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Abstract

We consider structured multi-armed bandit problems based on the Generalized
Linear Model (GLM) framework of statistics. For these bandits, we propose a new
algorithm, called GLM-UCB. We derive finite time, high probability bounds on the
regret of the algorithm, extending previous analyses developed for the linear bandits
to the non-linear case. The analysis highlights a key difficulty in generalizing linear
bandit algorithms to the non-linear case, which is solved in GLM-UCB by focusing
on the reward space rather than on the parameter space. Moreover, as the actual
effectiveness of current parameterized bandit algorithms is often poor in practice, we
provide a tuning method based on asymptotic arguments, which leads to significantly
better practical performance. We present two numerical experiments on real-world
data that illustrate the potential of the GLM-UCB approach.
Keywords: multi-armed bandit, parametric bandits, generalized linear models, UCB,
regret minimization.

1 Introduction

In the classical K-armed bandit problem, an agent selects at each time step one of the K arms and
receives a reward that depends on the chosen action. The aim of the agent is to choose the sequence
of arms to be played so as to maximize the cumulated reward. There is a fundamental trade-off between
gathering experimental data about the reward distribution (exploration) and exploiting the arm which
seems to be the most promising.

In the basic multi-armed bandit problem, also called the independent bandits problem, the rewards are
assumed to be random and distributed independently according to a probability distribution that is specific
to each arm –see [1, 2, 3, 4] and references therein. Recently, structured bandit problems in which the
distributions of the rewards pertaining to each arm are connected by a common unknown parameter have
received much attention [5, 6, 7, 8, 9]. This model is motivated by the many practical applications where
the number of arms is large, but the payoffs are interrelated. Up to know, two different models were
studied in the literature along these lines. In one model, in each times step, a side-information, or context,
is given to the agent first. The payoffs of the arms depend both on this side information and the index
of the arm. Thus the optimal arm changes with the context [5, 6, 9]. In the second, simpler model, that
we are also interested in here, there is no side-information, but the agent is given a model that describes
the possible relations between the arms’ payoffs. In particular, in “linear bandits” [10, 8, 11, 12], each
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arm a ∈ A is associated with some d-dimensional vector ma ∈ Rd known to the agent. The expected
payoffs of the arms are given by the inner product of their associated vector and some fixed, but initially
unknown parameter vector θ∗. Thus, the expected payoff of arm a is m′aθ∗, which is linear in θ∗.1

In this article, we study a richer generalized linear model (GLM) in which the expectation of the
reward conditionally to the action a is given by µ(m′aθ∗), where µ is a real-valued, non-linear function
called the (inverse) link function. This generalization allows to consider a wider class of problems,
and in particular cases where the rewards are counts or binary variables using, respectively, Poisson
or logistic regression. Obviously, this situation is very common in the fields of marketing, social
networking, web-mining (see example of Section 5.2 below) or clinical studies.

Our first contribution is an “optimistic” algorithm, termed GLM-UCB, inspired by the Upper
Confidence Bound (UCB) approach [2]. GLM-UCB generalizes the algorithms studied by [10, 8, 12].
Our next contribution are finite-time bounds on the statistical performance of this algorithm. In
particular, we show that the performance depends on the dimension of the parameter but not on the
number of arms, a result that was previously known in the linear case. Interestingly, the GLM-UCB
approach takes advantage of the particular structure of the parameter estimate of generalized linear
models and operates only in the reward space. In contrast, the parameter-space confidence region
approach adopted by [8, 12] appears to be harder to generalize to non-linear regression models. Our
second contribution is a tuning method based on asymptotic arguments. This contribution addresses
the poor empirical performance of the current algorithms that we have observed for small or moderate
sample-sizes when these algorithms are tuned based on finite-sample bounds.

The paper is organized as follows. The generalized linear bandit model is presented in Section 2,
together with a brief survey of needed statistical results. Section 3 is devoted to the description of
the GLM-UCB algorithm, which is compared to related approaches. Section 4 presents our regret
bounds, as well as a discussion, based on asymptotic arguments, on the optimal tuning of the method.
Section 5 reports the results of two experiments on real data sets.

2 Generalized Linear Bandits, Generalized Linear Models

We consider a structured bandit model with a finite, but possibly very large, number of arms. At each
time t, the agent chooses an arm At from the set A (we shall denote the cardinality of A by K). The
prior knowledge available to the agent consists of a collection of vectors {ma}a∈A of features which
are specific to each arm and a so-called (inverse) link function µ : R→ R.

The generalized linear bandit model investigated in this work is based on the assumption that the
payoff Rt received at time t is conditionally independent of the past payoffs and choices and it satisfies

E [Rt|At] = µ(m′Atθ∗) , (1)

for some unknown parameter vector θ∗ ∈ Rd. This framework generalizes the linear bandit model
considered by [10, 8, 12]. Just like the linear bandit model builds on linear regression, our model
capitalizes on the well-known statistical framework of Generalized Linear Models (GLMs). The
advantage of this framework is that it allows to address various, specific reward structures widely
found in applications. For example, when rewards are binary-valued, a suitable choice of µ is
µ(x) = exp(x)/(1 + exp(x)), leading to the logistic regression model. For integer valued rewards,
the choice µ(x) = exp(x) leads to the Poisson regression model. This can be easily extended to the
case of multinomial (or polytomic) logistic regression, which is appropriate to model situations in
which the rewards are associated with categorical variables.

To keep this article self-contained, we briefly review the main properties of GLMs [13]. A univariate
probability distribution is said to belong to a canonical exponential family if its density with respect
to a reference measure is given by

pβ(r) = exp (rβ − b(β) + c(r)) , (2)

where β is a real parameter, c(·) is a real function and the function b(·) is assumed to be twice
continuously differentiable. This family contains the Gaussian and Gamma distributions when the
reference measure is the Lebesgue measure and the Poisson and Bernoulli distributions when the
reference measure is the counting measure on the integers. For a random variable R with density

1Throughout the paper we use the prime to denote transposition.
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defined in (2), E(R) = ḃ(β) and Var(R) = b̈(β), where ḃ and b̈ denote, respectively, the first and
second derivatives of b. In addition, b̈(β) can also be shown to be equal to the Fisher information matrix
for the parameter β. The function b is thus strictly convex.

