LEARNING THEORY
OF OPTIMAL DECISION MAKING
PART III: ONLINE LEARNING IN ADVERSARIAL ENVIRONMENTS

Csaba Szepesvári

1Department of Computing Science
University of Alberta

Machine Learning Summer School, Ile de Re, France, 2008
with thanks to: RLAI group, SZTAKI group
Jean-Yves Audibert, Remi Munos
1 High level overview of the talks

2 Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 Discrete prediction problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 Tracking the best expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 Non-stochastic bandit problems
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 Conclusions
1. **High Level Overview of the Talks**

2. **Motivation**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3. **Discrete Prediction Problems**
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4. **Tracking the Best Expert**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5. **Non-Stochastic Bandit Problems**
 - Exp3.P: An algorithm for non-stochastic bandit problems

6. **Conclusions**
OUTLINE

1 **HIGH LEVEL OVERVIEW OF THE TALKS**

2 **MOTIVATION**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 **DISCRETE PREDICTION PROBLEMS**
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 **TRACKING THE BEST EXPERT**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 **NON-STOCHASTIC BANDIT PROBLEMS**
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 **CONCLUSIONS**
Outline

1. **High level overview of the talks**
2. **Motivation**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes
3. **Discrete prediction problems**
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader
4. **Tracking the best expert**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts
5. **Non-stochastic bandit problems**
 - Exp3.P: An algorithm for non-stochastic bandit problems
6. **Conclusions**
1 High Level Overview of the Talks

2 Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 Discrete Prediction Problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 Tracking the Best Expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 Non-stochastic Bandit Problems
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 Conclusions
1. **High level overview of the talks**

2. **Motivation**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3. **Discrete prediction problems**
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4. **Tracking the best expert**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5. **Non-stochastic bandit problems**
 - Exp3.P: An algorithm for non-stochastic bandit problems

6. **Conclusions**
HIGH LEVEL OVERVIEW OF THE TALKS

- **Day 1**: Online learning in stochastic environments
- **Day 2**: Batch learning in Markovian Decision Processes
- **Day 3**: Online learning in adversarial environments
OUTLINE

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
 • What is it?
 • Why should we care?
 • Halving: Find the perfect expert! (0/1 loss)
 • No perfect expert? (0/1 loss)
 • Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
 • Randomized forecasters
 • Weighted Average Forecaster
 • Follow the perturbed leader

4 TRACKING THE BEST EXPERT
 • Fixed share forecaster
 • Variable-share forecaster
 • Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
 • Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
What is it?

Concepts: Agent, Environment, sensations, actions, rewards

Time: $t = 1, 2, \ldots$

Protocol of Learning

1. Agent senses x_t coming from Environment
2. Agent sends prediction \hat{p}_t to Environment
3. Environment generates outcome y_t
4. Agent receives loss $\ell_t = \ell(\hat{p}_t, y_t)$ from Environment
5. $t := t + 1$, go to Step 1

Goal: $\sum_{t=1}^{T} \ell_t \rightarrow \min$
WHAT IS IT?

Concepts: Agent, Environment, sensations, actions, rewards

Time: $t = 1, 2, \ldots$

PROTOCOL OF LEARNING

1. Agent senses x_t coming from Environment
2. Agent sends prediction \hat{p}_t to Environment
3. Environment generates outcome y_t
4. Agent receives loss $\ell_t = \ell(\hat{p}_t, y_t)$ from Environment
5. $t := t + 1$, go to Step 1

Goal: $\sum_{t=1}^{T} \ell_t \rightarrow \min$
What is it?

Concepts: Agent, Environment, sensations, actions, rewards

Time: \(t = 1, 2, \ldots \)

Protocol of learning

1. Agent senses \(x_t \) coming from Environment
2. Agent sends prediction \(\hat{p}_t \) to Environment
3. Environment generates outcome \(y_t \)
4. Agent receives loss \(\ell_t = \ell(\hat{p}_t, y_t) \) from Environment
5. \(t := t + 1 \), go to Step 1

Goal: \(\sum_{t=1}^{T} \ell_t \to \min \)
What is it?

Concepts: Agent, Environment, sensations, actions, rewards

Time: \(t = 1, 2, \ldots \)

Protocol of learning

1. Agent senses \(x_t \) coming from Environment
2. Agent sends prediction \(\hat{p}_t \) to Environment
3. Environment generates outcome \(y_t \)
4. Agent receives loss \(\ell_t = \ell(\hat{p}_t, y_t) \) from Environment
5. \(t := t + 1 \), go to Step 1

Goal: \(\sum_{t=1}^{T} \ell_t \rightarrow \min \)
WHAT IS IT?

Concepts: Agent, Environment, sensations, actions, rewards

Time: \(t = 1, 2, \ldots \)

Protocol of learning

1. Agent senses \(x_t \) coming from Environment
2. Agent sends prediction \(\hat{p}_t \) to Environment
3. Environment generates outcome \(y_t \)
4. Agent receives loss \(\ell_t = \ell(\hat{p}_t, y_t) \) from Environment
5. \(t := t + 1 \), go to Step 1

Goal: \(\sum_{t=1}^{T} \ell_t \rightarrow \min \)
What is it?

