
Machine Learning manuscript No.
(will be inserted by the editor)

Training Parsers by Inverse Reinforcement
Learning

Gergely Neu1,2, Csaba Szepesvári3,2

1 Department of Computing Science, Budapest University of Technology and Eco-
nomics, Műegyetem rakpart 3-9., 1111 Budapest, Hungary

2 Computer and Automation Research Institute of the Hungarian Academy of
Sciences, Kende utca 13-17., 1111 Budapest, Hungary

3 Department of Computing Science University of Alberta, Edmonton T6G 2E8,
Alberta, Canada

27 November 2008

Abstract One major idea in structured prediction is to assume that the
predictor computes its output by finding the maximum of a score function.
The training of such a predictor can then be cast as the problem of finding
weights of the score function so that the output of the predictor on the
inputs matches the corresponding structured labels on the training set. A
similar problem is studied in inverse reinforcement learning (IRL) where one
is given an environment and a set of trajectories and the problem is to find
a reward function such that an agent acting optimally with respect to the
reward function would follow trajectories that match those in the training
set. In this paper we show how IRL algorithms can be applied to structured
prediction, in particular to parser training. We present a number of recent
incremental IRL algorithms in a unified framework and map them to parser
training algorithms. This allows us to recover some existing parser training
algorithms, as well as to obtain a new one. The resulting algorithms are
compared in terms of their sensitivity to the choice of various parameters
and generalization ability on the Penn Treebank WSJ corpus.

1 Introduction

In many real world problems the problem is to predict outputs with a non-
trivial structure given some inputs (Bakir et al., 2007). A popular approach
for training such predictors is to assume that given some input, the struc-
tured output is obtained by solving an optimization problem, where the
optimization problem depends on the input and a set of tunable weights.
The predictor then is learnt by tuning the weights so that the predictor’s

2 Gergely Neu, Csaba Szepesvári

outputs match the targets in a training data available as input-output pairs.
Oftentimes dynamic programming is used to solve the optimization prob-
lem, e.g., in the classical examples of sequence labeling using HMMs or
PCFG parsing (Manning and Schütze, 1999), but also in more complex do-
mains such as RNA structure prediction (Rivas and Eddy, 1999) or image
segmentation (Elliott et al., 1984).

Dynamic programming is also one of the main techniques to find optimal
policies in Markov Decision Processes (MDPs). In inverse reinforcement
learning (IRL) the goal is to build a model of the behavior of an expert
that optimizes the expected long-term cumulated reward in a Markovian
environment given a set of trajectories that the expert followed (Ng and
Russell, 2000). In this framework the expert takes actions that result in
(stochastic) state-changes and in each time step the expert incurs some
immediate reward which depends on the state of the process and the action
taken. The dynamics (of how the states change as a result of executing some
action) is assumed to be known, but the immediate rewards are unknown.
The IRL task is to find the immediate rewards so that the trajectories
that result from following an optimal policy corresponding to the identified
rewards matches the observed trajectories.

Returning to structured prediction problems let us assume that the
structured outputs are built up in a step-by-step manner. Then the stages of
this building process can be viewed as states that the “expert builder” goes
through when building the output. Assume that each building step of this
process contributes some elementary value to a total score and that the aim
of the expert is to maximize this total score. The problem of finding these
elementary values can then be viewed as an IRL problem: The unknown
values can play the role of immediate rewards, while the rules governing the
building process correspond to the dynamics of a controllable process. The
main motivation of this paper is to make this connection explicit, allowing
one to derive algorithms to train structured predictors from existing IRL
methods. For the sake of specificity in this paper we focus on the problem
of training parsers that use probabilistic context free grammars (PCFGs).

We will make the connection between IRL and parser training explicit
by mapping parsing problems into episodic Markovian Decision Processes
(MDPs). In fact, a parse in this framework is obtained as the trajectory
when an optimal policy is followed in an appropriately defined MDP. This
idea is not completely new: The reverse connection was exploited by Ratliff
et al. (2006) who derived an algorithm for inferring rewards using the large
margin approach of Taskar et al. (2005). Maes et al. (2007) have used rein-
forcement learning for solving the structured prediction problem of sequence
labeling. The PhD thesis of Daumé III (2006) (and the unpublished work
of the same author) presents the more general idea of producing struc-
tured outputs by making sequential decisions by decomposing the struc-
tured outputs to variable length vectors. Once parsing is represented as
a search problem (or sequential decision making problem) one can use any
search technique to find a good parse tree (depending on the search prob-

Training Parsers by Inverse Reinforcement Learning 3

lem, dynamic programming might be impractical). This has been recognized
long ago in the parsing community: Klein and Manning (2003) proposes an
A∗ algorithm for retrieving Viterbi parses, Collins and Roark (2004) pro-
poses incremental beam-search, while Turian and Melamed (2006) proposes
a uniform-cost search approach. Note that the problem of finding an optimal
policy given an MDP is called planning and has a large literature itself. In
this paper, to make the parallel with IRL algorithms clear, we nevertheless
restrict ourselves to PCFG parsing when dynamic programming is suffi-
ciently powerful. However, we would like to emphasize once again that the
issue of how a good (or optimal) plan (policy) is obtained is independent of
the problem of designing an algorithm to find a good reward function for the
MDP based on some training data (which corresponds to parser training).

In this paper we consider five IRL algorithms: The first algorithm is
the projection algorithm of Abbeel and Ng (2004), the second is the IRL
algorithm of Syed and Schapire (2008), called the Multiplicative Weights
for Apprenticeship Learning (MWAL) algorithm and the third is the pol-
icy matching (PM) algorithm of Neu and Szepesvári (2007). The fourth
algorithm considered is the max-margin planning method of Ratliff et al.
(2006) which has already been mentioned previously. This algorithm uses
the same criterion as Taskar et al. (2004), but instead of using the so-called
structured SMO method used by Taskar et al. (2004), following the sugges-
tion of Ratliff et al. (2006) we implement the optimizer using a subgradient
method. The last algorithm is the recently proposed IRL method of Ziebart
et al. (2008) which turns out to be a close relative to the maximum en-
tropy discriminative reranking method proposed by Charniak and Johnson
(2005).

One major contribution of the paper is that the IRL algorithms are
presented using a unified notation. This allows us to elaborate on similarities
and differences between them. In particular, we show how the IRL version of
the perceptron algorithm (Freund and Schapire, 1999; Collins, 2002; Collins
and Roark, 2004) can be derived from max-margin planning or that MWAL
is the “exponentiated gradient” version of this algorithm. We will also show
that the projection algorithm of Abbeel and Ng (2004) can also be regarded
as a special instance of max-margin planning.

The algorithms are compared in extensive experiments on the parser
training task using the Penn Treebank WSJ corpus: The experiments were
run on a cluster in our institute and took a total of approximately 30, 000
hours of CPU time. We test the algorithm’s sensitivity to the selection of
the step-size sequence and the regularization parameter. We also investigate
their generalization ability as a function of the size of the training set. In ad-
dition to reporting results on a single hold-out test set (as it is typically done
in the parser training literature), we also report results when performance is
measured with cross-validation, allowing us to reason about the robustness
of the results obtained in the “standard” way. The experiments show that
the max-margin, MaxEnt and the policy matching algorithms (the latter of
which is introduced here for parser training for the first time) lead to signif-

4 Gergely Neu, Csaba Szepesvári

icantly better results than the other three algorithms (i.e., the perceptron
algorithm, MWAL and the projection algorithm), while the performance
of these latter three algorithms are essentially indistinguishable from each
other. We also find that reporting results on a single hold-out test set might
lead to conclusions that cannot be supported when testing is done using
cross-validation. In particular, when measured on a single hold-out set, the
F1 error reduction of policy matching was found to be 26.46%, while the
error reduction of the maximum entropy method was found to be 20.73%,
while when their performances were compared using cross-validation then
no statistically significant differences were found.

We have found significant differences between the performance of the
training algorithms. This shows that the choice of the parser training method
can be crucial for achieving good results. In this paper we decided to deal
only with a relatively simple grammatical model. The consequence of this
is that in absolute terms our results are not as good as those obtained
with more sophisticated grammatical models such those in (Charniak and
Johnson, 2005; Turian and Melamed, 2006; Titov and Henderson, 2007).
We have made this choice deliberately as this allowed us to compare the
methods studied in a thorough manner, hoping the the results can serve as
a useful guideline for future studies.

The paper is organized as follows: In Section 2 we briefly present the
required background in parsing (most notably on PCFGs) and the basic
concepts of Markov Decision Processes (MDPs). The reduction of PCFG
parsing to solving MDPs is presented in Section 3. In Section 4 we present
IRL algorithms in a unified framework. The parser training algorithms de-
rived from the IRL algorithms are presented in Section 5. Finally, exper-
imental results are given in Section 6 and our conclusions are drawn in
Section 7.

2 Background

The purpose of this section is to provide a quick introduction to PCFG
parsing and MDPs.

2.1 PCFG parsing

In this section we present the formalism used to describe probabilistic con-
text free grammars (PCFGs) in the rest of the paper. The material presented
here is based on Manning and Schütze (1999).

A PCFG is a 5-tuple G = (W,N , S,R, σ), where

1. W is set with nt elements, called the terminal vocabulary (i.e., the set
of terminal symbols).

2. N is a set with nnt elements, called the nonterminal vocabulary (i.e.,
the set of nonterminal symbols).

Training Parsers by Inverse Reinforcement Learning 5

3. The sets W and N are disjoint.
4. S ∈ N is a start symbol.
5. R is a subset of the set of all possible production rules,

R0 =
{
R : R ≡ N → ξ,N ∈ N , ξ ∈ (N ∪W)+

}
,

where (N ∪W)+ denotes the set of non-empty words over N ∪W.
6. σ : R → (−∞, 0] is the scoring function that satisfies∑

{R∈R:lhs(R)=N}

exp(σ(R)) = 1, ∀N ∈ N ,

where for R ∈ R, R = N → ξ, lhs(R) = N , i.e., for any given N ,
exp(σ) is a probability distribution when it is restricted to production
rules with left-hand side N .

From now on we will focus on grammars that are in Chomsky normal
form, i.e., all rules are either of the form R ≡ N → Nleft Nright (Nleft,
Nright ∈ N) or of the form R ≡ N → w (w ∈ W).

A PCFG generates a countable set T of parse trees or parses. A parse
tree τ ∈ T is a set of constituents, i.e., triples of form c = (Nc, startc, endc) ∈
(N ∪W) × N × N, where startc and endc are the respective indices of the
first and last words forming the constituent. Formally, τ ⊂ T0, where T0 =
{(N, i, j) : N ∈ N , i, j ∈ N, i ≤ j} ∪ {(w, i, i) : w ∈ W, i ∈ N} is the
set of all possible constituents. In order to qualify as a parse tree a set
of constituents has to meet a number of requirements. Before specifying
these, we need a few definitions: For integers i, j, let [i, j] = {n ∈ N : i ≤
n ≤ k}. Let (N, i, j), (N ′, i′, j′) be two constituents. We say that (N, i, j)
is an ancestor of (N ′, i′, j′) (and (N ′, i′, j′) is a descendant of (N, i, j)) if
[i′, j′] ⊂ [i, j]. Now, fix a set of consituents τ . We say that (N, i, j) ∈ τ is
a parent of (N ′, i′, j′) ∈ τ in τ (and (N ′, i′, j′) is a child of (N, i, j) in τ) if
(N, i, j) is an ancestor of (N ′, i′, j′) and for every descendant (N ′′, i′′, j′′) ∈ τ
of (N, i, j), either [i′′, j′′] ∩ [i′, j′] = ∅ or [i′′, j′′] ⊂ [i′, j′]. Now, a set of
constituents, τ , is called a parse-tree if the following hold:

1. There is a single constituent in the parse tree, called the root, that has
the form (S, 1, n).

2. For all i (1 ≤ i ≤ n) a constituent of the form (w, i, i) is in the parse
tree, where w ∈ W.

3. The constituent set τ is linearly ordered, binary and consistent, i.e.,
(a) Every constituent in τ except the root has a unique parent in τ and

is the descendant of the root.
(b) Every constituent (N, i, j) ∈ τ has at most two children in τ .
(c) If (N, i, j) has a single child c′ then it must hold that i = j and

c′ = (w, i, i) for some w ∈ W and N → w ∈ R.
(d) If (N, i, j) has two children, cleft and cright, then it must holds that

i < j, cleft = (Nleft, i, k), cright = (Nright, k + 1, j), and N →
NleftNright ∈ R.

