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Complexity of Learning: The Case of 

Everyday Neural Networks 

B, OLil1 anu Cs, Szepesvari 

Absh'uct- We have exalnined two �lightly 

different domains of the learning problem. 

W0 have! found a polyno111ial ti1110 r0sult: and 

also an NP-colnpletnes� result in these two 

domains. The domains are choosen so, that 

cOIlllIlonly u�ed neural network architectures 

are included. 

1. IN'TRODLCTION 

Kowadays artificial neural networks (AKNs) receive 
an increasing attention. However recent computer 
architectures do not allow yet the implementation 
of large A N'l"s. Thus it is an important q11estion 
to exanline hmv the learning time of AN� s scales 
respect to their size (and/or with the size of the 
tasks) . .T udd has introduced a COlnp uLational [ralne­
work for the learning problem [1] and proved, that 
learning in neural net\'mrks in general is too hard, 
i.e. in the worsL case learning in neural neLw·orks is 
KP-complcte. However, in his proof he restricts the 
domain of ne11ral network ar('.hitectllres and tasks in 
such a way, that ':everyday" neural network archi­
tectures, such as the one of the back-propagation 
algorithm, are not included in this domain. Conse­
quently Judd's proof does not tell anything for these 
types of networks. In this article we present t,,",o 
straightfonvard proof about the complexity of learn­
ing for ';everyday" AN .'Js. 'I'he first theorem says, 
that [or extended binary tasks and in the '\'orst­
case, the problem is Nfl-complete, while the second 
says, that for hinary tasks, there exist a polynomial 
time algoriLlllll [or loading. FrOlll these results, we 
conclude that for every neural net,,",ork application 
dOlnain one ha.<:; Lo exalnine the Lime complexiLy o[ 
the specific learning problem. 

II, TErrMINoLoGY 

Here we consider a special case oflearning in AN�s: 
namcl�y supervised learning. In this scheme a net­
work i� presenLed \viLh a set of input-outpuL pairs, 
and it is the task of the network to reach to a config­
uration that allows it to establish a function which 
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is cOlllpatiLle \�iith the ta�l{. In this section we Lake 
some restrictions on the problems considered and 
will try to clarify the meaning of th� above sent�llce. 

A. Tasks 

At first - as llsual - w� restrict ourselves to th� 
cla�tl o[ extended biu().{"ll "I(t>, r) l().!:)b (here s aIld r 

denote the stimulus and response size of the task re­
spectively) : f:;uch a Lask i� a. collecLioIl o[ Sn-iteIIl�, 
where each SR-item consists of a stimuli and a re­
sponse strings of size sand r, respectively: 

T c P({O,l}' X {O,l,.}"l 

Here the symbol * is the so called "don)t cart)' sym­

bol, For any x and y from {Il,l, *} we say that they 
arc com.patible, iff J.: = y or "" E {J.:, y} . Further we 
say that strings p and q from {O, 1: *}t are compati­
ble, iff for every index i (1 :::; i S; r) the ,zth character 
of p and the £th character of q arc compatible. vVc 
will denote this relationship by p ;:::::::: q. The siu; of (). 

task is by definition n + s + r, where n is the number 
of element.s of '/" We will denot.e by .5'('/') t.he set of 
all �tiIIlUl.i in T. Now· let ! be a fUIlcLioIl [rom {O, 1 P 
to {O,l}", We may say that a task T = T(s, r) is 
compatihle with /, if for any pair (S,1') from T th� 
relation f(s) � r holds. A task T is said to be 1.Ufl/­

defined, if there exists a function j, such that j is 
compatible with T. The set of all extended binary 
tasks ,;rill be denoted by T*. A task is said to be 
strictly binary (or simply binary), iff it do not uses 
the don't care symbol. The set of all binary tasks 
will lw denoted by To* . 

