12: if |δ̃i,j | ≥ ci,j then
13: halfSpace(i, j)← sgn δ̃i,j
14: else
15: halfSpace(i, j)← 0
16: end if
17: end for
18: [P(t),N (t)]← getPolytope(P,N , halfSpace)
19: N+(t) = ∪{i,j}∈N (t)N

+
ij

20: V(t) = ∪{i,j}∈N (t)Vij
21: R(t) = {k ∈ N : nk(t) ≤ ηkf(t)}
22: S(t) = P(t) ∪N+(t) ∪ (V(t) ∩R(t))

23: Choose It = argmaxi∈S(t)
W 2
i
ni

and observe Yt
24: νIt ← νIt + Yt
25: nIt ← nIt + 1
26: end for

has expected regret

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 1

)
+

N∑

k=1

δk

+
N∑

k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)

+
∑

k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 3dkα
1/3W 2/3T 2/3 log1/3 T ,

where W = maxk∈N Wk, V = ∪{i,j}∈NVi,j, N+ = ∪{i,j}∈NN+
i,j, and d1, . . . , dN are game-dependent

14

Symbol Definition

It ∈ N action chosen at time t

Yt ∈ {0, 1}sIt observation at time t

δ̃i,j(t) ∈ estimate of (`i − `j)Tp ({i, j} ∈ N)

ci,j(t) ∈ confidence width for pair {i, j} ({i, j} ∈ N)

P(t) ⊆ N plausible actions

N (t) ⊆ N2 set of admissible neighbors

N+(t) ⊆ N ∪{i,j}∈N (t)N
+
i,j ; admissible neighborhood actions

V(t) ⊆ N ∪{i,j}∈N (t)Vi,j ; admissible information seeking actions

R(t) ⊆ N rarely sampled actions

S(t) P(t) ∪N+(t) ∪ (V(t) ∩R(t)); admissible actions

Table 3: List of symbols used in the algorithm

constants.

Proof. We use the convention that, for any variable x used by the algorithm, x(t) denotes the value
of x at the end of time step t. For example, ni(t) is the number of times action i is chosen up to
and including time step t.

The proof is based on three lemmas. The first lemma shows that the estimate δ̃i,j(t) is in the
vicinity of δi,j with high probability.5

Lemma. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)
≤ 2|Vi,j |t1−2α .

If for some t, i, j, the event whose probability is upper-bounded in Lemma 5.2 happens, we say
that a confidence interval fails. Let Gt be the event that no confidence intervals fail in time step t
and let Bt be its complement event. An immediate corollary of Lemma 5.2 is that the sum of the
probabilities that some confidence interval fails is small:

T∑

t=1

P (Bt) ≤
T∑

t=1

∑

{i,j}∈N

2|Vi,j |t−2α ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 2

)
. (2)

To prepare for the next lemma, we need some new notations. For the next definition we need
to denote the dependence of the random sets P(t), N (t) on the outcomes ω from the underlying
sample space Ω. For this, we will use the notation Pω(t) and Nω(t). With this, we define the set
of plausible configurations to be

Ψ = ∪t≥1 {(Pω(t),Nω(t)) : ω ∈ Gt} .
Call π = (i0, i1, . . . , ir) (r ≥ 0) a path in N ′ ⊆ N2 if {is, is+1} ∈ N ′ for all 0 ≤ s ≤ r − 1 (when
r = 0 there is no restriction on π). The path is said to start at i0 and end at ir. In what follows
we denote by i∗ an optimal action under p∗ (i.e., `Ti∗p

∗ ≤ `Ti p∗ holds for all actions i).
The set of paths that connect i to i∗ and lie in N ′ will be denoted by Bi(N ′). The next lemma

shows that Bi(N ′) is non-empty whenever N ′ is such that for some P ′, (P ′,N ′) ∈ Ψ:

5The proofs of technical lemmas can be found in the appendix.

15

Lemma. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that i ∈ P ′. Then there exists a
path π that starts at i and ends at i∗ that lies in N ′.

For i ∈ P define

di = max
(P ′,N ′)∈Ψ

i∈P ′

min
π∈Bi(N ′)
π=(i0,...,ir)

r∑

s=1

|Vis−1,is | .

According to the previous lemma, for each Pareto-optimal action i, the quantity di is well-defined
and finite. The definition is extended to degenerate actions by defining di to be max(dl, dk), where
k, l are such that i ∈ N+

k,l.

Let k(t) = argmaxi∈P(t)∪V (t)W
2
i /ni(t− 1). When k(t) 6= It this happens because k(t) 6∈ N+(t)

and k(t) /∈ R(t), i.e., the action k(t) is a “purely” information seeking action which has been
sampled frequently. When this holds we say that the “decaying exploration rule is in effect at time
step t”. The corresponding event is denoted by Dt = {k(t) 6= It}. Let δi be defined as maxj∈N δi,j ,
i.e., δi is the excess expected loss of action i compared to an optimal action.

Lemma. Fix any t ≥ 1.

1. Take any action i. On the event Gt ∩ Dt,6 from i ∈ P(t) ∪N+(t) it follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

2. Take any action k. On the event Gt ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

We are now ready to start the proof. By reordering terms and conditioning, we can rewrite the
expected regret as follows:

E[RT] = E

[
T∑

t=1

LIt,Jt

]
−

T∑

t=1

E [Li∗,J1] =
N∑

k=1

E[nk(T)]δi

=

N∑

k=1

E

[
T∑

t=1

I {It = k}
]
δk

=

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]
δk +

N∑

k=1

E

[
T∑

t=1

I {It = k,Gt}
]
δk .

Now,

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]
δk ≤

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]

(because δk ≤ 1)

= E

[
T∑

t=1

N∑

k=1

I {It = k,Bt}
]

= E

[
T∑

t=1

I {Bt}
]

=
T∑

t=1

P (Bt) .

6Here and in what follows all statements that start with “On event X” should be understood to hold almost surely
on the event. However, to minimize clutter we will not add the qualifier “almost surely”.

16

Hence,

E[RT] ≤
T∑

t=1

P (Bt) +
N∑

k=1

E[
T∑

t=1

I {It = k,Gt}]δk .

Here, the first term can be bounded using (2). Let us thus consider the elements of the second
sum:

E[

T∑

t=1

I {It = k,Gt}]δk ≤ δk+

E[

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk (3)

+ E[
T∑

t=N+1

I
{
Gt,Dct , k 6∈ P(t) ∪N+(t), It = k

}
] δk (4)

+ E[
T∑

t=N+1

I
{
Gt,Dt, k ∈ P(t) ∪N+(t), It = k

}
] δk (5)

+ E[

T∑

t=N+1

I
{
Gt,Dt, k 6∈ P(t) ∪N+(t), It = k

}
] δk . (6)

The first δk corresponds to the initialization phase of the algorithm when every action gets chosen
once. The next paragraphs are devoted to upper bounding the above four expressions (3)-(6). Note
that, if action k is optimal, that is, if δk = 0 then all the terms are zero. Thus, we can assume from
now on that δk > 0.

Term (3): Consider the event Gt ∩ Dc
t ∩ {k ∈ P(t) ∪ N+(t)}. We use case 2 of Lemma 5.2 with

the choice i = k. Thus, from It = k, we get that i = k ∈ P(t)∪N+(t) and so the conclusion of the
lemma gives

nk(t− 1) ≤ Ak(t) def
= 4W 2

k

d2
k

δ2
k

α log t .

17

Therefore, we have

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}

≤
T∑

t=N+1

I {It = k, nk(t− 1) ≤ Ak(t)}

+

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k, nk(t− 1) > Ak(t)

}

=
T∑

t=N+1

I {It = k, nk(t− 1) ≤ Ak(t)}

≤ Ak(T) = 4W 2
k

d2
k

δ2
k

α log T

yielding

(3) ≤ 4W 2
k

d2
k

δk
α log T .

Term (4): Consider the event Gt ∩Dc
t ∩ {k 6∈ P(t) ∪ N+(t)}. We use case 2 of Lemma 5.2. The

lemma gives that that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

We know that k ∈ V(t) = ∪{i,j}∈N (t)Vi,j . Let Φt be the set of pairs {i, j} in N (t) ⊆ N such that
k ∈ Vi,j . For any {i, j} ∈ Φt, we also have that i, j ∈ P(t) and thus if l′{i,j} = argmaxl∈{i,j} δl then

nk(t− 1) ≤ 4W 2
k

d2
l′{i,j}

δ2
l′{i,j}

α log t .

Therefore, if we define l(k) as the action with

δl(k) = min
{
δl′{i,j}

: {i, j} ∈ N , k ∈ Vi,j
}

then it follows that

nk(t− 1) ≤ 4W 2
k

d2
l(k)

δ2
l(k)

α log t .

Note that δl(k) can be zero and thus we use the convention c/0 = ∞. Also, since k is not in
P(t) ∪N+(t), we have that nk(t− 1) ≤ ηkf(t). Define Ak(t) as

Ak(t) = min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log t, ηkf(t)

)
.

18

Then, with the same argument as in the previous case (and recalling that f(t) is increasing), we
get

(4) ≤ δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, ηkf(T)

)
.

We remark that without the concept of “rarely sampled actions”, the above term would scale with
1/δ2

l(k), causing high regret. This is why the “vanilla version” of the algorithm fails on hard games.

