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Abstract

In all branches of mathematics, including learning theory, results build on previous results.
Thus, it is important to keep the literature free of erroneous claims. This short report lists
some problems with the proofs and claims in the recent papers by [Prashanth et al.|[2014],
Korda and Prashanth| [2015], whose longer version containing the proofs are available on
arxiv [Prashanth et al. 2013, Korda and Prashanthl |2014]. In particular, it follows that the
results in these papers, if true, would need completely new proofs, and thus should not be
used in the form stated by the authors.

1 Introduction

This short report lists some problems with the proofs of the claims in two recent papers by
Prashanth et al.[|2014], Korda and Prashanth||2015]. As the problems seem serious, our conclusion
is that to obtain results similar to those claimed in these two works, the assumptions of the
stated claims need to be considerably strengthened and the form of the results will also need to
be adjusted in significant ways.

The report is not self contained and its scope is limited to an audience who are interested in
RL and TD(0) and specifically the above-mentioned papers. Furthermore, since Prashanth et al.
[2014], Korda and Prashanth| [2015] omitted the proofs, we will instead discuss their longer version
in what follows, which have identical statements but include the proofs. The longer version of the
paper by Prashanth et al.| [2014] is [Prashanth et al., 2013], while the longer version of [Korda,
and Prashanth| [2015] is [Korda and Prashanthl |2014]. We will borrow the notation directly from
these works.

2 Expected Error Bound

2.1 Bugs in the paper by [Prashanth et al. [2013]

One of the main results of [Prashanth et al.|[2013] is Theorem 1, which states a bound on the
expected error. The proof of this theorem can be found in section A.2, starting on page 16. The
proof up to Eq. (26) is correct (in the definition of M,,11, F, should be F'). However, after
this display, we are told that by (A4), which ensures that + ZiTzl #(si)pe(si) T = pl for some
w>0,A, = %ZLI éi(pr — B#,) T is such that A, — (1 — B)ul is positive definite. Here, n > 0
is an arbitrary index and for ¢t > 1 we use the abbreviation ¢; = ¢(s;,) and ¢} = ¢(s;,), where
iy € {1,...,T} is a random index.

In general, (A4) does not imply that A,, — (1 — 3)ul is positive definite.



Take for example n = 1. We would need that ¢1 (¢ — B¢)) " — (1 — B)ul is positive definite. It is
easy to construct examples where this is not true: Nothing prevents, for example, ¢1 = B¢}, in
which case A; — (1 — B)ul = —(1 — B)ul is negative definite. (Note that the matrices involved
are not symmetric. Unfortunately, none of the two papers defines what is meant by positive
definite in this case. We assume that the definition used is that a square, real-valued matrix A
is called positive definite if 27 Az > 0 for any x real-valued vector of appropriate dimension.)
In fact, we don’t see why the claimed relationship would hold even when A, is replaced by
Ap = = ZiTzl #(s:)(d(s;) — Bo(sh))T, and we in fact suspect that this claim is false in full
generality. But at minimum, a proof would be required and the whole subsequent argument will
need to be changed.

2.2 Bugs in the paper by Korda and Prashanthl [2014]

ki

In page 14 the expression below “A is a possibly random matrix...” is not justified (personal
communication with one of the authors confirmed this). In particular, the claim here is that if A
is a random matrix with || A||, < C with C a deterministic constant then for any 6 deterministic
vector,

E[0TATE [e,|F,] A0 | s0] < C?0TE[en|s0] 0.

Recall that here €, is a matrix of appropriate dimensions, the “mixing-error term” and is actually
Fn, measurable (¢, = E[a,|F,] — Ev[a,]). When the Markov chain is started from its stationary
state (which is not ruled out by the conditions of the theorem under question), E [e,|so] = 0. If
the above inequality was true, we would get

E[ATe,Als0] =0.
However, letting B = E [¢,|F,,] and, for example, A = CB/ ||B||,, we have
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and it is easy to construct examples where the expectation of this is nonzero.
Also in page 14, we find the following inequality
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k=1

16013 + 1+ ||9*H§€2(1+3)
(1-p)2

where it is not clear as to how the (1 — 3)? factor appears in the denominator (also confirmed by
a personal communication with one of the authors).
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3 Problems with the Proof: High Probability Bound