B. A.rchitccturcs 

Our next restriction is on the class of neural net­
work architecLures. Here ,"ve consider jusL the Jetd­

forward type architectures. Such an architecture 
may he represented as a tuple A = (P, V, S, R, F). 
where P is Lhe IiniLe seL o[ neurons, l/� is the set 
of configurable neurons, :3 is the set of input sites 
(8 = P - l/). ReP is Ihe seL of ouLpul siles, and 

1 r(x) d ... rlo!..,s I.he h..,1. or I.h,., SIJbst'is or x, i.e. I.h.., J!0,v..,r·-sel 
of X 



IE itl Lhe tleL o[ Lhe (directed) connectiontl: 

E C {(Vi,];j) :Vi E P,Vj E V, i < j}, 

where {'Vl, '/."2, ... , 'Un} is a suitable ordering of the 
elements of 1/. A family of architectures and the set 
of aU architectures is denoted by A and A" , respec­
tively. 

B.l. FCL architccturcs 

In this article we focus on a special case of feed­
fonyard net\yorks, '\vhich are used in most of the 
applications. \Ve tlhall call this fcunily o[ architec­
tllres the FeL (flllly <::onnected layered) archite<::tlJre 
family. The neurons of a net'\vork from this class are 
arranged in layers: there are no connections inside 
a layer, hllt the network is fully conneded hetween 
consecutive layers. The first layer is the set of all 
input neurons S' (this is the zero1h layer), and the 
la.<:;t is Lhe set o[ all ouLput neurons R. The silje of 
an architecture is by definition s + n ,  where s and n 

denote the nllln her of input sites and the numher of 
configuraLle neurons, respectively. A FCL architec­
ture is fully determined by its layer sizes: we will say 
that A is a FCL architecture of type (no, nl, . . . . np) 
if there are [I layers in the network, and the number 
of neurons in the layer i is Hi. Often ni is said to be 
the size of the 'ith layer. For () < 'i < [I, we say that 
the ith layer is a hidden-layer of the network. 

c. YVorkinq mechanism 

The architecture of a network determines almost en­
tirely its working me<::hanism, '\vhich is the follow­
ing: aL first a stilIlulutl it; presenLea Lo the network 
through its input sites. It will be the output of 
the input site; a.t; ,'velL In the following sLeps the 
neurons, whose input neurons have computed their 
outputs already in an earlier step, can compute their 
oULputs. The process ends ,'vith the deLermination 
of the outputs of the output neurons, which will also 
be the output of the whole network. The next ques­
tion is hmy a neuron computes its output. 

D. �Vode Junciions 

VVe assume, that the computation of every neuron 
may he represented as the <::omplltation of a fllllC­
tion. The class o[ [uncLions compuLable Ly the neu­
rons in the network is the subject of a further re­
striction. In pradice it is widely ac<::epted, that the 
computing capacities o[ neurons is restricted to the 
computation of linearly separable functions. The 
class of these functions will be denoted by LSF. 
Such a function may be represented in the following 
manner: For every input site of the neuron there is a 
weight associated with it. When the neuron receives 
its inputs it computes the weighted sum of its inputs 

ana COlnpares the l'etlulL to a thret;hold. If Lhe re­
sult exceeds the threshold, the output of the neuron 
will be one, ot.herwise it will be zero. Another class, 
which itl eatly Lo manage in prooL<:;, it; the class of all 
lloole functions. This class will be denoted by L l! [i 
(as Look Up functions). 

E. Configured networks 

The class of functions from '\vhich a network may 
<::hoose its node-fund.ions is called t.he basis of learn­
ing. vVe ,,,,·ill denote La.<:;es Ly F. A configured nef­

work is an architecture -",1 together with a set F = 
{.fl,' .. ' fn}, ""vhere fj is the flllld.ion computed hy 
the ith configurable node '1\ frmll V. V{e say that 
an architecture A is configured using the basis F, 
if every function, f, from the configuration F of A 
is the element of F. 'Ve denote by C.:F(A) the set of 
all possible configurations of an architecture A using 
the basis :F. 

F. Task performed by a network 

To complete our framework we define the meaning 
of "a task is learned (or performed) by an architec­
ture." A configured network determines a function 
from its st.imulus space to its response space. Let 
(A, F) be a configured network, and let us denote 
this function by )\,11'(--,1). vVe say, that a configured 
net.work (A, P) performs t.he t.osk r, iff A1p(A) is 
compatible with T. This relationship will be denoted 
hy A<p'!,. i\ t.ask is said to be prrformablr by A llS­
ing the basis F, i[ there is a conllguration r [rom 
CJ{A), such that (jl, F) establishes T. This relation­
ship will be denoted by .A <5'/ '. 