Term (5): Consider the event Gt ∩Dt ∩ {k ∈ P(t) ∪N+(t)}. From case 1 of Lemma 5.2 we have

that δk ≤ 2dk

√
α log t
f(t) maxj∈N

Wj√
ηj

.

Using that by definition f(t) = α1/3t2/3 log1/3 t, we get
∑T

t=N+1

√
α log t
f(t) ≤

√
α2/3 log2/3(T)

∑T
t=N+1 t

−1/3 ≤
√
α2/3 log2/3(T)

∫ T
N s−1/3ds ≤ 3

2

√
α2/3 log2/3(T)T 2/3 ≤ 3

2T
√

α log(T)
f(T) and hence

(5) ≤ 3dkT

√
α log T

f(T)
max
l∈N

Wl√
ηl
.

Term (6): Consider the event Gt ∩Dt ∩ {k 6∈ P(t)∪N+(t)}. Since k 6∈ P(t)∪N+(t) we know that
k ∈ V(t) ∩R(t) ⊆ R(t) and hence nk(t− 1) ≤ ηkf(t). With the same argument as in the cases (3)
and (4) we get that

(6) ≤ δkηkf(T) .

To conclude the proof of Theorem 5.2, we set ηk = W
2/3
k and use again f(t) = α1/3t2/3 log1/3 t.

Then, with the notation W = maxk∈N Wk, V = ∪{i,j}∈NVi,j , N+ = ∪{i,j}∈NN+
i,j , we get the desired

inequality.

An implication of Theorem 5.2 is an upper bound on the individual regret of locally observable
games:

Corollary. If G is locally observable then

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 1

)
+

N∑

k=1

δk + 4W 2
k

d2
k

δk
α log T .

Proof. If a game is locally observable then V \N+ = ∅, leaving the last two sums of the statement
of Theorem 5.2 zero.

The following corollary is an upper bound on the minimax regret of any globally observable
game.

Corollary. Let G be a globally observable game. Then there exists a constant c such that the
expected regret can be upper bounded independently of the choice of p∗ as

E[RT] ≤ cT 2/3 log1/3 T .

19

The following theorem is an upper bound on the minimax regret of any globally observable
game against “benign” opponents. To state the theorem, we need a new definition. Let A be some
subset of actions in G. We call A a point-local game in G if

⋂
i∈A Ci 6= ∅.

Theorem. Let G be a globally observable game. Let ∆′ ⊆ ∆M be some subset of the probability
simplex such that its topological closure ∆′ has ∆′∩Ci∩Cj = ∅ for every {i, j} ∈ N \ L. Then there

exists a constant c such that for every p∗ ∈ ∆′, algorithm CBP with parameters α > 1, νk = W
2/3
k ,

f(t) = α1/3t2/3 log1/3 t achieves

E[RT] ≤ cdpmax
√
bT log T ,

where b is the size of the largest point-local game, and dpmax is a game-dependent constant.

Proof. To prove this theorem, we use a scheme similar to the proof of Theorem 5.2. Repeating that
proof, we arrive at the same expression

E[
T∑

t=1

I {It = k,Gt}]δk ≤ δk+

E[
T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk (3)

+ E[

T∑

t=N+1

I
{
Gt,Dct , k 6∈ P(t) ∪N+(t), It = k

}
] δk (4)

+ E[
T∑

t=N+1

I
{
Gt,Dt, k ∈ P(t) ∪N+(t), It = k

}
] δk (5)

+ E[
T∑

t=N+1

I
{
Gt,Dt, k 6∈ P(t) ∪N+(t), It = k

}
] δk , (6)

where Gt and Dt denote the events that no confidence intervals fail, and the decaying exploration
rule is in effect at time step t, respectively.

From the condition of ∆′ we have that there exists a positive constant ρ1 such that for every
neighboring action pair {i, j} ∈ N \ L, max(δi, δj) ≥ ρ1. We know from Lemma 5.2 that if Dt
happens then for any pair {i, j} ∈ N \ L it holds that max(δi, δj) ≤ 4N

√
α log t
f(t) max(Wk′/

√
ηk′)

def
=

g(t). It follows that if t > g−1(ρ1) then the decaying exploration rule can not be in effect. Therefore,
terms (5) and (6) can be upper bounded by g−1(ρ1).

With the value ρ1 defined in the previous paragraph we have that for any action k ∈ V \N+,
l(k) ≥ ρ1 holds, and therefore term (4) can be upper bounded by

(4) ≤ 4W 2 4N2

ρ2
1

α log T ,

using that dk, defined in the proof of Theorem 5.2, is at most 2N . It remains to carefully upper
bound term (3). For that, we first need a definition and a lemma. Let Aρ = {i ∈ N : δi ≤ ρ}.

20

Lemma. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M an opponent strategy.
There exists a ρ2 > 0 such that Aρ2 is a point-local game in G.

To upper bound term (3), with ρ2 introduced in the above lemma and γ > 0 specified later, we
write

(3) = E[

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk

≤ I {δk < γ}nk(T)δk + I {k ∈ Aρ2 , δk ≥ γ} 4W 2
k

d2
k

δk
α log T + I {k /∈ Aρ2} 4W 2 8N2

ρ2
α log T

≤ I {δk < γ}nk(T)γ + |Aρ2 |4W 2
d2
pmax

γ
α log T + 4NW 2 8N2

ρ2
α log T ,

where dpmax is defined as the maximum dk value within point-local games.
Let b be the number of actions in the largest point-local game. Putting everything together we

have

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 2

)
+ g−1(ρ1) +

N∑

k=1

δk

+ 16W 2N
3

ρ2
1

α log T + 32W 2N
3

ρ2
α log T

+ γT + 4bW 2
d2
pmax

γ
α log T .

Now we choose γ to be

γ = 2Wdpmax

√
bα log T

T

and we get

E[RT] ≤ c1 + c2 log T + 4Wdpmax
√
bαT log T .

Remark 2. Note that the above theorem implies that CBP does not need to have any prior knowl-
edge about ∆′ to achieve

√
T regret. This is why we say our algorithm is “adaptive”.

An immediate implication of Theorem 5.2 is the following minimax bound for locally observable
games:

Corollary. Let G be a locally observable finite partial monitoring game. Then there exists a con-
stant c such that for every p ∈ ∆M ,

E[RT] ≤ c
√
T log T .

21

5.3 Example.

In this section we demonstrate the results of the previous section through the example of Dynamic
Pricing. From Section 2.1 we know that dynamic pricing is not a locally observable game. That is,
the minimax regret of the game is Θ(T 2/3).

Now, we introduce a restriction on the space of opponent strategies such that the condition of
Theorem 5.2 is satisfied. We need to prevent non-consecutive actions from being simultaneously
optimal. A somewhat stronger condition is that out of three actions i < j < k, the loss of j should
not be more than that of both i and k. We can prevent this from happening by preventing it for
every triple i− 1, i, i+ 1. Hence, a “bad” opponent strategy would satisfy

`Ti−1p ≤ `Ti p and `Ti+1p ≤ `Ti p .

After rearranging, the above two inequalities yield the constraints

pi ≤
c

c+ 1
pi−1

for every i = 2, . . . , N − 1. Note that there is no constraint on pN . If we want to avoid by a margin
these inequalities to be satisfied, we arrive at the constraints

pi ≥
c

c+ 1
pi−1 + ρ

for some ρ > 0, for every i = 2, . . . , N − 1.
In conclusion, we define the restricted opponent set to

∆′ =

{
p ∈ ∆M : ∀i = 2, . . . , N − 2, pi ≥

c

c+ 1
pi−1 + ρ

}
.

The intuitive interpretation of this constraint is that the probability of the higher maximum price of
the costumer should not decrease too fast. This constraint does not allow to have zero probabilities,
and thus it is too restrictive.

Another way to construct a subset of ∆M that is isolated from “dangerous” boundaries is to
include only “hilly” distributions. We call a distribution p ∈ ∆M hilly if it has a peak point i∗ ∈ N ,
and there exist ξ1, . . . , ξi∗−1 < 1 and ξi∗+1, . . . , ξN < 1 such that

pi−1 ≤ ξi−1pi for 2 ≤ i ≤ i∗, and

pi+1 ≤ ξi+1pi for i∗ ≤ i ≤ N − 1.

We now show that with the right choice of ξi, under a hilly distribution with peak i∗, only action
i∗ and maybe action i∗ − 1 can be optimal.

1. If i ≤ i∗ then

(`i − `i−1)Tp = cpi−1 − (pi + · · ·+ pN)

≤ cξi−1pi − pi − (pi+1 + · · ·+ pN) ,

thus, if ξi−1 ≤ 1/c then the expected loss of action i is less than or equal to that of action
i− 1.

22

2. If i ≥ i∗ then

(`i+1 − `i)Tp = cpi − (pi+1 + · · ·+ pN)

≥ pi

c− (ξi+1 + ξi+1ξi+2 + · · ·+

N∏

j=i+1

ξj)

 .

Now if we let ξi∗+1 = · · · = ξN = ξ then we get

(`i+1 − `i)Tp ≥ pi
(
c− ξ 1− ξN−1

1− ξ

)

≥ pi
(
c− ξ

1− ξ

)
,

and thus if we choose ξ ≤ c
c+1 then the expected loss of action i is less than or equal to that

of action i+ 1.

