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Abstract
We study the problem of identifying the best action among a set of possible options when
the value of each action is given by a mapping from a number of noisy micro-observables in
the so-called fixed confidence setting. Our main motivation is the application to minimax
game search, which has been a major topic of interest in artificial intelligence. In this
paper we introduce an abstract setting to clearly describe the essential properties of the
problem. While previous work only considered a two-move-deep game tree search problem,
our abstract setting can be applied to the general minimax games where the depth can be
non-uniform and arbitrary, and transpositions are allowed. We introduce a new algorithm
(LUCB-micro) for the abstract setting, and give its lower and upper sample complexity
results. Our bounds recover some previous results, achieved in more limited settings,
and also shed further light on how the structure of minimax problems influences sample
complexity.
Keywords: Best Arm Identification, Monte-Carlo Tree Search, Game Tree Search, Struc-
tured Environments, Multi-Armed Bandits, Minimax Search

1. Introduction

Motivated by the problem of finding the optimal move in minimax tree search with noisy
leaf evaluations, we introduce best arm identification problems with structured payoffs and
micro-observables. In these problems, the learner’s goal is to find the best arm when the
payoff of each arm is a fixed and known function of a set of unknown values. In each round,
the learner can choose one of the micro-observables to make a noisy measurement (i.e., the
learner can obtain a “micro-observation”). We study these problems in the so-called fixed
confidence setting.

A special case of this problem is the standard best arm identification, which has seen a
flurry of activity during the last decade, e.g., (Even-Dar et al., 2006; Audibert and Bubeck,
2010; Gabillon et al., 2012; Kalyanakrishnan et al., 2012; Karnin et al., 2013; Jamieson
et al., 2014; Chen and Li, 2015). Recently, Garivier et al. (2016a) considered the motivating
problem mentioned above for the simplest non-trivial instance, when two players alternate
for a single round each. One of their main observations is that such two-move problems can
be solved more efficiently than if one considers the problem as an instance of a nested best
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arm identification problem. They proposed two algorithms, one for the fixed confidence
setting, the other for the (asymptotic) vanishing confidence setting and provided upper
bounds. An implicit (optimization-based) lower bound was also briefly sketched, together
with a plan to derive an algorithm that matches it in the vanishing confidence setting.

Our main interest in this paper is to see whether the ideas of Garivier et al. (2016a)
extend to more general settings, such as when the depth can be non-uniform and is in
particular not limited to two, or when different move histories lead to shared states called
transpositions in the language of adversarial search. While considering these extensions,
we found it cleaner to introduce the abstract setting mentioned below (Section 2). The
motivation here is to clearly delineate the crucial properties of the problem that our results
use. For the general structured setting, in Section 3 we prove an instance dependent lower
bound along the lines of Auer et al. (2002) or Garivier et al. (2016b). Mild novelty is the
way our proof deals with the technical issue that best arm identification algorithms ideally
stop and hence their behavior is undefined after the random stopping time). This is then
specialized to the minimax game search setting (Section 4), where we show the crucial role
of what we call proof sets, which are somewhat reminiscent of the so-called conspiracy sets
from adversarial search (McAllester, 1988). Our lower bound matches that of Garivier et al.
(2016a) in the case of two-move alternating problems. Considering again the abstract setting,
we propose the new algorithm LUCB-micro (Section 5), which can be considered as a natural
generalization of Maximin-LUCB of Garivier et al. (2016a) with some minor differences.
Under a regularity assumption on the payoff maps, we prove that the algorithm meets the
risk-requirement. We also provide a high-probability, instance-dependent upper bound on
the algorithm’s sample complexity (i.e., on the number of observations the algorithm takes).
While this bound meets the general characteristics of existing bounds, it fails to reproduce
the corresponding result of Garivier et al. (2016a). To the best of the authors’ knowledge,
the only comparable algorithm to study best arm identification in a full-length minimax
tree search setting (which was the motivating example of our work) is FindTopWinner
by Teraoka et al. (2014). This algorithm is a round-based elimination based algorithm
with additional pruning steps that come from the tree structure. When we specialize our
framework to the minimax game scenario and implement other necessary changes to put
our work into their (ε, δq-PAC setting, our upper bound is a strict improvement of theirs,
e.g., in the number of samples related to the near-optimal micro-observables (leaves of the
minimax game tree). Next, we consider the minimax setting (Section 6). First, we show
that the regularity assumptions made for the abstract setting are met in this case. We also
show how to efficiently compute the choices that LUCB-micro makes using a “min-max”
algorithm. Finally, we strengthen our previous result so that it matches the mentioned
result of Garivier et al. (2016a). After we submitted our paper, an independent work by
Kaufmann and Koolen (2017) was published online, which develops a similar algorithm and
essentially the same theoretical guarantee in the “min-max” setting. Our paper presents the
results in a general setting, delineating the essence of the problem.

1.1. Notation
We use N “ t1, 2, . . . u to denote the set of positive integers, while we let R denote the set of
reals. For a positive integer k P N, we let rks “ t1, . . . , ku. For a vector v P Rd, we denote
its i-th element by vi; though occasionally we will also use vpiq for the same purpose, i.e., we
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identify Rd and tf : f : rds Ñ Ru in the obvious way. We let |v| denote the vector defined
by |v| “ p|vi|qiPrds. For two vectors u, v P Rd, we define u ď v if and only if ui ď vi for all
1 ď i ď d. Further, we write u ă v when u ‰ v and u ď v. For B Ă rds, we write u|B to
denote the |B|-dimensional vector obtained from restricting u to components with index in
B: u|B “ puiqiPB. We use 1d to denote the d dimensional vector whose components are all
equal to one. For a nonempty set B, we also use 1B to denote the |B|-dimensional all-one
vector. We let Bc “ ti P rds : i R Bu to denote the complementer of B (when Bc is used, the
base set that the complementer is taken for should be clear from the context). The indicator
function will be denoted by I t¨u. We will use a^ b “ minpa, bq and a_ b “ maxpa, bq. For
A Ă R, Ā denotes its topological closure, while A˝ denotes its interior. Given a real value
a P R, a` “ a_ 0 and a´ “ ´pa^ 0q. For a sequence pm0, . . . ,miq of some values and some
other value m, we define joinph,mq “ pm0, . . . ,mi,mq.

2. Problem setup

Input: δ P p0, 1q, f “ pf1, . . . , fKq
for t “ 1, 2, . . . do
Choose It P rLs
Observe Yt „ PItp¨q
if Stop() then
Choose J P rKs, candidate optimal
arm index
T Ð t
return pT, Jq

Admissibility: P pJ ‰ argmaxi fipµqq ď δ,
P pT ă 8q “ 1.

Figure 1: Interaction of a learner and a prob-
lem instance pf, P q. The compo-
nents of µ are µi “

ş

xdPipxq, i P
rLs, and f maps RL to RK .

Fix two positive integers, L and K.
A problem instance of structured K-
armed best arm identification with L micro-
observations is defined by a tuple pf, P q,
where f : RL Ñ RK and P “ pP1, . . . , PLq
is an L-tuple of distributions over the re-
als. We let µi “

ş

xdPipxq denote the
mean of distribution Pi. We shall denote
the component functions of f by f1, . . . , fK :
fpµq “ pf1pµq, . . . , fKpµqq. The value fipµq
is interpreted as the payoff of arm i and
we call f the reward map. The goal of the
learner is to identify the arm with the high-
est payoff, which is assumed to be unique.
The learner knows f , is unaware of P , and,
in particular, unaware of µ. To gain infor-
mation about µ, the learner can query the
distributions in discrete rounds indexed by
t “ 1, 2, . . . , in a sequential fashion. The
learner is also given δ P p0, 1q, a risk parameter (also known as a confidence parameter).
The goal of the learner is to identify the arm with the highest payoff using the least number
of observations while keeping the probability of making a mistake below the specified risk
level. A learner is admissible for a given set S of problem instances if (i) for any instance
from S, the probability of the learner misidentifying the optimal arm in the instance is below
the given fixed risk factor δ; and (ii) the learner stops with probability one on any instance
from S. The interaction of a learner and a problem instance is shown on Fig. 1.