Now, assume that, in addition to the response variable R, we have at hand a vector of covariates X ∈
Rd. The canonical GLM associated to (2) postulates that pθ(r|x) = px′θ(r), where θ ∈ Rd is a vector
of parameter. Denote by µ = ḃ the so-called inverse link function. From the properties of b, we know that
µ is continuously differentiable, strictly increasing, and thus one-to-one. The maximum likelihood esti-
mator θ̂t, based on observations (R1, X1), . . . (Rt−1, Xt−1), is defined as the maximizer of the function

t−1∑
k=1

log pθ(Rk|Xk) =

t−1∑
k=1

RkX
′
kθ − b(X ′kθ) + c(Rk) ,

a strictly concave function in θ.2 Upon differentiating, we obtain that θ̂t is the unique solution of the
following estimating equation

t−1∑
k=1

(Rk − µ(X ′kθ))Xk = 0 , (3)

where we have used the fact that µ = ḃ. In practice, the solution of (3) may be found efficiently using,
for instance, Newton’s algorithm.

A semi-parametric version of the above model is obtained by assuming only that Eθ[R|X] = µ(X ′θ)
without (much) further assumptions on the conditional distribution of R given X . In this case, the
estimator obtained by solving (3) is referred to as the maximum quasi-likelihood estimator. It is a
remarkable fact that this estimator is consistent under very general assumptions as long as the design
matrix

∑t−1
k=1XkX

′
k tends to infinity [14]. As we will see, this matrix also plays a crucial role in the

algorithm that we propose for bandit optimization in the generalized linear bandit model.

3 The GLM-UCB Algorithm

According to (1), the agent receives, upon playing arm a, a random reward whose expected value is
µ(m′aθ∗), where θ∗ ∈ Θ is the unknown parameter. The parameter set Θ is an arbitrary closed subset
of Rd. Any arm with largest expected reward is called optimal. The aim of the agent is to quickly
find an optimal arm in order to maximize the received rewards. The greedy action argmaxa∈A µ(m′aθ̂t)
may lead to an unreliable algorithm which does not sufficiently explore to guarantee the selection
of an optimal arm. This issue can be addressed by resorting to an “optimistic approach”. As described
by [8, 12] in the linear case, an optimistic algorithm consists in selecting, at time t, the arm

At = argmax
a

max
θ

Eθ [Rt |At = a] s.t. ‖θ − θ̂t‖Mt
≤ ρ(t) , (4)

where ρ is an appropriate, “slowly increasing” function,

Mt =

t−1∑
k=1

mAkm
′
Ak

(5)

is the design matrix corresponding to the first t− 1 timesteps and ‖v‖M =
√
v′Mv denotes the matrix

norm induced by the positive semidefinite matrix M . The region ‖θ − θ̂t‖Mt ≤ ρ(t) is a confidence
ellipsoid around the estimated parameter θ̂t. Generalizing this approach beyond the case of linear
link functions looks challenging. In particular, in GLMs, the relevant confidence regions may have
a more complicated geometry in the parameter space than simple ellipsoids. As a consequence, the
benefits of this form of optimistic algorithms appears dubious.3

An alternative approach consists in directly determining an upper confidence bound for the expected
reward of each arm, thus choosing the action a that maximizes

Eθ̂t [Rt |At = a] + ρ(t)‖ma‖M−1
t
.

2Here, and in what follows log denotes the natural logarithm.
3Note that maximizing µ(m′

aθ) over a convex confidence region is equivalent to maximizing m′
aθ over the

same region since µ is strictly increasing. Thus, computationally, this approach is not more difficult than it is
for the linear case.
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In the linear case the two approaches lead to the same solution [12]. Interestingly, for non-linear bandits,
the second approach looks more appropriate.

In the rest of this section, we apply this second approach to the GLM bandit model defined in (1).
According to (3), the maximum quasi-likelihood estimator of the parameter in the GLM is the unique
solution of the estimating equation

t−1∑
k=1

(
Rk − µ(m′Ak θ̂t)

)
mAk = 0 , (6)

where A1, . . . , At−1 denote the arms played so far and R1, . . . , Rt−1 are the corresponding rewards.
Let gt(θ) =

∑t−1
k=1 µ(m′Akθ)mAk be the invertible function such that the estimated parameter θ̂t

satisfies gt(θ̂t) =
∑t−1
k=1RkmAk . Since θ̂t might be outside of the set of admissible parameters Θ,

we “project it” to Θ, to obtain θ̃t:

θ̃t = argmin
θ∈Θ

∥∥∥gt(θ)− gt(θ̂t)∥∥∥
M−1
t

= argmin
θ∈Θ

∥∥∥gt(θ)− t−1∑
k=1

RkmAk

∥∥∥
M−1
t

. (7)

Note that if θ̂t ∈ Θ (which is easy to check and which happened to hold always in the examples we
dealt with) then we can let θ̃t = θ̂t. This is important since computing θ̃t is non-trivial and we can
save this computation by this simple check. The proposed algorithm, GLM-UCB, is as follows:

Algorithm 1 GLM-UCB
1: Input: {ma}a∈A
2: Play actions a1, . . . , ad, receive R1, . . . , Rd.
3: for t > d do
4: Estimate θ̂t according to (6)
5: if θ̂t ∈ Θ let θ̃t = θ̂t else compute θ̃t according to (7)
6: Play the action At = argmaxa

{
µ(m′aθ̃t) + ρ(t)‖ma‖M−1

t

}
, receive Rt

7: end for

At time t, for each arm a, an upper bound µ(m′aθ̃t) + βat is computed, where the “exploration bonus”
βat = ρ(t)‖ma‖M−1

t
is the product of two terms. The quantity ρ(t) is a slowly increasing function;

we prove in Section 4 that ρ(t) can be set to guarantee high-probability bounds on the expected regret
(for the actual form used, see (8)). Note that the leading term of βat is ‖ma‖M−1

t
which decreases

to zero as t increases.