So far in all the calculations we allowed equalities. If we want to achieve that only action i∗

and possibly action i∗ − 1 are optimal, we use

ξi

< 1/c, if 2 ≤ i ≤ i∗ − 2;
= 1/c, if i = i∗ − 1;
< c/(c+ 1), if i∗ + 1 ≤ i ≤ N.

If an opponent strategy is hilly with ξi satisfying all the above criteria, we call that strategy
sufficiently hilly. Now we are ready to state the corollary of Theorem 5.2:

Corollary. Consider the dynamic pricing game with N actions and M outcomes. If we restrict
the set of opponent strategies ∆′ to the set of all sufficiently hilly distributions then the minimax
regret of the game is upper bounded by

E[RT] ≤ C
√
T

for some constant C > 0 that depends on the game G = (L,H) and the choice of ∆′.

Remark 3. Note that the number of actions and outcomes N = M does not appear in the bound be-
cause the size of the largest point local game with the restricted strategy set is always 2, irrespectively
of the number of actions.

6 The adversarial case.

Now we turn our attention to playing against adversarial opponents. We propose and analyze the
algorithm NeigborhoodWatch. We show that the algorithm achieves O(

√
T) regret on locally

observable games.

23

ij

G

Figure 2: To each vertex i in the graph G we associate an algorithm Ai. The algorithm plays an
action from the distribution qti over its neighborhood set Ni and receives partial information about
relative loss between the node i and its neighbor. The other piece of the partial information comes
from the times when a neighboring algorithm Aj is run and the action i is picked.

Algorithm 2 NeigborhoodWatch Algorithm

1: For all i = {1, . . . , N}, initialize algorithm Ai with q1
i = x1

i = 1Ni/|Ni|
2: for t=1,. . . , T do
3: Let Qt = [qt1, . . . , q

t
N], where qti is furnished by Ai

4: Find pt satisfying pt = Qtpt

5: Draw kt from pt

6: Play It drawn from qtkt and obtain signal SItejt
7: Run local algorithm Akt with the received signal
8: For any i 6= kt, q

t+1
i ← qti

9: end for

6.1 Method.

The method is a two-level procedure motivated by Foster and Vohra [18], and Blum and Mansour
[12]. The intuition stems from the following observation. Consider the graph whose vertices are the
actions, and two vertices are connected with an edge if the corresponding actions are neighbors.
For a vertex i, let Ni denote the set of neighboring vertices of i. Suppose for each vertex i we have
a distribution qi ∈ ∆N supported on the neighbor set Ni. Let p ∈ ∆N be defined by p = Qp where
Q is the matrix [q1, . . . , qN]. Then there are two equivalent ways of sampling an action from p.
The first way is to directly sample the vertex according to p. The second is to sample a vertex i
according to p and then choose a vertex j within the neighbor set Ni according to qi. Because of the
stationarity (or flow) condition p = Qp, the two ways are equivalent. This idea of finding a fixed
point is implicit in Foster and Vohra [18], and Blum and Mansour [12], who show how stationarity
can be used to convert external regret guarantees into an internal regret statement.7 We show
here that, in fact, this conversion can be done “locally” and only with “comparison” information
between neighboring actions.

Our procedure is as follows. We run N different algorithms A1, . . . ,AN , each corresponding
to a vertex and its neighbor set. Within this neighbor set we obtain small regret because we can
construct estimates of loss differences among the actions, thanks to the local observability condition.

7For the definition of internal regret, see the next section. The external regret is just the regret, the word “external”
is used as “not internal”.

24

Algorithm 3 Local Algorithm Ai
1: If t = 1, initialize s = 1
2: For r ∈ {τi(s− 1) + 1, . . . , τi(s)} (i.e. for all r since the last time Ai was run) construct

br(i,j) = vT
i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr

for all j ∈ Ni

3: Define for all j ∈ Ni,

hs(i,j) =

τi(s)∑

r=τi(s−1)+1

br(i,j)

and let
f̃si =

[
hs(i,j) · I {j ∈ Ni}

]
j∈N

4: Pass the cost f̃si ∈ RN to a full-information online convex optimization algorithm over the
simplex (e.g. Exponential Weights Algorithm) and receive the next distribution xs+1

i supported
on Ni

5: Define
qt+1
i ← (1− γ)xs+1

i + (γ/|Ni|)1{Ni}

6: Increase the count s← s+ 1

25

Each algorithm Ai produces a distribution qti ∈ ∆N at round t, reflecting the relative performance
of the vertex i and its neighbors. Since Ai is only concerned with its local neighborhood, we require
that qti has support on Ni and is zero everywhere else. The meta algorithm NeigborhoodWatch
combines the distributions Qt = [qt1, . . . , q

t
N] and computes pt as a fixed point

pt = Qtpt . (7)

How do we choose our actions? At each round, we draw Kt ∼ pt and then It ∼ qtKt according to
our two-level scheme. The action It is the action we play in the partial monitoring game against the
adversary. Let the action played by the adversary at time t be denoted by jt. Then the feedback
obtained is SItejt . This information is passed to AKt which updates the distributions qtKt . In
Section 6.2.2 we detail how this is done.

The advantage of the above two-level method is that while the actions are still chosen with
respect to the distribution qt, the loss difference estimations are only needed locally. The local
observability condition ensures that these local estimations can be done without using “non-local”
actions.

6.2 Analysis of NeigborhoodWatch.

Before presenting the main result of this section, we need the concept of local internal regret.

6.2.1 Local internal regret.

Let φ : {1, . . . , N} → {1, . . . , N} be a departure function [13], and let It and jt denote the moves at
time t of the player and the opponent, respectively (we use lowercase jt to signify that the choices
of the opponent are nonrandom). At the end of the game, regret with respect to φ is calculated as
the difference of the incurred cumulative cost and the cost that would have been incurred had we
played action φ(It) instead of It, for all t. Let Φ be a set of departure functions. The Φ-regret is
defined as

1

T

T∑

t=1

c(It, jt)− inf
φ∈Φ

1

T

T∑

t=1

c(φ(It), jt) ,

where the cost function considered in this paper is simply c(i, j) = Li,j . If Φ = {φk : k ∈ N}
consists of constant mappings φk(i) = k, the regret is called external, or just simply regret: this
definition is equivalent to the regret definition in the introduction. For (global) internal regret, the
set Φ consists of all departure functions φi→j such that φi→j(i) = j and φi→j(h) = h for h 6= i.

Definition 9. For a game G, let the graph G be its neighborhood graph: its vertices are the actions
of the game, and two vertices are connected with an edge if the corresponding actions are neighbors.
A departure function φi→j is called local if j is a neighbor of i in the neighborhood graph G. Let
ΦL be the set of all local departure functions. The ΦL-regret defined with respect to the set of all
local departure functions is called local internal regret.

Our main result for the adversarial case is the following internal regret guarantee.

Theorem. The local internal regret of Algorithm 2 is bounded as

sup
φ∈ΦL

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
≤ 2Nv̄

√
10(logN)T ,

26

where v̄ = max(i,j) ‖v(i,j)‖∞.

To prove that the same bound holds for the external regret we need two observations. The fist
observation is that the internal regret is at most a constant multiple of the local internal regret:

Lemma. There exists a problem dependent constant K such that the internal regret is at most K
times the local internal regret.

Again, the proof of this and other technical lemmas can be found in the appendix.
The second (well-known) observation is that the internal regret is always greater than or equal

to the external regret.

Corollary. The external regret of Algorithm 2 is bounded as

E{RT } ≤ 2KNv̄
√

10(logN)T ,

where K is the upper bound from Lemma 6.2.1.

We remark that high probability bounds can also be obtained in a rather straightforward man-
ner, using, for instance, the approach of Abernethy and Rakhlin [1]. Another extension, the case
of random signals, is discussed in Section 6.3.

The rest of this section is devoted to the proof of Theorem 6.2.1.

6.2.2 Estimating loss differences.

The random variable kt drawn from pt at time t determines which algorithm is active on the given
round. Let

τi(s) = min

{
t : s =

t∑

r=1

I {kr = i}
}

denote the (random) time when the algorithm Ai is invoked for the s-th time. By convention,
τi(0) = 0. When invoked for the s-th time, the algorithm Ai constructs estimates

br(i,j) , vT
i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr (r ∈ {τi(s− 1) + 1, . . . , τi(s)}, j ∈ Ni)

for all the rounds after it has been run the last time, until (and including) the current time r = τi(s).
We can assume bt(i,j) = 0 for any j /∈ Ni. The estimates bt(i,j) can be constructed by the algorithm
because SIrejr is precisely the feedback given to the algorithm.

Let Ft be the σ-algebra generated by the random variables {k1, I1, . . . , kt, It}. For any t, the
(conditional) expectation satisfies

E
[
bt(i,j)|Ft−1

]
=

N∑

k=1

ptkq
t
k(i)v

T
i,j

[
Si
0

]
ejt + ptiq

t
i(j)v

T
i,j

[
0

Sj/q
t
i(j))

]
ejt

= ptiv
T
i,jS(i,j)ejt

= pti(`j − `i)Tejt
= pti(ej − ei)TLejt , (8)

27

where in the second equality we used the fact that
∑N

k=1 p
t
kq
t
k(i) = pti by stationarity (7). Thus

each algorithm Ai, on average, has access to unbiased estimates of the loss differences within its
neighborhood set.