6 Gergely Neu, Csaba Szepesvári

A tree is called a partial parse tree if it satisfies all the previous properties
except item 2. The set of partial parse trees will be denoted by T1, while the
set of parse trees will be denoted by T2. A constituent c = (N, startc, endc)
is called unexpanded in τ if it has no child in τ . The set of unexpanded
constituents of τ is denoted by U(τ). We say that the rule R ≡ N →
NleftNright occurs in τ if there exists a constituent c = (N, i, j) in τ such
that c has two children, cleft and cright with non-terminals Nleft and Nright,
respectively. The number of occurrences of R in τ is defined as

f(R, τ) =
∑

(N,i,j)∈τ

I(∃i ≤ k < j : (Nleft, i, k), (Nright, k + 1, j) ∈ τ). (1)

Each parse tree τ ∈ T represents the grammatical structure of a valid
sentence in the language generated by the grammar. This sentence is called
the yield of the tree and will be denoted by yτ and is defined as w1 . . . wn,
where n is the unique integer such that (S, 1, n) ∈ τ and wi ∈ W is the
unique terminal symbol such that (wi, i, i) ∈ τ . If s ∈ W+ is the yield of τ
we also say that τ is a parse-tree of s and s is generated by the grammar
G. We will use the notation wab for the sequence of words wa wa+1 . . . wb.

A PCFG defines a probability distribution p over all generated parse
trees:

p(τ |G) ∝
∏
R∈R

exp(f(R, τ)σ(R)), (2)

where f(R, τ) is the number of occurrences of rule R in parse tree τ .1 This
way we can also define the probability of a sentence s ∈ W+ as

p(s|G) =
∑

{τ∈T :yτ=s}

p(τ |G) =
∑
τ∈T

p(τ, s|G), (3)

where p(τ, s|G) = I(yτ = s)p(τ |G). The probability that τ is a parse-tree
for sentence s is given by:

p(τ |s,G) =
p(τ, s|G)
p(s|G)

The problem of parsing is to find the most probable parse for a sentence
s, given a grammar G. This can be formalized as finding the parse

τ∗ = arg max
τ∈T

p(τ |s,G)

= arg max
τ∈T

p(τ, s|G)
p(s|G)

= arg max
τ∈T

p(τ, s|G),

1 If there are non-terminals in G whose expansion cannot produce valid sen-
tences of the terminals then it can happen that

P
τ∈T p(τ |G) < 1. However, in

this case G is in some way incomplete. In this paper we shall not deal with gram-
mars with such “dangling” non-terminals, so we can safely disregard this issue.

Training Parsers by Inverse Reinforcement Learning 7

which can be further written as

τ∗ = arg max
τ∈T

{
I(yτ = s)

∏
R∈R

exp(f(R, τ)σ(R))

}

= arg max
τ∈T

{
log I(yτ = s) +

∑
R∈R

f(R, τ)σ(R)

}
.

(4)

Then, parsing can be viewed as finding the parse tree with maximal score
among the trees that yield s. The tree τ∗ is called the maximum scoring
tree.

2.2 Markovian Decision Processes

Markov decision processes (MDPs) are a widely studied, general mathemati-
cal framework for sequential decision problems (e.g., Bertsekas and Tsitsiklis
1996). The essential idea is that an agent interacts with its environment,
changing the state of the environment and receiving a sequence of rewards.
The goal of the agent is to maximize the cumulative sum of the rewards
received. Here, we shall only deal with episodic MDPs, i.e., MDPs that
have terminal states. Formally, a countable episodic MDP is defined with a
5-tuple M = (X ,A, T,XT , r), where

X is a countable set of states.
A is a finite set of actions.
T is the transition function; T (x′|x, a) stands for the probability of tran-

sitioning from state x to x′ upon taking action a (x, x′ ∈ X , a ∈ A).
XT is the set of terminal states: upon reaching a state in this set the process

terminates.
r is the reward function; r : X × A 7→ R. This function determines the

reward upon selecting action a ∈ A at state x ∈ X .

An MDP is called deterministic if all the transitions are deterministic, i.e.,
if for any (x, a) ∈ X × A, T (x′|x, a) = 0 holds for all next states x′ ∈ X
except one state. In such cases, by slightly abusing the notation, we write
T (x, a) to denote the one next state.

A stochastic stationary policy (in short: policy) is a mapping π : A×X →
[0, 1] satisfying

∑
a∈A π(a|x) = 1,∀x ∈ X .2 The value of π(a|x) is the

probability of taking action a in state x. For a fixed policy, the value of
a state x ∈ X is defined by

V πr (x) = Eπ

[
H−1∑
t=0

r(xt, at)

∣∣∣∣∣ x0 = x

]
.

2 Instead of π(a, x) we use π(a|x) to emphasize that π(·, x) is a probability
distribution.

8 Gergely Neu, Csaba Szepesvári

Here xt is a random process that is obtained by following policy π in the
MDP. This means that in each time step, xt+1 follows the distribution
T (·|xt, at), where at is a random action drawn from π(·|xt). In particular,
given xt and at, xt+1 is independent of the states, actions and rewards
that were obtained prior time step t. This is called the Markov property.
Further, it is assumed that x0 is such that D(x) > 0 for some initial distri-
bution D(x) = P (x0 = x). The number H in the above equation is the first
(random) time when the process enters the set of terminal states (xH ∈ XT
and for t < H, xt 6∈ XT). (The notation Eπ is used to signify that the
expectations is taken by assuming that the transitions are generated while
following π.) The function V πr : X → R is well-defined and is called the
value function corresponding to policy π and reward function r.

A policy that maximizes the values at all states is called an optimal
policy and is denoted by π∗r . Thus, an optimal policy maximizes the cumu-
lated total expected reward irrespective of where the process starts. The
values under an optimal policy define the optimal value function. In fact,
the optimal value function also satisfies

V ∗r (x) = max
π

V πr (x), x ∈ X .

The Q-functions (or Q-factors, action-value functions) can be defined sim-
ilarly:

Qπr (x, a) = Eπ

[
H−1∑
t=0

r(xt, at)

∣∣∣∣∣ x0 = x, a0 = a

]
.

In words, the value of a at x under π is the expected total reward assum-
ing that the first action taken in x ∈ X is a ∈ A, and the further actions
are obtained by following π. Similarly to the optimal state-values, the opti-
mal action-values or optimal Q-factors are given by maximizing the action
values with respect to the policies: Q∗r = Q

π∗r
r . Further,

Q∗r(x, a) = max
π

Qπr (x, a), (x, a) ∈ X ×A.

It is also useful to define the advantage functions:

Aπr (x, a) = Qπr (x, a)− V πr (x), (x, a) ∈ X ×A.

Similarly, A∗r = Q∗r − V ∗r . The significance of advantage (and action-value)
functions is that knowing the optimal advantage (action-value) function
allows one to behave optimally: π is an optimal policy if it holds that for
any state x, π picks an action that maximizes A∗r(x, a). Accordingly, such
actions will be called optimal.

One variation of MDPs that we will need is when an admissibility criteria
is imposed on the actions executable in a given state. Then we use A(x)
to signify the set of actions that are admissible in state x. The rest of the
definitions need then to be adjusted accordingly (i.e., policies in state x
cannot choose actions outside of A(x)).

Training Parsers by Inverse Reinforcement Learning 9

Given a class of MDPs Mi = (Xi, {Ai(x)}, Ti,XT,i, ri) (i = 1, 2, . . .)
with disjoint state spaces the union of these MPD is defined to be M =
(X , {A(x)}, T,Xt, r) as follows: X = ∪iXi and XT = ∪iXT,i. Now pick
x ∈ X . Then there exists a unique index i such that x ∈ Xi. Pick this
index i. Then A(x) = Ai(x) and for a ∈ A(x), T (·|x, a) = Ti(·|x, a) and
r(x, a) = ri(x, a).

We will also need the definition of legal trajectories: An alternating
sequence of states and actions, ξ = (x0, a0, x1, a1, . . . , xH−1), is a legal tra-
jectory if for any 0 ≤ i ≤ H − 2, ai is admissible in xi, T (xi+1|xi, ai) is
positive and xH−1 is a terminal state. In other words, a legal trajectory is
a sequence of states and actions that can be obtained by following some
policy in the MDP. The set of legal trajectories shall be denoted by Ξ.

3 PCFG parsing as an MDP

The purpose of this section is to show that finding the best parse in a PCFG
is equivalent to following an optimal policy in an appropriately defined
deterministic, episodic MDP.

To make the connection to MDPs clear, notice that following an optimal
policy in a deterministic, episodic MDP from a given initial state is equiva-
lent to finding a path that connects the initial state to a terminal state such
that the total reward along the path is maximal. Now, in PCFG parsing the
aim is to construct a parse with maximal total score, where the scores of the
individual rules are additively combined (cf. Equation (4)). The idea is that
this parse tree can be constructed in a sequential manner, i.e., starting from
the sentence symbol and then expanding the obtained partial parse trees
by applying appropriate production rules until the sentence is obtained in
the leaf nodes of the tree. This process corresponds to a top-down construc-
tion of the parse tree. (Other construction orders are also possible, but are
not considered here.) Below we illustrate the process with an example (cf.
Figure 1).

Definition 1 The top-down parsing MDP for sentence w1K and grammar
G = {N ,W, S,R, σ} is a 5-tuple MG

w1K
= (X , {A(x)}, T,XT , r) defined as

follows:
X is the state space consisting of states that represent partial parse trees

with root (S, 1,K): X = {τ ∈ T1 : (S, 1,K) ∈ τ}.
A(x) is the set of admissible actions in x, with elements that are in the form

of triplets with the following components: an unexpanded constituents of
x, a rule of the grammar and a splitting point. Formally,

A(x) = A1(x) ∪ A2(x),
A1(x) = {(c,R, split) : c = (Nc, startc, endc) ∈ U(x),

R ≡ Nc → NleftNright ∈ R, startc ≤ split < endc},
A2(x) = {(c,R, split) : c = (Nc, startc, startc) ∈ U(x),

R ≡ Nc → w ∈ R, split = startc}

10 Gergely Neu, Csaba Szepesvári

The components of a specific action a will be referred to as ca, Ra and
splita (where this is appropriate).

T , the transition function is deterministic: Fix x ∈ X , a = (c,R, split) ∈
A1(x), where R ≡ Nc → NleftNright. Then the next state x′ = T (x, a)
is obtained by adding the new constituents cleft = (Nleft, startc, split)
and cright = (Nright, split + 1, endc) to x: x′ = x ∪ {cleft, cright}. If
a = (c,R, split) ∈ A2(x), where R ≡ N → w, then the new state x′

is obtained by adding the constituent c′ = (w, startc, startc) to x: x′ =
x ∪ {c′}.

XT , the set of terminal states are those states x where the set of admissible
actions, A(x), is empty.

r, the reward function is defined as follows: It is a function r : Domr → R,
where Domr = {(x, a) : x ∈ X , a ∈ A(x)}. The reward of an action
that leads to a transition to a terminal state xT is −∞ if xT does not
correspond to a full parse tree of w1K . For all other states, r(x, a) =
σ(Ra).

In what follows when the grammar is clear from the context, we will drop
the superscript G. It is easy to see that any policy in these MDPs terminates
after a finite number of steps. When needed we annotate the states of Mw1K

by w1K . If we do so, the MDPs corresponding to different sentences will have
disjoint state spaces. Thus, we can take the union of these MDPs, which in
turns defines the MDP corresponding to G:

Definition 2 Let G = {N ,W, S,R, σ} be a grammar. Then the top-down
parsing MDP corresponding to G, MG = (X , {A(x)}, T,XT , r) is obtained
as the disjoint union of the MDPs corresponding to all sentences generated
by G.