As we are mostly interested in the case when the number of arms K is much larger than the
dimension d, the algorithm is simply initialized by playing actions a1, . . . , ad such that the vectors
ma1 . . . ,mad form a basis ofM = span(ma, a ∈ A). Without loss of generality, here and in what
follows we assume that the dimension ofM is equal to d. Then, by playing a1, . . . , ad in the first
d steps the agent ensures that Mt is invertible for all t. An alternative strategy would be to initialize
M0 = λ0I , where I is the d× d identify matrix.

3.1 Discussion

The purpose of this section is to discuss some properties of Algorithm 1, and in particular the
interpretation of the role played by ‖ma‖M−1

t
.

Generalizing UCB The standard UCB algorithm for K arms [2] can be seen as a special case of
GLM-UCB where the vectors of covariates associated with the arms form an orthogonal system and
µ(x) = x. Indeed, take d = K, A = {1, . . . ,K}, define the vectors {ma}a∈A as the canonical basis
{ea}a∈A of Rd, and take θ ∈ Rd the vector whose component θa is the expected reward for arm a.

Then, Mt is a diagonal matrix whose a-th diagonal element is the number Nt(a) of times the
a-th arm has been played up to time t. Therefore, the exploration bonus in GLM-UCB is given by
βat = ρ(t)/

√
Nt(a). Moreover, the maximum quasi-likelihood estimator θ̂t satisfies R̄at = θ̂t(a)
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for all a ∈ A, where R̄at = 1
Nt(a)

∑t−1
k=1 I{At=a}Rk is the empirical mean of the rewards received

while playing arm a. Algorithm 1 then reduces to the familiar UCB algorithm. In this case, it is known
that the expected cumulated regret can be controlled upon setting the slowly varying function ρ to
ρ(t) =

√
2 log(t), assuming that the range of the rewards is bounded by one [2].

Generalizing linear bandits Obviously, setting µ(x) = x, we obtain a linear bandit model. In this
case, assuming that Θ = Rd, the algorithm will reduce to those described in the papers [8, 12]. In
particular, the maximum quasi-likelihood estimator becomes the least-squares estimator and as noted
earlier, the algorithm behaves identically to one which chooses the parameter optimistically within
the confidence ellipsoid {θ : ‖θ − θ̂t‖Mt ≤ ρ(t)}.

Dependence in the Number of Arms In contrast to an algorithm such as UCB, Algorithm 1
does not need that all arms be played even once.4 To understand this phenomenon, observe that, as
Mt+1 = Mt + mAtm

′
At

, ‖ma‖2M−1
t+1

= ‖ma‖2M−1
t
−
(
m′aM

−1
t mAt

)2/
(1 + ‖mAt‖

2
M−1
t

) for any
arm a. Thus the exploration bonus βat+1 decreases for all arms, except those which are exactly orthog-
onal to mAt (in the M−1

t metric). The decrease is most significant for arms that are colinear to mAt .
This explains why the regret bounds obtained in Theorems 1 and 2 below depend on d but not on K.

4 Theoretical analysis

In this section we first give our finite sample regret bounds and then show how the algorithm can be
tuned based on asymptotic arguments.

4.1 Regret Bounds

To quantify the performance of the GLM-UCB algorithm, we consider the cumulated (pseudo) regret
defined as the expected difference between the optimal reward obtained by always playing an optimal
arm and the reward received following the algorithm:

RegretT =

T∑
t=1

µ(m′a∗θ∗)− µ(m′Atθ∗) .

For the sake of the analysis, in this section we shall assume that the following assumptions hold:
Assumption 1. The link function µ : R→ R is continuously differentiable, Lipschitz with constant
kµ and such that cµ = infθ∈Θ,a∈A µ̇(m′aθ) > 0.

For the logistic function kµ = 1/4, while the value of cµ depends on supθ∈Θ,a∈A |m′aθ|.
Assumption 2. The norm of covariates in {ma : a ∈ A} is bounded: there exists cm < ∞ such
that for all a ∈ A, ‖ma‖2 ≤ cm.

Finally, we make the following assumption on the rewards:
Assumption 3. There exists Rmax > 0 such that for any t ≥ 1, 0 ≤ Rt ≤ Rmax holds a.s. Let
εt = Rt − µ(m′Atθ∗). For all t ≥ 1, it holds that E [εt|mAt , εt−1, . . . ,mA2

, ε1,mA1
] = 0 a.s.

As for the standard UCB algorithm, the regret can be analyzed in terms of the difference between
the expected reward received playing an optimal arm and that of the best sub-optimal arm:

∆(θ∗) = min
a:µ(m′aθ∗)<µ(m′

a∗θ∗)
µ(m′a∗θ∗)− µ(m′aθ∗) .

Theorem 1 establishes a high probability bound on the regret underlying using GLM-UCB with

ρ(t) =
2kµκRmax

cµ

√
2d log(t) log(2 d T/δ) , (8)

where T is the fixed time horizon, κ =
√

3 + 2 log(1 + 2c2m/λ0) and λ0 denotes the smallest
eigenvalue of

∑d
i=1maim

′
ai , which by our previous assumption is positive.

4Of course, the linear bandit algorithms also share this property with our algorithm.
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Theorem 1 (Problem Dependent Upper Bound). Let s = max(1, c2m/λ0). Then, under Assumptions
1–3, for all T ≥ 1, the regret satisfies:

P
(

RegretT ≤ (d+ 1)Rmax +
C d2

∆(θ∗)
log2 [s T ] log

[
2d T

δ

])
≥ 1−δ with C =

32κ2R2
maxk

2
µ

c2µ
.