Recall that algorithm Ai is only aware of its neighborhood, and therefore we peg coordinates
of qti to zero outside of Ni. However, for convenience, our notation below still employs full N -
dimensional vectors, and we keep in mind that only coordinates indexed by Ni are considered and
modified by Ai.

When invoked for the s-th time (that is, t = τi(s)), Ai constructs linear functions (cost esti-
mates) f̃si ∈ RN defined by

f̃si =
[
hs(i,j) · I {j ∈ Ni}

]
j∈N

,

where

hs(i,j) =

τi(s)∑

r=τi(s−1)+1

br(i,j) .

We now show that f̃ si · q
τ(s)
i has the same conditional expectation as the actual loss of the meta

algorithm NeigborhoodWatch at time t = τi(s). That is, by bounding expected regret of the
black-box algorithm operating on {f̃si }, we bound the actual regret suffered by the meta algorithm
on the rounds when Ai was invoked.

Lemma. Consider algorithm Ai. It holds that

E
{

(q
τi(s+1)
i − eu)TLejτi(s+1)

∣∣∣ Fτi(s)
}

= E
{
f̃s+1
i · (qτi(s+1)

i − eu)
∣∣∣ Fτi(s)

}

for any u ∈ Ni.

Proof. Throughout the proof, we drop the subscript i on τi to ease the notation. Note that q
τ(s+1)
i =

q
τ(s)+1
i since the distribution is not updated when algorithm Ai is not invoked. Hence, conditioned

on Fτ(s), the variable (q
τ(s+1)
i −eu) can be taken out of the expectation. We therefore need to show

that

(q
τ(s+1)
i − eu) · E

{
Lejτ(s+1)

|Fτ(s)

}
= (q

τ(s+1)
i − eu) · E

{
f̃s+1
i |Fτ(s)

}
. (9)

First, we can write

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
= E

τ(s+1)∑

t=τ(s)+1

bt(i,j)

∣∣∣∣∣∣
Fτ(s)

= E

∞∑

t=τ(s)+1

bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣∣∣∣
Fτ(s)

=

∞∑

t=τ(s)+1

E
{
E
[
bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}

=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)}E

[
bt(i,j)

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}
.

28

The last step follows because the event {t ≤ τ(s + 1)} is Ft−1-measurable (that is, variables
k1, . . . , kt−1 determine the value of the indicator). By (8), we conclude

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}
. (10)

Since I {t = τ(s+ 1)} = I {kt = i} I {t ≤ τ(s+ 1)}, we have

E
{
I {t = τ(s+ 1)} ejt

∣∣ Fτ(s)

}
= E

{
E {I {kt = i} I {t ≤ τ(s+ 1)} ejt | Ft−1}

∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)} ejtE {I {kt = i} | Ft−1}

∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)}P(kt = i

∣∣ Ft−1)ejt
∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)} ptiejt

∣∣ Fτ(s)

}
.

Combining with (10),

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}

=
∞∑

t=τ(s)+1

E
{
I {t = τ(s+ 1)} (ej − ei)TLejt

∣∣ Fτ(s)

}
.

Observe that coordinates of f̃s+1
i , q

τ(s+1)
i , and eu are zero outside of Ni. We then have that

E
{
f̃s+1
i

∣∣∣ Fτ(s)

}
=
[
I {j ∈ Ni}E

{
hs+1

(i,j)

∣∣∣ Fτ(s)

}]
j∈N

=

I {j ∈ Ni}

∞∑

t=τ(s)+1

E
{

(ej − ei)TLejtI {t = τ(s+ 1)}
∣∣ Fτ(s)

}

j∈N

=

I {j ∈ Ni}

∞∑

t=τ(s)+1

E
{
eTjLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

j∈N

− c · 1{Ni} ,

where

c =
∞∑

t=τ(s)+1

E
{
eTiLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

is a scalar. When multiplying the above expression by q
τ(s+1)
i −eu, the term c·1{Ni} vanishes. Thus,

minimizing regret with relative costs (with respect to the ith action) is the same as minimizing
regret with the absolute costs. We conclude that

(q
τ(s+1)
i − eu)E

{
f̃ s+1
i

∣∣∣ Fτ(s)

}
= (q

τ(s+1)
i − eu) ·

∞∑

t=τ(s)+1

E
{
eTjLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

j∈Ni

= (q
τ(s+1)
i − eu) ·

∞∑

t=τ(s)+1

E
{
LejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

= (q
τ(s+1)
i − eu) · E

{
Lejτ(s+1)

∣∣∣ Fτ(s)

}
.

29

6.2.3 Regret Analysis.

For each algorithm Ai, the estimates f̃si are passed to a full-information black box algorithm which
works only on the coordinates Ni. From the point of view of the full-information black box, the
game has length Ti = max{s : τi(s) ≤ T}, the (random) number of times action i has been played
within T rounds.

We proceed similarly to Abernethy and Rakhlin [1]: we use a full-information online convex
optimization procedure with an entropy regularizer (also known as the Exponential Weights Al-
gorithm) which receives the vector f̃si and returns the next mixed strategy xs+1

i ∈ ∆N (in fact,
effectively in ∆|Ni|). We then define

qt+1
i = (1− γ)xs+1

i + (γ/|Ni|)1{Ni} ,
where γ is to be specified later. Since Ai is run at time t, we have τi(s) = t by definition. The next
time Ai is active (that is, at time τi(s+1)), the action Iτi(s+1) will be played as a random draw from

qt+1
i = q

τi(s+1)
i ; that is, the distribution is not modified on the interval {τi(s) + 1, . . . , τi(s+ 1)}.

We prove Theorem 6.2.1 by a series of lemmas. The first one is a direct consequence of an
external regret bound for a Follow the Regularized Leader (FTRL) algorithm in terms of local norms
[1]. For a strictly convex “regularizer” F , the local norm ‖ · ‖x is defined by ‖z‖x =

√
zT∇2F (x)z

and its dual is ‖z‖∗x =
√
zT∇2F (x)−1z.

Lemma. The full-information algorithm utilized by Ai has an upper bound

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xsi)
2

}
+ η−1 logN + Tγ ¯̀

on its external regret, where φ(i) ∈ Ni is any neighbor of i, ¯̀= maxi,j Li,j, and η is a learning rate
parameter to be tuned later.

Proof. Since our decision space is a simplex, it is natural to use the (negative) entropy regularizer,
in which case FTRL is the same as the Exponential Weights Algorithm. From Abernethy and
Rakhlin [1, Thm 2.1], for any comparator u with zero support outside |Ni|, the following regret
guarantee holds:

Ti∑

s=1

f̃si · (xsi − u) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xsi)
2 + η−1 log(|Ni|) .

An easy calculation shows that in the case of entropy regularizer F , the Hessian ∇2F (x) =
diag(x−1

1 , x−1
2 , . . . , x−1

N) and ∇2F (x)−1 = diag(x1, x2, . . . , xN). We refer to Abernethy and Rakhlin
[1] for more details.

Let φ : {1, . . . , N} → {1, . . . , N} be a local departure function (see Definition 9). We can then
write a regret guarantee

Ti∑

s=1

f̃si · (xsi − eφ(i)) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xsi)
2 + η−1 log(|Ni|) .

Since, in fact, we play according to a slightly modified version q
τi(s)
i of xsi , it holds that

Ti∑

s=1

f̃si · (qτi(s)i − eφ(i)) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xsi)
2 + η−1 log(|Ni|) +

Ti∑

s=1

f̃si · (qτi(s)i − xsi) .

30

Taking expectations of both sides and upper bounding |Ni| by N , we get

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xsi)
2

}
+ η−1 logN + E

{
Ti∑

s=1

f̃si · (qτi(s)i − xsi)
}

.

A proof identical to that of Lemma 6.2.2 gives

E
{
f̃si · (qτi(s)i − xsi)

∣∣∣ Fτi(s−1)

}
= E

{
(q
τi(s)
i − xsi)TLejτi(s) |Fτi(s−1)

}

≤ E
{
‖qτi(s)i − xsi‖1 · ‖Lejτi(s)‖∞

∣∣∣ Fτi(s−1)

}

≤ γ ¯̀

for the last term, where ¯̀ is the upper bound on the magnitude of entries of L. Putting everything
together,

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xsi)
2

}
+ η−1 logN + Tγ ¯̀,

where we have upper bounded Ti by T .

As with many bandit-type problems, effort is required to show that the variance term is con-
trolled. This is the subject of the next lemma.

Lemma. The sum of the variance terms in the bound of Lemma 6.2.3 is upper bounded as

N∑

i=1

E

{
Ti∑

s=1

(‖f̃si ‖∗xsi)
2

}
≤ 10v̄2NT .

Proof. First, fix an i ∈ N and consider the term
∑Ti

s=1(‖f̃si ‖∗xsi)
2. Until the last step of the proof,

we will sometimes omit i from the notation.
We start by observing that f̃si is a sum of at most τ(s) − τ(s − 1) terms of the type vT

i,jSiejr
(that is, of constant magnitude) and one term of the type vT

i,jSjejr/q
r
i (j). In controlling ‖f̃si ‖∗xsi , we

therefore have two difficulties: controlling the number of constant-size terms and making sure the
last term does not explode due to division by a small probability qri (j). The former is solved below
by a careful argument below, while the latter problem is solved following the usual bandit-style
argument.