Although an initial state distribution is not part of the definition of MDPs,
sometimes we will need such a distribution. Note that a PCFG naturally
gives rise to an initial state distribution: In fact, the natural distribution
D assigns non-zero probabilities only to states of the form x(0,w1K) =
{(S, 1,K), w1K}, where w1K ∈ W+ is a sentence generated by the grammar
G. In particular, D(x(0,w1K)) = p(w1K |G), where p(w1K |G) is determined
as in (3). For the sake of simplicity, when it is clear from the context which
MDP we are in, we will use the unannotated symbols.

The idea of state construction is illustrated in Figure 1 which shows the
state

x0 = {“It was love at first sight”, (S, 1, 6), (NP, 1, 1), (PRP, 1, 1), (VP, 2, 6)}

in the form of a tree, three actions that are admissible in this state, namely,

a1 = ((VP, 2, 6),VP→ VBD NP, 2),
a2 = ((PRP, 2, 2),PRP→ “it”, 2),
ak = ((V P, 2, 6),VP→ VP PP, 3),

Training Parsers by Inverse Reinforcement Learning 11

S

NP

PRP

It

VP

was love at first sight

x0

a1

S

NP

PRP

It

VP

VBD

was

NP

love at first sight

x1

a2

S

NP

PRP

It

VP

was love at first sight

x2

. . .

. . .

ak

S

NP

PRP

It

VP

VP

was love

PP

at first sight

xk

Fig. 1 Illustration of states and transitions in an MDP assigned to a CFG. The
states (x0, x1, x2, . . . , xk) are partial parse trees and the actions (a1, a2, . . . , ak)
correspond to valid extensions of the parse trees where the action is applied. For
more explanation see the text.

and the three states resulting from applying the respective actions.
The rewards associated with taking these actions in this state are:

r(x0, a1) = σ(VP→ VBD NP),
r(x0, a2) = σ(PRP→ “it”),
r(x0, ak) = σ(VP→ VP PP).

The following result follows immediately from the above construction
and hence its proof is omitted:

Proposition 1 Let G = {N ,W, S,R, σ} be a grammar and MG be the
corresponding top-down parsing MDP. Let π∗ be an optimal policy in MG.
Pick some sentence w1K ∈ W+ and let x∗w1K

= {w1K} ∪ τ be the terminal
state reached by π∗ when started in MG from state x0 = {w1K , (S, 1,K)}.
Then the following hold: if w1K is generated by the grammar G then x∗w1K

will not be a failure state and V ∗r (x0) = log p(τ, w1K |G), otherwise x∗w1K

will be a failure state and V ∗r (x0) = −∞.

An optimal policy can be recovered from the knowledge of the optimal
advantages. The next statement shows that the optimal advantages at a
state can be computed if one calculates the optimal state values in a problem
with a larger state space. This new MDP for a given sentence w1K generated

12 Gergely Neu, Csaba Szepesvári

by G is obtained as follows: M̂w1K = ∪N∈N ,1≤i≤j≤KMw1K ,(N,i,j), where
in Mw1K ,(N,i,j) the set of admissible actions, the transitions, the terminal
states and rewards are defined as it was done for Mw1K , just the state space
of Mw1K ,(N,i,j) is obtained by recursively following the transitions resulting
from admissible actions and when the initial state is taken to be {(N, i, j)}.3
The special states, {(N, i, j)}, in the state space of M̂w1K will be called the
initial states in M̂w1K . The following proposition holds:

Proposition 2 Let w1K ∈ W∗ and consider M̂w1K . Pick x in the state
space of M̂w1K and a ∈ A(x). Assume that a = (c,R, split), where R ≡
N → NleftNright and let

xN = {(N, startc, endc)},
xleft = {(Nleft, startc, split)},
xright = {(Nright, split+ 1, endc)}

be states of M ′w1K
. Let V̂ ∗r be the optimal value function in M̂w1K and let

Â∗r be the corresponding advantage function. Then

Â∗r(x, a) = r̂(x, a) + V̂ ∗r (xleft) + V̂ ∗r (xright)− V̂ ∗r (xN), (5)

where r̂ is the reward function in M̂w1K .

Proof We have Â∗r(x, a) = r̂(x, a) + V̂ ∗r (x′) − V̂ ∗r (x), where x′ = T (x, a) is
the state obtained when a is applied in x. Then we have V̂ ∗r (x′)− V̂ ∗r (x) =
V̂ ∗r (xleft) + V̂ ∗r (xright) − V̂ ∗r (xN) thanks to the additive rewards, that the
effects of the actions are local and the construction of xleft, xright and xN .
Combining the first and last equations in the proof and reordering the terms
gives the result. ut

As a corollary of this proposition we get that the optimal advantage function
of Mw1K can be obtained by computing the optimal values of the initial
states in M̂w1K . To see this assume that x ∈ M = Mw1K and consider
a ∈ A(x). Let x′ = T (x, a). Assume that a = ((N, i, j), R, split) and let M̃ =
Mwij ,(N,i,j). If i = j, R ≡ N → w with some w ∈ W then the statement
holds trivially. Hence, consider the case when i < j, R ≡ N → NleftNright.
Let Ã∗r(x, a) denote the optimal advantage function in M̃ and let Ṽ be the
optimal state value function in M̃ . Then if y denotes {(N, i, j)} ∈ M̃ then
a ∈ A(y) (a is admissible in M̃ at y). Clearly, the advantage of a at x is the
same as the advantage of a at y (in M̃): A∗r(x, a) = Ã∗r(y, a). Now, by the
above proposition, Ã∗r(y, a) can be obtained by from the optimal values of
the initial states in M̂w1K , proving the claim.

In parsing the optimal values assigned to initial states of M̂w1K are called
“inside Viterbi-scores”. In fact, Viterbi-parsers (a.k.a., CKY parsers) com-
pute the optimal parse tree by first computing these scores (clearly, knowing

3 Thus a state in the extended MDP M̂w1K corresponds to a partial or full
subtree spanning a number of words in w1K , while a state in Mw1K corresponds
to a partial or full subtree spanning the full sentence w1K .

Training Parsers by Inverse Reinforcement Learning 13

the optimal advantage function is sufficient to recover optimal parses). It
follows that the optimal advantage function in the MDP Mw1K can be com-
puted in O(K3n3

nt) time in the worst case, see e.g. Collins (1999).

4 A Unified View of Inverse Reinforcement Learning Algorithms

In this subsection we present an overview of current Inverse Reinforcement
Learning (IRL) methods. First, we give the definition of the IRL problem
and discuss some of its difficulties. We then present five existing algorithms
in a unified notation. The unified notation allows us to compare these algo-
rithms and elaborate on their similarities and differences.

Informally, IRL is a method to build a model for the observed behavior
of an expert by finding the definition of the task that the expert performs.
Assuming that the expert acts in an MDP, this can be stated more formally
as finding the reward function that generates an optimal behavior that
is close enough to the behavior of the expert.4 This definition still leaves
one question open: how do we decide if two particular behaviors are “close
enough”? The main difference between the algorithms to be shown is this
definition of closeness: once this definition is fixed, we are left with the task
of finding an algorithm to efficiently minimize it.

IRL is a difficult problem. Besides the dilemma of selecting an appro-
priate feature set we have to be aware of that the IRL problem is ill-posed:
infinitely many reward functions can give rise to a specific behavior. Even
worse, this set of solutions contains degenerate solutions as well, such as the
reward function that is identically zero in all state-action pairs (this reward
makes all policies optimal). One solution is to give preference to reward
functions that robustly generate the observed behavior. An even stronger
requirement is that the observed behavior be the only optimal behavior
with respect to the reward function. The dissimilarity functions should be
chosen to encourage such solutions.

4.1 A Unified View

Here we present a unified framework for the design of IRL algorithms. An
IRL algorithm receives a rewardless MDP M \r (an MDP without a reward
function) and a list of trajectories, D = {ξ1, . . . , ξNtraj}, that are obtained
while an expert follows its policy in the MDP. The task is to come up with
a reward function such that trajectories that one obtains by following the
optimal policy in the obtained MDP become “close” to the observed trajec-
tories. In order to specify what we mean by “close” we define a dissimilarity
function J = J(r;D) that maps reward functions and datasets into reals,

4 The earliest precursor of IRL was the inverse optimal control problem, where
a linear, time-invariant system is considered with a quadratic cost function. For
details and further references, see Boyd et al. (1994).

14 Gergely Neu, Csaba Szepesvári

assigning higher values to pairs when the optimal behavior with respect
to the selected reward function r is less similar to the expert’s observed
behavior as represented by the dataset D.

Given J , a good reward function r should minimize the dissimilarity
between r and D. Thus, one might be interested in computing

r∗ = arg min
r
J(r;D) =?

Below we will argue that all IRL algorithms aim to solve an optimization
of this form. In particular, in all these approaches the reward function is
sought in a linear form:

rθ(x, a) =
n∑
i=1

θiφi(x, a) = θTφ(x, a), (x, a) ∈ X ×A, (6)

where φ : X × A → Rd is a feature extractor. Unless otherwise stated, in
this paper we shall consider linear parameterizations only. Given a param-
eterization the problem becomes to find a parameter vector θ∗ such that
J(θ;D) = J(rθ;D) is minimized at θ∗.

The optimal parameter vector is typically found by incremental algo-
rithms. We will see that these algorithms take the form

θk+1 = g(g−1(θk) + αk∆k),

where αk is the step size at iteration k, g is the so-called link-function (see
Warmuth and Jagota (1997)) and ∆k is the parameter update used in the
considered IRL method at iteration k. In particular, g(x) = exp(x) leads
to multiplicative, g(x) = x leads to additive updates. The discussion of
the relative advantages of these choices is out of the scope of this paper
and the interested reader is referred to Cesa-Bianchi and Lugosi (2006),
where algorithms of this form are extensively discussed in the online learning
framework.

Before moving on to discussing specific IRL algorithms, we need to fix
some more notations: The conditional feature expectation function with re-
spect to a reward function r is defined by

Φr(x, a) = Eπr

[
H∑
t=0

φ(xt, at)

∣∣∣∣∣x0 = x, a0 = a

]
, (x, a) ∈ X ×A, (7)

where πr is an optimal policy w.r.t. r and (x0, a0, x1, a1, . . .) is a random
trajectory obtained such that (x0, a0) ∼ D for some distribution D such
that D(x, a) > 0 holds for any (x, a) ∈ X × A, and xt+1 ∼ P (·|xt, at),
at ∼ πr(·|xt), t ≥ 1.5 The (unconditional) feature expectations are defined
by taking the expectation of the conditional feature expectations:

Φ̄r = E [Φr(x, a)|x ∼ D0, a ∼ πr(·|x)] , (8)
5 If there are multiple optimal policies, we pick one in some specific manner

(i.e., randomize uniformly across the optimal actions) to make Φr well-defined.

Training Parsers by Inverse Reinforcement Learning 15

where D0 is some initial state distribution.
For the sake of brevity, but at the price of slightly abusing the notation

the optimal policy w.r.t. r = rθ will be denoted by πθ and the corresponding
state visitation frequencies will be denoted by µθ. Similarly, the feature
expectations generated by following πθ will be denoted by Φθ:

Φθ
def= Φrθ .

4.2 Some IRL Algorithms

In this section we will examine five different algorithms in the above frame-
work. We shall not deal with the derivation of these algorithms or their
convergence properties.

4.2.1 Projection The projection algorithm was proposed in Abbeel and Ng
(2004). This is the earliest IRL algorithm discussed in this paper.6

Dissimilarity Assume that the length of the jth trajectory of D is Hj and
in particular ξi = (xti+j , ati+j)

Hi
j=1, where ti =

∑i−1
k=0Hk. The estimate of

the expert’s feature expectation vector is then

Φ̄E :=
1

Ntraj

Ntraj∑
i=1

Hi∑
j=1

φ(xti+j , ati+j).

