URL TR/ /18elV.o1K1 JKLEKL NU/puUn/paperfs/lennde/alall.everyday .ps. 4

WWW htte://iserv.iki.kfki.hu/adaptlale.html

Complexity of Learning: The Case of
Everyday Neural Networks

B. Olah and Cs. Szepesvari

Abstract— We have examined two slightly
different domains of the learning problem.
We have found a polynomial time result, and
also an NP-completness result in these two
demains. Thc demains arc choescn so, that
commonly used neural network architectures

arc includcd.

I. INnTRODUCTION

Newadays artificial neural netwerks (ANNs) receive
an increasing attention. Ilowever recent computer
architecturcs de net allew yct the implementatien
of large ANNs. Thus it is an impertant question
te examine hew the learning time of ANNs scales
respect te their size (and/er with the size of the
tasks). Judd has introduced a compulational [rame-
werk for the learning preblem [1] and proved, that
learning in neural networks in generel is too hard,
i.e. in the worst case learning in neural netwerks is
NP-cemplcte. However, in his preef he restricts the
domain of neural network architectures and tasks in
such a way, that “everyday” neural netwerk archi-
tectures, such as the ene of the back-prepagatien
algorithm, are not included in this domain. Conse-
quently Judd’s preef does not tell anything fer these
types of networks. In this article we present two
straightferward proef abeut the complexity ef lcarn-
ing for “everyday” ANNs. The first theorem says,
that for exlended binary tasks and in the worst-
casc. the preblem is NP-cemplcte, while the sccend
says, that for hinary tasks, there exist a pelynemial
time algorithm for loading. I'rem these results, we
conclude that for every neural network application
domain one has Lo examine the Lime complexity of

the specific learning preblem.

II. TERMINOLOGY

[Tere we consider a special case of learning in ANNs:
namecly supcrviscd learning. In this scheme a net-
work is presenled with a sel of input-outpul pairs,
and it is the task of the network te reach to a cenfig-
uration that allows it to establish a function which
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is compaltible with the task. In this section we take
semc rcstrictiens en the preblems censidered and
will try to clarify the meaning of the ahove sentence.

A. Tasks

At first — as nsual — we restrict ourselves te the
class of exlended binary T(s,r) lasks (here s and »
denote the stimulus and response size of the task re-
spectively): such a task is a collection of SR-iterns,
where each SR-item censists of a stimuli and a re-
sponse strings of size s and r, respectively:

T C PU{0. 1} x {0,1,+}71

Here the symbel * is the se called “don’t care” sym-
bol. Tor any 2 and y from {0, 1, «} we say that they
arc compatible, iff ¥ = y or + € {2, y}. Further we
say that strings p and q from {0, 1. +}* are cempati-
ble, iff for every index i (1 < i < r) the it character
of p and the i character of ¢ arc cempatible. We
will denote this relationship by p = q. The size of a
task is by dcfinitien n+ s+ r, where n is the number
of elements of 7. We will denote by S(7') the set of
all stitnuli in T. Now let [ be a [unction [rom {0, 1}*
te {0,1}". We may say that a task T = T(s.7) is
compatible with f, if for any pair (s,r) from 7" the
relatien f(s) ~ r helds. A task T is said te be well-
defined, if there exists a functien f, such that f is
compatible with T. The set of all extended binary
tasks will be deneted by 7*. A task is said te be
strictly binary (er simply binary), iff it de net uses
the den’t carc symbel. The sct of all binary tasks
will be denoted by 7.

B. Architecturces

Our next restriction is en the class of neural net-
work architectures. Ilere we consider just the feed-
forwerd typc architccturcs. Such an architecturce
may be represented as a tuple A = (P,V,S, R, F).
where P is Lhe [inile sel of neurons, V is the set
of cenfigurablc ncurens, S is the sct of input sites
(S =P —=V), RC P is the set of outpul siles, and

U P(X) denoles Lhe sel of the subsels of X, ie. Lhe power-sel

of X



I is the sel of the (directed) connections:
B C{(vi.vy) :vi € Pv; € V,i < j},

where {vi,v2,..., ¥y} is a suitable ordering of the
elements of V. A family of architectures and the set
of all architectures is denoted by .4 and A*, respec-
tively.