More precisely, we can write f̃si = gsi + h
τi(s)
i where the vectors gsi , h

t
i ∈ RN are defined as

gsi (j) ,
τi(s)∑

r=τi(s−1)+1

I {Ir = i} vT
i,jSiejrI {j ∈ Ni}

and
hti(j) = I {It = j} I {j ∈ Ni} vT

i,ItSItejt/q
t
i(It) .

Then
(‖f̃si ‖∗xsi)

2 = (‖gsi + h
τi(s)
i ‖∗xsi)

2 ≤ 2(‖gsi ‖∗xsi)
2 + 2(‖hτi(s)i ‖∗xsi)

2

31

and hence

N∑

i=1

Ti∑

s=1

(‖f̃si ‖∗xsi)
2 ≤ 2

N∑

i=1

Ti∑

s=1

(‖gsi ‖∗xsi)
2 + 2

N∑

i=1

Ti∑

s=1

(‖hτi(s)i ‖∗xsi)
2

= 2
N∑

i=1

Ti∑

s=1

(‖gsi ‖∗xsi)
2 + 2

T∑

t=1

N∑

i=1

I {kt = i} (‖hti‖∗xsi(t)i

)2 , (11)

where si(t) =
∑t

r=1 I {kt = i} is the number of times Ai was invoked up to (and including) time t.
We will bound each of the two terms separately, in expectation. For the second term,

(‖hti‖∗xsi)
2 = xsi (It)(v

T
i,ItSItejt/q

t
i(It))

2 I {j ∈ Ni} ≤ xsi (It)(v̄/qti(It))2 I {j ∈ Ni} ,

where s = si(t). Since qti = (1 − γ)xsi + (γ/|Ni|)1{Ni}, it is easy to verify that xsi (It)/q
t
i(It) ≤ 2

(whenever γ ≤ 1/2) and thus
(‖hti‖∗xsi)

2 ≤ 2v̄2/qti(It) .

The remaining division by the probability disappears under the expectation:

E
{

(‖hti‖∗xsi(t)i

)2

∣∣∣∣ k1, . . . , kt, I1, . . . , It−1

}
≤ 2v̄2

N∑

j=1

qti(j)/q
t
i(j) = 2Nv̄2

and so

E
T∑

t=1

N∑

i=1

I {kt = i} (‖hti‖∗xsi(t)i

)2 =

T∑

t=1

E
N∑

i=1

I {kt = i}E
{

(‖hti‖∗xsi(t)i

)2

∣∣∣∣ k1, . . . , kt, I1, . . . , It−1

}

= 2Nv̄2
T∑

t=1

E

{
N∑

i=1

I {kt = i}
}

= 2NTv̄2 . (12)

Consider now the first term. As discussed in the proof of Lemma 6.2.3, the inverse Hessian of
the entropy function shrinks each coordinate j precisely by xsi (j) ≤ 1, implying that the local norm
is dominated by the Euclidean norm :

‖gsi ‖∗xsi ≤ ‖g
s
i ‖2.

It is therefore enough to upper bound the expectation of
∑N

i=1Gi where

Gi =

Ti∑

s=1

‖gsi ‖22 .

The idea of the proof is the following. Observe that P (kt = i|Ft−1) = P (It = i|Ft−1). Conditioned
on the event that either kt = i or It = i, each of the two possibilities (kt = i and It 6= i vs. kt 6= i
and It = i) has an equal probability of occurring. Hence, each of the two possibilities has at most
1/2 probability of occurring. Note that gsi inflates every time kt 6= i, yet It = i occurs. It is then
easy to see that magnitude of gsi is unlikely to get large before algorithm Ai is run again. We now
make this intuition precise.

32

We have

Gi =
N∑

j=1

Ti∑

s=1

(gsi (j))
2 ≤

N∑

j=1

Ti∑

s=1

τi(s)∑

t=τi(s−1)+1

I {It = i} vT
i,jSiejt

2

≤ v̄2N

Ti∑

s=1

τi(s)∑

t=τi(s−1)+1

I {It = i}

2

= v̄2N
T∑

t,t′=1

I
{
It = It′ = i, t ∼i t′

}

= v̄2N
T∑

t=1

I {It = i} + 2v̄2N
T∑

t=1

I {It = i}
T∑

t′=t+1

I
{
It′ = i, t ∼i t′

}

︸ ︷︷ ︸
Bt(i)

,

where we introduced the equivalence relation t ∼i t′ to mean that t and t′ are in the same “block”
{τi(s− 1) + 1, . . . , τi(s)} of time steps for some s ∈ {1, . . . , Ti}.

Fix t and i. Introduce Nr(i) =
∑T−t

s=r I {i 6∈ K(t+ 1, νi(t+ 1, s))}, where

νi(t+ 1, s) = min

{
t′ ≥ t+ 1 :

t′∑

r=t+1

I {Ir = i} = s

}

is the time index after time t+1 when i is chosen the sth time and for t ≤ t′, K(t, t′) = {kt, . . . , kt′}
denotes the index-set of algorithms chosen in the time interval [t, t′]. We also define νi(t+ 1, 0) = t.
With this, we can write Bt(i) ≤ I {It = i}N1(i). We know show by backward induction on r that
E
[
Nr|Fνi(t+1,r−1)

]
≤ 1. When r = T − t, NT−t(i) = 0, covering the base case. Assume that the

statement holds up to r + 1. Since

Nr = I {i 6∈ K(t+ 1, νi(t+ 1, r))}+ I {i 6∈ K(t+ 1, νi(t+ 1, r))}Nr+1(i) ,

we have

E
[
Nr(i)|Fνi(t+1,r−1)

]
= E

[
I {i 6∈ K(t+ 1, νi(t+ 1, r))}

∣∣ Fνi(t+1,r−1)

]

+ E
{
I {i 6∈ K(t+ 1, νi(t+ 1, r))}E

[
Nr+1(i)

∣∣ Fνi(t+1,r)

]
︸ ︷︷ ︸

≤1

∣∣∣ Fνi(t+1,r−1)

}

≤ 2E
[
I {i 6∈ K(t+ 1, νi(t+ 1, r))}

∣∣ Fνi(t+1,r−1)

]
.

As argued before, P(It+1 = i and kt+1 6= i|Ft, (It+1 = i or kt+1 = i)) ≤ 1/2, hence P(Iνi(t+1,1) =
i and kνi(t+1,1) 6= i|Ft, Iνi(t+1,1) = i or kνi(t+1,1) = i) ≤ 1/2, hence, also P(i 6∈ K(t + 1, νi(t +
1, r)) | Fνi(t+1,r−1)) ≤ 1/2, finishing the induction.

Thus, E [Bt(i)|Ft] ≤ I {It = i}E [N1(i)|Ft] ≤ I {It = i} and so

E

[
N∑

i=1

Gi

]
≤ v̄2NT + 2v̄2NE

[
T∑

t=1

N∑

i=1

E [Bt(i)|Ft]
]
≤ v̄2NT + 2v̄2NE

[
T∑

t=1

N∑

i=1

I {It = i}
]
≤ 3v̄2NT.

Combining with (11) and (12), we get the desired statement.

33

Theorem 6.2.1. The flow condition pt = Qtpt comes in crucially in several places throughout the
proofs, and the next argument is one of them. Observe that

E
{
eφ(It)

∣∣Ft−1

}
=

N∑

k=1

N∑

i=1

ptkq
t
k(i)eφ(i) =

N∑

i=1

eφ(i)

N∑

k=1

ptkq
t
k(i) =

N∑

i=1

eφ(i)p
t
i = E

{
eφ(kt)

∣∣Ft−1

}

and thus

E

{
T∑

t=1

eTφ(It)
Lejt

}
= E

{
T∑

t=1

E
{
eφ(It)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑

t=1

E
{
eφ(kt)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑

t=1

eTφ(kt)
Lejt

}

It is because of this equality that external regret with respect to the local neighborhood can be
turned into local internal regret. We have that

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
= E

{
T∑

t=1

(eIt − eφ(kt))
TLejt

}

= E

{
T∑

t=1

(qtkt − eφ(kt))
TLejt

}

=
N∑

i=1

E

{
T∑

t=1

I {kt = i} (qti − eφ(i))
TLejt

}

By Lemma 6.2.2,

E
{

(q
τi(s)
i − eφ(i))

TLejτi(s) |Fτi(s−1)

}
= E

{
f̃si · (qτi(s)i − eφ(i))

∣∣∣ Fτi(s−1)

}

and so by Lemma 6.2.3

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
=

N∑

i=1

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}

≤ η
N∑

i=1

E

{
Ti∑

s=1

(‖f̃si ‖∗xsi)
2

}
+N(η−1 logN + Tγ ¯̀)

With the help of Lemma 6.2.3,

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
≤ η10v̄2NT +N(η−1 logN + Tγ ¯̀) = 2Nv̄

√
10(logN)T + TNγ ¯̀

with η =
√

logN
10v̄2T

.

34

We remark that for the purposes of “in expectation” bounds, we can simply set γ = 0 and still
get O(

√
T) guarantees (see Abernethy and Rakhlin [1]). This point is obscured by the fact that the

original algorithm of Auer et al. [6] uses the same parameter for the learning rate η and exploration
γ. If these are separated, the “in expectation” analysis of Auer et al. [6] can be also done with
γ = 0. However, to prove high probability bounds on regret, a setting of γ ∝ T−1/2 is required.
Using the techniques in Abernethy and Rakhlin [1], the high-probability extension of results in this
paper is straightforward (tails for the terms ‖gτi(s−1)‖22 in Lemma 6.2.3 can be controlled without
much difficulty).