Using this notation, the dissimilarity is

J(θ;D) = ‖Φ̄θ − Φ̄E‖2, (9)

i.e., the goal of the algorithm is to match the feature expectations underlying
the optimal policy and the observed feature expectations.

As noted by Abbeel and Ng (2004), the problem with this dissimilarity is
that it can be sensitive to the scaling of the features (see also the discussion
by Neu and Szepesvári 2007). Since the algorithm can lead to wildly differing
reward functions (and policies) depending on the scaling of the features,
this algorithm should be used carefully when the scaling of the features is
unknown initially. This remark applies to all the other algorithms presented
here, except for policy matching and MaxEnt, which avoid this issue by
measuring distances between distributions. In parsing binary features are a
natural choice, hence the scaling issue is less of a problem.

6 The term “inverse reinforcement learning” was first used by Ng and Russell
(2000), but that paper did not present a practical IRL algorithm, its aim is mainly
to characterize the solution set for the IRL problem.

16 Gergely Neu, Csaba Szepesvári

Update step The parameter updates are done additively at each step (g(x) =
x), the update vector at the k-th step is

∆k = βk(Φ̄E − Φ̄θk)− βkθk (10)

where βk is a special step-size parameter (and the global step-size parameter
αk is kept constant at a value of 1). To compute this step size, we need to
maintain a vector Ψk throughout the training steps. By setting Ψ0 = Φ̄θ0 ,
the values of βk and Ψk (k ≥ 0) are computed incrementally in the following
way:

βk =

(
Φ̄θk − Ψk−1

)T (
Φ̄E − Ψk−1

)(
Φ̄θk − Ψk−1

)T (
Φ̄θk − Ψk−1

) , (11)

Ψk = Ψk−1 + βk
(
Φ̄θk − Ψk−1

)
. (12)

The original algorithm includes a post-processing step, when a mixed
policy is constructed that produces feature expectations with minimal dis-
tance to the expert’s observed feature expectations. As we want to use this
algorithm for parser training, we will not apply this step, as we are inter-
ested in only deterministic parsers (i.e., parsers that return the same parse
tree for a specific sentence every time it is queried). Instead, as with the
other algorithms, we will monitor the performance on a validation set and
choose the parameter that gives the best results there.

4.2.2 MWAL The multiplicative weights algorithm for apprenticeship learn-
ing (MWAL) was proposed by Syed and Schapire (2008) with the aim to
improve the projection algorithm of Abbeel and Ng (2004).

Dissimilarity In this case the dissimilarity is

J(θ;D) = θT (Φ̄rθ − Φ̄E), (13)

where θ is restricted to nonnegative values, corresponding to the assumption
that the features are positively correlated with the rewards.7

The rationale underlying this criterion is that θT Φ̄rθ can be shown to be
the average expected reward under the optimal policy corresponding to rθ
and if the initial states are selected from the distribution D. Further, θT Φ̄E
can be viewed as an approximation to the average reward that would have
been collected by the expert if the reward function was rθ. The minimiza-
tion problem corresponds to a robust (minimax) approach: The optimal
choice of θ makes the performance of the optimal policy the least favorable
compared with that of the expert. Syed and Schapire (2008) show that by
von Neumann’s minmax theorem the value of J at the minimum is pos-
itive. It follows that the found behavior will be better than the expert’s
behavior even when the least favorable parameters are taken. This makes
the algorithm more robust.

7 Abbeel and Ng (2004) also propose a max-margin algorithm that attempts to
minimize the same criterion.

Training Parsers by Inverse Reinforcement Learning 17

Update step The updates proposed to solve this optimization are multi-
plicative, i.e., g(x) = exp(x). Further,

∆k = Φ̄E − Φ̄rθk . (14)

As it is well-known, multiplicative weights algorithms can be sensitive to
the choice of step sizes, hence in this work we will compare several choices.8

The algorithm as proposed originally has performance guarantees for a ran-
domized policy which is obtained by randomizing over the policies obtained
in the iterations. Again, instead of randomizing, we will use the optimal
policy (parser) corresponding to the final parameter vector found by the
algorithm when testing its performance.

4.2.3 Max-Margin Planning This algorithm was published in Ratliff et al.
(2006) and is derived from the maximum margin algorithm of Taskar et al.
(2005). Note that Ratliff et al. (2006) argue that their problem is distinct
from IRL since it concerns a series of planning problems. However, by assum-
ing that the state spaces are disjoint we can take the union of the resulting
MDPs (as was done in setting up the top-down parsing MDP corresponding
to a grammar). This way solving a sequence of planning problems becomes
equivalent to solving a single MDP.

Dissimilarity Let the state-action visitation frequencies, µE , and a loss
function, ` : X ×A → R+, be defined as follows:

µE(x, a) :=
∑N
t=1 I(xt = x ∧ at = a)

N
, (x, a) ∈ X ×A,

`(x, a) := c` µE(x, a), (x, a) ∈ X ×A.

In the above formula, c` is a positive loss constant, which is a parameter of
the algorithm. The chosen dissimilarity is the following:

J(θ;D) =(∑
x,a

(rθ(x, a)− `(x, a))µθ,`(x, a)−
∑
x,a

rθ(x, a)µE(x, a)

)
+
λ

2
‖θ‖22 .

Here µθ,` is the stationary distribution (visitation frequencies/counts in
episodic MDPs) generated by the policy that is optimal w.r.t. rθ − `, and
λ ≥ 0 is a regularization constant whose role is to control the complexity
of the solutions. The role of the loss function is to enforce that the solution
found is better (cf. Equation (13)) than other solutions by at least a margin
proportional to this loss. Accordingly, here the average expected payoff of

8 Note that Syed and Schapire (2008) propose a specific step-size sequence for
which they can derive theoretical guarantees. However, as shown by our prelimi-
nary experiments, in practice this step-size sequence does not perform very well
and hence we will not include it in our comparison.

18 Gergely Neu, Csaba Szepesvári

the optimal policy corresponding to rθ− ` (and not to rθ) is compared with
the average payoff of the expert. By choosing the loss proportional to the
state-visitation frequencies we force rewards of highly visited state-action
pairs to take on larger values, encouraging the learnt policy to visit such
states more oftern. This also has an effect of enforcing meaningful solutions
to the IRL problem. In particular, the degenerate solution θ = 0 does not
minimize the criterion.

Update step The update of the subgradient algorithm of Ratliff et al.
(2006) uses g(x) = x and

∆k =
∑
x,a

φ(x, a) [µE(x, a)− µθk,`(x, a)]− λθk = Φ̄E − Φ̄rθk−` − λθk. (15)

4.2.4 Policy Matching This algorithm directly aims to minimize the dis-
tance to the expert’s policy (Neu and Szepesvári, 2007).

Dissimilarity Assume that D = {(x1, a1), . . . , (xN , aN)}. Let us build an
estimate π̂E of the expert’s policy:

π̂E(a|x) =
∑N
t=1 I(xt = x ∧ at = a)∑N

t=1 I(xt = x)
, (x, a) ∈ X ×A

(if a state is not visited by the expert, π̂E(·|x) could be defined arbitrarily).
We will also need the empirical state visitation frequencies of the expert:

µ̂E(x) =
1
N

N∑
t=1

I(xt = x), x ∈ X .

Then the dissimilarity is given by the formula

J(θ;D) =
1
2

∑
(x,a)∈X×A

µ̂E(x) [πθ(a|x)− π̂E(a|x)]2 . (16)

Clearly, this objective function is very different from the previous ones: The
aim here is to directly match the behavior and the rewards are used only for
parameterizing the class of policies available. Thus one expects this objective
to work better when there is not much noise in the observed behavior. One
problem with this objective function is that the optimization is convex only
in the special case when the expert behavior is deterministic and µE(x) 6= 0
holds for all state x. In such a case one can write up an equivalent quadratic
program with linear constraints.

Training Parsers by Inverse Reinforcement Learning 19

Update step We apply a gradient algorithm for minimizing the distance
(16). We chose πθ to be the so-called Boltzmann-policy with respect to Q∗θ:

πθ(·|x) = B(Q∗θ(x, ·), η), B(Q∗θ(x, ·), η)(a) =
exp

(
Q∗θ(x,a)

η

)
∑
b∈A(x) exp

(
Q∗θ(x,b)

η

) ,
(17)

where η > 0 is a “temperature” parameter. The smaller η is, the closer πθ
is to an optimal policy. The reason of not relying on the optimal policy is to
make the policy a differentiable function of Q∗θ(x, ·). The update is additive
(g(x) = x) and uses

∆k =
∑

(x,a)∈X×A

µ̂E(x)(π̂E(a|x)− πθk(a|x))∂θπθk(a|x), (18)

where ∂θπθ(a|x) is the gradient of πθ(a|x). As shown by Proposition 4 in Neu
and Szepesvári (2007), for almost all θ, the gradient of πθ can be computed
as

∂θπθ(a|x) =
πθ(a|x)

η

Φθ(x, a)−
∑

b∈A(x)

πθ(b|x)Φθ(x, b)

 . (19)

In some cases computing the advantage function A∗θ = Q∗θ − V ∗θ is easier
than computing the action-values. Luckily, B(A∗θ(x, ·), η) = B(Q∗θ(x, ·), η),
hence in order to compute πθ it suffices to compute the advantage function.

4.2.5 Maximum Entropy IRL This method was recently proposed by Ziebart
et al. (2008). It works by minimizing an empirical approximation to the
Kullback-Leibler (KL) divergence between the distribution of trajectories
generated by the expert’s behavior and Pθ, a distribution of the form

Pθ(ξ) =
eθ
TΦξ

Z(θ)
, Z(θ) =

∑
ξ′∈Ξ

eθ
TΦξ′ .

Here Ξ is the set of all legal trajectories in the MDP considered, ξ, ξ′ repre-
sent individual trajectories in Ξ, and for ξ = (x0, a0, x1, a1, . . . , xH−1), Φξ
is its feature count:

Φξ =
H−1∑
i=0

φ(xi, ai).

Dissimilarity The Kullback-Leibler (KL) divergence of distributions P,Q
defined over the countable domain Ω is

DKL(P ||Q) =
∑
ω∈Ω

P (ω) log
P (ω)
Q(ω)

.

Note that minimizingDKL(P ||Q) inQ is equivalent to minimizingH(P,Q) =
−
∑
ω∈Ω P (ω) logQ(ω), the so-called cross-entropy of P and Q.

20 Gergely Neu, Csaba Szepesvári

Let Q = Pθ and, as before, assume that we are given an i.i.d. sample
D = {ξ1, . . . , ξNtraj} from PE , the distribution over the trajectories under-
lying the expert’s behavior. Thus, minimizing DKL(PE ||Pθ) in θ gives the
best match in the family (Pθ) to PE (as in density estimation). By our
previous remark this is equivalent to minimizing H(PE , Pθ), which can be
approximated by

J(θ,D) = − 1
Ntraj

Ntraj∑
i=1

logPθ(ξi)

= −θTΦE + logZ(θ).

This defines the dissimilarity function to be minimized. Note that this is a
convex dissimilarity function, hence gradient methods can be expected to
perform well. It is somewhat disputable if this method could be called a
method for inverse reinforcement learning problem since the dissimilarity
does not use optimal policies.

Update step The negated gradient of the proposed dissimilarity function
gives the update step of the algorithm:

∆k = Φ̄E −
∑
ξ∈Ξ

Pθk(ξ)Φξ.

Clearly, the above summation is intractable as the number of trajectories is
in general infinite. One trick proposed by Ziebart et al. (2008) is to replace
the above sum by a sum over the states. Unfortunately, in our case the
state space is countably infinite, so this trick is not applicable. Instead, we
will follow the approach of Charniak and Johnson (2005): we pick the paths
from Ξ that have the largest probabilities and approximate the sum with
the sum computed with the help of these paths. This approach is known as
n-best reranking in the parsing literature, see e.g. Collins (2000).