B.1

In this article we focus on a special case of feed-
forward networks, which are used in most of the
applications. We shall call this family of architec-
tures the FCL (fully connected layered) architecture
family. The neurons of a network from this class are
arranged in layers: there arc no connections inside
a layer, hut the network is fully connected hetween
consecutive layers. The first layer is the set of all
input ncurons S (this is the zero'" layer), and the
last is Lhe set of all output neurons 2. The size of
an architccturc is by definition s +n, where s and n
denote the number of input sites and the numher of
conligurable neurons, respectively. A FCL architec-
ture 1s fully determined by its layer sizes: we will say
that 4 is a FCL architecture of type (no,n1. ..., np)
if there are p layers in the network, and the number
of neurons in the layer i is n;. Often n; is said to be
the size of the it layer. Tor 0 < i < p, we say that
the 5™ layer is a hidden-layer of the network.

FCL architectures

C. Working mechanism

The architecture of a network determines almost cn-
tirely its working mechanism, which is the follow-
ing: al first a stinulus is presented Lo the network
through its input sites. It will be the output of
the inpul sites as well. In the f[ollowing steps the
neurons, whose input neurons have computed their
outputs already in an earlier step, can compute their
outputs. The process ends with the determination
of the outputs of the output neurons, which will also
be the output of the whole network. The next ques-
tion i how a neuron computes its output.

D. Node funclions

We assume, that the computation of every neuron
may be represented as the computation of a func-
tion. The class of funclions couputable by the neu-
rons in the network is the subject of a further re-
striction. In practice it is widely accepted, that the
computing capacities of neurons is restricted to the
computation of linearly separable functions. The
class of these functions will be denoted by LSF.
Such a function may be represented in the following
manner: For every input site of the neuron there is a
weight associated with it. When the neuron receives
its inputs it computes the weighted sum of its inputs

and compares the result to a threshold. I the re-
sult cxceeds the threshold, the output of the ncuron
will be one, otherwise it will be zero. Another class,
which is easy Lo manage in proofs, is the class of all
13oole functions. 'This class will be denoted by LUL
(as Look Up Tuuctions).

L. Configured nelworks

The class of functions from which a nctwork may
choose its node-functions is called the basis of learn-
ing. We will denote bases by F. A configured nel-
work is an architecturc A together with a sct F =
1fi,..., fa}. where f; is the function computed by
the " configurable node v; from 1. We say that
an architecture A is configured using the basis F,
if every function, f, from the configuration I' of A
is the element of 7. We denote by Cx(A4) the set of
all possible configurations of an architecture 4 using
the basis F.

F. Task performed by a nctwork

To complete our framework we define the meaning
of “a task is learned (or performed) by an architec-
turc.” A configured nctwerk determines a function
from its stimulus space to its response space. Let
(A, I') be a configured network, and let us denote
this function by Mg (.1). We say, that a configured
network (A, F) performs the task T, iff Mp(A) is
compatible with T'. This relationship will be denoted
by A<p7'. A task is said to he performable by A us-
ing the basis F, il there is a conliguration I [rom
Cr(A),such that (A, F) cstablishes T'. This rclation-
ship will be denoted by A<F/"

G. ‘The computational problem

The loading problem (or learning problem) is the [ol-
lowing: Fix a domain D C A* x T*, and a basis F.
For an arbitrary pair (4,7 from D find a config-
uration F from Cr(A), such that A<, T. This is a
search problem. 'Lhe performability problem is the
appropriate decision problem: in this case on a fixed
domain D and for a fixed basis F one has to decide
for any given pair (4,7") from D whether A<r1" or
not. The performability problem is the problem of
recognizing the following (parametrized) langnage:

Pel‘f('pv_';:') = {I:A, T) ED:A <}'T}.

Clearly if an algorithm can solve the search problem.
it is also possible Lo solve the decision problem using
the same algorithm. Thus the search problem is at
least as hard as the decision problem.

In the next section we will focus on the load-
ing problem of FCL networks using the basis LUF.
These results show, that the loading problem for
this domain is NP-complete.



ITII. Loaping witH LUT' puNCTIONS

Fix the basis LUF. First, it is easy te check that
the loading of FCL networks having only one layer
is casy: it can be selved in time O(n x |T|), where
n is the number of output neurons of the network
and |T| denetes the number of clements of task 7.