3.1 Bugs in the paper by Prashanth et al. [2013]

The proof of the high probability bound starts on page 14, in section A.1. The first problem
happens in the display on the bottom of this page in the proof of Lemma 6. Here, we are told



that for A = ¢o' — Bp(¢')T (we are dropping indices to remove clutter),
ATA=I¢]* 9o — B2~ lIg|* B)¢' (&)

where ||z|| denotes the 2-norm of z. However, using A = ¢(¢ — f¢') T, a direct calculation gives:
ATA= (¢~ 5¢)0"d(¢ — B¢')

= [l6]1* (6 — B) (& — BT

= ¢l* {¢¢" — B(@'d" + (")) + 52 (¢)"}
which does not match the previous display. The terms that do not match are the linear-in-3
terms. In the first display we have —23¢'(¢') T, while in the bottom we have —3(¢'¢" + ¢(¢') 7).

The first equality of their display states (in equivalent form) that
ATA= |6l (90" —28(¢")T + B°¢'(¢)).

We see that while this is closer to the correct result, here the mistake is that —28¢(¢') " is
replacing —3(¢(¢') T +¢'d7).

3.2 Bugs in the paper by Korda and Prashanth [2014]

(In this paper, s; is a sequence of states obtained whole following a fixed policy in an MDP.) In
page 10 of [Korda and Prashanth| [2014] the expression for E[a;a;41] contains terms that involve

the product of P and P". This cannot be correct, as here we can take the expectation first over
the next state, which will bring in a single instance of P. To remove clutter, drop the j subindex,
and set A = ¢(¢ — B¢’) T, where ¢ = ¢(s;) and ¢’ = ¢(s;+1). The incriminated expression from
Eq. (15) of the paper is

E[A-JATA] =®"(I - BYP — (A —BP" (2] — BA)TP))D. (1)
Here, ® is the S x d matrix whose sth row is ¢ ' (s) (s € {1,...,S}), ¥ is the S x S diagonal

matrix whose ith diagonal entry is P (s; = ¢), while A is another S x S diagonal matrix whose
sth entry is ||¢)(s)||§ A direct calculation (as before) gives that

ATA=(¢—B¢)p d(p—Be)"
= [6? (¢ — Be") (& — BS)T
=6l {¢6" —B(&'d" + (")) + B¢ (¢)) "}
= glI> 60" — BlloI*'d" — BlloI*b(¢") T + B> IglI° ¢'(¢) " - (2)

The expectation of each terms are as follows:

B (62 06| = SR (50 = ) [16()|> 6(s)6(s) T = @ ADS,

BE [Io]* ¢'67 | = BZP se=13) [ 6(s)|” {ZP }qs(s)T:/s(P@)TAMa
88 (6P 6(e)T| = BB [0l 0'67] = B{(Po)TAwe)}" = B@T AvPD),
E |8 l6]* ¢'(¢)7| = 5 > Ple =) o) {ZP >T}.



Further,
E[A =3"U(I - 5P)®
Putting together things we see the mismatch with . To see this even more clearly, assume that
¢(s)||> =1 for any s € {1,...,S}. Then, A = I, and by stationarity, P (s;11 = s) = P (s; = s),
hence,
E [82]6]” ¢'(¢) | = 2B [6(6)7] = 520" wo.
Thus,
E[ATA|=2" 00— o ' PTU® — 30T UPD + 32T U
=0 (U —B(PTU+UP)+ V)

and hence
E [A - %ATA} =0T - BP)D — 307 (U~ B(PTW + UP) + 2F) &
=@ {U(I-BP)- % (T —-BPTY+TP)+5°T)}D.
while gives
E[A-JATA] =07(I - BYP — (I - P (2] - BI)VP))P
=o' {I-pYP - 2(I-2BP"UP+p3*PTTUP)}D.
Choosing ® = I, we find that the two expressions are equal if and only if

U(I—pP)— 3 (¥ —B(P U +UP)+p°T) =1—BYP— (I -28P WP+ °PTUP),

which implies, e.g., that ¥ = I (by choosing v = 0), which is not possible since the diagonal
elements of ¥ must sum to one. Even if we correct the first identity to ¥, we see that we must
have

U—B(PTU+UP)+ 20 =1—-28PTUP 4+ 3°PTUP,

which again, means that ¥ = I, and also that PTW + WP = PTUP and that ¥ = PTUP. The
first equality is always false, and the others are false except (perhaps) in some very special cases.