A notable property of this approach is that when the dissimilarity is
minimized (i.e., when ∆k = 0) the feature expectations are exactly matched
under the distribution found. In fact, the equilibrium distribution is the one
that has the largest entropy amongst all the distributions that satisfy this
constraint on the feature expectations (Jaynes, 1957), hence the name of
the method.

4.3 Regularization

Regularization has already been mentioned in the context of the max-margin
algorithm as a tool to facilitate model selection. Clearly, as such it can also
be applied to other dissimilarity functions if one switches from minimizing
J to minimizing the regularized dissimilarity Jλ defined by

Jλ(D; θ) = J(D; θ) + λ‖θ‖22,

Training Parsers by Inverse Reinforcement Learning 21

where λ is some small positive constant. As all of the described methods
(except the projection algorithm) can be regarded as steepest descent meth-
ods, this regularization factor will appear as an additive term in the update
steps:

∆λ = ∆− λθ

An alternative to regularization with ‖θ‖22 would be to regularize with ‖θ‖1.
Such a regularization could be useful if one expects θ to be sparse. However,
this direction is not pursued any further here.

4.4 Relationships between the methods

The purpose of this section is to further explore the connections between
the IRL methods discussed above.

First, one may notice that the max-margin method “interpolates” be-
tween MWAL and the projection method in some sense. When setting ` = 0
and λ = 0, the dissimilarity is the same as in the MWAL method, as∑
x,a rθ(x, a)µθ(x, a) = θT

∑
x,a φ(x, a)µθ(x, a) = θT Φ̄θ. Then the update

of the max-margin algorithm becomes

∆k = Φ̄E − Φ̄rθk .

We will refer to the method that uses these updates as the perceptron al-
gorithm, due to its analogy with the classical perceptron algorithm (e.g.,
Freund and Schapire (1999)). If we apply these updates multiplicatively,
and assume that the signs of the optimal parameters are known, we get the
MWAL algorithm. Furthermore, if we set λ = 1, ` = 0, and use the special
step sizes computed using Equations (11) and (12), we get the update step
of the projection algorithm.

The MaxEnt method can also be related to the perceptron method.
While in the perceptron algorithm, the updates are computed solely based
on the difference between the feature expectations of the expert and that
of the current optimal policy, MaxEnt proposes updates that are computed
using a mixture over trajectories. If the probability assigned to the path
underlying the optimal policy πθ is large compared to the probability as-
signed to other paths then the update direction of the MaxEnt method will
be close to that of the perceptron update direction.

MaxEnt IRL is also related to the policy matching to some extent: they
both employ an exponential family distribution to smooth their dissimi-
larity functions. The difference is that policy matching does smoothing at
the action level (πθ(a|x)), while MaxEnt does smoothing on the trajectory
level (Pθ(ξ)). Ziebart et al. (2008) illustrate through an example that policy
matching suffers from a so-called label bias (see Lafferty et al. (2001)): if
there are multiple optimal actions in one or more states, the behavior re-
turned by matching the expert’s policy will not necessarily reproduce the

22 Gergely Neu, Csaba Szepesvári

distribution over paths generated by the expert. However, in many applica-
tions (such as in parsing) reproducing the path distribution is not necessary
to produce a good behavior.

Note that the methods differ substantially in the choice of the dissimi-
larity: Both the projection method and MaxEnt aim to match feature ex-
pectations, while policy matching aims to match the expert’s decisions at
the level of the individual states. In the case of MWAL and Max-Margin
the dissimilarity is specified by comparing the payoff for the expert and the
payoff for the optimal policy, which is a somewhat less direct measure of
how well the trajectories underlying the found policy match the observed
trajectories. In fact, because of this this approach may also suffer from the
label bias problem: if the reward function found allows multiple optimal
policies then there is no guarantee that the trajectories of the underlying
optimal policy will match the observed trajectories. In the Max-Margin ap-
proach this problem is mitigated by the introduction of the loss function
that encourages solutions that visit state-action pairs that are frequently
visited by the expert.

5 Using Inverse Reinforcement Learning to Learn to Parse

In this section we first present the common ideas underlying applying IRL
techniques to parser training, followed by the description of the resulting
parser training algorithms.

5.1 Common Ideas

A crucial question in applying IRL to parsing is how to set up the features
of the reward function. Although in theory the rewards could depend on
the full partial parse tree, in order to facilitate comparison with standard
PCFG training we chose (in line with Definition 1)

φi(x, a) = I(Ri = Ra), i = 1, 2, . . . , nR,

where {Ri}nRi=1 is the list of all rules, i.e., the features are nR dimensional
and binary.

Trees from the treebank Λ are viewed as trajectories of an “expert”.
A single treebank tree will be denoted by τE ∈ Λ. Although the trees do
not allow us to know the exact sequence of “actions” taken by the expert
(i.e., the ordering in which the human parser applied the production rules),
luckily this information is not needed by the algorithms, since any admissible
ordering of the rules giving rise to τE define the same tree and since the
features depend only on what rules are taken and not on when these rules are
taken. One simple approach then is to assume that the expert always chooses
the leftmost unexpanded nonterminal and this is indeed the approach that
we take. This yields a data set in the form of a series of state-action pairs,
allowing us to apply IRL algorithms.

Training Parsers by Inverse Reinforcement Learning 23

It might seem that this approach is problematic since there could be
multiple optimal policies, leading to the label bias problem. However, the
problem can be overcome if the set of admissible actions is restricted to those
actions that expand the leftmost unexpanded nonterminal. This is exactly
the approach followed here, for all the methods discussed previously. Note
that this restriction does not change the optimal values, hence there is no
loss of generality because of it.

In order to apply the presented IRL algorithms, we will need to com-
pute feature expectations. The (approximate) computation of the expert’s
unconditional feature expectations Φ̄E is straightforward: it is the average
feature count given the treebank trees:

(Φ̄E)i =
1
|Λ|

∑
τE∈Λ

f(Ri, τE), i = 1, 2, . . . , nR, (20)

where f(R, τE) means the total count of rule R in the parse tree τE (cf.
Equation (1)). The feature expectation for the policy optimal w.r.t. the
reward function r (Φ̄r) can be computed for all MDPs MG

yτE
as the feature

count in the respective maximum scoring tree τ∗. The estimated feature
expectations in the final MDPMG is obtained by averaging over all treebank
trees.

The computation of conditional feature expectations, Φr(x, a), is a bit
more involved. Take a single MDP corresponding to some sentence and let
x be a state in this MPD and a ∈ A(x). Let ca = (N, i, j). Let τ(x, a) be the
terminal state when the optimal policy is followed in Mwij ,(N,i,j) from the
root of this MDP (cf. Section 3 for the definition of Mwij ,(N,i,j)). Then, up
to an additive constant, Φr(x, a) equals9 the feature counts in tree τ(x, a):
(Φr(x, a))k = f(Rk, τ(x, a)), k = 1, . . . , nR. Note that the trees τ(x, a) (and
hence the rule counts) are computed when computing the inside scores in
Viterbi parsing.

5.2 Parser Training Algorithms

In this section we present the five parser training algorithms resulting from
the respective IRL algorithms. A generic form of the algorithms is shown
as Algorithm 1. The individual methods differ in the implementation of the
computeStepSize and computeUpdates functions and the choice of the link
function g. Here computeStepSize(k,∆,Λ) computes the step size to apply
for the next parameter update. Note that this computation is generally
trivial, except for the projection method and the adaptive step-size rule
that we will study. The function computeUpdates should return the vector
∆k and it will be given separately for each of the parser training methods.

9 This additive constant vector will drop out when we will substitute into Equa-
tion (19).

24 Gergely Neu, Csaba Szepesvári

In these updated we will assume that a Viterbi parser is used for obtain-
ing a parse. Note, however, that all algorithms except policy matching can
be implemented efficiently even if some other (efficient) parsing method is
used. We will use the following subroutines in the description of the respec-
tive computeUpdates function:

insideScores(w1K , G) returns the table of Viterbi inside scores for the
sentence w1K computed using the PCFG G.

viterbiParse(w1K , V) returns the maximum scoring tree for sentence w1K

given the precomputed Viterbi scores V .
score(τ,G) returns the score of the tree τ in the grammar G.
maximumScoringTrees(w1K , G, ntrees) returns a set of ntrees trees with

highest total scores for sentence w1K in the grammar G.
viterbiParseStartingWith(xw1K , a, V) returns the maximum scoring sub-

tree rooted at the constituent in x over the words in x, assuming that
the first action taken is a, with respect to the Viterbi scores V .

state(τE , c) is a state of the parsing MDP corresponding to the partial
parse tree that is obtained by removing all the descendants of c from
τE .

isCorrect(a, τE) returns 1 if all constituents introduced by a are in τE , and
returns 0 in all other cases. More formally, isCorrect(a, τE) returns 1
if and only if a ∈ A(τ ′E) and T (τ ′E , a) ⊂ τE , where τ ′E = state(τE , ca)
and T (τ ′E , a) is the next state after taking action a in τ ′E .

From now on, we will use θ (as in the section on IRL) to denote the vector of
rule scores (σ(Ri))nRi=1. We will use the notation Gθ to denote the grammar
G with rule scores given by θ.

Algorithm 1 Generic incremental parser training algorithm
Input: corpus Λ, grammar Gθ, iteration limit kmax, update methods
computeUpdate, computeStepSize, regularization coefficient λ ≥ 0, link func-
tion g
for k in 1 . . . kmax do
∆← 0
for τE ∈ Λ do
∆ = ∆+ computeUpdate(τE , Gθ, k)− λθ

end for
αk ← computeStepSize(k,∆,Λ,Gθ)
for i in 1 . . . nR do

θi ← g
“
g−1(θi) + αk

1
|Λ|∆i

”
end for

end for

5.2.1 The projection algorithm In the parser training algorithm derived
from the projection algorithm of Abbeel and Ng (2004), behaviors are rep-

Training Parsers by Inverse Reinforcement Learning 25

resented with the total count of rules used during parsing the treebank.
This way the distance between the treebank tree τE and the tree τ (see
Equation (9)) is directly related to the difference of specific rule counts in
τE and in τ . In other words, the distance of two trees reflect the number of
rules that appear in one tree, but not in the other tree. In order to use the
projection algorithm, αk must be set to 1, and the regularization coefficient
λ must also be set to 1. The subroutine computeStepSize computes the
step sizes using equations (11) and (12). Note that computing the step sizes
can be done efficiently if the feature expectations computed by subroutine
computeUpdate are shared with subroutine computeStepSize.

The pseudocode of the resulting algorithm for computing the updates is
displayed as Algorithm 2.

Algorithm 2 Update computation: projection algorithm
Input: expert tree τE , grammar Gθ
Parameters: none
V ← insideScores(yτE , Gθ)
τ∗ ← viterbiParse(yτE , V)
for i in 1 . . . nR do
∆i ← f(Ri, τE)− f(Ri, τ

∗)
end for
return ∆

5.2.2 MWAL/Perceptron With Multiplicative Updates As previously shown
in Section 4.2.3, this algorithm only differs from the perceptron algorithm of
Collins and Roark (2004) only because a multiplicative update is used. Note
that since this algorithm assumes that all components of θ are strictly pos-
itive, while the scores associated with positive features are strictly negative
(they are log-probabilities), we have to switch to using negative features to
let the algorithm estimate the optimal negated scores. The resulting algo-
rithm is shown as Algorithm 3. Note that when using the parameters found,
we must also use the negated feature values when computing the parse for
a tree. Alternatively, one may negate the weights found by the algorithm
once the algorithm returns the final estimate. The link function must be set
to g = exp when using this method.