Minimax games As a motivating example, consider the problem of finding the optimal
move for the first player in a finite two-player minimax game. The game is finite because the
game finishes in finitely many steps (by reaching one of the L possible terminating states).
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The first player has K moves in the starting position. The value of each move is a function
of the values µ P RL of the L possible terminating states.

Formally, such a minimax game is described by G “ pM,H, p, τq, where M is a non-
empty finite set of possible moves, H Ă Yně0M

n is a finite set of (feasible) histories of moves,
the function p : H Ñ t´1,`1u determines, for each feasible move history, the identity of
the player on turn, and τ is a surjection that maps a subset Hmax Ă H of move histories,
the set of maximal move histories in H, to rLs (in particular, note that τ may map multiple
maximal histories to the same terminating state). An element h of H is maximal in H if it
is not the prefix of any other history h1 P H, or, in other words, if it has no continuation
in H. The set H has the property that if h P H then every prefix of h with positive length
is also is in H. The first player’s moves are given by the unit length histories in H. To
minimize clutter, without the loss of generality (WLOG), we identify this set with rKs.

The function f “ pf1, . . . , fKq underlying G gives the payoffs of the first player. To
define f we use the auxiliary function V p¨, µq : H Ñ R that evaluates any particular move
history given the values µ assigned to terminal states. Given V , we define fkpµq “ V ppkq, µq
for any k P rKs. It remains to define V : For h P Hmax, V ph, µq “ µτphq. For any other
feasible history h P H, V ph, µq “ pphqmaxtpphqV ph1, µq : h1 P Hsuccphqu, where Hsuccphq “
tjoinph,mq : m P Mu X H is the set of immediate successors of h in H. Thus, when
pphq “ 1, V ph, µq is the maximum of the values associated with the immediate successors
of h, while when pphq “ ´1, V ph, µq is the minimum of these values. We define mph, µq
as the move m defining an optimal immediate successor of h given µ. Note that many of
the defined functions depend on H, but the dependence is suppressed, as we will keep H
fixed. One natural problem that fits our setting is a (small) game where the payoffs at the
terminating states of a game are themselves randomized (e.g., at the end of a game some
random hidden information such as face down cards can decide the value of the final state)
or use noisy randomized evaluations as in MCTS. As explained by Garivier et al. (2016a),
the setting may also shed light on how to design better Monte-Carlo Tree Search (MCTS)
algorithms, which is a relatively novel class of search algorithms that proved to be highly
successful in recent years (e.g., Gelly et al., 2012; Silver et al., 2016).

3. Lower bound: General setting

In this section we will prove a lower bound for the case of a fixed map f and when the
set of instances is the set of all normal distributions with unit variance. We denote the
corresponding set of instances by Snorm

f . Our results can be easily extended to the case of
other sufficiently-rich families of distributions.

For the next result, assume without loss of generality that f1pµq ą f2pµq ě ¨ ¨ ¨ ě fKpµq.
Fix a learner (policy) A, which maps historical observations to actions. For simplicity, we
assume that A is deterministic (the extension to randomized algorithms is standard). Let
Ω “ prLsˆRqN be the set of (infinite) sequences of observable-index and observation pairs so
that for any ω “ pi1, y1, i2, y2, . . . q P Ω, t ě 1, Itpωq “ it and Ytpωq “ yt. We equip Ω with
the associated Lebesgue σ-algebra F . For an infinite sequence ω “ pi1, y1, i2, y2, . . . q P Ω,
we let T pωq P N Y t8u be the round index when the algorithm stops (we let T pωq “ 8 if
the algorithm never stops on ω). Thus, T : Ω Ñ NYt8u. Similarly, define J : Ω Ñ rK ` 1s
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to be the choice of the algorithm when it stops, where we define Jpωq “ K ` 1 in case
T pωq “ 8.

The interaction of a problem instance (uniquely determined by µ) and the learner
(uniquely determined by the associated policy A) induces a unique distribution Pµ,A over the
measurable space pΩ,Fq, where we agree that in rounds with index t “ T ` 1, T ` 2, . . . , we
specify that the algorithm chooses arm 1, while the observation distributions are modified
so that the observation is deterministically set to zero. We will also use Eµ,A to denote the
expectation operator corresponding to Pµ,A.

To appease the prudent reader, let us note that our statements will always be concerned
with events that are subsets of the event tT ă 8u and as such they are not affected by
how we specify the “choices” of the algorithm and the “responses” of the environment for
t ą T . Take, as an example, the expected number of steps that A takes in an environment µ,
Eµ,ArT s, which we bound below. Since we bound this only in the case when the algorithm A
is admissible, which implies that Pµ,ApT ă 8q “ 1, we have Eµ,ArT s “ Eµ,ArT I tT ă 8us.
which shows that the behavior of Pµ,A outside of Pµ,A outside of tT ă 8u is immaterial for
this statement. The choices we made for t ą T (for the algorithm and the environment) will
however be significant in that they simplify a key technical result.

To state our result, we need to introduce the set of significant departures, Dµ Ă RL,
from µ. This set contains all vectors ∆ such that the best arm under µ `∆ is not arm 1.
Formally,

Dµ “ t∆ P RL : f1pµ`∆q ď max
ią1

fipµ`∆qu . (1)

Theorem 1 (Lower bound) Fix a risk parameter δ P p0, 1q. Assume that A is admissible
over the instance set Snorm

f at the risk level δ. Define

τ˚pµq “ min

#

L
ÿ

i“1

npiq : inf
∆PDµ

L
ÿ

i“1

npiq∆2
i ě 2 logp1{p4δqq, np1q, . . . , npLq ě 0

+

. (2)

Then, Eµ,ArT s ě τ˚pµq.

The proof can be shown to reproduce the result of Garivier and Kaufmann (2016) (see
page 6 of their paper) when the setting is best arm identification. The proof uses standard
steps (e.g., Auer et al., 2002; Kaufmann et al., 2016) and one of its main merit is its simplicity.
In particular, it relies on two information theoretical results; a high-probability Pinsker
inequality (Lemma 2.6 from (Tsybakov, 2008)) and a standard decomposition of divergences.
The proof is given in Appendix B (all proofs omitted from the main body can be found in
the appendix).

Remark 2 (Minimal significant departures (Dmin
µ )) From the set of significant depar-

tures one can remove all vectors d that are componentwise dominating in absolute value some
other significant departure ∆ P Dµ without effecting the lower bound. To see this, write the
lower bound as mint

ř

i npiq : n P X∆PDµΦp∆qu, where Φp∆q “ tn P r0,8qL :
ř

i npiq∆
2
i ě

2 logp1{p4δqqu. Then, if d,∆ P Dµ are such that |∆| ď |d| then Φp∆q Ă Φpdq. Hence,
X∆PDµΦp∆q “ X∆PDmin

µ
Φp∆q where Dmin

µ “ td P Dµ : E∆ P Dµ s.t. |∆| ă |d|u.
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4. Lower bound for minimax games

In this section we prove a corollary of the general lower bound of the previous section in
the context of minimax games; the question being what role the structure of a game plays
in the lower bound. For this section fix a minimax game structure G “ pM,H, p, τq (cf.
Section 2). We first need some definitions:

Definition 1 (Proof sets) Take a minimax game structure G “ pM,H, p, τq with K first
moves and L terminal states. Take j P rKs. A set B Ă rLs is said to be sufficient for
proving upper bounds on the value of move j if for any µ P RL and θ P R, µ|B “ θ1B
implies fjpµq ď θ. Symmetrically, a set B Ă rLs is said to be sufficient for proving lower
bounds on the value of move j if for any µ P RL and θ P R, µ|B “ θ1B implies fjpµq ě θ.

In analogy with proof sets in the minimax search algorithm of Proof Number Search
(Allis, 1994; Kishimoto et al., 2012), we will call the sets satisfying the above definition
upper (resp., lower) proof sets, denoted by B`j (resp., B´j ). In Proof Number Search, a
proof set is a set of leaves with currently unknown value which, if all nodes in the set are
proven, implies a proof of the root. In our case, the upper and lower proof sets establish an
upper or lower bound of θ, respectively.