A, Compatible groupings

We begin with an observation: Let us suppose, that
the task 7" has been loaded into a multi-layered FCL
network. Let us take a look on an intermediate layer
of the neltwork. It is clear, thal for every pair of
stimuli s; and s, for which respensces r; and 75 are
different, the outputs of the neurons in the examined
layer are different for the twe cases. On the other
hand let us take an arbitrary output-scene of that
layer, and the sel of stimnuli fer which this scene
appears on this layer. It is clear again, that for
every pair of stimuli from this set, every appropriate
responsc pair has te be the same. These cemments
motivate the definition of compatible groupings:

Let us fix a task 7. and let S = S(I'). Then
{Se,51,...,8-1) C P(S) is said te bc a compat-
ible grouping of T, iff U;S; = 5, S;s are pairwise
disjuncts, and for an arbitrary index ¢ and stim-
uli sy, € S5;, and for any » and r, for which
($1,71) € T aud (¢3,732) € T the relation 11 =~ 1y
helds. Number & is said to be the size of the cem-
patible grouping.

B. Resulls

Let us denete the minimum size of cempatible greup-
ings of 1" by k('1'). For the sake of compactness let
us denote by leny the functien [logy(n)] + 1, where
[x] denotes the integer-part of the real number x.
Furthermore let us denote by b, the [unction, which
maps the set {0,1,...,2° — 1} te its binary repre-
sentation. Both leny and b, are cemputable in poly-
nemial time and size of their arguments. By defini-
tion the dimension of a task T means the number
leny (B(T) — 1). (If £(T) < 2 then we redeclare the
dimensien of 7' te be 9.) Our abeve ebscrvatiens
show, that for any given basis F from A<zT it fol-
lews, that dim(7’) is less then or cqual to the mini-
mum of the neuron-number of the hidden layers of
the network A. Tor F = LUT the reverse statement
is alse truc. We will prove it in two main steps.

Theorem IIL.1 Lct A be a 2-layercd FCL network.
If &im 7" < n, where n is the number of neurons in
the muddle layer, than the task T is performable by
A using the basis LUT .

Proof. Let A be a network ef type (s. n,7) and T be
a task, for which there exists a task 7" whose dimen-
sion is less then or equal te n. Let this greuping be,

say, {S0,S1,...,Sk—1}. where lens(k — 1) < n. Lel
Ap and As be the FCL nctwerks ef type (s, n) and
(n, 7). respectively. Furthermore let us decompose
the task 7" into two sublasks Ty and To, where

T = {(5’ bn(l)) .5 E 5’{}
and
Ty = {(ba(i),r) 1 3s € Sy, (s,7) € 1)

Il is an easy task to check, that 77 and T> are well
defined tasks, and A1< ur7t and As<pipT>. If
I € Crur(4i) denotes the configurations, for which
Ai<p,T; (1= 1,2), then it is clear that [er the joint
configuration F' = F U Fy the relation A<pT holds.
0O

Let us remark, that for the above defined 7 it
15 true, that dimTy < dunT. To prove this, il is
eneugh te check, that the sets 5! = fi(S;) forms
a compatible grouping of 7%, where f; denotes an
arbitrary fixed functien which is cempatible with
T1. New the following theorem follows immediatly:

Theovem II1.2 Lel A be an FCL nelwerk, having
at least two layers. Then for any given task T,
A<ir?' if and only if dim1' < n, where n s the
minemurn of the clement number of the inler-layers

of 4.

Proof. 'I'he necessity of the performability condi-
tien has been proven already. New we will preve the
other direction by induction of the number of lay-
ers in the network. For 2-layered networks we have
seen the result already. New, let us pick a p-layered
network (with p > 2) of type (no,n1,...,n,), and
let n = ming<icp ni. Suppesc, that we have preven
the statement for (p — 1)-layered networks. Tet
{S0,....Sk—1} be the compatible grouping of T, for
which leng(k — 1) < ny. Let A3 and As be FCL
networks of type (ne,n1) and (n1.n2,...,n,), re-
spectively. Befine the decomposition of T into T =
Ty (ng,nq) and 1Y ="T4(nq,np) as above. It is clear
that 77 and Ty are well defined, and if 4;<LyrT; lor
1= 1,2, then A<y, T. Thus, again, it is cnough to
prove, that 77 and 73, are performable by .4, and A.,
respectively. Naturally A <poerTh as A7 is a one-
layered network. To prove, that A, <y,yr75 censider
the following inequality series:

dimTy < dimT < min n; < in n;.
0i<p 1<i<p

This. together with the inductlive assumption yields
the desired result. O

This result shows, that it is enough to concentrate
on the hardness of the questiens of type dim7 < n.