5.2.3 Max-Margin Parsing As this method emerges from the structured
prediction community, it is no surprise that applying it to the parsing prob-
lem, we get a previously known method. The performance measure is essen-
tially the same as that of the Max-Margin Parsing algorithm proposed by
Taskar et al. (2004), but the optimization method is different as we follow
Ratliff et al. (2007). According to Shalev-Shwartz et al. (2007) (see also

26 Gergely Neu, Csaba Szepesvári

Algorithm 3 Update computation: MWAL/Perceptron
Input: expert tree τE , grammar Gθ
Parameters: none
V ← insideScores(yτE , Gθ)
τ∗ ← viterbiParse(yτE , V)
for i in 1 . . . nR do
∆i ← −(f(Ri, τE)− f(Ri, τ

∗))
end for
return ∆

the references therein) subgradient methods can be faster and more mem-
ory efficient than interior point or decomposition methods for max-margin
problems. As a concrete example, exponentiated gradient descent in the dual
variables can perform better than sequential minimal optimization (Bartlett
et al., 2005; Globerson et al., 2007). Note that the MWAL algorithm can
be regarded as implementing exponentiated gradient descent in the primal
variables, so the above conclusion does not apply to it.

We chose `(a) = −c`f(Ra, τE) (a ∈ A) to be the loss function for the
treebank tree τE . This loss thus encourages giving high reward to the fre-
quently used rules. The resulting algorithm is shown as Algorithm 4. Note
that the regularization term of the update is moved to the generic algo-
rithm. As it was also noted beforehand, setting c` = 0 yields a regularized
version of the perceptron algorithm of Collins and Roark (2004).

Algorithm 4 Update computation: Max-margin
Input: expert tree τE , grammar Gθ
Parameters: loss constant c`
for i = 1 . . . nR do
θ′i ← θi − c`f(Ri, τE)

end for
V ← insideScores(yτE , Gθ′)
τ∗ ← viterbiParse(yτE , V)
for i in 1 . . . nR do
∆i ← (f(Ri, τE)− f(Ri, τ

∗))
end for
return ∆

5.2.4 Policy matching The pseudocode for this algorithm is shown as Algo-
rithm 5. This method aims to match the actions for which isCorrect(a, τE)
returns 1, i.e., the actions that introduce constituents that are in the parse
tree τE . A smoothed near-optimal policy is computed using the optimal
advantage function A∗θ = A∗rθ . This function can be efficiently computed
once the inside Viterbi scores V have been computed for all intervals [i, j],

Training Parsers by Inverse Reinforcement Learning 27

1 ≤ i ≤ j ≤ K and all nonterminal symbols. As noted earlier these scores
are available without extra computation if we are using a Viterbi parser.
The subtree τθ(x, a) returned by viterbiParseStartingWith(xw1K , a, V)
can also be found easily by using V . In fact, all the interesting subtrees
can be extracted in at most O(K2nR) time, where K is the length of the
sentence to parse.

Algorithm 5 Update computation: Policy matching
Input: expert tree τE , grammar Gθ
Parameters: temperature parameter η
V ← insideScores(yτE , Gθ)
∆← 0
for c ∈ τE do
x = state(τE , c)
π(·|x)← B(A∗θ(x, ·)), where A∗θ(x, ·) is computed from V as in Eq. (5)
for a ∈ A(x) do
τθ(x, a)← viterbiParseStartingWith(x, a, V)
Φ(x, a)← (f(Ri, τθ(x, a)))nRi=1

∂π(a|x)← π(a|x) 1
η

“
Φ(x, a)−

P
b∈A(x) π(b|x)Φ(x, b)

”
∆← ∆+ {isCorrect(a, τE)− π(a|x)} ∂π(a|x)

end for
end for
return ∆

5.2.5 Maximum Entropy discriminative reranking When applying the Max-
imum Entropy IRL method to parser training, we get an algorithm that
is very close in nature to the reranking method of Charniak and Johnson
(2005). The difference between the resulting algorithm shown as Algorithm 6
and the method proposed by Charniak and Johnson (2005) is the choice of
features: we only use the simplest possible features, i.e., rule counts. Note
that finding the ntrees best trees may need up to O(ntreesK3n3

nt) time,
where K is the length of the sentence to parse, as pointed out by Charniak
and Johnson (2005).

28 Gergely Neu, Csaba Szepesvári

Algorithm 6 Update computation: Maximum Entropy reranking
Input: expert tree τE , grammar Gθ
Parameters: number of parses ntrees
∆← 0
T ∗ ←maximumScoringTrees(yτE , Gθ, ntrees)
for τ ∈ T ∗ do
p(τ)← exp (score(τ,Gθ))
for i in 1 . . . nR do
∆i ← ∆i + p(τ)(f(Ri, τE)− f(Ri, τ))

end for
end for
return ∆P

τ∈T ∗ p(τ)

6 Empirical evaluation

The aim of the empirical evaluation is multifold. First, we were interested in
comparing the performance of some algorithms previously tested on parser
training (max-margin parsing, the perceptron algorithm and maximum en-
tropy discriminative reranking) with others that have not been tested on
parser training before (the projection algorithm, MWAL, policy matching).
Second, we were interested in the sensitivity of the algorithms to the hy-
perparameters: we examined different step-size rules and settings of the
regularization coefficient. Third, we were interested in the dependence of
the results on the size of the training set. Finally, we were interested in com-
paring results obtained by following the standard practice of using a single
hold-out set to measure performance with results if we use cross-validation.

We compared the algorithms on the Penn Treebank WSJ corpus. The
settings that we used were the same as those used by Taskar et al. (2004),
Titov and Henderson (2007) and Turian and Melamed (2006), i.e., we have
trained and tested all of the methods on the sentences not longer than 15
words, and unless otherwise mentioned we used sections 2–21 of the corpus
for training, section 22 for development, and section 23 for testing. The
grammar that we used is a simple parent-annotated grammar extracted
from the training set and transformed to Chomsky normal form.10 This
grammar is much simpler than the one used by Taskar et al. (2004) or
those used in other more recent works. In fact, our grammar contains 639
nonterminal symbols only, which is approximately six times less than the
number (3975) reported by Taskar et al. (2004). We trained the parameters
for the binary rules only and used the scores from the default lexicon of the
10 The parent-annotated grammar contains nonterminal symbols that are com-
posed from the labels of a constituent and its parent constituent, i.e., NPˆVP
meaning a noun phrase which is an immediate child of a verb phrase. Such a
grammar can be trivially extracted from a treebank. If a rule extracted from
the corpus would have more than two non-terminals, one can always introduce
some new non-terminals and break the rule into a number of rules that uses these
non-terminals.

Training Parsers by Inverse Reinforcement Learning 29

Berkeley Parser11 which scores word-tag pairs with a smoothed estimate of
log
(
P (tag|word)
P (tag)

)
. We had a total of 3392 weights to train.

We have decided to stick with a simple grammar to make a thorough
study of the various training algorithms feasible given the computational re-
sources that were available to us. We have implemented the methods in Java,
using code pieces from the Stanford Parser12 and the Berkeley Parser, and
run our experiments on the “condor” cluster of the Computer and Automa-
tion Research Institute of the Hungarian Sciences. The experiments took a
total of ca. 30, 000 hours of CPU time on PCs with 3 GHz processors and 2
gigabytes of RAM. 100 passes through the training data took approximately
8 hours of running time for the Max-Margin method, the perceptron algo-
rithm. MWAL and policy matching were approximately 10% slower. The
same number of passes took 13 hours for MaxEnt. These are still extremely
short training times as compared with the methods of Turian and Melamed
(2006) (5 days) and Titov and Henderson (2007) (6 days). The training of
the parser of Taskar et al. (2004) took several months, as mentioned by
Turian and Melamed (2006). Note that to achieve state-of-the-art results
significantly more complicated grammars are used which increases training
time substantially. To give an example, to obtain state-of-the-art results
(LP=91.4%, LR=90.4%, F1=90.9% and EX=62.0%), the training time of
the speed-optimized CRF-CFG training method of Finkel et al. (2008) was
2 hours per pass through the training data (using the same setup as ours), so
100 passes would have taken 200 hours with this method, roughly 20 times
more than the training time needed for the grammar that we investigate.
According to Finkel et al. (2008), to obtain state-of-the-art results both a
good feature-set and a good training algorithm is needed. Here we decided
to focus on the training algorithms, hoping that our results generalize when
other models are used. However, the validation of this remains for future
work.

We have used the standard ParsEval metrics (Black, 1992) of labeled
precision (LP), labeled recall (LR), the F1 measure (the weighted harmonic
mean of LP and LR), plus the ratio of exact matches (EX). Note that the
original labels were used for computing LP and LR, instead of the parent-
annotated symbols. LP, LR and EX are computed as follows: Pick a a parse
tree τE from the corpus and let w1K be its yield. Let the parse tree obtained
for w1K by the method to be evaluated be τ∗. Then

LP(τE) =
|τ∗ ∩ τE |
|τ∗|

,

LR(τE) =
|τ∗ ∩ τE |
|τE |

,

EX(τE) = I{τ∗ = τE},
11 http://nlp.cs.berkeley.edu/Main.html#Parsing (Petrov and Klein,
2007).
12 http://nlp.stanford.edu/software/lex-parser.shtml

30 Gergely Neu, Csaba Szepesvári

and LP, LR, EX are obtained by computing the averages of the respective
values over the corpus. We report some results as the percentage of improve-
ment over some baseline (typically, the performance of the PCFG parser
trained with Maximum Likelihood). For instance, if the parser trained
with Maximum Likelihood reaches an F1 measure of FML

1 (0 ≤ FML
1 ≤ 1)

and the parser trained with policy matching reaches an F1 measure of FPM1

(0 ≤ FPM1 ≤ 1) then the error reduction in F1 by PM relative to ML is
given by

ERF1(PM) = 1− 1− FPM1

1− FML
1

=
FPM1 − FML

1

1− FML
1

,

which is then reported as a percentage.
We have run the algorithms for 100 passes, and measured performance

on the training, development and test sets after all passes. After 100 passes,
we selected the parser that attained a maximal F1 score on the develop-
ment set during the 100 passes. Whenever we report a result for a specific
hyperparameter setting (e.g., a specific step size or a specific regularization
value), we mean the result that is given by the best parser selected this
way. Note that increasing the number of passes did not improve the results
any further for any of the algorithms. We have initialized the rule scores
using the logarithm of the empirical estimate of the respective relative fre-
quencies of the rules. The gradients have been normalized before adding
the regularization factors to them or multiplying them with the step sizes
except for the projection algorithm. This helps with flat areas of the op-
timization surface, while (when decreasing step sizes are used) it does not
hurt much close to the optimum. Max-margin, MaxEnt and policy matching
all have a single hyperparameter that needs to be selected. We have set the
loss constant c` = 0.5 for max-margin and the temperature parameter to
η = 0.1 for policy matching because these values worked well in preliminary
experiments. For MaxEnt reranking, we have used the value ntrees = 50 as
proposed by Charniak and Johnson (2005). Unless otherwise stated, we set
the regularization constant λ = 0 for all the methods.

6.1 The influence of the choice of the step sizes

First, we want to find out which step sizes are the most suitable for this
particular problem. We tested constant step sizes, step sizes proportional to
1
k , 1√

k
, and the iRprop step-size rule (Igel and Hüsken, 2000). The pro-

portional constant was obtained for each method by jointly optimizing
over the number of passes and a number of possible values which were
{0.01, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}. (In the subsequent experiments the con-
stants found here were used.) The results for different step-size rules can be
seen in Table 1 and on Figure 3, parts (a) through (d). As the projection
algorithm uses fixed step-size parameters, we do not present the results for
it on this table. The first thing to notice is that the two top performing
methods are Max-margin and policy matching, closely followed by MaxEnt.

Training Parsers by Inverse Reinforcement Learning 31

The standard selection of αk ∼ 1
k leads to the least improvement in the

parsing performance. We see that αk ∼ 1√
k

produces particularly good re-
sults for all of the methods, perhaps due to the fact that this step-size choice
is known to improve robustness. Constant step sizes also perform well for
similar reasons. Interestingly, MaxEnt seems to be very robust to the choice
of step sizes: its performance is nearly identical for all examined step-size
rules except iRprop.