Note that the above regret bound depends on the true value of θ∗ through ∆(θ∗). The following
theorem provides an upper-bound of the regret independently of the θ∗.
Theorem 2 (Problem Independent Upper Bound). Let s = max(1, c2m/λ0). Then, under Assumptions
1–3, for all T ≥ 1, the regret satisfies

P

(
RegretT ≤ (d+ 1)Rmax + Cd log [s T ]

√
T log

[
2dT

δ

])
≥ 1− δ with C =

8Rmaxkµκ

cµ
.

The proofs of Theorems 1–2 can be found in the supplementary material. The main idea is to use
the explicit form of the estimator given by (6) to show that∣∣∣µ(m′Atθ∗)− µ(m′At θ̂t)

∣∣∣ ≤ kµ
cµ
‖mAt‖M−1

t

∥∥∥ t−1∑
k=1

mAk εk

∥∥∥
M−1
t

.

Bounding the last term on the right-hand side is then carried out following the lines of [12].

4.2 Asymptotic Upper Confidence Bound

Preliminary experiments carried out using the value of ρ(t) defined equation (8), including the case
where µ is the identity function –i.e., using the algorithm described by [8, 12], revealed poor performance
for moderate sample sizes. A look into the proof of the regret bound easily explains this observation
as the mathematical involvement of the arguments is such that some approximations seem unavoidable,
in particular several applications of the Cauchy-Schwarz inequality, leading to pessimistic confidence
bounds. We provide here some asymptotic arguments that suggest to choose significantly smaller
exploration bonuses, which will in turn be validated by the numerical experiments presented in Section 5.

Consider the canonical GLM associated with an inverse link function µ and assume that the
vectors of covariates X are drawn independently under a fixed distribution. This random design
model would for instance describe the situation when the arms are drawn randomly from a fixed
distribution. Standard statistical arguments show that the Fisher information matrix pertaining to
this model is given by J = E[µ̇(X ′θ∗)XX

′] and that the maximum likelihood estimate θ̂t is such
that t−1/2(θ̂t − θ∗)

D−→N (0, J−1), where D−→ stands for convergence in distribution. Moreover,
t−1Mt

a.s.−→Σ where Σ = E[XX ′]. Hence, using the delta-method and Slutsky’s lemma

‖ma‖−1

M−1
t

(µ(m′aθ̂t)− µ(m′aθ∗))
D−→N (0, µ̇(m′aθ∗)‖m′a‖−2

Σ−1‖m′a‖2J−1) .

The right-hand variance is smaller than kµ/cµ as J � cµΣ. Hence, for any sampling distribution such
that J and Σ are positive definite and sufficiently large t and small δ,

P
(
‖ma‖−1

M−1
t

(µ(m′aθ̂t)− µ(m′aθ∗)) >
√

2kµ/cµ log(1/δ)

)
is asymptotically bounded by δ. Based on the above asymptotic argument, we postulate that using
ρ(t) =

√
2kµ/cµ log(t), i.e., inflating the exploration bonus by a factor of

√
kµ/cµ compared to the

usual UCB setting, is sufficient. This is the setting used in the simulations below.

5 Experiments

To the best of our knowledge, there is currently no public benchmark available to test bandit methods
on real world data. On simulated data, the proposed method unsurprisingly outperforms its competitors
when the data is indeed simulated from a well-specified generalized linear model. In order to evaluate
the potential of the method in more challenging scenarios, we thus carried out two experiments using
real world datasets.
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5.1 Forest Cover Type Data

In this first experiment, we test the performance of the proposed method on a toy problem using the
“Forest Cover Type dataset” from the UCI repository. The dataset (centered and normalized with
constant covariate added, resulting in 11-dimensional vectors, ignoring all categorical variables) has
been partitioned into K = 32 clusters using unsupervised k-means. The values of the response variable
for the data points assigned to each cluster are viewed as the outcomes of an arm while the centroid of the
cluster is taken as the 11-dimensional vector of covariates characteristic of the arm. To cast the problem
into the logistic regression framework, each response variable is binarized by associating the first class
(“Spruce/Fir”) to a responseR = 1 and all other six classes toR = 0. The proportions of responses equal
to 1 in each cluster (or, in other word, the expected reward associated with each arm) ranges from 0.354 to
0.992, while the proportion on the complete set of 581,012 data points is equal to 0.367. In effect, we try
to locate as fast as possible the cluster that contains the maximal proportion of trees from a given species.
We are faced with a 32-arm problem in a 11-dimensional space with binary rewards. Obviously, the logis-
tic regression model is not satisfied, although we do expect some regularity with respect to the position of
the cluster’s centroid as the logistic regression trained on all data reaches a 0.293 misclassification rate.
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Figure 1: Top: Regret of the UCB, GLM-UCB and the ε-greedy algorithms. Bottom: Frequencies
of the 20 best arms draws using the UCB and GLM-UCB.

We compare the performance of three algorithms. First, the GLM-UCB algorithm, with parameters
tuned as indicated in Section 4.2. Second, the standard UCB algorithm that ignores the covariates.
Third, an ε-greedy algorithm that performs logistic regression and plays the best estimated action,
At = argmaxa µ(m′aθ̂t), with probability 1 − ε (with ε = 0.1). We observe in the top graph of
Figure 1 that the GLM-UCB algorithm achieves the smallest average regret by a large margin. When
the parameter is well estimated, the greedy algorithm may find the best arm in little time and then leads
to small regrets. However, the exploration/exploitation tradeoff is not correctly handled by the ε-greedy
approach causing a large variability in the regret. The lower plot of Figure 1 shows the number of times
each of the 20 best arms have been played by the UCB and GLM-UCB algorithms. The arms are sorted
in decreasing order of expected reward. It can be observed that GML-UCB only plays a small subset
of all possible arms, concentrating on the bests. This behavior is made possible by the predictive power
of the covariates: by sharing information between arms, it is possible to obtain sufficiently accurate
predictions of the expected rewards of all actions, even for those that have never (or rarely) been played.