Remark 4. Unfortunately, the algorithm NeigborhoodWatch fails to deal with degenerate
games. First, it is not clear what weights should be assigned to degenerate actions in any local
game and at any time step. These actions should only be chosen for information purposes, since
whenever they are optimal, at least two non-degenerate actions are also optimal. The other diffi-
culty stems from the problem of how to estimate the loss difference of two non-degenerate actions
when their observer action set consists of more than those two actions but additionally degenerate
ones. We conjecture that the classification result holds for degenerate games against non-stochastic
opponents without any modifications. Finding the right algorithm and/or analysis remains future
work.

6.3 Random Signals.

We now briefly consider the setting of partial monitoring with random signals, studied by Rustichini
[25], Lugosi, Mannor, and Stoltz [21], and Perchet [23]. Without much modification of the above
arguments, the local observability condition yet again yields O(

√
T) internal regret.

Suppose that instead of receiving deterministic feedback Hi,j , the decision maker now receives a
random signal di,j drawn according to the distribution Hi,j ∈ ∆(Σ) over the signals. In the problem
of deterministic feedback studied in the paper so far, the signal Hi,j = σ was identified with the
Dirac distribution δσ.

Given the matrix H of distributions on Σ, we can construct, for each action i, a matrix Ξi ∈
Rsi×M as

Ξi(k, j) , Hi,j(σk) ,

where the set σ1, . . . , σsi is the union of supports of Hi,1, . . . ,Hi,M . Columns of Ξi are now dis-
tributions over signals. Given the actions It and jt of the player and the opponent, the feedback
provided to the player can be equivalently written as StItejt where each column r of the random

matrix StIt ∈ Rsi×M is a standard unit vector drawn independently according to the distribution
given by the column r of Ξi. Hence, ESti = Ξi.

As before, the matrix Ξ(i,j) is constructed by stacking Ξi on top of Ξj . The local observability
condition, adapted to the case of random signals, can now be stated as:

`i − `j ∈ Im ΞT

(i,j)

for all neighboring actions i, j.
Let us specify the few places where the analysis slightly differs from the arguments of the paper.

Since we now have an extra (independent) source of randomness, we define Ft to be the σ-algebra
generated by the random variables {k1, I1, S

1 . . . , kt, It, S
t} where St is the random matrix obtained

35

by stacking all Sti . We now define the estimates

br(i,j) , vT
i,j

[
I {Ir = i}Sti

I {kr = i} I {Ir = j}Stj/qri (j)

]
ejr , ∀r ∈ {τi(s− 1) + 1, . . . , τi(s)}, ∀j ∈ Ni

with the only modification that Sti and Stj are now random variables. Equation (8) now reads

E
[
bt(i,j)|Ft−1

]
=

N∑

k=1

ptkq
t
k(i) · vT

i,j

[
Ξi
0

]
ejt + ptiq

t
i(j) · vT

i,j

[
0

Ξj/q
t
i(j))

]
ejt

= ptiv
T
i,jΞ(i,j)ejt

= pti(ej − ei)TLejt . (13)

The rest of the analysis follows as in Section 6.2.3, with Ξ in place of S.

7 Classification – putting everything together.

In this section we use the results of this paper, along with some previous results, to prove the
classification theorems 3 and 3. For the convenience of the reader, we recite these theorems:

Theorem (Classification for games against stochastic opponents). Let G = (L,H) be a finite
partial-monitoring game. Let K be the number of non-dominated actions in G. The minimax
expected regret of G against stochastic opponents is

E[RT (G)] =

0, K = 1;

Θ̃(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

Theorem (Classification for games against adversarial opponents). Let G = (L,H) be a non-
degenerate finite partial-monitoring game. Let K be the number of non-dominated actions in G.
The minimax expected regret of G against adversarial opponents is

E[RT (G)] =

0, K = 1;

Θ(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

Theroems 3 and 3. The following lower bound results are sufficient for both theorems:

• If a game is not globally observable then its minimax regret is Θ(T) [24].

• If a game has more than one Pareto-optimal actions then its minimax regret is Ω(
√
T) [4].

• If a game is not locally observable then its minimax regret is Ω(T 2/3) (Theorem 4).

On the other hand, the following upper bounds completes the proofs of the theorems:

• If a game has only one Pareto-optimal action then the minimax regret is 0 (trivial: an optimal
algorithm chooses the Pareto-optimal action in every time step).

36

• If a game is globally observable then the algorithm FeedExp by Piccolboni and Schindelhauer
[24] achieves O(T 2/3) expected regret [13].

• For locally observable games,

1. the algorithm CBP achieves Õ(
√
T) expected regret against stochastic opponents (Corol-

lary 5.2);

2. if the game is non-degenerate then NeigborhoodWatch achieves O(
√
T) expected

regret against adversarial opponents (Corollary 6.2.1);

8 Discussion.

This paper presents the recent advances made in understanding finite partial-monitoring games.
The main achievement of this work is a classification of games based on their minimax regret.
Algorithms are presented that achieve the minimax regret within logarithmic factors for any given
game.

The immediate open problem is to include the degenerate games in the classification under the
adversarial model. We conjecture that the classification extends to degenerate games the same way
as under the stochastic model. From a more practical point of view, more computationally efficient
algorithms would be helpful, especially in the stochastic case. If the number of actions or outcomes
is high, the running time of the CBP algorithm dramatically increases. This is due to the fact that
the algorithm runs LP solvers in every time step.

Another important extension is partial monitoring with side information. In the model investi-
gated in this paper, the learner does not receive any additional information about the outcome, or
how the outcome is generated, before taking an action. In many practical applications it is not the
case. In dynamic pricing, for example, the vendor might (and should) have additional information
about the customer, e.g., how much he needs the product or his financial situation. This leads to
the model of partial monitoring with side information. A recent work by Bartók and Szepesvári [10]
investigates this setting. They prove that local observability remains the key condition to achieve
root-T regret under partial monitoring with side information.

Acknowledgements

Alexander Rakhlin gratefully acknowledges the support of NSF under grants CAREER DMS-
0954737 and CCF-1116928. Gábor Bartók, Dávid Pál and Csaba Szepesvári were supported by
the Alberta Innovates Technology Futures and NSERC.

37

APPENDIX: Proofs of lemmas

Here we give the proofs of the lemmas used in the main proof. For the convenience of the reader,
we restate the lemmas.

Lemma. There exists a (problem dependent) constant c such that the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Proof. For any 1 ≤ t ≤ T , let f t = (f1, . . . , ft) ∈ Σt be a feedback sequence up to time step t.
For i = 1, 2, let p∗i be the probability mass function of feedback sequences of length T − 1 under
opponent strategy pi and algorithm A. We start by upper bounding the difference between values
under the two opponent strategies. For i 6= j ∈ {1, 2} and k ∈ {1, 2, 3},

N i
k −N j

k =
∑

fT−1

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑

t=0

I
{
A(f t) ∈ Nk

}

≤
∑

fT−1:
p∗i (fT−1)−p∗j (fT−1)≥0

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑

t=0

I
{
A(f t) ∈ Nk

}

≤ T
∑

fT−1:
p∗i (fT−1)−p∗j (fT−1)≥0

p∗i (f
T−1)− p∗j (fT−1) =

T

2
‖p∗1 − p∗2‖1

≤ T
√

KL(p∗1||p∗2)/2 , (14)

where KL(·||·) denotes the Kullback-Leibler divergence and ‖·‖1 is the L1-norm. The last inequality
follows from Pinsker’s inequality [15]. To upper bound KL(p∗1||p∗2) we use the chain rule for KL-
divergence. By overloading p∗i so that p∗i (f

t−1) denotes the probability of feedback sequence f t−1

under opponent strategy pi and algorithm A, and p∗i (ft|f t−1) denotes the conditional probability
of feedback ft ∈ Σ given that the past feedback sequence was f t−1, again under pi and A. With
this notation we have

KL(p∗1||p∗2) =

T−1∑

t=1

∑

f t−1

p∗1(f t−1)
∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

=

T−1∑

t=1

∑

f t−1

p∗1(f t−1)

4∑

i=1

I
{
A(f t−1) ∈ Ni

}∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)
(15)

Let aT
ft

be the row of S that corresponds to the feedback symbol ft.
8 Assume k = A(f t−1). If the

feedback set of action k does not contain ft then trivially p∗i (ft|f t−1) = 0 for i = 1, 2. Otherwise

8Here without loss of generality we assume that different actions have difference feedback symbols, and thus a row
of S corresponding to a symbol is unique.

38

p∗i (ft|f t−1) = aT
ft
pi. Since p1 − p2 = 2εv and v ∈ KerS, we have aT

ft
v = 0 and thus, if the choice

of the algorithm is in either N1,N2 or N3, then p∗1(ft|f t−1) = p∗2(ft|f t−1). It follows that the
inequality chain can be continued from (15) by writing

KL(p∗1||p∗2) ≤
T−1∑

t=1

∑

f t−1

p∗1(f t−1)I
{
A(f t−1) ∈ N4

}∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

≤ c1ε
2
T−1∑

t=1

∑

f t−1

p∗1(f t−1)I
{
A(f t−1) ∈ N4

}
(16)

≤ c1ε
2N1

4 .