G. The computational problem 

The loading problem. (or learning problem) it; Lhe fol­
lowing: Fix a domain Dc A* x T*, and a basis:T. 
For an arbitrary pair ( .A , '/1) from D find a config­
uration F from Cr(A), such that A<rT. This is a 
search problem. The perform-ability problem is the 
appropriate decision proLlem: in thitl ca.<:;e on a fixed 
domain D and for a fixed basis :F one has to decide 
for any given pair (A., 1') from D whether A.<F1' or 
not. The performabiliLy problem it; the proLlem o[ 
re<::ognizing the following (parametrized) langllage: 

Perf(DF) = {(A T) ED: A.<FT}. 

Clearly if an algorithm can solve the search problem. 
it itl also possible Lo t;olve the decision problem using 
the same algorithm. Thus the search problem is at 
least as hard as the decision problem. 

In the next section we will focus on the load­
ing problem of Fel networks using the basis L UF. 
These results show, that the loading problem for 
this domain is NP-complete. 



III. LOADl�G WlTH LUF FU�CTlO�," 

Fix the hasis LCF. First, it is ea.sy to check that 
the loading of FCL networks having only one layer 
is casy: it can be solved in tiUlC O(n x ITIL where 

n is the lllllllher of output neurons of the network 
and ITI denotes the number of clements of task T. 

i1. Compatible groupings 

\Ve begin with an obtlervaLlon: Let us suppose, that 
the task T has been loaded into a multi-layered FCL 
network. Let llS take a look 011 an intermediate layer 
of the ueL\vOl'k. IL is dear, LhaL [or every pair of 
stimuli 51 and 52, for which responses Tl and r2 arc 
different, the outputs of the neU1'ons in the examined 
layer are different for the two cases. On the other 
hand let us take an arbitrary output-scene of that 
layer, and the set of �L iIIluli [or \,\,111ch Lhi� scene 
appears on this layer. It is dear again, that for 
every pair of stimuli from this set, every appropriate 
response pair has to be the same. These comments 
motivate the definition of compa.tible grouping8: 

Let us fix a task T, and let 8 = 8(T). Then 
{So, 81, ... , S'k-d C P(S') is said to be a cOIupat­
ihle grouping of r, iff UiS'i = S, S'iS are pairwise 
disjuncts, and for an arbitrary index i and stim­
llli 81 , 8'2 E Si, and for any "1 and "'2 for which 
(S1' '('1) E T aIld (S2' '('2) E T the relation j'1 :::::::::: j'2 
holds. Kumber k is said to be the size of the com­
patihle grouping. 

B. R""ll, 

Let us denote the minimum size of compatible group­
ings of 'J' hy k(T). For the sake of compactness let 
us denote by len, the function [Iog,(n)] + 1 ,  where 
[x] denotes the integer-part of the real number x. 

Furthermore leL u� deIloLe by bs Lhe [UIlcLioIl, "",·hic11 
maps the set {O, 1 ,  .. . , 2s - 1} to its binary repre­
sentation. Both len"! and bs are cOlnputable in poly­
nomial time and size of their arguments. By defini­
tion the dimen8ion of a task r means the numher 
len,(k(T) - 1). ( If k(T) < 2 then we redeclare the 
dimension of T to be 0.) Our above observations 
show, that for any given ha.sis .F from A<;rr it fol­
lows, that dim(T) is less then or equal to the mini­
mum of the nellron-numher of the hidden layers of 
the netw'ork A. For:F = LUF the rever�e r:;taLement 
is also true. V{e will prove it in two main steps. 