7



5.2 Internet Advertisement Data

In this experiment, we used a large record of the activity of internet users provided by a major ISP.
The original dataset logs the visits to a set of 1222 pages over a six days period corresponding to
about 5.108 page visits. The dataset also contains a record of the users clicks on the ads that were
presented on these pages. We worked with a subset of 208 ads and 3.105 users. The pages (ads) were
partitioned in 10 (respectively, 8) categories using Latent Dirichlet Allocation [15] applied to their
respective textual content (in the case of ads, the textual content was that of the page pointed to by
the ad’s link). This second experiment is much more challenging, as the predictive power of the sole
textual information turns out to be quite limited (for instance, Poisson regression trained on the entire
data does not even correctly identify the best arm).

The action space is composed of the 80 pairs of pages and ads categories: when a pair is chosen, it is
presented to a group of 50 users, randomly selected from the database, and the reward is the number of
recorded clicks. As the average reward is typically equal to 0.15, we use a logarithmic link function corre-
sponding to Poisson regression. The vector of covariates for each pair is of dimension 19: it is composed
of an intercept followed by the concatenation of two vectors of dimension 10 and 8 representing, respec-
tively, the categories of the pages and the ads. In this problem, the covariate vectors do not span the entire
space; to address this issue, it is sufficient to consider the pseudo-inverse of Mt instead of the inverse.

On this data, we compared the GLM-UCB algorithm with the two alternatives described in
Section 5.1. Figure 2 shows that GLM-UCB once again outperforms its competitors, even though the
margin over UCB is now less remarkable. Given the rather limited predictive power of the covariates
in this example, this is an encouraging illustration of the potential of techniques which use vectors
of covariates in real-life applications.
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Figure 2: Comparison of the regret of the UCB, GLM-UCB and the ε-greedy (ε = 0.1) algorithm
on the advertisement dataset.

6 Conclusions

We have introduced an approach that generalizes the linear regression model studied by [10, 8, 12]. As
in the original UCB algorithm, the proposed GLM-UCB method operates directly in the reward space.
We discussed how to tune the parameters of the algorithm to avoid exaggerated optimism, which would
slow down learning. In the numerical simulations, the proposed algorithm was shown to be competitive
and sufficiently robust to tackle real-world problems. An interesting open problem (already challenging
in the linear case) consists in tightening the theoretical results obtained so far in order to bridge the gap
between the existing (pessimistic) confidence bounds and those suggested by the asymptotic arguments
presented in Section 4.2, which have been shown to perform satisfactorily in practice.
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A Supplementary material: Proofs

Before proving Theorems 1 and 2, we provide some preliminary results presented sections A.1 and A.2

A.1 Tail inequalities for vector-valued martingales

We need the following result about vector-valued martingales, extracted from [12].
Lemma 1. Let (Fk; k ≥ 0) be a filtration, (mk; k ≥ 0) be an Rd-valued stochastic process adapted
to (Fk), (ηk; k ≥ 1) be a real-valued martingale difference process adapted to (Fk). Assume that ηk is
conditionally sub-Gaussian in the sense that there exists some R > 0 such that for any γ ≥ 0, k ≥ 1,

E[exp(γηk) | Fk−1] ≤ exp

(
γ2R2

2

)
a.s. (9)

Consider the martingale ξt =
∑t
k=1mk−1ηk and the process Mt =

∑t
k=1mk−1m

′
k−1. Assume that

with probability one the smallest eigenvalue of Md is lower bounded by some positive constant λ0

and that ‖mk‖2 ≤ cm holds a.s. for any k ≥ 0.

The following hold true: Let

κ =
√

3 + 2 log(1 + 2c2m/λ0). (10)

For any x ∈ Rd, 0 < δ ≤ 1/e, t ≥ max(d, 2), with probability at least 1− δ,

|x′ξt| ≤ κR
√

2 log t
√

log(1/δ) ‖x‖Mt
. (11)

Further, for any 0 < δ < min(1, d/e), t ≥ max(d, 2), with probability at least 1− δ,

‖ξt‖M−1
t
≤ κR

√
2 d log t

√
log(d/δ). (12)

The proof of (11) is based on an exponential inequality of [16] and is adopted from that of
Lemma B.4 of [17]. Given (11), inequality (12) follows by some algebra from (11).

Proof. In order to prove (11), we shall use Corollary 2.2 of [16] which states the following: Pick some
random variables A and B ≥ 0 such that

E
[
exp

{
γA− γ2

2
B2

}]
≤ 1 for all γ ∈ R . (13)

Then, for all c ≥
√

2, and all y > 0,

P

(
|A| ≥ c

√
(B2 + y)

(
1 +

1

2
log

(
B2

y
+ 1

)))
≤ exp

{
−c

2

2

}
. (14)

We apply this inequality to the random variables A = x′ξt/R and B = ‖x‖Mt
, where x ∈ Rd is

some fixed vector. We first check if the so-defined A,B satisfy (13). Pick any γ ∈ R. We first study
γA− (γB)2/2. We have

γA− (γB)2/2 =
γ x′ξt
R
− γ2 x′Mtx

2
=

t∑
k=1

Dk ,

where
Dk = γ

R x
′mk−1ηk − γ2

2 x
′mk−1m

′
k−1 x = γ

R x
′mk−1ηk − γ2

2 (x′mk−1)2 .