It is easy lo show, thal [or n > 1 the problem of
deciding for any task T, whether dim7 < 1 is truc
or not, is NP-complete. (For n = 1, the problem is
solvable in polynomial tiine.) More precisely:

Thcorem IIL3 For p > 2 the problem of decid-
ing for any task 1', whether k(1') < p is true, s
NP-cempletc. Ior p = 2, the preblem is solvable in
pelynemial time.

Proof. By reduction from the problem of p-colorability

of graphs. The preof is omitted. The interested
reader is referred te [2]. O

Theorem IIL4 Loading of 'CL nelworks, thal has

at least two layers, using the basis LUF is NP-complete.

Mere precisely if Ai denotes the set of all I'C'L net-
works, that has exactly i layer and in any of their
hidden layers has at least two neurons, then for any
domain D, which includes any of the sets A; xT* as
a subsct, the problem Perfp pupy ts NP-complete.

Proof. By reduction from the problem of compatible
groupings. The prool can be lound iu [2]. |

IV. LoamiNng wWITH LSF FUNCTIONS

The previous theorem cannot be applied directly to
the loading problem ol FCL networks using LST
functiens. The reasen is, that we have used inten-
sively the fact, that a one-layer network, using the
basis LUF , can lead any extended binary task T
within pelynemial time. This is net the case when
only the basis LST' is enabled. But the following
observation will help:

Proposition IV.1 Let'I'="1'(s,r) be an arbitrary,
fixzed task. Then there exists a polynomial P, such
that fer the I'C'L network A of type (s, P(t+s+7),7),
where { = |T|, il is lrue, thal A<pspT.

Proof. The outline of the prool is the [ollowing: al
first we will prove the resuls for tasks of type T'(s, 1).
For such a task it is enough to use a I'CL network of
type (s,t,1). In order to show this, lct us censider
the conjunctive normal form corresponding to task
T. This has at most ¢ clauses. It is easy to see, that
digjunctions and conjunctions of any variables may
be represented by a single neuron equipped with an
functien ferm LSF . Thus any clausc ef the cenjunc-
tive normal form may be represented by a single
neuron of the hidden layer, and the conjunction of
clauses can be represented by the eutput neuron as
well. We get that for this special task and network
A<LgpT. For atask T = T(s,r) simply put tegether
r disjunct networks of type (s,t,1). It is clear that
the resulted network of type (s,#t,r) can perform
the task T. O

Now, using the saie arguinent as of Theorem II1.
4 1t is straightferward, that

Thcoxyem IV.1 The performability preblem of the
I'CL networks. that has at least 3 hidden laycr, is
NP-complete.

In most of the applications networks having only
enc or twe hidden layers are used. Unfortunatly,
for networks, that has two hidden layers the cor-
respending perfermability problem is NP-cemplete
too. 'l'o prove this, we need the following proposi-
tion:

Proposition IV.2 For any task 1" = 1'(2,1), for

which |S(T)| < 3, il is lrue, thal for the PCL nel-
work A of typc (2,1) A< spT.

Proof. The reasen of it is, that the enly functien in
2-dimensions, that is not linearly separable, is the
function XOR. Since any task, which has at most 3
elements can be extended Lo a function which is not
the functien XoRr. thus such tasks arc cempatible
with an LSE function. O

Theovem IV.2 The performabilily problem of 'CL
nctwerks having cractly two hidden layers, s NDI-
complete, even for the hasis 1.SF.