In (16) we used Lemma 8 (see below) to upper bound the KL-divergence of p1 and p2. Flipping p∗1
and p∗2 in (14) we get the same result with N2

4 . Reading together with the bound in (14) we get all
the desired inequalities.

Lemma. Fix a probability vector p ∈ ∆M , and let ε ∈ RM such that p− ε, p+ ε ∈ ∆M also holds.
Then

KL(p− ε||p+ ε) = O(‖ε‖22) as ε→ 0.

The constant and the threshold in the O(·) notation depends on p.

Proof. Since p, p+ ε, and p− ε are all probability vectors, notice that |ε(i)| ≤ p(i) for 1 ≤ i ≤M .
So if a coordinate of p is zero then the corresponding coordinate of ε has to be zero as well. As
zero coordinates do not modify the KL divergence, we can assume without loss of generality that
all coordinates of p are positive. Since we are interested only in the case when ε→ 0, we can also
assume without loss of generality that |ε(i)| ≤ p(i)/2. Also note that the coordinates of ε = (p+ε)−ε
have to sum up to zero. By definition,

KL(p− ε||p+ ε) =
M∑

i=1

(p(i)− ε(i)) log
p(i)− ε(i)
p(i) + ε(i)

.

We write the term with the logarithm

log
p(i)− ε(i)
p(i) + ε(i)

= log

(
1− ε(i)

p(i)

)
− log

(
1 +

ε(i)

p(i)

)
,

so that we can use that, by second order Taylor expansion around 0, log(1 − x) − log(1 + x) =
−2x+ r(x), where |r(x)| ≤ c|x|3 for |x| ≤ 1/2 and some c > 0. Combining these equations, we get

KL(p− ε||p+ ε) =
M∑

i=1

(p(i)− ε(i))
[
−2

ε(i)

p(i)
+ r

(
ε(i)

p(i)

)]

=

M∑

i=1

−2ε(i) +

M∑

i=1

2
ε2(i)

p(i)
+

M∑

i=1

(p(i)− ε(i))r
(
ε(i)

p(i)

)
.

39

Here the first term is 0, letting p = mini∈{1,...,M} p(i) the second term is bounded by

2
∑M

i=1 ε
2(i)/p = (2/p)‖ε‖22, and the third term is bounded by

M∑

i=1

(p(i)− ε(i))
∣∣∣∣r
(
ε(i)

p(i)

)∣∣∣∣ ≤ c
M∑

i=1

p(i)− ε(i)
p3(i)

|ε(i)|3

≤ c
M∑

i=1

|ε(i)|
p2(i)

ε2(i)

≤ c

2

M∑

i=1

1

p
ε2(i) =

c

2p
‖ε‖22.

Hence, KL(p− ε||p+ ε) ≤ 4+c
2p ‖ε‖22 = O(‖ε‖22).

Lemma. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)
≤ 2|Vi,j |t1−2α .

Proof.

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)

≤
∑

k∈N+
i,j

P

(
|vT
i,j,k

νk(t− 1)

nk(t− 1)
− vT

i,j,kSkp
∗| ≥ ‖vi,j,k‖∞

√
α log t

nk(t− 1)

)
(17)

=
∑

k∈N+
i,j

t−1∑

s=1

I {nk(t− 1) = s}P
(
|vT
i,j,k

νk(t− 1)

s
− vT

i,j,kSkp
∗| ≥ ‖vi,j,k‖∞

√
α log t

s

)
(18)

≤
∑

k∈N+
i,j

2t1−2α (19)

= 2|N+
i,j |t1−2α ,

where in (17) we used the triangle inequality and the union bound and in (19) we used Hoeffding’s
inequality.

Lemma. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that i ∈ P ′. Then there exists a
path π that starts at i and ends at i∗ that lies in N ′.

Proof. If (P ′,N ′) is a valid configuration, then there is a convex polytope Π ⊆ ∆M such that
p∗ ∈ Π, P ′ = {i : dim Ci ∩Π = M − 1} and N ′ = {{i, j} : dim Ci ∩ Cj ∩Π = M − 2}.

Let p′ be an arbitrary point in Ci ∩Π. We enumerate the actions whose cells intersect with the
line segment p′p∗, in the order as they appear on the line segment. We show that this sequence of
actions i0, . . . , ir is a feasible path.

• It trivially holds that i0 = i, and ir is optimal.

• It is also obvious that consecutive actions on the sequence are in N ′.

40

C1 ∩ Π

C2 ∩ Π

C3 ∩ Π

C4 ∩ Π

C5 ∩ Π

C6 ∩ Π

Figure 3: The dashed line defines the feasible path 1, 5, 4, 3.

For an illustration we refer the reader to Figure 3

Next, we want to prove lemma 5.2. For this, we need the following auxiliary result:

Lemma. Let action i be a degenerate action in the neighborhood action set N+
k,l of neighboring

actions k and l. Then `i is a convex combination of `k and `l.

Proof. For simplicity, we rename the degenerate action i to action 1, while the other actions k, l
will be called actions 2 and 3, respectively. Since action 1 is a degenerate action between actions 2
an 3, we have that

(p ∈ ∆M and p⊥(`1 − `2))→ (p⊥(`1 − `3) and p⊥(`2 − `3))

implying

(`1 − `2)⊥ ⊆ (`1 − `3)⊥ ∩ (`2 − `3)⊥ .

Using de Morgan’s law we get

〈`1 − `2〉 ⊇ 〈`1 − `3〉 ⊕ 〈`2 − `3〉 .

This implies that for any c1, c2 ∈ there exists a c3 ∈ such that

c3(`1 − `2) = c1(`1 − `3) + c2(`2 − `3)

`3 =
c1 − c3

c1 + c2
`1 +

c2 + c3

c1 + c2
`2 ,

suggesting that `3 is an affine combination of (or collinear with) `1 and `2.
We know that there exists p1 ∈ ∆ such that `T1p1 < `T2p1 and `T1p1 < `T3p1. Also, there exists

p2 ∈ ∆M such that `T2p2 < `T1p2 and `T2p2 < `T3p2. Using these and linearity of the dot product we get
that `3 must be the middle point on the line, which means that `3 is indeed a convex combination
of `1 and `2.

41

Lemma. Fix any t ≥ 1.

1. Take any action i. On the event Gt ∩ Dt,9 from i ∈ P(t) ∪N+(t) it follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

2. Take any action k. On the event Gt ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

Proof. First we observe that for any neighboring action pair {i, j} ∈ N (t), on Gt it holds that δi,j ≤
2ci,j(t). Indeed, from {i, j} ∈ N (t) it follows that δ̃i,j(t) ≤ ci,j(t). Now, on Gt, δi,j ≤ δ̃i,j(t)+ ci,j(t).
Putting together the two inequalities we get δi,j ≤ 2ci,j(t).

Now, fix some action i that is not dominated. We define the “parent action” i′ of i as follows: If
i is not degenerate then i′ = i. If i is degenerate then we define i′ to be the Pareto-optimal action
such that δi′ ≥ δi and i is in the neighborhood action set of i′ and some other Pareto-optimal
action. It follows from Lemma 8 that i′ is well-defined.

Consider case 1. Thus, It 6= k(t) = argmaxj∈P(t)∪V(t)W
2
j /nj(t − 1). Therefore, k(t) 6∈ R(t),

i.e., nk(t)(t−1) > ηk(t)f(t). Assume now that i ∈ P(t)∪N+(t). If i is degenerate then i′ as defined
in the previous paragraph is in P(t) (because the rejected regions in the algorithm are closed). In
any case, by Lemma 5.2, there is a path (i0, . . . , ir) in N (t) that connects i′ to i∗ (i∗ ∈ P(t) holds
on Gt). We have that

δi ≤ δi′ =
r∑

s=1

δis−1,is

≤ 2

r∑

s=1

cis−1,is

= 2
r∑

s=1

∑

j∈Vis−1,is

‖vis−1,is,j‖∞
√

α log t

nj(t− 1)

≤ 2
r∑

s=1

∑

j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2diWk(t)

√
α log t

nk(t)(t− 1)

≤ 2diWk(t)

√
α log t

ηk(t)f(t)
.

Upper bounding Wk(t)/
√
ηk(t) by maxk∈N Wk/

√
ηk we obtain the desired bound.

9Here and in what follows all statements that start with “On event X” should be understood to hold almost surely
on the event. However, to minimize clutter we will not add the qualifier “almost surely”.

42

Now, for case 2 take an action k, consider G ∩ Dct , and assume that It = k. On Dc
t , It = k(t).

Thus, from It = k it follows that Wk/
√
nk(t− 1) ≥ Wj/

√
nj(t− 1) holds for all j ∈ P(t). Let

Jt = argminj∈P(t)∪N+(t)
d2j
δ2j

. Now, similarly to the previous case, there exists a path (i0, . . . , ir) from

the parent action J ′t ∈ P(t) of Jt to i∗ in N (t). Hence,

δJt ≤ δJ ′t =
r∑

s=1

δis−1,s

≤ 2

r∑

s=1

∑

j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2dJtWk

√
α log t

nk(t− 1)
,

implying

nk(t− 1) ≤ 4W 2
k

d2
Jt

δ2
Jt

α log t

= min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

This concludes the proof of Lemma 5.2.