Concepts: Agent, Environment, sensations, actions, rewards
Time: \(t = 1, 2, \ldots \)

Protocol of learning

1. Agent senses \(x_t \) coming from Environment
2. Agent sends prediction \(\hat{p}_t \) to Environment
3. Environment generates outcome \(y_t \)
4. Agent receives loss \(\ell_t = \ell(\hat{p}_t, y_t) \) from Environment
5. \(t := t + 1 \), go to Step 1

Goal: \[\sum_{t=1}^{T} \ell_t \rightarrow \min \]
What is it?

Concepts: Agent, Environment, sensations, actions, rewards
Time: $t = 1, 2, \ldots$

Protocol of learning

1. Agent senses x_t coming from Environment
2. Agent sends prediction \hat{p}_t to Environment
3. Environment generates outcome y_t
4. Agent receives loss $\ell_t = \ell(\hat{p}_t, y_t)$ from Environment
5. $t := t + 1$, go to Step 1

Goal: $\sum_{t=1}^{T} \ell_t \rightarrow \min$
What is it?

Concepts: Agent, Environment, sensations, actions, rewards

Time: \(t = 1, 2, \ldots \)

Protocol of learning

1. Agent senses \(x_t \) coming from Environment
2. Agent sends prediction \(\hat{p}_t \) to Environment
3. Environment generates outcome \(y_t \)
4. Agent receives loss \(\ell_t = \ell(\hat{p}_t, y_t) \) from Environment
5. \(t := t + 1 \), go to Step 1

Goal: \(\sum_{t=1}^{T} \ell_t \rightarrow \min \)
1 High level overview of the talks

2 Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 Discrete prediction problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 Tracking the best expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 Non-stochastic bandit problems
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 Conclusions
Why should we care?

- No assumptions about the Environment!
- We compare the return with that of algorithms from a set: experts
 - “Competitive analysis”
- Results hold for any sequence of observations and returns
- Broader applicability
- Lesson:
 - stochastic, stationary assumptions are not essential for learning
 - algorithms are obtained by robustifying familiar algorithms (plus, some new ideas)
Prediction with expert advice

Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
PREDICTION WITH EXPERT ADVICE

Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Prediction with expert advice

Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Protocol

Initialization: Algorithm gets N and loss function $\ell(\cdot, \cdot)$

$t := 1$

Main loop:

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes prediction \hat{p}_t
3. Environment computes outcome y_t, which is revealed to Learner
4. Learner learns
5. $t := t + 1$; go to Step 1
Nota

- (Total) loss of expert *i*:
 \[
 L_{i,n} = \sum_{t=1}^{n} \ell(f_{it}, y_t)
 \]

- (Total) loss of best expert:
 \[
 L^*_n = \min_i L_{in}
 \]

- (Total) loss of algorithm:
 \[
 \hat{L}_n = \sum_{t=1}^{n} \ell(\hat{p}_t, y_t)
 \]

- (Total) regret:
 \[
 R_n = \hat{L}_n - L^*_n
 \]

Goal: Design algorithm that keeps the regret small.
NOTATION

- (Total) loss of expert i:
 \[L_{i,n} = \sum_{t=1}^{n} \ell(f_{it}, y_t) \]

- (Total) loss of best expert:
 \[L^* = \min_{i} L_{in} \]

- (Total) loss of algorithm:
 \[\hat{L}_n = \sum_{t=1}^{n} \ell(\hat{p}_t, y_t) \]

- (Total) regret:
 \[R_n = \hat{L}_n - L^*_n \]

Goal: Design algorithm that keeps the regret small
NOTATION

- (Total) loss of expert i:
 \[L_{i,n} = \sum_{t=1}^{n} \ell(f_{it}, y_t) \]

- (Total) loss of best expert:
 \[L^*_n = \min_i L_{in} \]

- (Total) loss of algorithm:
 \[\hat{L}_n = \sum_{t=1}^{n} \ell(\hat{p}_t, y_t) \]

- (Total) regret:
 \[R_n = \hat{L}_n - L^*_n \]

Goal: Design algorithm that keeps the regret small
(Total) loss of expert i:

$$L_{i,n} = \sum_{t=1}^{n} \ell(f_{it}, y_t)$$

(Total) loss of best expert:

$$L^*_n = \min_i L_{in}$$

(Total) loss of algorithm:

$$\hat{L}_n = \sum_{t=1}^{n} \ell(\hat{p}_t, y_t)$$

(Total) regret:

$$R_n = \hat{L}_n - L^*_n$$

Goal: Design algorithm that keeps the regret small
(Total) loss of expert i:

$$L_{i,n} = \sum_{t=1}^{n} \ell(f_{it}, y_t)$$

(Total) loss of best expert:

$$L^*_{n} = \min_i L_{in}$$

(Total) loss of algorithm:

$$\hat{L}_{n} = \sum_{t=1}^{n} \ell(\hat{p}_t, y_t)$$

(Total) regret:

$$R_{n} = \hat{L}_{n} - L^*_n$$

Goal: Design algorithm that keeps the regret small
OUTLINE

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 TRACKING THE BEST EXPERT
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
When there is a infallible expert..