One can obtain upper proof sets that belong to B`j in the following way: Let Hj denote
the set of histories that start with move j. Consider a non-empty rH Ă Hj that satisfies the
following properties: (i) if h P rH and pphq “ ´1 (minimizing turn) then |HsuccphqX rH| “ 1;
(ii) if h P rH and pphq “ 1 (maximizing turn) then Hsuccphq Ă rH. Call the set of rH that
can be obtained this way H`j . From the construction of rH we immediately get the following
proposition:

Proposition 3 Take any rH P H`j as above. Then, τp rH XHmaxq P B`j .

A similar construction and statement applies in the case of B´j , resulting in the set H´j .
Our next result will imply that the lower bound is achieved by considering departures of a
special form, related to proof sets:

Proposition 4 (Minimal significant departures for minimax games) Without loss
of generality, assume that f1pµq ą maxją1 fjpµq. Let

S “
!

∆ P RL : D1 ă j ď K , θ P rfjpµq, f1pµqs, B P B`1 , B
1 P B´j s.t.

∆i “ ´pµi ´ θq`, @i P BzB
1; ∆i “ pµi ´ θq´, @i P B

1zB;

∆i “ θ ´ µi, @i P B
1 XB; ∆i “ 0, @i P pB YB1qc

)

.

Then, Dmin
µ Ă S Ă Dµ.

Note that the second inclusion shows that replacing Dµ by S in the definition of τ˚pµq
would only decrease the value of τ˚pµq, while the first inclusion shows that the value actually
does not change. The following lemma, characterizing minimal departures, is essential for
our proof of Proposition 4:

6



Structured Best Arm Identification with Fixed Confidence

Lemma 5 Take any µ P RL, d P Dmin
µ and assume WLOG that f1pµq ą maxją1 fjpµq.

Then, there exist B P B`1 , j P t2, . . . ,Ku and B1 P B
´
j such that

(i) maxtpµ` dqi : i P Bu “ f1pµ` dq “ fjpµ` dq “ mintpµ` dqi : i P B1u;

(ii) di ď 0 if i P BzB1; di ě 0 if i P B1zB;

(iii) @i P B YB1, either pµ` dqi “ f1pµ` dq “ fjpµ` dq or di “ 0.

Proposition 4 implies the following:

Corollary 6 Let µ be a valuation and assume WLOG that f1pµq ą maxją1 fjpµq. Let
Bj “ tpB,B1q : B P B`1 , B1 P B

´
j u. Then,

τ˚pµq “ min
nPr0,8qL

!

ÿ

i

npiq : min
1ăjďK,θPrfjpµq,f1pµqs,pB,B1qPBj

ÿ

iPBzB1

npiqpµi ´ θq
2
`

`
ÿ

iPB1zB

npiqpµi ´ θq
2
´ `

ÿ

iPBXB1

npiqpθ ´ µiq
2 ě 2 logp 1

4δ q

)

.

Hence, for any algorithm A admissible over the instance set Snorm
f at the risk level δ, Eµ,ArT s

is at least as large than the right-hand side of the above display.

5. Upper bound

In this section we propose an algorithm generalizing the LUCB algorithm of Kalyanakrish-
nan et al. (2012) and prove a theoretical guarantee for the proposed algorithm’s sample
complexity under some (mild) assumptions on the structure of the reward mapping f . Our
result is inspired and extends the results of Garivier et al. (2016a) (who also started from
the LUCB algorithm) to the general setting proposed in this paper. In Section 6 we give a
version of the algorithm presented here that is specialized to minimax games and refine the
upper bound of this section, highlighting the advantages of the extra structure of minimax
games.

In this section we shall assume that the distributions pPiqiPrLs are subgaussian with a
common parameter, which we take to be one for simplicity:

Assumption 1 (1-Subgaussian observations) For any i P rLs, X „ Pip¨q,

sup
λPR

E
“

exppλpX ´ EXq ´ λ2{2q
‰

ď 1 .

We will need a result for anytime confidence intervals for martingales with subgaussian
increments. For stating this result, let pFtqtPN be a filtration over the probability space
pΩ,F ,Pq holding our random variables and introduce Etr¨s “ E r¨|Ft´1s. This result appears
as (essentially) Theorem 8 in the paper by Kaufmann et al. (2016) who also cite precursors:

Lemma 7 (Anytime subgaussian concentration) Let pXtqtPN be an pFtqtPN-adapted
1-subgaussian, martingale difference sequence (i.e., for any t P N, Xt is Ft-measurable,
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EtXt “ 0, and supλ Et
“

exppλpXtq ´ λ
2{2q

‰

ď 1). For t P N, let Xt “ p1{tq
řt
s“1Xs, while

for t P NY t0u and δ P r0, 1s we let

βpt, δq “ logp1{δq ` 3 log logp1{δq ` p3{2qplogplogpetqqq .

Then, for any δ P r0, 0.1s,1

P

˜

sup
tPN

Xt
a

2βpt, δq{t
ą 1

¸

ď δ .

For a fixed i P rLs, let Ntpiq “
řt
s“1 I tIs “ iu denote the number of observations taken

from Pip¨q up to time t. Define the confidence interval rLδt piq, U δt piqs for µi as follows: We
let

pµtpiq “
1

Ntpiq

t
ÿ

s“1

I tIs “ iuYs ,

the empirical mean of observations from Pip¨q to be the center of the interval (whenNtpiq “ 0,
we define pµtpiq “ 0) and

Lδt piq “ max

#

Lδt´1piq, pµtpiq ´

d

2βpNtpiq, δ{p2Lqq

Ntpiq

+

;

U δt piq “ min

#

U δt´1piq, pµtpiq `

d

2βpNtpiq, δ{p2Lqq

Ntpiq

+

,

where βpt, δq is as in Lemma 7 (note that when Ntpiq “ 0, the confidence interval is
p´8,`8q). Let T be the index of the round when the algorithm soon to be proposed
stops (or T “ 8 if it does not stop). Let ξ “ XtPrT s,iPrLstµi P rLδt piq, U δt piqsu be the “good”
event when the proposed respective intervals before the algorithm stops all contain µi for all
i P rLs. One can easily verify that, regardless the choice of the algorithm (i.e., the stopping
time T ),

P pξq ě 1´ δ , (3)

@t P N, Lδt piq ď pµtpiq ď U δt piq. (4)

For S Ă RL define fpSq “ tfpsq : s P Su. With this definition, let St “
ŚL

i“1rL
δ
t piq, U

δ
t piqs

then for any j P rKs, fjpµq P fjpStq holds for any t ě 1 on ξ. Thus, fjpStq is a valid,
p1 ´ δq-level confidence set for fjpµq. For general f , these sets may have a complicated
structure. Hence, we will adapt the following simplifying assumption:

Assumption 2 (Regular reward maps) The following hold:

(i) The mapping function f is monotonically increasing with respect to the partial order
of vectors: for any u, v P RL, u ď v implies fpuq ď fpvq;

1. Note that βpt, δq is also defined for t “ 0. The value used is arbitrary: It plays no role in the current
result. The reason we define β for t “ 0 is because it simplifies some subsequent definitions.
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(ii) For any u, v P RL, u ď v, j P rKs, the set Dpj, u, vq “ ti P rLs : rfjpuq, fjpvqs Ă
rui, vis u is non-empty.

We will also let Dtpjq “ Dpj, Lδt , U
δ
t q. Note that the assumption is met when f is the reward

map underlying minimax games (see the next section). The second assumption could be
replaced by the following weaker assumption without essentially changing our result: with
some a ą 0, b P R, for any j, u ď v, rfjpuq, fjpvqs Ă raui ` b, avi ` bs for some i P rLs. The
point of this assumption is that by guaranteeing that all intervals on the micro-observables
shrink, the interval on the arm-rewards will also shrink at the same rate. We expect that
other ways of weakening this assumption are also possible, perhaps at the price of slightly
changing the algorithm (e.g., by allowing it to use even more micro-observations per round).