Besides monitoring results on the test set, we also report results on the
training set. Results on the training set help us detect overfitting, as well
as to see a method’s ability to adapt to the data. In fact, both a poor and
overly good results on the training set are problematic, though by adding
proper complexity regularization overly good results on the training set
might be turned into good results on the test set. We see that in this respect
the results obtained for the iRprop step-size rule are the most promising,
followed by the results obtained with the step-size sequence 1/

√
k. However,

for simplicity we decided to run the further tests with the latter step-size
sequence.

6.2 The influence of the regularization parameter

Next we examined how regularization influences the results. We expect that
the methods which performed better on the training set will take the great-
est advantage of regularization. The regularization constant is fixed in the
projection algorithm, so results are not shown for this algorithm. We report
results with 1√

k
step sizes. Although using step sizes proportional to 1√

k
by

itself has some regularization effect, using explicit regularization improves
performance. The dependency of the F1 measure on the choice of the reg-
ularization constant can be seen on Figure 2. The curve for perceptron is
not shown to preserve clarity—qualitatively this curve is very similar to the
curve obtained for MWAL. As expected, we see that regularization has a
positive effect for the policy matching algorithm, but it does not improve
performance of the other methods significantly. The general tendency that
can be observed in the graph is that the performance is roughly constant for
small values of the regularization coefficient, and falls down quickly as the
coefficient approaches 0.1. For policy matching and MaxEnt, we see that
there is an interval of regularization values that improve performance. Ta-
ble 2 and Figure 3(e) show the performance of the parsers that were trained
using regularization. To obtain these results, the regularization parameters
were optimized on the development set by sweeping over a set of values for
each individual method, while also optimizing for the number of passes. The
set used was {10−6, 5 10−6, 10−5, 5 10−5, . . . , 10−1}. (In subsequent experi-
ments we used the regularization constants found in this step.)

32 Gergely Neu, Csaba Szepesvári

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

84.5

85

85.5

86

86.5

87

87.5

88

88.5

F
1 m

ea
su

re
 [%

]

λ

PM
MM
ME
MW
ML

Fig. 2 F1 measured on the test set vs. the regularization constant. The step size
for pass k was set to 1√

k
. The graph for the perceptron is not shown to maintain

clarity.

PE MW ME MM PM
0

10

20

30
(e)

PE MW ME MM PM
0

10

20

30
(a)

PE MW ME MM PM
0

10

20

30
(b)

PE MW ME MM PM
0

10

20

30
(c)

PE MW ME MM PM
0

10

20

30
(d)

Fig. 3 Relative error reduction in F1 over the ML method. The table shows
test set results for various step-size rules and optimized regularization. Abbre-
viations: PE=Perceptron, MW=MWAL, ME=Maximum Entropy, MM=Max-
Margin, PM=Policy Matching. The five parts show results for (a) 1

k
step sizes;

(b) constant step sizes; (c) 1√
k

step sizes; (d) iRprop rule; and (e) 1√
k

step sizes
with regularization.

Training Parsers by Inverse Reinforcement Learning 33

Test performance [%] Training performance [%]
1
k

LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 90.39 81.95 85.97 49.25 92.98 91.43 92.20 58.55
MW 90.43 82.69 86.38 50.41 92.91 91.92 92.41 58.77
ME 91.30 83.45 87.20 53.73 93.40 92.51 92.81 61.23
MM 90.57 82.41 86.30 50.74 92.98 91.78 92.38 59.23
PM 90.10 83.77 86.82 47.59 92.44 92.87 92.66 55.4

α LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 89.53 82.26 85.74 50.24 92.70 91.96 92.32 58.24
MW 89.87 83.45 86.54 51.57 92.02 92.32 92.17 55.57
ME 91.35 83.53 87.27 53.26 93.83 92.62 92.81 60.41
MM 91.91 84.47 88.03 52.40 93.67 92.90 93.28 61.27
PM 92.02 84.25 87.96 53.39 94.59 93.43 94.01 64.41

1√
k

LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 90.66 83.06 86.69 51.40 92.87 92.18 92.53 58.54
MW 90.18 83.19 86.54 50.91 92.63 92.23 92.43 58.52
ME 91.44 83.62 87.26 54.22 93.14 92.56 92.85 60.72
MM 91.64 84.38 87.86 52.07 93.63 93.02 93.33 61.65
PM 92.13 84.27 88.03 54.22 94.51 93.22 93.86 63.94

iR LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 89.24 82.82 85.91 47.42 92.52 91.84 92.18 57.80
MW 89.16 81.82 85.33 48.42 92.42 91.50 91.96 57.23
ME 91.00 83.01 86.82 51.07 93.68 92.53 93.07 61.70
MM 91.09 83.34 87.04 53.23 94.11 92.86 93.48 62.36
PM 91.75 83.92 87.66 54.22 95.05 93.64 94.34 66.85

Table 1 Results for different step-size choices. Abbreviations: ML=Maximum
Likelihood, PE=Perceptron, MW=MWAL, ME=Maximum Entropy, MM=Max-
Margin, PM=Policy Matching. The four parts of the table are labeled by the
respective step sizes (α means constant step size, iR stands for iRprop).

6.3 The influence of the size of the training corpus

In the next set of experiments we measured how performance changes as
a function of the size of the training set. For this experiment we used 1,
2, 5, 10 or 20 sections following Section 2 from the Penn Treebank WSJ
corpus, and measured performance on Section 23. The results are shown
in Table 3. We see that for small training sets, the perceptron and MWAL
algorithms do a good job in fitting to the training examples, but generalize
more poorly than the other three methods. As the size of the training set
increases, policy matching gradually takes over them in the training set
performance. On the test set, MaxEnt, max-margin and policy matching
produce the best results, irrespective of the size of the training set. The

34 Gergely Neu, Csaba Szepesvári

Test performance [%] Training performance [%]

LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PE 90.43 83.32 86.73 51.24 92.10 91.79 91.95 56.01
MW 90.54 83.77 87.02 52.73 92.06 91.97 92.01 56.87
ME 92.00 83.77 87.69 55.72 93.21 92.36 92.78 60.51
MM 92.17 84.40 88.11 52.90 93.83 92.86 93.34 61.66
PM 92.86 84.68 88.58 55.80 94.36 93.05 93.70 64.05

Table 2 Results for regularized parser training methods. The step size in
pass k was set to 1√

k
and the regularization parameters were optimized

for each method. Abbreviations: ML=Maximum Likelihood, PE=Perceptron,
MW=MWAL, ME=Maximum Entropy, MM=Max-Margin, PM=Policy Match-
ing.

projection algorithm produces very poor results. Figure 4 shows the error
reduction in F1 over the baseline method (Maximum Likelihood) achieved
by the different methods on the test set and the training set. Results for
the projection algorithm are not shown because this algorithm is not able
to improve on the baseline.

The first observation is that as the size of the training set grows, error
reduction increases on the test set, while it decreases on the training set.
This is in line with the known fact that discriminative methods tend to
work better for larger datasets (Ng and Jordan, 2001). Note that there is
a significant difference between the way the perceptron and MWAL behave
compared to the other methods: The former methods achieve the best error
reduction on the training set initially, but they don’t improve as much on
the test set as the size of the training set is increased as the other methods.

6.4 Results with cross-validation

In this section we present results that were obtained with cross-validation.
The motivation is to test the robustness of conclusions that can be drawn
using the “standard” setup when performance is measured on a single hold-
out set. For this reason, we performed 10-fold cross-validation on Sections 2–
22 of the corpus. Results are shown in Table 4. In these experiments the
step size in pass k was set to 1√

k
. We provide results both with and without

regularization. We have performed paired Kolmogorov–Smirnov-tests to see
whether the measured differences are significant or not. Based on the results
we see that MaxEnt, max-margin and policy matching perform significantly
better than the perceptron method and MWAL. The differences between the
perceptron method and MWAL, and those between MaxEnt, max-margin
and policy matching are not significant. However, the effect of regularization
on the performance of policy matching is statistically significant in the exact

Training Parsers by Inverse Reinforcement Learning 35

Test performance [%] Training performance [%]

1 LP LR F1 EX LP LR F1 EX

ML 86.70 57.61 69.22 32.17 93.19 91.39 92.28 63.31

PR 79.02 56.37 65.80 23.88 85.37 88.96 90.07 40.81
PE 86.60 58.37 69.73 30.51 97.15 96.01 96.57 78.19

MW 86.46 58.52 69.80 31.67 97.02 96.30 96.66 76.93
ME 87.00 58.86 70.22 32.00 95.48 95.03 95.25 71.27
MM 88.21 59.32 70.94 34.32 96.82 95.69 96.25 74.63
PM 87.50 59.28 70.67 32.50 95.73 95.32 95.52 72.74

2 LP LR F1 EX LP LR F1 EX

ML 87.65 63.95 73.95 40.46 93.02 90.24 91.61 59.79

PR 73.55 61.20 66.81 25.04 84.67 86.73 88.65 36.97
PE 87.19 65.06 74.52 36.65 95.19 94.28 94.73 68.09

MW 86.81 64.60 74.08 39.13 95.96 95.31 95.63 70.85
ME 88.04 65.71 75.25 39.96 93.48 93.72 93.60 63.68
MM 88.81 65.71 75.53 40.46 95.54 94.72 95.13 70.47
PM 88.34 65.32 75.10 39.30 96.30 94.56 95.42 69.34

5 LP LR F1 EX LP LR F1 EX

ML 89.32 75.04 81.56 47.26 92.35 90.06 91.19 57.79

PR 80.97 69.98 75.07 30.84 85.10 83.56 86.80 32.38
PE 89.43 77.38 82.97 45.93 93.28 93.53 93.40 60.60

MW 90.08 76.95 83.00 46.76 94.26 93.29 93.77 64.34
ME 90.56 77.75 83.67 47.59 93.45 93.09 93.27 61.16
MM 90.49 77.34 83.40 47.59 94.47 93.56 94.01 64.61
PM 91.39 77.75 84.02 49.58 95.24 93.89 94.56 65.80

10 LP LR F1 EX LP LR F1 EX

ML 88.64 78.27 83.13 47.59 92.30 89.99 91.13 58.50

PR 81.08 74.29 77.54 30.18 85.70 84.86 86.39 39.21
PE 89.23 80.98 84.90 49.58 92.96 93.14 93.05 59.85

MW 89.25 79.85 84.29 48.92 93.92 92.57 93.24 62.37
ME 90.49 81.24 85.61 51.40 93.63 93.00 93.32 62.52
MM 90.29 80.78 85.27 51.07 94.08 93.24 93.66 63.30
PM 92.02 81.93 86.68 53.23 95.30 93.60 94.44 66.15

20 LP LR F1 EX LP LR F1 EX

ML 89.16 80.24 84.47 47.59 91.99 89.48 90.72 56.75

PR 80.58 73.38 76.81 34.16 85.79 82.37 84.12 39.28
PE 90.66 83.06 86.69 51.40 92.87 92.18 92.53 58.54

MW 90.18 83.19 86.54 50.91 92.63 92.23 92.43 58.52
ME 91.44 83.62 87.26 54.22 93.14 92.56 92.85 60.72
MM 91.64 84.38 87.86 52.07 93.63 93.02 93.33 61.65
PM 92.13 84.27 88.03 54.22 94.51 93.22 93.86 63.94

Table 3 Results for training with training sets of different sizes. The step size at
pass k was set to 1√

k
. Abbreviations: ML=Maximum Likelihood, PR=projection,

PE=Perceptron, MW=MWAL, MM=Max-Margin, ME=Maximum Entropy,
PM=Policy Matching. Parts of the table are labeled by the respective number
of sections that were used for training.

36 Gergely Neu, Csaba Szepesvári

1 2 5 10 20
0

5

10

15

20

25

E
R

 o
n

te
st

 s
et

 [%
]

Training set size (chapters)

1 2 5 10 20
15

20

25

30

35

40

45

50

55

60

E
R

 o
n

tr
ai

ni
ng

 s
et

[%
]

Training set size (chapters)

PM

MM

ME

MW

PE

Fig. 4 Relative error reduction in F1 over the ML method on the test set (left
hand side) and on the training set (right hand side) as a function of the size of
the training set. The step size used in the kth pass is 1√

k
and no regularization is

used. Results for projection are not shown to maintain clarity.

match ratio and the labeled precision, at the confidence level of 5%. Figure 5
shows a box plot that illustrates the distributions of F1 measures achieved
by the different methods.