Theorem IIL1 Let "1 be a 2-layered FC'L network. 
If dim 'J' :s; H, 1fjhere H i8 the number of neuron8 in 
the middle layer, than the task T is perform.able by 
A using the basis LUF � 

Proof. Let A be a network of type (s. n, r) and T be 
a task, for which there exists a task T ,vhose dimen­
sion is less then or equal to 11.. Let this grouping be, 

say, {8o,8" . . .  ,Sk-d. where le1l2(k-l) -::: n. Let 
,1, and ,I, be the FCL nclworks of type (5, n) and 
(n, r), respectively. �\\lrthNmore let us d�rompose 
the task T into L\\'o �ubtasks T1 and T2, where 

T, = Irs, b,,(i)) : s E S;} 

and 

'I, = ((h,,(i), !') : 38 E 5", (8, !') E'I}. 

It i� an easy task to check, that T1 and T2 are well 
defined tasks, and A1 <LUFT1 and A.2<LU,T2. If 

Ii E Cr,cF(Al) denotes the configurations, for ,vhich 
Ai<Fili (i = 1,2), Lhen it is clear that [or l he joint 
configuration P = P1 U F2 the relation .A <pT holds. 
o 

Let us remark, that for the above defined '1� it 
is true, that dimT2 � dimT. To prove this, it i� 
enough to check, that the sets S� = .f1 (Si) forms 
a compatible grouping of T2, where h denotes an 
arbitrary fixed function which is compatible with 
T1. Now the follmving theorem follows immediatly: 

TheoreIIl 111.2 Ltl A be an FeL networkl lwving 
at lEast two layers. ThEn for any giuEn task T, 
A<L1-],l' if and only if dim"/' -::: n, whae n 18 the 
rnininuuu oj the elernent numbtr oj the inter-Iaytrs 
of .4. 

Proof- The necessity of th� performahility condi­
tion has been proven already. Now we will prove the 
other direction by induction of the number of lay­
er� in Lhe net\",·ork. For 2-1ayered neLworkr:; we have 
seen the result already. Now, let us p ick a p-layered 
network (with p > 2) of type (nil, n" . . .  , n,,) , and 
let. 11. = mino<i<p Hi. Suppose, that we have proven 
the statement for (p - 1 )-layered networks. Let 
{So, ... , S'k-r} be the compatible grouping ofT. for 
which lC1l2(k - 1) -::: 11,. Let. A, and A2 be FCL 
networks of typ� (n O, 11.l ) and (111,112, ... ,np ), re­
spectively. Define the decomposition of T into Tl = 

'/1 (no, 11.1) and 'I� ='12 (11.1,11.p ) a.s above. It is clear 
that T1 and T2 are well defined, and i[ Ai <LUFIi [or 
i = 1,2, then Ji<LLl,·T. Thus, again, it is enough to 
prove, that '/1 and "/� are pNformahle hy .41 and A'2, 
re�pedively. �aturally �"h <L1.TT 1 as Al i� a one­
layered network. To prove, that A.2<r,UFT2 consider 
the following inequality series: 

dim T2 < dim T < min {/1 < Hun n i . 
- - O<i<p - 1<z<p 

This. together wiLh the inductive assumption yields 
the desired result. D 

This result shows, that it is enough to concentrate 
on the hardness of the questions of type dimT :s; n. 



Ii. is eatly Lo tihow, LhaL [or n > 1 the problem of 
deciding for any task T, whether dimT::; 1 is true 
or not, is N P-<::Olnplete. (b'or n = 1, the prohlem is 
solvable in polynolnial Lime.) More precitiely: 

Theorem IlI.3 For p > 2 the problem of decid­
ing for any task '1'. whether k(l') :::: p is true. is 
NP-complete. For p = 2, the problem is solvable in 
polynom£al time. 

Nmv, utling Lhe tlame argumenL atl o[Theorem III. 
4 it is straightforward, that 

Theorem IV.l The performability problem of the 
FeL networks. that has at least 3 hidden layer! is 
iVP-complete. 