Lemma. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M an opponent strategy.
There exists a ρ2 > 0 such that Aρ2 is a point-local game in G.

Proof. For any (not necessarily neighboring) pair of actions {i, j}, the boundary between them is
defined by the set Bi,j = {p ∈ ∆M : (`i − `j)Tp = 0}. We generalize this notion by introducing

the margin: for any ξ ≥ 0, let the margin be the set Bξ
i,j = {p ∈ ∆M : |(`i− `j)Tp| ≤ ξ}. It follows

from finiteness of the action set that there exists a ξ∗ > 0 such that for any set K of neighboring
action pairs,

⋂

{i,j}∈K

Bi,j 6= ∅ ⇐⇒
⋂

{i,j}∈K

Bξ∗

i,j 6= ∅ . (20)

Let ρ2 = ξ∗/2. Let A = Aρ2 . Then for every pair i, j in A, (`i − `j)Tp∗ = δi,j ≤ δi + δj ≤ ρ2.

That is, p∗ ∈ Bξ∗

i,j . It follows that p∗ ∈ ⋂i,j∈A×AB
ξ∗

i,j . This, together with (20), implies that A is a
point-local game.

Lemma. There exists a problem dependent constant K such that the internal regret is at most K
times the local internal regret.

Proof. Let Φ be a set of transformations N 7→ N . Φ-regret is defined as

sup
φ∈Φ

E

{
T∑

t=1

`>Itejt −
T∑

t=1

`>φ(It)
ejt

}

43

p q′ q′′ p̂i

eiLq

ekLq

e�(i)Lq

(a) There must be a neighbor of i, denoted
by k between i and φ(i).

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Ci

p

Ck

Cφ(i)

p̂i

β

q′

q′′

(b) The dashed line denotes the in-
tersection of the probability simplex
and the hyperplane (`i − `k)>x = 0.
The minimum angle β must be isolated
from zero because p is the centroid of
Ci.

Figure 4: Illustrations for Lemma 6.2.1.

Let ΦL be the set of local transformations. The claim is that there exists a problem-dependent
constant K (independent of T) such that Φ-regret is upper bounded by K times ΦL-regret.

Let us first write

T∑

t=1

`>Itejt −
T∑

t=1

`>φ(It)
ejt =

N∑

i=1

∑

t∈T :It=i

(`i − `φ(i))
>ejt =

N∑

i=1

si(`i − `φ(i))
>p̂i

where si = |{t : It = i}| and p̂i = 1
si

∑
t∈T :It=i

ejt , the empirical frequency of adversarial actions on
the rounds when our choice is action i. To prove the claim it is enough to show that for any i ∈ N
there exists a K > 0 (that does not depend on T) and a neighboring action k ∈ Ni such that

(`i − `φ(i))
>p̂i ≤ K(`i − `k)>p̂i .

We may assume that φ(i) is the best response action to p̂i (in other words, p̂i ∈ Cφ(i)) since this
makes the above requirement harder to satisfy. If φ(i) is a neighbor of i, the claim is trivially
satisfied with K = 1. Otherwise, pick p ∈ Ci to be the centroid of Ci and consider the segment
[p, p̂i] ⊂ ∆M . Note that on this segment the function f(q) = mini eiLq is concave and piece-wise
linear. Since i and φ(i) are not neighbors, there exists an action k 6= φ(i) such that k is a neighbor
of i and there exists q′ ∈ [p, p̂i] such that `>i q

′ = `>k q
′. It then follows that `>φ(i)p̂i ≤ `>k p̂i < `>i p̂i.

The first inequality is an equality when p̂i = q′′, in which case we may simply choose K = 1.
Otherwise, let u denote a unit vector in the direction q′′ − p. We may express p̂i as q′′ + αu for a
constant α > 0. Then we are seeking an upper bound on the ratio

(`i − `k)>q′′ + α(`i − `φ(i))
>u

(`i − `k)>q′′ + α(`i − `k)>u
≤

(`i − `φ(i))
>u

(`i − `k)>u
.

Obviously, the enumerator of the above fraction can be upper bounded by ‖`i− `φ(i)‖. Now what is
left is to lower bound the denominator. The lower bound depends on the angle between orthogonal

44

of (`i − `k) and the direction p̂i − p. Since p was chosen as the centroid of Ci, this angle (β on
Figure 4(b)) is isolated from zero.

References

[1] Abernethy, J., A. Rakhlin. 2009. Beating the adaptive bandit with high probability. COLT .

[2] Abernethy, Jacob, Elad Hazan, Alexander Rakhlin. 2008. Competing in the dark: An efficient algorithm
for bandit linear optimization. Proceedings of the 21st Annual Conference on Learning Theory (COLT
2008). Citeseer, 263–273.

[3] Agarwal, Alekh, Peter Bartlett, Max Dama. 2010. Optimal allocation strategies for the dark pool
problem. 13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), May
12-15, 2010, Chia Laguna Resort, Sardinia, Italy .

[4] Antos, A., G. Bartók, D. Pál, Cs. Szepesvári. 2013. Toward a classification of finite partial-monitoring
games. Theor. Comput. Sci. 473 77–99.

[5] Audibert, Jean-Yves, Sébastien Bubeck. 2009. Minimax policies for adversarial and stochastic bandits.
Proceedings of the 22nd Annual Conference on Learning Theory .

[6] Auer, Peter, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire. 2002. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1) 48–77.

[7] Bartók, G. 2013. A near-optimal algorithm for finite partial-monitoring games against adversarial
opponents. COLT . 696–710.

[8] Bartók, G., D. Pál, C. Szepesvári. 2010. Toward a classification of finite partial-monitoring games.
Algorithmic Learning Theory . Springer, 224–238.

[9] Bartók, G., D. Pál, C. Szepesvári. 2011. Minimax regret of finite partial-monitoring games in stochastic
environments. Conference on Learning Theory .

[10] Bartók, G., Cs. Szepesvári. 2012. Partial monitoring with side information. ALT . To appear.

[11] Bartók, G., N. Zolghadr, Cs. Szepesvári. 2012. An adaptive algorithm for finite stochastic partial
monitoring. ICML. Submitted.

[12] Blum, A., Y. Mansour. 2007. From external to internal regret. Journal of Machine Learning Research
8(1307-1324) 3–8.

[13] Cesa-Bianchi, N., G. Lugosi, G. Stoltz. 2006. Regret minimization under partial monitoring. Mathe-
matics of Operations Research 31(3) 562–580.

[14] Cesa-Bianchi, Nicolò, Gábor Lugosi, Gilles Stoltz. 2005. Minimizing regret with label efficient prediction.
IEEE Transactions on Information Theory 51(6) 2152–2162.

[15] Cover, T.M., J.A. Thomas. 2006. Elements of Information Theory . 2nd ed. Wiley, New York.

[16] Flaxman, Abraham D., Adam Tauman Kalai, H. Brendan McMahan. 2005. Online convex optimization
in the bandit setting: gradient descent without a gradient. Proceedings of the 16th annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005). Society for Industrial and Applied Mathematics, 394.

[17] Foster, D.P., A. Rakhlin. 2012. No internal regret via neighborhood watch. Journal of Machine Learning
Research - Proceedings Track (AISTATS) 22 382–390.

[18] Foster, D.P., R.V. Vohra. 1997. Calibrated learning and correlated equilibrium. Games and Economic
Behavior 21(1-2) 40–55.

[19] Kleinberg, Robert, Tom Leighton. 2003. The value of knowing a demand curve: Bounds on regret for
online posted-price auctions. Proceedings of 44th Annual IEEE Symposium on Foundations of Computer
Science 2003 (FOCS 2003). IEEE, 594–605.

45

[20] Littlestone, Nick, Manfred K. Warmuth. 1994. The weighted majority algorithm. Information and
Computation 108 212–261.

[21] Lugosi, G., S. Mannor, G. Stoltz. 2008. Strategies for prediction under imperfect monitoring. Math.
Oper. Res 33 513–528.

[22] Lugosi, Gábor, Nicolò Cesa-Bianchi. 2006. Prediction, Learning, and Games. Cambridge University
Press.

[23] Perchet, V. 2011. Internal regret with partial monitoring: Calibration-based optimal algorithms. Journal
of Machine Learning Research 12 1893–1921.

[24] Piccolboni, A., C. Schindelhauer. 2001. Discrete prediction games with arbitrary feedback and loss.
Computational Learning Theory . Springer, 208–223.

[25] Rustichini, A. 1999. Minimizing regret: The general case. Games and Economic Behavior 29(1-2)
224–243.

[26] Vovk, V.G. 1990. Aggregating strategies. COLT . 371—383.

[27] Zinkevich, Martin. 2003. Online convex programming and generalized infinitesimal gradient ascent.
Proceedings of Twentieth International Conference on Machine Learning (ICML 2003).

46

	Introduction.
	Definitions and notations.
	Examples.

	Summary of results.
	A lower bound for not locally observable games.
	The stochastic case.
	The proposed algorithm.
	Analysis of the algorithm.
	Example.

	The adversarial case.
	Method.
	Analysis of NeigborhoodWatch.
	Local internal regret.
	Estimating loss differences.
	Regret Analysis.

	Random Signals.

	Classification – putting everything together.
	Discussion.