Algorithm 1 LUCB-micro
for t “ 1, 2, . . . do
Choose Bt, Ct as in Equation (5)
Choose any pIt, Jtq from DtpBtqˆDtpCtq
Observe Yt,1 „ PItp¨q, Yt,2 „ PJtp¨q
Update rLδt pItq, U δt pItqs, rLδt pJtq, U δt pJtqs
if Stop() then
J Ð Bt, T Ð t
return pT, Jq

At time t, let

Bt “ argmax
jPrKs

fjpL
δ
t q ,

Ct “ argmax
jPrKs,j‰Bt

fjpU
δ
t q .

(5)

(B stands for candidate “best” arm, C
stands for best “contender” arm). Based
on the above assumption, we can now pro-
pose our algorithm, LUCB-micro (cf. Al-
gorithm 1). Following the idea of LUCB,
LUCB-micro chooses Bt and Ct in an effort to separate the highest lower bound from the
best competing upper bound.2 To decrease the width of the confidence intervals, both for
Bt and Ct, a micro-observable is chosen with the help of Assumption 2(ii). This can be seen
as a generalization of the choice made in Maximin-LUCB by Garivier et al. (2016a). Here,
we found that the specific way Maximin-LUCB’s choice is made considerably obscured the
idea behind this choice, which one can perhaps attribute to that the two-move setting makes
it possible to write the choice in a more-or-less direct fashion.

It remains to specify the ‘Stop()’ function used by our algorithm. For this, we propose
the standard choice (as in LUCB):

Stop() : fBtpL
δ
t q ě fCtpU

δ
t q. (6)

All statements in this section assume that the assumptions stated so far in
this section hold.

The following proposition is immediate from the definition of the algorithm.

Proposition 8 (Correctness) On the event ξ, LUCB-micro returns J correctly: J “
j˚pµq.

2. Using a lower bound departs from the choice of LUCB, which would use fjpµ̂tq to define Bt. The reason
of this departure is that we found it easier to work with a lower bound. We expect the two versions
(original, our choice) to behave similarly.

9
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Let T denote the round index when LUCB-micro stops3 and define c “ f1pµq`f2pµq
2 and

∆ “ f1pµq ´ f2pµq, where we assumed that f1pµq ą f2pµq ě maxjě2 fjpµq. The main result
of this section is a high-probability bound on T , which we present next. The following
lemma is the key to the proof:

Lemma 9 Let t ă T . Then, on ξ, there exists J P tBt, Ctu such that c P rfJpLδt q, fJpU δt qs
and fJpU δt q ´ fJpLδt q ě ∆{2.

The proof follows standard steps (e.g., Garivier et al. 2016a). In particular, the above
lemma implies that if T ą t then for J P tBt, Ctu, c P rfJpLδt q, fJpU δt qs and fJpU δt q´fJpLδt q ě
∆{2. This in turn implies that for i P tIt, Jtu, Ntpiq cannot be too large.

Theorem 10 (LUCB-micro upper bound) Let

Hpµq “
ÿ

iPrLs

"

1

pc´ µiq2

ľ 1

p∆{2q2

*

, t˚pµq “ mintt P N : 1` 8Hpµqβpt, δ{p2Lqq ď tu .

Then, for δ ď 0.1, on the event ξ, the stopping time T of LUCB-micro satisfies T ď t˚pµq.

Note that βpt, δq9 log log t and thus t˚pµq is well-defined. Furthermore, letting cδ “
logp2L{δq ` 3 log logp2L{δq, for δ sufficiently small and Hpµq sufficiently large, elementary
calculations give

t˚pµq ď 16Hpµqcδ ` 16Hpµq log logp8Hpµqcδq .

Remark 11 The constant Hpµq acts as a hardness measure of the problem. Theorem 10
can be applied to the best arm identification problem in the multi-armed bandits setting, as it
is a special case of our problem setup. Compared to state-of-the-art results available for this
setting, our bound is looser in several ways: We lose on the constant factor multiplying Hpµq
(Kalyanakrishnan et al., 2012; Jamieson and Nowak, 2014; Jamieson et al., 2014; Kaufmann
et al., 2016), we also lose an additive term of Hpµq log logpLq (Chen and Li, 2015). We also
lose logpLq terms on the suboptimal arms (Simchowitz et al., 2017). Comparing with the
only result available in the two-move minimax tree setting, due to Garivier et al. (2016a),
our bound is looser than their Theorem 1. This motivates the refinement of this result to
the minimax setting, which is done in the next section, and where we recover the mentioned
result of Garivier et al. (2016a). On the positive side, our result is more generally applicable
than any of the mentioned results. It remains an interesting sequence of challenges to prove
an upper bound for this or some other algorithm which would match the mentioned state-of-
the-art results, when the general setting is specialized.

6. Best move identification in minimax games

3. The number of observations, or number of rounds as per Fig. 1, taken by LUCB-micro until it stops is
2T .

10
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Algorithm 2 MinMax.
Inputs: h P H, u, v P RL.
if h P Hmax then
return h

else if pphq “ ´1 then
hÐ joinph,mph, uqq

else if pphq “ 1 then
hÐ joinph,mph, vqq

return MinMaxph, u, vq

In this section we will show upper
bounds on the number of observations
LUCB-micro takes in the case of mini-
max game problems. We still assume that
the micro-observations are subgaussian (As-
sumption 1) and the optimal arm is unique.
To apply our result, this leaves us with
showing that the payoff function in the min-
imax game satisfies the regularity assump-
tion (Assumption 2).

Fix a minimax game structure G “

pM,H, p, τq. We first show that Property (i)
of Assumption 2 holds. This follows easily from the following lemma, which can be proven
by induction based on “distance from the terminating states”.

Lemma 12 For any h P H and u, v P r0, 1sL such that u ď v, V ph, uq ď V ph, vq.

From this result we immediately get the following corollary:

Corollary 13 For u, v P r0, 1sL such that u ď v, fpuq ď fpvq, hence Assumption 2 (i)
holds.

For j P rKs, u, v P RL, u ď v, per Property (ii) of Assumption 2, we need to show that the
sets Dpj, u, vq are nonempty. For a history h “ pm1,m2, . . . ,m`q P H and 1 ď k ď `, we
denote its length-k prefix pm1, . . . ,mkq by hk. We give an algorithmic demonstration, which
also shows how to efficiently pick an element of these sets. The resulting algorithm is called
MinMax (cf. Algorithm 2). We define MinMax in a recursive fashion: For each nonmaximal
history the algorithm extends the history by adding the move which is optimal for u for
minimizing moves, while it extends it by adding the optimal move for v for maximizing
moves, and then it calls itself with the new history. The algorithm returns when its input
is a maximal history. To show that τpMinMaxph, u, vqq P Dpj, u, vq we have the following
result:

Lemma 14 Fix u, v P RL, u ď v, and j P rKs. Let h “ MinMaxppjqq and in particular let
h “ pm1 “ j,m2, . . . ,m`q. Then, for all 1 ď k ă `,

rV phk, uq, V phk, vqs Ă rV phk`1, uq, V phk`1, vqs ,

where hk is the length-k prefix of h.

We immediately get that i “ τphq is an element of Dpj, u, vq:

Corollary 15 For j, u, v, h as in the previous result, setting i “ τphq, rfjpvq, fjpvqs Ă
rui, viqs, hence i P Dpj, u, vq ‰ H.

With this, we have shown that all the assumptions needed by Theorem 10 are satisfied, and
in particular, we can use It “ MinMaxpBt, L

δ
t , U

δ
t q and Jt “ MinMaxpCt, L

δ
t , U

δ
t q. We call

the resulting algorithm LUCBMinMax. Then, Theorem 10 gives:

11



Structured Best Arm Identification with Fixed Confidence

Corollary 16 Let ξ, c,∆, Hpµq, t˚ be as in Section 5. If T is the stopping time of LUCB-
MinMax running on a minimax game search problem then T ď t˚.