In most of the applications net,Yorks having only 
one or t-.,.vo hidden layers are used. Unfortunatly, 
for neLworktl, LhaL has 1.''''0 hidden layers the cor­

Proof. By redu<::tion from the prohlem of p-<::olorahility responding performability problem is )JP-complete 
of graphs. The proof is omitted. The interested too. To prove this, we need the following proposi-

reader is referred to ['2]. 0 Lion: 

Proposition IV.2 For any task 'f' = 'f'(�, f), for 
Theorem IlIA Loading of FeL networks. !lwl has which 18(Tll :::: ;1. iI is /-ine, !lwl for Ihe FeL net-
at least two layers, using the basis LCF is NP-compleie.work "1 of type (2, t) Jl<Lst-T. 
Ai ore preeistly if Ai denotes the set of all FCI net­
works, that has exactly i layer and in any of their 
hidden layers has at least two nellrons, then for any 
do'main D, which includes any of the sds Ai x T* as 
a subset, the problem rC7j(V,LUF) is Jvr-completc. 

Proof. Hy redu<::tioll from the prohlem of <::ompatihle 
grouplllgtl. The proof can he found in [2]. 0 

IV. LOADIKG 'VITH LSF FUNCTIONS 

The previous theorem <::anllot he applied directly to 
the loading problem of FCL neLViOrkf:) utling LSr 
functions. The reason is, that we have used inten­
sively the fact, that a one-layer network, using the 
basis LCF' can load any extended binary task T 
within polynomial time. This is not the case ,,,,hen 
only the basis LSF is enabled. nut the following 
observation will help: 

Proposition IV.l /"fi '/' = '{'(s, 1» he (1). arhitrary, 
Jl:r.:ed la!:)k. TIlt'll (here t:r.:i!:){!:) ([ pui:lJfl.u'mial P, s'l.Jch 
that for the FCI network A of type (s, 1'(l+s+r), rl, 
whtre I = ITI , it i, Irut, Ihal A<LSPT. 

Pruuf. The outline of the proof itl Lhe folloviing: aL 
first we will prove the result for ta.sks of type T( s, 1). 
For such a task it is enough to use a reL network of 
type (s, t, 1). In order to show this, let us consider 
the <::onjllll<::tive normal form <::orresponding to task 
T. This has at nlost t clauses. It is easy to see, that 
disj1lndions and <::onjllll<::tiollS of any variahles may 
be repref:)enled by a f:)ingle neuron equipped ,·"iLh an 
function form LSF . Thus any clause of the conjunc­
tive normal form may he represented hy a single 
ne uron of Lhe hidden layer, alld Lhe conj unction of 
clauses can be represented by the output neuron as 
well . \Ve get that for this special task and network 
A.<UiFT. For a task T = T (s, 1» simply put together 
r disjunct networks of type (s, t: 1). It is clear that 
the resulted network of type (.5, Tt, r) can perfonn 
the task T. D 

Proof. The reason of it is, that the only function in 
2-dimensions, that is not linearly separable , is the 
function XOR. Sin<::e any task, whidl has at most :) 
elelnenLf:) can be extended Lo a function .. "hich itl nol 
the function xorr. thus such tasks are compatible 
with an LSb' fundion. 0 

Theorem IV.2 The perJonnabilily ]Jmolem of FeL 
networks havinq exactly two h.idden layers! is NP­
complete, even for the Va8!8 I.,S F. 

Proof I3y reduction from the problem of compati­
ble groupings. ",'e know, that for p = 3, and for any 
tad, T. deciding whether k(T) <: 3 or not, io NP­
complete. Let T = T (s. r) be any task, and let A1 
he t.he �'CL network of t.ype (s, P(s.�, f).�, 1'), where 
L = ITI anu P if:) Lhe polynomial defined in Propo­
sition IV.I. 'low, we want to show, that k(T) <: 3 

if anu only if A.T <LSFT. AB utiual let Uti decompotie 
the task T into sub tasks Tl and T2, and the net­
work A into FCL networks, A, and Lh, of type 
(6,P(6, 2, 1), 2) and (2,'f'). respectively (see Theo­
rem IILl and III .2) . Since IT,I :::: ITI, A.'<LS1 .. T, 
holds, clearly, according to Proposition IV.I. Thus 
it is sufficient to prove, that k(T) ::; 3 is equivalent 
to A2<LSFT2. Rllt observe, that by the definition 
of T, IS(T,)I = k(T). and using Proposition IV.2 
this yields to the desired result. Note, that -",1'1' can 
he constructed in polynomial time in the sir,e of the 
task T, which completes the proof. 0 