Now, observe that thanks to (9), E [ exp(Dk) | Fk−1] ≤ 1. Let Pk = exp(Dk). Noting that Pk is
Fk-adapted,

E
[
exp(γA− γB2/2)

]
= E [P1 · · ·Pt−1Pt]

= E [E [P1 · · ·Pt−1Pt | Ft−1]] = E [P1 · · ·Pt−1 E [Pt | Ft−1]]

≤ E [E [P1 · · ·Pt−1 | Ft−2]] = E [P1 · · ·Pt−2E [Pt−1 | Ft−2]]

...
≤ E [E [P1 | F0]] ≤ 1

10



which finishes the verification of (13). Now, choose y = λ0‖x‖22 to get from (14) that for all
0 < δ ≤ 1/e, t ≥ 1, with probability 1− δ,

|x′ξt| ≤ R

√√√√(‖x‖2Mt
+ λ0‖x‖22

)(
1 +

1

2
log

(
1 +

‖x‖2Mt

λ0‖x‖22

))√
2 log

(
1

δ

)
. (15)

Noting that for t ≥ max(d, 2), λ0‖x‖22 ≤ ‖x‖
2
Mt
≤ t‖x‖22c2m, we have ‖x‖2Mt

+ λ0‖x‖22 ≤ 2‖x‖2Mt

and 1 + 1
2 log

(
1 +

‖x‖2Mt
λ0‖x‖22

)
≤ 1 + 1

2 log
(

1 +
tc2m
λ0

)
≤ κ2 log(t)/2, thanks to the definition of

κ. Indeed, it is easy to verify that the slope of function 1 + 1
2 log(1 + c2mt/λ0) is below that of

κ2 log(t)/2 for any t ≥ 1 provided that κ ≥ 1. Hence, the last inequality holds if it holds true for
t = 2, which, after reordering the terms gives the constraint

κ ≥

√
2 + log(1 + 2c2m/λ0)

log 2
.

Upper bounding 2/ log 2 by 3 and 1/ log 2 by 2, we get the definition of κ, which indeed satisfies κ ≥ 1.

Hence, when (15) holds, it also holds that

|x′ξt| ≤ κR‖x‖Mt

√
log(t)

√
2 log

(
1

δ

)
. (16)

which is exactly (11).

Now, let us turn to proving (12). Denote by St the symmetric, positive definite matrix such that
S2
t = Mt and, for all 1 ≤ i ≤ d, let ei be the ith unit vector (i.e., for all j 6= i, eij = 0 and eii = 1).

Noting that the identity matrix can be written as I =
∑d
i=1 eie

′
i, we have ‖ξt‖2M−1

t
= ξ′tM

−1
t ξt =

ξ′tS
−1
t IS−1

t ξt =
∑d
i=1 ξ

′
tS
−1
t eie

′
iS
−1
t ξt. Therefore, for any constant τ > 0,

P
[
‖ξt‖2M−1

t
≥ dτ2

]
= P

[
d∑
i=1

ξ′tS
−1
t eie

′
iS
−1
t ξt ≥ dτ2

]
≤

d∑
i=1

P
[
ξ′tS
−1
t eie

′
iS
−1
t ξt ≥ τ2

]
≤

d∑
i=1

P
[
|ξ′tS−1

t ei| ≥ τ
]
.

Applying (11) with x = S−1
t ei, and τ = κR

∥∥S−1
t ei

∥∥
Mt

√
log(t)

√
2 log

(
d
δ

)
, 0 < δ < min(1, d/e),

t ≥ max(d, 2), and using the fact that
∥∥S−1

t ei
∥∥
Mt

= 1, we have

P
[
‖ξt‖2M−1

t
≥ 2dκ2R2 log(t) log

(
d

δ

)]
≤ δ ,

thus, finishing the proof.

Remark 1. Note that if ηk ∈ [αk−R,αk+R] holds almost surely for some Fk−1-measurable random
variable αk then, using Hoeffding’s lemma (see, e.g., Lemma A.1 of [3]), we get that for all γ ∈ R,

E [ exp {γηk} |Fk−1] ≤ exp {γE [ηk | Fk−1]} exp

{
4R2γ2

8

}
= exp

{
γ2R2

2

}
,

showing that (ηk) satisfies the sub-Gaussian conditions (9). In particular, this holds if |ηk| ≤ R holds
almost surely.

A.2 A bound on the prediction error

In this section we prove some bounds on the error of predicting the mean-rewards.

We start with the following result:
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Proposition 1. Take any δ, t such that 0 < δ < min(1, d/e), 1 + max(d, 2) ≤ t ≤ T . Let Ãt be
any A-valued random variable. Let

βat (δ) =
2 kµκRmax

cµ
‖ma‖M−1

t

√
2 d log t

√
log(d/δ) , (17)

where κ is defined by (10). Then, with probability at least 1− δ, it holds that∣∣∣µ(m′
Ãt
θ∗)− µ(m′

Ãt
θ̃t)
∣∣∣ ≤ βÃtt (δ) .

Proof. Pick a time t such that d + 1 ≤ t ≤ T and an action a ∈ A. We start with bounding∣∣∣µ(m′aθ∗)− µ(m′aθ̃t)
∣∣∣. Since µ is Lipschitz, we have |µ(m′aθ∗)− µ(m′aθ̃t)| ≤ kµ|m′a(θ∗ − θ̃t)|. By

Assumption 1,∇gt is continuous,5 hence, by the Fundamental Theorem of Calculus,

gt(θ∗)− gt(θ̃t) = Gt(θ∗ − θ̃t) ,

where

Gt =

∫ 1

0

∇gt (sθ∗ + (1− s)θ̃t) ds .

Now, for any θ ∈ Θ, ∇gt(θ) =
∑t−1
k=1mAkm

′
Ak
µ̇(m′Akθ). Therefore, thanks to Assumption 1, we

have Gt � cµMt � cµMd � 0, where in the last step we used that the first d actions are such that
Md � λ0I � 0. Thus, Gt is positive definite and, hence, it is also non-singular. Therefore,∣∣∣µ(m′aθ∗)− µ(m′aθ̃t)

∣∣∣ ≤ kµ ∣∣∣m′aG−1
t (gt(θ∗)− gt(θ̃t))

∣∣∣ .
Since G−1

t is also positive definite, we get∣∣∣µ(m′aθ∗)− µ(m′aθ̃t)
∣∣∣ ≤ kµ‖ma‖G−1

t

∥∥∥gt(θ∗)− gt(θ̃t)∥∥∥
G−1
t

. (18)

Since Gt � cµMt implies that G−1
t � c−1

µ M−1
t , ‖x‖G−1

t
≤ 1√

cµ
‖x‖M−1

t
holds for arbitrary x ∈ Rd.