Proof. By reduction from the problem of compati-
ble greupings. We knew, that for p = 3, and for any
task T, deciding whether &(T) < 3 or not, is NP-
complcte. Let T'= T(s.r) be any task, and let Ay
be the F'CL network of type (s, (s.2,1).2,r), where
{ = |T| and P is the polynomial defined in Propo-
sitien IV.1. New, wc want te shew, that £(7") < 3
il and only if Ar<pspT. As usual let us decompose
the task T inte subtasks T} and T5, and the net-
work A into I’CL networks, A1 and A., of type
(5,P(5,2,1),2) and (2,r), respectively (see Theo-
rem III.1 and II1.2). Since |T1| < |T|, d1<LsiTh
holds, clearly, according to Proposition IV.1. Thus
it is suflicient to prove, that &(7") < 3 is cquivalent
to Ao<pspTy. But observe, that by the definition
of Ty |S(Ty)] = k(T). and using Proposition IV.2
this yiclds te the desired result. Note, that A, can
be constructed in pelynemial time in the size of the
task T, which cemplctes the preef. 0O

V. BINARY TASKS: LOABING IN POLYNOMIAL
TIME

The harduess of problem of finding a compalible
srouping fer a task T' vanishes, if we restrict the set
of tasks to (strictly) binary tasks. It is clear, that
fer any binary task, there is pelynemial algorithm,
which finds the least cempatible greuping: since fer
two binary response strings it is not questionable,
that the cerresponing stimuli sheuld be in the same



group or nol. (Mlearly il and only il the two response
strings arc identical, the corresponding stimuli has
to be in the same group. 'Thus k(7'), in this case,
reduces to the nwber of dilferent response strings
contained in /" 'I'he following theorem is an imme-
diale consequence ol this arguinent:

Theorem V.1 For the basis LUF loading binary
tasks into I'CL networks of any type can be solved
in polynomial time. The same statement holds for
the basis LSF and one layer FCL networks.

Proof. At first let us prove the first part of the
theorem. For this, let us fix the basis LUI". T'or I'C'L
networks, that has only one layer, it has been proven
already, that loading of any (even extended) binary
task can be done in polynomial time, respect to the
size of the task and the size of the network. For
multi-layered networks, the stalerment follows [rom
the fact, that for binary tasks, finding an optimal
compatible grouping of 7" can be done in polynomial
time, respect to the size of the task. Then loading
(if the task is performable by the architecture A)
can be done by recursively splitting the task into
subtasks and loading these into one-layered parts of
A.

Now, we will prove the second part of the stale-
ment. Fix the basis LSF. We note, that for one-
layered ('L networks, the statement can be refor-
mulated as a sct of lincar incqualilitics. (For a task
T =T(s,1) of size £, the number of inequalities will
be t, and the number of variables will be s + 1 cor-
responding to the weights and the threshold of the
LSF function. Thus, for a task of type T = T(s,r)
the number of incequalitics and variables is polyno-
mial, respect to the size of the task.) It is known,
thal such an inequalily system can be solved within
polynomial time (or it can be shown, also in polyno-
mial time, that no sohition exists for it). 'I'hus for
one-layered FCL networks loading is polynomial. O

Note, that for multi-layered FCT, networks this ar-
gument fails since finding optimal compatible group-
ings for the basis LLSF is known to be NP complete.

In order to rephrase why learning is hard for ex-
tended binary tasks let us examine the learning prob-
lem, for extended bhinary task. Pick a task /', and a
SR-itew ol it, say (s, r), such that 7 contains at least
one don’t care symbol. “Showing” this item to the
network means, that output neurons, for which on
the appropriate position in string r the don't care
symbol  stands, are not told, what to learn. They
have the freedom to find out what to do. This lib-
erty is, what makes learning difficult.

VI. CoNCLUSION

We emphasize, that Judd's proof of NP-complctness
is a worst-case complexity result on a specific do-
main. Tomake it clear, first we refined the notation
of performability. ‘I'hen we have examined the do-
main ol “everyday”, intra-layer [ully connected neu-
ral networks. Judd’s proof docs not extends to this
case, since in his domain there are only “rarely”
connected neural networks. One may think, that
enabling more connections makes the problem eas-
ier. But this is just one part of the story. We have
found two mainly different results for these type of
networks, according to the set of tasks enabled: For
the set of extended binary tasks and for the set of
strictly binary tasks the loading problem is NP-hard
and is solveable in polynomial time, respectively.
The only point, which remained questionable is the
loading of extended binary tasks into two layered
I'CL newworks, using basis LST. Qur conjencture
is, that this is a NP-complete problem too.
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