V. BIKARY TASKS: LOADI:.'-JG IN POLYNOMIAL 
TIME 

The hardness of probleln of finuing a compaLible 
grouping for a task T vanishes, if we restrict the set 
of tasks to (strictly) binary tasks. It is clear, that 
for any bina.ry task, there is polynomial algorithm, 
which finds the least compatible grouping: since for 
two binary response strings it is not questionable, 
tha t the correspolling stimuli should be in the sa me 



group or noL. Clearly if and only if Lhe 1,\'\'0 re::;pontle 
strings are identical, the corresponding stimuli has 
to he in the same group. Thlls ��('f'), in this ca.",e, 
reducetl to Lhe number of different respontle sLrings 
conta.ined in '1 '. The following theorem is an imlne­
diaLe consequence of Lhitl argument: 

Th<:or<:nl V.l For the nasis LUr loading ninary 
tasks into FCI networks of any type can be solved 
in polynomial time. The same statement holds for 
the nasis LSF and one layer PCT- ndworks. 

Proof. At first let us prove the first part of the 
theorem. For this, let us fix the basis L HIi'. For FCL 
networks, that has only one layer, it has been proven 
already, that loading of any (even extended) binary 
task can be done in polynomial time, respect to the 
size of the task and the size of the network. For 
multi-layered net\"'orks, Lhe titaLelllent follows from 
the fact, that for binary tasks, finding an optimal 
compatihle grouping of,/, can he done in polynomial 
tilne, respect to Lhe size of the Latlk. Then loading 
(if the task is performable by the architecture A) 
can be done by recurtlively tlplitLing Lhe Lask inLo 
subtasks and loading these into one-layered parts of 
A. 

Kow, we will prove Lhe second part of Lhe titaLe­
ment. Fix the basis LSF. VVe note, that for one­
layered FCL net'\vorks, the statement can be refor­
nlldatcd as a set of linear incqualilities. (For a task 
T = T(s, 1) of size t, the llllmher of inequalities ,vill 
be t, and the number of variables will be s + 1 cor­
responding to the weights and the threshold of the 
LSr function. ThllS, for a t.osk of t.ype T = T(s, r) 
the number of inequalities and variables is polyno­
mial, respect to the size of the task.) It is knmvn, 
that tluch an inequaliLy tiysLem can be solved ""ithin 
polynomial time (or it can be shown, also in polyno­
mial time, that no Sohltion exists for it). Thus for 
one-la yered FeL networks loading is polynOIuial. 0 

Kote , that for llllllti-layered FCL networks this ar­
gmnent fails since finding optimal compatible group­
ings for the hasis LS�' is known to he .\J P complete. 

In order to rephra�e why learning itl hard for ex­
tended binary tasks let us examine the learning prob­
lem, for extended hinary ta.",k. Pic.k a task '1', and a 

SR-iLem of iL, �ay (6, '1") , tluch that r containtl at leatlt 
one don't care symbol. ;'Showing'; this item to the 
network Ineans, that output neurons, for which on 
the a.ppropriate position in string r the don't care 
symbol * stands, are not told, what to learn. They 
have the freedom to find out what to do. This lib­
erty is, what makes learning difficult. 

V{c emphasize, that Judd's proof of NP-cOInplctness 
is a worst-ca.",e complexity result on a specific do­
main. To make it dear, first we refined the notation 
of performahility. Then ,ve have examined the do­
main of "everyday�: , intra-layer fully conlleded neu­
ral networks. Judd's proof does not extends to this 
case, since in his domain there are only ';rareli' 
connected neural networks. One ma.y think, that 
enabling more connections makes the problem eas­
ier. nut this is just one part of the story. 'Ve have 
found two mainly diH·erent results for these type of 
networks, according to the set of tasks enabled: For 
the set. of extended binary tasks and for the set of 
strictly hinary tasks the loading prohlem is .\J P-hard 
and itl tlolveable in polYllolnial time, re::;pedively. 
The only point, which remained questionable is the 
loading of extended hinary ta.",ks into two layered 
peL neL\vorktl, utiing basiti LSF. Our conjendure 
is, that this is a NP-complete problem too. 
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