When applied to a minimax game, as defined in Section 2, the upper bound of Corol-
lary 16 is loose and can be further improved as shown in the result below. To state this
result we need some further notation. Given a set of reals S, define the “span” of S as
spanpSq “ maxu,vPS u ´ v. For a path h P H that connects some move in rKs and
some move in rLs: h “ pm1, . . . ,m`q with some ` ě 0, m1 P rKs and m` P rLs. Fi-
nally, for i P rLs such that there is a unique path h P H satisfying τphq “ i, define
Vpi, µq “ tV phk, µq : h “ pm1, . . . ,m` “ iq, m1 P rKs, 1 ď k ă `u. Let Vpi, µq be an
empty set if there is multiple h P H such that τphq “ i.

Theorem 17 (LUCBMinMax on MinMax Trees) Let

Hpµq “
ÿ

iPrLs

mint
1

spanpVpi, µq Y tc, µiuq2
,

4

∆2
u,

t˚pµq “ mintt P N : 1` 8Hpµqβpt, δ{p2Lqq ď tu .

Then, on ξ, the stopping time T of LUCBMinMax satisfies T ď t˚pµq.

Remark 18 Note that this result recovers Theorem 1 of Garivier et al. (2016a). To see
this note that for every leaf pi, jq (as numbered in their paper), µi,1 P Vppi, jq, µq. Also note
that µi,1 ď µi,j, thus |c´µi,j | ď maxt|c´µi,1|, |µi,j´µi,1|u. Therefore, spanptµi,1, µi,j , cuq “
maxt|µi,1 ´ c|, |µi,j ´ µi,1|u.

7. Discussion and Conclusions

The gap between the lower bound and the upper bound There is a substantial gap
between the lower and the upper bound. Besides the gaps that already exist in the multi-
armed bandit setting and which have been mentioned before, there exists a substantial gap:
In particular, it is not hard to show that in regular minimax game trees with a fixed branching
factor of κ and depth d, the upper bound scales with Opκdq while the lower bound scales
with Opκd{2q. One potential is to improve the lower bound so as to consider adversarial
perturbations of the values assigned to the leaf nodes: That is, after the algorithm is fixed,
an adversary can perturb the values of µ to maximize the lower bound. Simchowitz et al.
(2017) introduce an interesting technique for proving lower bounds of this form and they
demonstrate nontrivial improvements in the multi-armed bandit setting.

Does the algorithm need to explore all leaves? The hardness measure Hpµq is rooted
in a uniform bound that suggests that all the leaves must potentially be pulled, which may
not hold for some particular structure. In particular, the algorithm may be able to benefit
from the specific structure of f , saving explorations on some leaves. We present one example
when f is a minimax game tree, as in Figure 2. Assume that µ1,i “ µ˚ ąą µ˚˚ “ µj,i for
1 ď i ď K and 2 ď j ď K. A reasonable algorithm would sample each arm once, then
discover that the others arms are much less than the sampled leaf under arm 1. Then the
algorithm will continue to explore the other leaves of arm 1, and decide arm 1 to be the
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µ1,1 . . . µ1,Kµ1,2

∧ ∧ ∧
µ2,1 µ2,2 µ2,K µK,1 µK,2 µK,K

f1 f2 fK

. . . . . .

. . .

Figure 2: A 2-layer minimax tree. The symbol ‘^’ in the node denotes that it is a “min”
node.

best arm. This behavior is also in agreement with our lower bound, where the resulting
constraints are:

N1,ipµ
˚ ´ µ˚˚q2 ě 2 logp1{4δq;

K
ÿ

i“1

Nj,ipµ
˚ ´ µ˚˚q2 ě 2 logp1{4δq @j ‰ 1,

which implies N1,i ě 1 and
řK
i“1Nj,i ě 1 for j ‰ 1 if µ˚ ´ µ˚˚ is large enough.

∨ ∧

µ1 µ2 µ3

f1 f2

Figure 3: An example that needs no explo-
ration. The symbol ‘^’ (resp., ‘_’)
in the node denotes that it is a
“min” (resp., “max”) node.

As we can see from this example, pK ´ 1q2

(out of K2) leaves need no exploration at
all. On the other hand, although we don’t
have a tight upper bound, our algorithm in
practice manages to explore the remaining
K´1 leaves under arm 1 for the next K´1
rounds, and then make the right decision.

In general, we would expect that a prob-
lem with a feed forward neural network
structure is easier than that of a tree struc-
ture, as the share of the leaves provides more
information and thus save the exploration.
This is illustrated on Fig. 3, where an op-
timal arm can be identified solely based on
the network structure, thus the algorithm
requires 0 samples for all possible µ. Note
that our lower bound does not fail, as we have Dµ “ H here.
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Appendix A. The Uniqueness Assumption

Recall that throughout the paper, by definition, we have the following assumption:

Assumption 3 The instance is such that j˚pµq “ argmaxj fjpµq is unique.

We state this assumption explicitly here, so that we can refer to it easily throughout the
appendix.

Appendix B. Proofs for Section 3

Here we prove Theorem 1, which is restated for the convenience of the reader:

Theorem 1 (Lower bound) Fix a risk parameter δ P p0, 1q. Assume that A is admissible
over the instance set Snorm

f at the risk level δ. Define

τ˚pµq “ min

#

L
ÿ

i“1

npiq : inf
∆PDµ

L
ÿ

i“1

npiq∆2
i ě 2 logp1{p4δqq, np1q, . . . , npLq ě 0

+

. (2)

Then, Eµ,ArT s ě τ˚pµq.
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We start with the two information theoretic results mentioned in the main body of the
text. To state these results, let DpP,Qq denote the Kullback–Leibler (KL) divergence of two
distributions P and Q. Recall that this is

ş

logpdPdQqdQ when P is absolutely continuous with
respect to Q and is infinite otherwise. For the next result, let Npiq “

řT
t“1 I tIt “ iu denote

the number of times an observation on the micro-observable with index i P rLs before time
T .

Lemma 19 (Divergence decomposition) For any µ, µ1 P RL it holds that

DpPµ,A,Pµ1,Aq “
1

2

L
ÿ

i“1

Eµ,ArNpiqs pµi ´ µ1iq2 . (7)

Note that 1
2pµi ´ µ1iq

2 on the right-hand side is the KL divergence between the normal
distributions with means µi and µ1i and both having a unit variance. The result, naturally,
holds for other distributions, as well. This is the result that relies strongly on that we forced
the same observations and same observation-choices for t ą T . In particular, this is what
makes the left-hand side of (7) finite! The proof is standard and hence is omitted.

Lemma 20 (High probability Pinsker, e.g., Lemma 2.6 from (Tsybakov, 2008))
Let P and Q be probability measures on the same measurable space pΩ,Fq and let E P F
be an arbitrary event. Then,

P pEq `QpEcq ě
1

2
expp´DpP,Qqq .

Proof [of Theorem 1] WLOG, we may assume that D˝µ is non-empty. Pick any ∆ P D˝µ
and let µ1 “ µ `∆. Let E “ tJ ‰ 1u. Since A is admissible, Pµ,ApEq ď δ. Further, since
∆ P D˝µ, 1 is not an optimal arm in µ1. Hence, again by the admissibility of A, Pµ1,ApE

cq ď δ.
Therefore, by Lemma 20,

2δ ě Pµ,ApEq ` Pµ1,ApE
cq ě

1

2
expp´DpPµ,A,Pµ1,Aqq .

Now, plugging in (7) of Lemma 19 and reordering we get

logp1{p4δqq ď DpPµ,A,Pµ1,Aq “
1

2

L
ÿ

i“1

Eµ,ArNpiqs pµi ´ µ1iq2 .

The result follows by continuity, after noting that T “
řL
i“1Npiq, that ∆ P D˝µ was arbi-

trary.

Appendix C. Proofs for Section 4

We start with the following lemma:

Lemma 21 Pick any µ P RL, j P rKs. Then,

@B P B`j , fjpµq ď maxtµi : i P Bu; @B P B´j , fjpµq ě mintµi : i P Bu.
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Proof Fix any µ P RL, j P rKs, B P B`j . Let u “ maxtµi : i P Bu. We want to show that
fjpµq ď u. Define µ1 ě µ such that µ1i “ µi if i R B, and µ1i “ u otherwise. As noted earlier
(cf. Corollary 13), fj is monotonically increasing. Hence, fjpµq ď fjpµ

1q ď u, where the last
inequality follows because B P B`j . The proof concerning B´j is analogous and is left to the
reader.