Hence, ∣∣∣µ(m′aθ∗)− µ(m′aθ̃t)
∣∣∣ ≤ kµ

cµ
‖ma‖M−1

t

∥∥∥gt(θ∗)− gt(θ̃t)∥∥∥
M−1
t

.

Now, ∥∥∥gt(θ∗)− gt(θ̃t)∥∥∥
M−1
t

≤
∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥

M−1
t

+
∥∥∥gt(θ̂t)− gt(θ̃t)∥∥∥

M−1
t

≤ 2
∥∥∥gt(θ∗)− gt(θ̂t)∥∥∥

M−1
t

,

where the first inequality follows from the triangle inequality and second follows since by assumption
θ∗ ∈ Θ and because of the optimizing property of θ̃t within Θ.

Thanks to the definition of θ̂t, and using εk = Rk − µ(m′Akθ∗), ξt
def
= gt(θ̂t) − gt(θ∗) =∑t−1

k=1mAkεk. Therefore,∣∣∣µ(m′aθ∗)− µ(m′aθ̃t)
∣∣∣ ≤ 2 kµ

cµ
‖ma‖M−1

t
‖ξt‖M−1

t
.

Since this holds simultaneously for all a ∈ A, it also holds when a is replaced by any A-valued random
variable Ãt: ∣∣∣µ(m′

Ãt
θ∗)− µ(m′

Ãt
θ̃t)
∣∣∣ ≤ 2 kµ

cµ

∥∥mÃt

∥∥
M−1
t

‖ξt‖M−1
t
. (19)

Now, let us use Lemma 1 to bound ‖ξt‖M−1
t

. Set mk = mAk+1
(k = 0, 1, . . .),

ηk = εk (k = 1, 2, . . .), Fk = σ(ms, ηs; s ≤ k). Due to Assumption 3, E [ηk|Fk−1] =
E [ηk|mk−1, ηk−1, . . . ,m1, η1,m0] = E [εk|mAk , εk−1, . . . ,mA2 , ε1,mA1 ] = 0. Since by the

5For all x ∈ Rd, ∇gt(x) denotes the Jacobian matrix of gt at point x.
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same assumption, |εk| ≤ Rmax, we may choose R = Rmax by Remark 1. Further, by Assump-
tion 2, ‖mk‖2 = ‖mAk+1

‖2 ≤ maxa∈A ‖ma‖2 ≤ cm, and, by the choice of the first d actions,∑d
k=1mk−1m

′
k−1 =

∑d
k=1mAkm

′
Ak
� λ0I . Therefore, all the assumptions of the Lemma are met

and we can conclude that for any 0 < δ < min(1, d/e), t ≥ 1 + max(d, 2), with probability at least
1− δ,

‖ξt‖M−1
t
≤ κRmax

√
2 d log t

√
log(d/δ), (20)

where κ is defined by (10).

By chaining (19) and (20), we get that on the event when (20) holds, we also have∣∣∣µ(m′
Ãt
θ∗)− µ(m′

Ãt
θ̃t)
∣∣∣ ≤ 2 kµκRmax

cµ

∥∥mÃt

∥∥
M−1
t

√
2 d log t

√
log(d/δ) ,

finishing the proof.

Proposition 1 implies the following bound on the immediate mean regret:
Proposition 2. For all δ such that 0 < δ ≤ min(1, 2Td/e), simultaneously for all
t ∈ {1 + max(d, 2), . . . , T},

µ(m′a∗θ∗)− µ(m′Atθ∗) ≤ 2 βAtt
(
δ

2T

)
.

holds with probability at least 1− δ.

Proof. Fix t ∈ {1 + max(d, 2), . . . , T} and let δ be as in the statement. Consider the decomposition

µ(m′a∗θ∗)− µ(m′Atθ∗) =
(
µ(m′a∗θ∗)− µ(ma∗ θ̃t)

)
+
(
µ(ma∗ θ̃t)− µ(mAt θ̃t)

)
+
(
µ(mAt θ̃t)− µ(m′Atθ∗)

)
.

Now, according to Proposition 1, outside of an event of measure bounded by δ/(2T ),

µ(m′a∗θ∗)− µ(m′a∗ θ̃t) ≤ β
a∗
t (δ/(2T )) .

Also, outside of an event of measure bounded by δ/(2T ),

µ(m′Atθ∗)− µ(m′At θ̃t) ≤ β
At
t (δ/(2T )) .

Further, by the definition of At,

µ(ma∗ θ̃t)− µ(mAt θ̃t) = µ(ma∗ θ̃t) + βa∗t (δ/(2T ))− µ(mAt θ̃t)− β
a∗
t (δ/(2T ))

≤ µ(mAt θ̃t) + βAtt (δ/(2T ))− µ(mAt θ̃t)− β
a∗
t (δ/(2T ))

= βAtt (δ/(2T ))− βa∗t (δ/(2T )).

Chaining the inequalities and using a union bound gives the final result.