4 Issues with the Setup

4.1 Boundedness of iterates: [Prashanth et al. [2013]

Prashanth et al.| [2013] assume that the parameter vector stays such that the value function ®6
will be bounded in L*°-norm (see assumption (A3) of [Prashanth et al|[2014] and [Prashanth et al.
[2013]). This assumption is critical in establishing Lemma 7 (see pages 15 and 16, |[Prashanth
et al.|[2013]), in an argument that is similar to the proof of McDiarmid’s inequality. We suspect
the following shortcomings with assumption (A3):



e The assumption is stated in a somewhat sloppy fashion. We take the authors meant to
say that sup,, [|®6,||,, < 400 holds almost surely. This seems like a strong assumption:
ensuring this will most likely further restrict the step-size sequences that can be used. The
step-size sequences that give the best rate under (A3) may include step-size sequences which
in fact lead to P (limsup,,_, ||0n]| = c0) > 0. Without proving that this is not the case,
the results of the paper have limited utility.

e One possibility would be to modify the algorithm by adding a projection step to guarantee
boundedness. It is still unclear whether this alone would ensure convergence of the error
to zero. In any case, the expected error bound analysis is invalidated if a projection step
is present (basically, the algebraic identities will all fail to hold) and a new proof will be
required.

4.2 Boundedness of iterates: |Korda and Prashanth [2014]

Dalal et al. [2017] mention that (citing a personal communication with [Korda and Prashanth
[2014]) that [Korda and Prashanth| [2014] assume implicitly a projection step in all the high
probability bounds. While this implicit projection in itself does not affect the high probability
bound proofs directly, the algebraic steps are invalidated. Furthermore, the set that the iterates
are projected to should contain the TD(0) solution. How to ensure this (without knowing A, b)
remains to be seen.

4.3 Relation between Covariance Matrix and A; matrix

Prashanth et al.| [2013] assume positive definiteness of (A4) covariance matrix 7@ ®7. However,
unlike regression problems, in reinforcement learning problems what appears in the recursion (see
Equation (6)) is not the covariance matrix, but a different matrix Ap = =577 ¢(s;)(¢(s;) —
Bé(sh))T defined in pages 2, 4 (below Equation (5)), 8 and 16 of |[Prashanth et al. [2013]. Usually,
without a sampling assumption known as the ‘on-policy’ case (see [Sutton et al,|[2009] for a
discussion on ‘on-policy’ vs ‘off-policy’) the eigenvalues of A7 cannot be guaranteed to have
all positive real parts. While |Prashanth et al.| [2013] mention the ‘on-policy’ sampling in the
introduction, there is no explicit sampling assumption in the list of assumption. In fact, we doubt
that the proposed algorithm will converge without extra assumption (as discussed above).

4.4 Blow Up of the Bound

We would like to note that the rate expression in Corollary 4 of [Prashanth et al.| [2013] (or
Corollary 2 of |Prashanth et al.| [2014]) contains a constant C. The authors do mention that the
sampling error (a.k.a. variance) blows up as a« — 1. However, it also looks like that even the
constant C' = Y>> | exp(—pcn'~®) (appearing in the bound of the bias) will blow up as a — 1,
in which case it seems that the claim that the 1/4/n rate can be achieved in the limit will not
hold.

4.5 Doubt about the Effectiveness of the Algorithms

In Corollary 4 of [Prashanth et al.| [2013] (or Corollary 2 of [Prashanth et al. [2014]), we learn that
the value of ¢ governing the stepsize of the primary update must be in a small range (it must be
between 1.33 and 2). This means, that effectively, the stepsize ~, behaves as 1/n® (¢ has very
little effect). At least when o = 1, we know that stepsizes like this make the bias decrease slowly
and averaging remains ineffective. This seems to be at odds with the suggestion after this result



that o — 1 is a desirable choice. In fact, we would be inclined to choose @ = 1/2; i.e., its lowest
value. This is because then the bias is decreased relatively quickly, while the variance will be
controlled by the additional averaging. However, given all the problems with this, it remains
to be seen whether this is indeed a reasonable choice and under exactly what conditions this is
reasonable.
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