Lemma 5 Take any µ P RL, d P Dmin
µ and assume WLOG that f1pµq ą maxją1 fjpµq.

Then, there exist B P B`1 , j P t2, . . . ,Ku and B1 P B
´
j such that

(i) maxtpµ` dqi : i P Bu “ f1pµ` dq “ fjpµ` dq “ mintpµ` dqi : i P B1u;

(ii) di ď 0 if i P BzB1; di ě 0 if i P B1zB;

(iii) @i P B YB1, either pµ` dqi “ f1pµ` dq “ fjpµ` dq or di “ 0.

Proof Note that since d P Dµ, f1pµ` dq ď fjpµ` dq for some j ‰ 1. Fix such an index j.
To construct B and B1, we will pick rH1 P H`1 , rHj P H´j and set B “ τp rH1 XHmaxq and

B1 “ τp rHj XHmaxq. By the construction of H`1 , to pick rH1 it suffices to specify the unique
successor h1 in rH1 of any history h P rH1 with pphq “ ´1. For this, we let h1 P H be the
successor for which V ph1, µ`dq “ V ph, µ`dq. Similarly, by the construction of H´j , to pick
rHj it suffices to specify the unique successor h1 in rHj of any history h P rHj with pphq “ `1.
Again, we let h1 P H be the successor for which V ph1, µ ` dq “ V ph, µ ` dq. Note that by
Proposition 3, B P B`1 and B1 P B´j .

Let us now turn to the proof of (i). We start by showing that

f1pµ` dq “ maxtpµ` dqi : i P Bu . (8)

To show this, we first prove that

V ph, µ` dq ď f1pµ` dq @h P rH1 . (9)

The proof uses induction based on the length of histories in rH1.
There is only one history of length 1 (base case): h “ p1q. By the definition of f1,

V ph, µ`dq “ f1pµ`dq. Now, assume that the statement holds for all histories up to length
c ě 1. Take any h P rH1 of length c` 1. Let h1 P rH1 be the unique immediate predecessor of
h: h P Hsuccph

1q. This is well-defined thanks to the definition of H and the construction of
rH1. If pph1q “ ´1 then, by the definition of rH1, V ph, µ`dq “ V ph1, µ`dq. By the induction
hypothesis, V ph1, µ` dq ď f1pµ` dq, implying V ph, µ` dq ď f1pµ` dq. On the other hand,
if pph1q “ `1 then f1pµ`dq ě V ph1, µ`dq “ maxtV ph̃, µ`dq, h̃ P Hsuccph

1qu ě V ph, µ`dq,
finishing the induction. Hence, we have proven (9).

Now, we claim that there exists h˚ P rH1 X Hmax such that V ph˚, µ ` dq “ f1pµ ` dq.
This, together with (9) implies (8).

We construct h˚ in a sequential process. For this, we will choose a sequence of moves
m1, . . . ,mk such that pm1, . . . ,miq P HmaxX rH1 and V ppm1, . . . ,miq, µ` dq “ f1pµ` dq for
any 1 ď i ď k. In a nutshell, this sequence is an “optimal sequence of moves” that starts with
move 1, which is also known as a principal variation for the game under move 1. In details,
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the construction is as follows: To start, we choose m1 “ 1. Then V ppm1q, µ`dq “ f1pµ`dq,
by the definition of f1. Assume that for some i ě 1, we already chose pm1, . . . ,miq so that
V ppm1, . . . ,miq, µ` dq “ f1pµ` dq holds. If h

.
“ pm1, . . . ,miq P Hmax, we let k “ i and we

are done. Otherwise, let mi`1 “ mph, µ`dq (this is the “optimal move” at h under valuation
µ ` d). Thus, V pjoinph,mi`1q, µ ` dq “ V ph, µ ` dq “ f1pµq. Further, by the construction
of rH1, joinph,mi`1q P rH1. Since all histories in H are bounded in length, the process ends
after some k moves for some finite k, at which point we are done proving our statement.

To recap, so far we have proved (8). An entirely analogous proof (left to the reader)
shows that also fjpµ` dq “ mintpµ` dqi : i P B1u.

We now prove that f1pµ`dq “ fjpµ`dq, finishing the proof of (i). Assume to the contrary
that f1pµ`dq ă fjpµ`dq. Consider the map g : α ÞÑ f1pµ`αdq´fjpµ`αdq on the interval
α P r0, 1s. Note that g is continuous, gp0q ą 0 ą gp1q. Hence, by the intermediate value
theorem, there exists α P p0, 1q such that gpαq “ 0. Note that f1pµ ` αdq “ fjpµ ` αdq.
Hence, αd P Dµ. Since α|d| ă |d|, d P Dmin

µ cannot hold, a contradiction. Hence, f1pµ`dq “
fjpµ` dq.

Let us now turn to the proof of (ii). We prove that di ď 0 holds for all i P BzB1.
(The statement concerning elements of B1zB follows similarly, the details are left to the
reader.) For the proof, assume to the contrary of the desired statement that there exists
some i P BzB1 such that di ą 0. Let d1 P RL be such that d1k “ dk for j ‰ i, and d1i “ 0.
Thus, d1 ă d. By Corollary 13, f1pµ ` d1q ď f1pµ ` dq ď fjpµ ` dq “ mintpµ ` dqk : k P
B1u “ mintpµ` d1qk : k P B1u ď fjpµ` d

1q, where the last equality is due to i R B1 (hence,
pµ` dq|B1 “ pµ` d1q|B1) while the last inequality follows from Lemma 21. This implies that
d1 P Dµ. This together with |d1| ă |d| contradicts d P Dmin

µ . Thus, (ii) holds.
It remains to prove (iii). For this pick i P B. Since f1pµ ` dq “ fjpµ ` dq has already

been established, it suffices to show that either pµ ` dqi “ f1pµ ` dq or di “ 0. (The
case when i P B1 is symmetric and is left to the reader.) If i P B X B1 then by (i),
pµ ` dqi ď maxkPBpµ ` dqk “ f1pµ ` dq “ fjpµ ` dq “ minkPB1pµ ` dqk ď pµ ` dqi,
showing that pµ ` dqi “ f1pµ ` dq “ fjpµ ` dq. Hence, assume that i R B X B1. If
di “ 0 or pµ ` dqi “ f1pµ ` dq then we are done. Otherwise, by (ii), di ă 0 and by (i),
pµ ` dqi ă maxkPBpµ ` dqk “ f1pµ ` dq. Let ε “ f1pµ ` dq ´ pµ ` dqi. Note that ε ą 0.
Define d1 P RL so that d1k “ dk if k ‰ i and let d1i “ ´pdi ` εq´. That is, di is shifted
up towards zero by a positive amount so that it never crosses zero. Then, |d1| ă |d|. Note
also that µi ` d1i “ µi ` minpdi ` ε, 0q ď µi ` di ` ε “ f1pµ ` dq “ maxkPBpµ ` dqk.
Hence, maxkPBpµ`d

1qk “ maxkPBpµ`dqk “ f1pµ`dq and thus by Lemma 21, f1pµ`d
1q ď

maxkPBpµ`dq
1
k “ f1pµ`dq. By (i), f1pµ`dq “ fjpµ`dq “ minkPB1pµ`dqk. By the definition

of d1 (thanks to i R B1) and Lemma 21, minkPB1pµ ` dqk “ minkPB1pµ ` d1qk ď fjpµ ` d1q.
Putting together the inequalities, we get f1pµ` d

1q ď fjpµ` d
1q. Hence, d1 P Dµ. However,

this and |d1| ă |d| contradict d P Dmin
µ , finishing the proof of (iii).

Lemma 22 Given any µ P RL and any θ P R, define µ1 as follows:

µ1i “

#

θ, i P I;

µi, otherwise,

where I Ă ti : µi ě θu. Then, fjpµ1q ě mint θ, fjpµq u for any j P rKs.
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Proof Fix j P rKs. We prove V ph, µ1q ě mintθ, V ph, µqu for h P H by induction based on
how close a history h is to being a maximal history. Note that this suffices to prove the
statement thanks to fjpµ1q “ V ppjq, µ1q ě mintθ, V ppjq, µqu “ mintθ, fjpµqu.