According to the previous proposition, the behavior of the immediate regret at time step t is bounded
by 2βAtt (δ/2T ) = 2ρ(t)‖mAt‖M−1

t
≤ 2ρ(T )‖mAt‖M−1

t
. Therefore, with t0 = 1 + max(d, 2),

outside of an event of probability at most δ, we can bound the cumulated regret up to time T by

RegretT ≤ (t0 − 1)Rmax +

T∑
t=t0

min
{
µ(m′a∗θ∗)− µ(m′Atθ∗), Rmax

}
(21)

≤ (t0 − 1)Rmax + 2 ρ(T )

T∑
t=t0

min
{
‖mAt‖M−1

t
, 1
}
, (22)

where the last inequality follows from the fact that Rmax ≤ 2ρ(T ) by definition of ρ(T ). Note
that ‖mAt‖M−1

t
is expected to become small as t gets large. This motivates us to bound a sum of

‖mAt‖
2
M−1
t

. For technical reasons that will become clear later, we bound
∑T
t=d min

{
‖mAt‖

2
M−1
t
, 1
}

.
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Proposition 3. Let t0 ≥ d+ 1. Then,∑T
t=t0

min
{
‖mAt‖

2
M−1
t
, 1
}
≤ 2 d log

(
c2mT
λ0

)
a.s. .

Proof. This proof follows the steps of the proof of Lemma 9 of [8]. By the definition of Mt+1, we have

det (Mt+1) = det
(
Mt +mAtm

′
At

)
= det (Mt) det

(
I +M

−1/2
t mAt(M

−1/2
t mAt)

′
)

= det (Mt)
(

1 + ‖mAt‖
2
M−1
t

)
= det (Mt0)

t∏
k=t0

(
1 + ‖mAk‖

2
M−1
k

)
,

where the last line follows from the fact that 1 + ‖mAt‖
2
M−1
t

is an eigenvalue of the matrix

I +M
−1/2
t mAt(M

−1/2
t mAt)

′ and that all the other eigenvalues are equal to 1. Thus, using the fact
that x ≤ 2 log(1 + x) which holds for any 0 ≤ x ≤ 1, we have

T∑
t=t0

min
{
‖mAt‖

2
M−1
t
, 1
}
≤ 2

T∑
t=t0

log
(

1 + ‖mAt‖
2
M−1
t

)

= 2 log

T∏
t=t0

(
1 + ‖mAt‖

2
M−1
t

)
= 2 log

(
det(MT+1)

det(Mt0)

)
.

Note that the trace of Mt+1 is upper-bounded by t c2m. Then, since the trace of the positive definite
matrix Mt+1 is equal to the sum of its eigenvalues and det(Mt+1) is the product of its eigenvalues,
we have det(Mt+1) ≤ (tc2m)d. In addition, det(Mt0) ≥ λd0 since t0 ≥ d+ 1. Thus,

T∑
t=t0

min
{
‖mAt‖

2
M−1
t
, 1
}
≤ 2 d log

(
c2mT

λ0

)
.

A.3 Proof of the Main Theorems

A.3.1 Proof of Theorem 1

Proof. We start from (21), where t0 = 1 + max(d, 2). According to the definition of ∆(θ∗) whenever
At is a suboptimal action, µ(m′a∗θ∗) − µ(m′Atθ∗) ≥ ∆(θ∗), while in the other case we have
µ(m′a∗θ∗)− µ(m′Atθ∗) = 0. In both cases, we can write

µ(m′a∗θ∗)− µ(m′Atθ∗) ≤
(µ(m′a∗θ∗)− µ(m′Atθ∗))

2

∆(θ∗)
.

According to Proposition 2, with probability 1− δ, simultaneously for all t ∈ {t0, . . . , T},

µ(m′a∗θ∗)− µ(m′Atθ∗) ≤ 2βAtt (δ/(2T )) = 2ρ(t) ‖mAt‖M−1
t
.

Therefore, on the event when these inequalities holds, we have

T∑
t=t0

min
{
µ(m′a∗θ∗)− µ(m′Atθ∗), Rmax

}
≤

T∑
t=t0

min

{
4
ρ(t)2

∆(θ∗)
‖mAt‖

2
M−1
t
, Rmax

}

≤ 4
ρ(T )2

∆(θ∗)

T∑
t=t0

min
{
‖mAt‖

2
M−1
t
, 1
}
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where the last inequality follows from the fact that ∆(θ∗) ≤ Rmax ≤ 4ρ(T )2/Rmax and that ρ(.)
is an increasing function. Combining this with the bound of Proposition 3, we get

T∑
t=t0

min
{
µ(m′a∗θ∗)− µ(m′Atθ∗), Rmax

}
≤ 8 d

ρ(T )2

∆(θ∗)
log

(
c2mT

λ0

)
.

Plugging in the definition of ρ(T ), we get that it holds with probability 1− δ that

RegretT ≤ (t0 − 1)Rmax +

T∑
t=t0

min
{
µ(m′a∗θ∗)− µ(m′Atθ∗), Rmax

}
≤ (t0 − 1)Rmax +

32 d2 κ2R2
maxk

2
µ

c2µ∆(θ∗)
log(T ) log(2d T/δ) log

(
c2mT

λ0

)
.

A.3.2 Proof of Theorem 2

Proof. Let t0 = 1 + max(d, 2). According to Proposition 2, (22) holds with probability 1 − δ, so
it remains to bound

T∑
t=t0

min
{
‖mAt‖M−1

t
, 1
}
.

Using the Cauchy-Schwarz inequality and Proposition 3, we have

T∑
t=t0

min
{
‖mAt‖M−1

t
, 1
}
≤
√
T

√√√√ T∑
t=t0

min
{
‖mAt‖

2
M−1
t
, 1
}

≤
√
T
√

2d log(c2mT/λ0) .

Combining with (22) and using the definition of ρ(·) gives

RegretT ≤ (t0 − 1)Rmax + 2 ρ(T )
√

2 d T log(c2mT/λ0)

= (t0 − 1)Rmax + 8 d
kµκRmax

cµ

√
T log(T ) log(c2mT/λ0) log(2Td/δ)

≤ (d+ 1)Rmax + 8 d
kµκRmax

cµ
log(s T )

√
T log(2Td/δ),

where s = max
(
c2m
λ0
, 1
)

, thus, finishing the proof.
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