We find that the performance measure on the single hold-out set are
biased as compared with the results obtained using cross-validation: The
averages of LR and F1 computed measured on the single hold set are neg-
atively biased, while EX is positively biased. Note that this bias does not
cause any problems during the comparison of the methods if it is the same
for the different methods, however, this does not hold. In particular, regular-
ized policy matching looks as if it had a definitely better performance than
MaxEnt training when measured on the single hold-out set (when measured
on the hold-out set, the relative error reduction in F1 for policy matching
is 26.46%, while that of for MaxEnt is 20.88%), while the result of cross-
validation predict no significant differences (see Figure 5). Hence, we find
that the current practice of measuring performance only on the last section
may lead to false conclusions.

7 Conclusions

In this paper we proposed to reduce structured prediction problems, in par-
ticular, parser training problems to solving inverse reinforcement learning
(IRL) problems. We have shown how IRL methods can lead to parser train-
ing methods. Although in this paper we concentrated on parser training
based on PCFGs, we argued that the idea of the reductions carries through

Training Parsers by Inverse Reinforcement Learning 37

Test performance [%]

LP LR F1 EX
λ = 0 µ σ µ σ µ σ µ σ

ML 90.21 0.61 82.38 1.12 86.12 0.80 48.45 1.80

PE 90.74 0.58 85.16 1.18 87.86 0.61 49.68 2.09
MW 90.91 0.69 84.98 1.13 87.84 0.73 49.88 2.25
ME 91.44 0.63 85.33 0.97 88.28 0.63 51.94 1.69
MM 91.89 0.57 85.27 1.14 88.45 0.78 52.05 1.78
PM 91.24 1.39 85.49 1.20 88.26 1.07 48.94 5.42

LP LR F1 EX
λ > 0 µ σ µ σ µ σ µ σ

ML 90.21 0.61 82.38 1.12 86.12 0.80 48.45 1.80

PE 90.29 0.77 84.43 1.40 87.25 0.75 46.71 2.16
MW 89.28 0.71 83.14 1.61 86.09 0.95 45.90 2.46
ME 91.49 0.51 85.07 1.03 88.16 0.67 51.68 1.87
MM 91.56 0.67 84.55 1.22 87.91 0.87 50.59 2.47
PM 92.23 0.55 84.98 1.07 88.46 0.64 52.80 2.01

Table 4 Cross-validation results. Abbreviations: ML=Maximum Likelihood,
PE=Perceptron, MW=MWAL, ME=Maximum Entropy, MM=Max-Margin,
PM=Policy Matching. In the table µ denotes the estimated performance and
σ is the estimated standard deviation. The upper part of the table shows results
for the case when no regularization was used, while the lower part shows results
for the case when regularization was turned on (the regularization constants were
optimized for each method on the development set).

to other settings. As a result, the IRL problem can be a “least common de-
nominator” of structured prediction problems and can provide an abstract,
problem independent framework to study structured prediction problems.

Another contribution of the paper is a unified framework for presenting
IRL algorithms. In particular, we have presented five IRL algorithms in
the unified framework and then showed how they can be used to obtain
various parser training methods. The unified framework suggests a few more
possibilities: The link function could be chosen in various ways, or one could
use stochastic gradient methods. Regularization could also be interpreted
by averaging the weights found in the various iterations, possibly weighted
with how well they perform on the development set. A further enhancement
would be to use some voting scheme, see e.g. Carvalho and Cohen (2006).

The resulting algorithms were compared on the Penn Treebank WSJ
corpus, both in a standard setting and with cross-validation. Our results
suggest that the maximum entropy, the max-margin and the policy match-
ing algorithms are the best performing methods, while the performance of
MWAL, the projection and the perceptron methods are weaker. In terms
of computation cost, amongst the best performing algorithms the subgra-
dient implementation of max-margin training is the cheapest, followed by
policy matching, which turned out to be ca. 10% more expensive. Our best
parser was trained using regularized policy matching and achieved 88.58%

38 Gergely Neu, Csaba Szepesvári

ML MWr PEr MW MMr PE ME MM PM MEr PMr
84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

89.5

F
1

[%
]

Fig. 5 Box plot of the F1 error achieved by the different methods estimated
by cross-validation. Abbreviations: ML=Maximum Likelihood, PE=Perceptron,
MW=MWAL, ME=Maximum Entropy, MM=Max-Margin, PM=Policy Match-
ing. The suffix “r” means “regularized”. Boxes are ordered with respect to the
estimated medians of the distributions. Circles mark test set results when meth-
ods are trained and tested in the standard setting.

F1 accuracy on the test set. This means a 26.46% error reduction in F1, as
compared to our the baseline model trained with maximum likelihood. This
is a significant error reduction as compared with the results of Taskar et al.
(2004) whose training algorithm achieves only a 1.74% error reduction in
the same measure. With the introduction of lexical features and using an
auxiliary POS-tagger, they report a 9.4% error reduction over the baseline
(however, they do not report results for their generative baseline model us-
ing this POS-tagger)13. The large error reduction achieved here underlines
that the choice of a good parser training method matters.

We find the connection between IRL and parser training especially fruit-
ful in that it allows one to derive parser training algorithms from any IRL
method. This connection suggests a number of further potential future en-
hancements. Further robustness might be gained by considering stochastic
outcomes of the labelling decisions. By changing the way the rewards depend
on the states (partial parses) new, more powerful models can be created that
may lead to further performance improvements. The connection to RL could
also be exploited by considering value function approximation methods that

13 The possible reasons for the low error reduction reported by Taskar et al.
(2004) are discussed by Finkel et al. (2008).

Training Parsers by Inverse Reinforcement Learning 39

may result in significantly faster parsers and no loss of accuracy if one uses
the approximate value functions together with appropriate search methods.

References

Abbeel, P. and Ng, A. (2004). Apprenticeship learning via inverse reinforce-
ment learning. In ICML’04, pages 1–8.

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and
Vishwanathan, S. V. N. (2007). Predicting Structured Data (Neural In-
formation Processing). The MIT Press.

Bartlett, P. L., Collins, M., Taskar, B., and McAllester, D. (2005). Exponen-
tiated gradient algorithms for large-margin structured classification. In
Advances in Neural Information Processing Systems 17, pages 113–120,
Cambridge, MA. MIT Press.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

Black, E. (1992). Meeting of interest group on evaluation of
broad-coverage parsers of english. In LINGUIST List 3.587,
http://www.linguistlist.org/issues/3/3-587.html.

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear
Matrix Inequalities in System and Control Theory, volume 15 of Studies
in Applied Mathematics. SIAM, Philadelphia, PA.

Carvalho, V. R. and Cohen, W. W. (2006). Single-pass online learning:
performance, voting schemes and online feature selection. In KDD ’06,
pages 548–553, New York, NY, USA. ACM.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and
MaxEnt discriminative reranking. In ACL ’05: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pages 173–
180, Morristown, NJ, USA. Association for Computational Linguistics.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language
Processing. PhD thesis, University of Pennsylvania.

Collins, M. (2000). Discriminative reranking for natural language parsing.
In ICML’00, pages 175–182.

Collins, M. (2002). Discriminative training methods for hidden Markov
models: theory and experiments with perceptron algorithms. In EMNLP
’02: Proceedings of the ACL-02 conference on Empirical methods in nat-
ural language processing, pages 1–8, Morristown, NJ, USA. Association
for Computational Linguistics.

Collins, M. and Roark, B. (2004). Incremental parsing with the perceptron
algorithm. In ACL ’04: Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics, pages 111–118, Morristown, NJ,
USA. Association for Computational Linguistics.

40 Gergely Neu, Csaba Szepesvári

Daumé III, H. (2006). Practical Structured Learning Techniques for Natural
Language Processing. PhD thesis, University of Southern California, Los
Angeles, CA.

Elliott, H., Derin, H., Cristi, R., and Geman, D. (1984). Application of
the Gibbs distribution to image segmentation. In Proc. 1984 Int. Conf.
Acoust., Speech, Signal Processing, ICASSP’84, pages 32.5.1–32.5.4.

Finkel, J. R., Kleeman, A., and Manning, C. D. (2008). Efficient, feature-
based, conditional random field parsing. In ACL 08, pages 959–967. As-
sociation for Computational Linguistics.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using
the perceptron algorithm. Mach. Learn., 37(3):277–296.

Globerson, A., Koo, T. Y., Carreras, X., and Collins, M. (2007). Exponen-
tiated gradient algorithms for log-linear structured prediction. In ICML
’07: Proceedings of the 24th international conference on Machine learning,
pages 305–312, New York, NY, USA. ACM.

Igel, C. and Hüsken, M. (2000). Improving the Rprop learning algorithm.
In Proceedings of the Second International ICSC Symposium on Neural
Computation (NC 2000), pages 115–121. ICSC Academic Press.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical
Review, 106(4):620–630.

Klein, D. and Manning, C. D. (2003). A∗ parsing: fast exact viterbi parse
selection. In NAACL ’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology, pages 40–47, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence data.
In Proc. 18th International Conf. on Machine Learning, pages 282–289.
Morgan Kaufmann, San Francisco, CA.

Maes, F., Denoyer, L., and Gallinari, P. (2007). Sequence labeling with
reinforcement learning and ranking algorithms. In ECML, pages 648–
657.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, Massachusetts.

Neu, G. and Szepesvári, C. (2007). Apprenticeship learning using inverse
reinforcement learning and gradient methods. In Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 295–302.

Ng, A. and Russell, S. (2000). Algorithms for inverse reinforcement learning.
In ICML-2000, pages 663–670.

Ng, A. Y. and Jordan, M. I. (2001). On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and naive bayes. In NIPS-14,
pages 841–848.

Petrov, S. and Klein, D. (2007). Learning and inference for hierarchically
split PCFGs. In AAAI 2007 (Nectar Track), pages 1663–1666.

Ratliff, N., Bagnell, J., and Zinkevich, M. (2006). Maximum margin plan-
ning. In ICML’06, pages 729–736.

Training Parsers by Inverse Reinforcement Learning 41

Ratliff, N., Bagnell, J. D., and Zinkevich, M. (2007). (Online) Subgradient
methods for structured prediction. In Eleventh International Conference
on Artificial Intelligence and Statistics (AIStats), pages 2:380–387.

Rivas, E. and Eddy, S. R. (1999). A dynamic programming algorithm
for RNA structure prediction including pseudoknots. J Mol Biol,
285(5):2053–2068.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal
Estimated sub-GrAdient SOlver for SVM. In ICML ’07: Proceedings of
the 24th international conference on Machine learning, pages 807–814,
New York, NY, USA. ACM.

Syed, U. and Schapire, R. (2008). A game-theoretic approach to appren-
ticeship learning. In Advances in Neural Information Processing Systems
20, pages 1449–1456, Cambridge, MA. MIT Press.

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). Learning
structured prediction models: a large margin approach. In ICML ’05:
Proceedings of the 22nd international conference on Machine learning,
pages 896–903, New York, NY, USA. ACM.

Taskar, B., Klein, D., Collins, M., Koller, D., and Manning, C. (2004). Max-
margin parsing. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1–8.

Titov, I. and Henderson, J. (2007). Constituent parsing with incremental
sigmoid belief networks. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 632–639, Prague, Czech
Republic. Association for Computational Linguistics.

Turian, J. and Melamed, I. D. (2006). Advances in discriminative parsing.
In ACL ’06: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the ACL, pages
873–880, Morristown, NJ, USA. Association for Computational Linguis-
tics.

Warmuth, M. K. and Jagota, A. K. (1997). Continuous and discrete-time
nonlinear gradient descent: Relative loss bounds and convergence. Tech-
nical report, In Fifth International Symposium on Artificial Intelligence
and Mathematics.

Ziebart, B., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum
entropy inverse reinforcement learning. In AAAI, pages 1433–1438.