Define function c so that cphq “ 0 if h P Hmax, and cphq “ 1`maxtcph1q : h1 P Hsuccphqu
otherwise.
Base case: If h P Hmax, then V ph, µ1q “ µ1i P tµi, θu ě mintθ, µiu “ mintθ, V ph, µqu for
some i P rLs.
Induction step: Assume that for any h P H such that cphq ď c, V ph, µ1q ě mintθ, V ph, µqu.
Given h such that cphq “ c` 1, if pphq “ 1,

V ph, µ1q “ maxtV ph1, µ1q : h1 P Hsuccphqu

ě maxtmintθ, V ph1, µqu : h1 P Hsuccphqu (by induction)
(a)
ě mintθ, V ph1˚, µqu

“ mintθ, V ph, µqu,

where in (a), h1˚ is the optimal h1 such that V ph1˚, µq “ V ph, µq. If pphq “ ´1,

V ph, µ1q “ mintV ph1, µ1q : h1 P Hsuccphqu

ě mintmintθ, V ph1, µqu : h1 P Hsuccphqu

(b)
ě mintθ, mintV ph1, µq : h1 P Hsuccphquu

ě mintθ, V ph, µqu.

Here (b) holds because for any h1 P Hsuccphq, V ph1, µq ě mintV ph1, µq : h1 P Hsuccphqu, thus
mintθ , V ph1, µqu ě mintθ, mintV ph1, µq : h1 P Hsuccphquu.

With this, we are ready to prove Proposition 4, which we repeat here for the reader’s
convenience:

Proposition 4 (Minimal significant departures for minimax games) Without loss
of generality, assume that f1pµq ą maxją1 fjpµq. Let

S “
!

∆ P RL : D1 ă j ď K , θ P rfjpµq, f1pµqs, B P B`1 , B
1 P B´j s.t.

∆i “ ´pµi ´ θq`, @i P BzB
1; ∆i “ pµi ´ θq´, @i P B

1zB;

∆i “ θ ´ µi, @i P B
1 XB; ∆i “ 0, @i P pB YB1qc

)

.

Then, Dmin
µ Ă S Ă Dµ.

Proof First we prove Dmin
µ Ă S. For this take any d P Dmin

µ . Since d P Dµ, by Lemma 5,
for some j ą 1, f1pµ` dq “ fjpµ` dq. WLOG assume j “ 2. We will prove that:

DB P B`1 , B
1 P B´2 s.t. @i P pB YB1qc, di “ 0. (10)

By Lemma 5, there exist B P B`1 and B1 P B´2 such that

maxtpµ` dqi : i P Bu “ f1pµ` dq “ f2pµ` dq “ mintpµ` dqi : i P B1u;
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Take these sets and pick some i P pB YB1qc. If di “ 0, we are done. Otherwise, let d1k “ dk
for all k ‰ i and let d1i “ 0. Then, |d1| ă |d|. By Lemma 21 and Lemma 5 (i),

f1pµ` d
1q ď maxtpµ` d1qj : j P Bu “ maxtpµ` dqj : j P Bu

“ f1pµ` dq

ď f2pµ` dq

“ mintpµ` dqj , j P B
1u “ mintpµ` d1qj : j P B1u

ď f2pµ` d
1q.

Thus d1 P Dµ, which contradicts that d P Dmin
µ , establishing (10). Also we have f1pµ` dq “

f2pµ` dq.
Let θ “ f1pµ` dq “ f2pµ` dq. For i P BzB1, by Lemma 5 (ii) and (iii), di “ ´pµi´ θq`.

Similarly, di “ pµi ´ θq´ for i P B1zB. Note that for i P B XB1,

pµ` dqi ď maxtpµ` dqi : i P B XB1u

ď maxtpµ` dqi : i P Bu

“ f1pµ` dq “ θ “ f2pµ` dq

“ mintpµ` dqi : i P B1u

ď mintpµ` dqi : i P B1 XBu

ď pµ` dqi .

Thus, pµ ` dqi “ θ, and therefore di “ θ ´ µi. It remains to prove θ P rf2pµq, f1pµqs. We
prove this by contradiction. Assume that θ ă f2pµq. Define d1 as follows:

d1i “

#

´pµi ´ f2pµqq` , if i P B ;

0 , otherwise.

We will prove the following claims:

(i) |d1| ă |d|;

(ii) f1pµ` d
1q ď f2pµq;

(iii) f2pµ` d
1q ě f2pµq.

Altogether these contradict d P Dmin
µ .

To show (i), note that for i P Bc or i P B such that µi ď f2pµq, |d1i| “ 0 ď |di|. Assume
i P B such that µi ą f2pµq ą θ. Then 0 ą d1i “ f2pµq ´ µi ą θ´ µi “ ´pµi ´ θq` “ di, thus
|d1i| ă |di|. Therefore |d

1| ă |d|, proving (i).
For (ii), note that for i P B, µi` d1i “ µi´ pµi´ f2pµqq` ď f2pµq, thus maxiPB µi` d

1
i ď

f2pµq. By Lemma 21, we also have f1pµ ` d1q ď maxPB µ`d
1
i, which together with the

previous inequality implies (ii).
Lastly, for proving (iii) define I “ ti P B : µi ě f2pµqu. Then µ1 :“ µ ` d1 can be

rewritten as

µ1i “

#

f2pµq , if i P I ;

µi , otherwise.
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By Lemma 22, f2pµ` d
1q ě f2pµq, showing (iii) .

The inequality θ ď f1pµq can also be proved using analogous ideas. Therefore, θ P
rf2pµq, f1pµqs. Combining all the previous statements leads to the conclusion Dmin

µ Ă S.
Let us now prove that S Ă Dµ. Take any element ∆ P S. Let j P rKs, B P B`1 and

B1 P B´j as in the definition of S. WLOG assume that j “ 2. Let µ1 “ µ `∆. It suffices
to show that f1pµ

1q ď θ and f2pµ
1q ě θ. We show f1pµ

1q ď θ, leaving the proof of the
other relationship to the reader (the proof is entirely analogous to the one presented). By
Lemma 21, it suffices to show that maxtµ1i : i P Bu ď θ. When i P BzB1, ∆i “ ´pµi ´ θq`.
Thus, µ1i “ µi ´ maxpµi ´ θ, 0q “ µi ` minpθ ´ µi, 0q ď µi ` θ ´ µi ď θ. If i P B X B1,
µ1i “ µi ` pθ ´ µiq “ θ, thus finishing the proof.

Appendix D. Proofs for Section 5

We start with the correctness result:

Proposition 8 (Correctness) On the event ξ, LUCB-micro returns J correctly: J “
j˚pµq.

Proof Assume to the contrary that J ‰ j˚pµq. WLOG let j˚pµq “ 1. By Assumption 2(i)
the definition of ξ and that of J , CT , the stopping rule, fJpµq ě fJpL

δ
T q ě fCT pU

δ
T q ě

f1pU
δ
T q ě f1pµq. This contradicts Assumption 3.

For proving the sample complexity bound, we consider the following result:

Lemma 9 Let t ă T . Then, on ξ, there exists J P tBt, Ctu such that c P rfJpLδt q, fJpU δt qs
and fJpU δt q ´ fJpLδt q ě ∆{2.

Proof We first prove that c P I .
“ YjPtBt,CturfjpL

δ
t q, fjpU

δ
t qs. For this, it suffices to show

that it does not hold that c P Ic where Ic “ RzI is the complementer of I. Now, c P Ic
holds iff at least one of the four conditions hold: (i) fBtpLδt q ą c and fCtpL

δ
t q ą c; (ii)

fBtpU
δ
t q ă c and fCtpU

δ
t q ă c; (iii) fBtpU δt q ă c and fCtpL

δ
t q ą c; (iv) fBtpLδt q ą c and

fCtpU
δ
t q ă c. Consider the following:

Case (i) implies that fBtpµq ě fBtpL
δ
t q ą c and similarly fCtpµq ą c. Thus there are two

arms with payoff greater than c, which contradicts Assumption 3.

Case (ii) implies that no arm has payoff above c, which contradicts the definition of c.

Case (iii) Then fCtpLδt q ą c ą fBtpU
δ
t q ě fBtpL

δ
t q, which contradicts the definition of Bt.

Case (iv) If this is true, then by definition the algorithm has stopped, hence t ă T .

Thus, we see that c P Ic cannot hold and hence c P rfJpLδt q, fJpU δt qs for either J “ Bt or
J “ Ct, proving the first part. Next, note that for any j P rLs, |c ´ fjpµq| ě

∆
2 . Hence,

also |c ´ fJpµq| ě
∆
2 . Also note that fJpµq P rfJpLδt q, fJpU δt qs. Thus, fJpU δt q ´ fJpL

δ
t q ě

|c´ fJpµq| ě
∆
2 .

We can now prove Theorem 10:
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Theorem 10 (LUCB-micro upper bound) Let

Hpµq “
ÿ

iPrLs

"

1

pc´ µiq2

ľ 1

p∆{2q2

*

, t˚pµq “ mintt P N : 1` 8Hpµqβpt, δ{p2Lqq ď tu .

Then, for δ ď 0.1, on the event ξ, the stopping time T of LUCB-micro satisfies T ď t˚pµq.

Proof Let τ be a fixed deterministic integer. Now, on ξ,

minpT, τq ď 1`
τ
ÿ

t“1

I tt ă T u

(a)
ď 1`

τ
ÿ

t“1

I
!

DJ P tBt, Ctu s.t. c P rfJpLδt q, fJpU
δ
t qs and fJpU

δ
t q ´ fJpL

δ
t q ě ∆{2

)

(b)
ď 1`

τ
ÿ

t“1

I
!

DI P tIt, Jtu s.t. c P rLδt pIq, U
δ
t pIqs and U

δ
t pIq ´ L

δ
t pIq ě ∆{2

)

ď 1`
τ
ÿ

t“1

ÿ

iPrLs

I ti P tIt, Jtuu I
!

c P rLδt piq, U
δ
t piqs and U

δ
t piq ´ L

δ
t piq ě ∆{2

)

(c)
ď 1`

τ
ÿ

t“1

ÿ

iPrLs

I ti P tIt, Jtuu I
"

Ntpiq ď 8βpNtpiq, δ{p2Lqq

ˆ

1

pc´ µiq2
^

1

p∆{2q2

˙*

(d)
ď 1`

ÿ

iPrLs

τ
ÿ

t“1

I ti P tIt, Jtuu I
"

Ntpiq ď 8βpτ, δ{p2Lqq

ˆ

1

pc´ µiq2
^

1

p∆{2q2

˙*

ď 1`
ÿ

iPrLs

8βpτ, δ{p2Lqq

ˆ

1

pc´ µiq2
^

1

p∆{2q2

˙

“ 1` 8Hpµqβpτ, δ{p2Lqq .

Here, (a) holds by the first part of Lemma 9, (b) holds by Assumption 2(ii), (c) holds by
the definition of β, (d) holds because βp¨, δ{p2Lqq is increasing. Picking any τ such that
8Hpµqβpτ, δ{p2Lqq ď τ ´ 1, we have minpT, τq ď τ , showing that T ď minpT, τq ď τ .

Appendix E. Proofs for Section 6

Lemma 12 For any h P H and u, v P r0, 1sL such that u ď v, V ph, uq ď V ph, vq.

Proof We prove the result by induction based on how close a history h is to being a maximal
history. As in an earlier proof, for h P H, we let cphq “ 0 if h P Hmax and otherwise we
let cphq “ 1 ` maxtcph1q : h1 P Hsuccphqu, where recall that Hsuccphq denotes the set of
immediate successors of h P H in H.

Base case: If cphq “ 0 (i.e., h P Hmax), then V ph, uq “ uτphq ď vτphq “ V ph, vq.
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Induction step: Assuming that for all the h1 P H with cphq ď c with some c ě 0 it holds
that V ph1, uq ď V ph1, vq. Take h P H such that cphq “ c` 1. WLOG assume that pphq “ 1.
We have:

V ph, uq “ V pjoinph,mph, uqq, uq

ď V pjoinph,mph, uqq, vq ď V pjoinph,mph, vqq, vq

“ V ph, vq ,

where the first and the last equalities are by definition, the first inequality is by the induction
hypothesis, and the second inequality is due to the definition of mph, vq.

Lemma 14 Fix u, v P RL, u ď v, and j P rKs. Let h “ MinMaxppjqq and in particular
let h “ pm1 “ j,m2, . . . ,m`q. Then, for all 1 ď k ă `,

rV phk, uq, V phk, vqs Ă rV phk`1, uq, V phk`1, vqs ,

where hk is the length-k prefix of h.

Proof Fix 0 ď k ă ` and u ď v. WLOG assume that ppkq “ 1. By the definition of V ph, µq
and mph, µq,

V ph, vq “ maxtV ph1, vq : h1 P Hsuccphqu “ V pjoinph,mph, vqq, vq .

Hence, by the definition of MinMax and the above identity, V phk, vq “ V phk`1, vq. Further,
V phk, uq “ maxtV ph1, uq : h1 P Hsuccphqu ě V phk`1, uq. Thus,

V phk, vq ď V phk`1, vq and V phk, uq ě V phk`1, uq ,

finishing the proof.

Theorem 17 (LUCBMinMax on MinMax Trees) Let

Hpµq “
ÿ

iPrLs

mint
1

spanpVpi, µq Y tc, µiuq2
,

4

∆2
u,

t˚pµq “ mintt P N : 1` 8Hpµqβpt, δ{p2Lqq ď tu .

Then, on ξ, the stopping time T of LUCBMinMax satisfies T ď t˚pµq.

Proof Recall that It “ τpMinMaxpBt, L
δ
t , U

δ
t qq and Jt “ τpMinMaxpCt, L

δ
t , U

δ
t qqu. Assume

that ξ holds. We prove that VpIt, µq Ă rLδt pItq, U δt pItqs and VpJt, µq Ă rLδt pJtq, U δt pJtqs hold.
The rest of the proof is similar to that of Theorem 10.

Consider It. The proof for Jt works the same way and is hence omitted. If there is
multiple path h P H such that τphq “ It, then VpIt, µq “ H Ă rLδt pItq, U

δ
t pItqs. Otherwise,

let h P H be the unique path. Since It is pulled, h “ MinMaxpmq for some m P M . Note
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that Lemma 14 implies that rV phk, Lδt q, V phk, U δt qs Ă rV phk`1, L
δ
t q, V phk`1, U

δ
t qs. Thus it

is sufficient to prove that for 1 ď k ă `, V phk, µq P rV phk, Lδt q, V phk, U δt qs. However, this
follows by Lemma 12 and because on the event ξ, Lδt ď µ ď U δt holds.

Now let Spiq “ Vpi, µqYtc, µiu. Fix t ă T . By the above result and by Lemma 9, for one
of J “ Bt or J “ Ct, if I “ MinMaxpJ, Lδt , U

δ
t q then SpIq Ă rLδt pIq, U δt pIqs, which implies

that U δt pIq ´ Lδt pIq ě spanpSpIqq. Therefore,

minpT, τq ď 1`
τ
ÿ

t“1

I tt ă T u

ď 1`
τ
ÿ

t“1

I
!

DI P tIt, Jtu s.t. U δt pIq ´ L
δ
t pIq ě spanpSpIqq

)

ď 1`
τ
ÿ

t“1

ÿ

iPrLs

I ti P tIt, Jtuu I
"

Ntpiq ď
8βpNtpiq, δ{p2Lqq

spanpSpiqq2

*

ď 1`
ÿ

iPrLs

τ
ÿ

t“1

I ti P tIt, Jtuu I
"

Ntpiq ď
8βpτ, δ{p2Lqq

spanpSpiqq2

*

ď 1`
ÿ

iPrLs

8βpτ, δ{p2Lqq

spanpSpiqq2
“ 1` 8Hpµqβpτ, δ{p2Lqq
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