- **Binary world:**
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- **Loss:**
 \[\ell(p, y) = \mathbb{I}_{\{p \neq y\}} \]

- **N experts**
- **Expert predictions:** \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

Assumption
There is an expert that never makes a mistake.

Problem
How to keep the regret small?
WHEN THERE IS A INFALLIBLE EXPERT..

- **Binary world:**
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- **Loss:**
 \[\ell(p, y) = \mathbb{I}_{p \neq y} \]

- **N experts**
- **Expert predictions:** \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

ASSUMPTION

There is an expert that never makes a mistake.

PROBLEM

How to keep the regret small?
When there is a infallible expert..

- Binary world:
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- Loss:
 \[\ell(p, y) = \mathbb{I}_{p \neq y} \]

- \(N \) experts
 - Expert predictions: \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

Assumption

There is an expert that never makes a mistake.

Problem

How to keep the regret small?
When there is a infallible expert...

- **Binary world:**
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- **Loss:**
 \[\ell(p, y) = \mathbb{I}_{p \neq y} \]

- **N experts**
- **Expert predictions:** \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

Assumption
There is an expert that never makes a mistake.

Problem
How to keep the regret small?
When there is a infallible expert.

- **Binary world:**
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- **Loss:**
 \[\ell(p, y) = \mathbb{I}_{\{p \neq y\}} \]

- **N experts**

- **Expert predictions:** \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

Assumption

There is an expert that never makes a mistake.

Problem

How to keep the regret small?
When there is a infallible expert..

- Binary world:
 \[\mathcal{Y} = \mathcal{D} = \{0, 1\} \]

- Loss:
 \[\ell(p, y) = \mathbb{I}_{p \neq y} \]

- \(N \) experts

- Expert predictions: \(f_{i1}, f_{i2}, \ldots \in \{0, 1\} \)

Assumption

There is an expert that never makes a mistake.

Problem

How to keep the regret small?
Halving Algorithm

- Keep regret small \Rightarrow Learn from mistakes
- Idea:
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts

\Rightarrow “Halving Algorithm”
[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite regret for the Halving algorithm)

No matter what y_1, y_2, \ldots is,

$$R_n = \hat{L}_n - L^*_n \leq \lfloor \log_2 N \rfloor.$$
Halving Algorithm

- Keep regret small ⇒ Learn from mistakes
- **Idea:**
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts

⇒ “Halving Algorithm”
[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite regret for the Halving algorithm)

No matter what y_1, y_2, \ldots is,

$$R_n = \hat{L}_n - L^*_n \leq \lfloor \log_2 N \rfloor.$$
Halving Algorithm

- Keep regret small ⇒ Learn from mistakes
- **Idea:**
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts
⇒ “Halving Algorithm”
[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite Regret for the Halving Algorithm)

No matter what \(y_1, y_2, \ldots \) is,

\[
R_n = \hat{L}_n - L^*_n \leq \lfloor \log_2 N \rfloor.
\]
Halving Algorithm

- Keep regret small \Rightarrow Learn from mistakes
- **Idea:**
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts

\Rightarrow “Halving Algorithm”

[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite regret for the Halving algorithm)

No matter what y_1, y_2, \ldots is,

$$R_n = \hat{L}_n - L^*_n \leq \lfloor \log_2 N \rfloor.$$
Halving Algorithm

- Keep regret small \Rightarrow Learn from mistakes
- Idea:
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts

\Rightarrow “Halving Algorithm”

[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite regret for the Halving algorithm)

No matter what y_1, y_2, \ldots is,

$$R_n = \hat{L}_n - L^*_n \leq \lfloor \log_2 N \rfloor.$$
Halving Algorithm

- Keep regret small ⇒ Learn from mistakes
- Idea:
 - Eliminate immediately experts that make a mistake
 - Take majority vote of remaining experts
⇒ “Halving Algorithm”
[Barzdin and Freivalds, 1972, Angluin, 1988]

Theorem (Finite regret for the Halving algorithm)

No matter what y_1, y_2, \ldots is,

$$R_n = \hat{L}_n - L_n^* \leq \lceil \log_2 N \rceil.$$
Analysis

- Weight $w_{it} \in \{0, 1\}$: Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1, i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$. Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lfloor \log_2 N \rfloor$.
Analysis

- Weight $w_{it} \in \{0, 1\}$:
 - Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1, i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$. Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lfloor \log_2 N \rfloor$.
Analysis

- Weight $w_{it} \in \{0, 1\}$:
 Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1, i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$.
Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lfloor \log_2 N \rfloor$.
Analysis

- Weight $w_{it} \in \{0, 1\}$:
 Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1$, $i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$. Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lfloor \log_2 N \rfloor$.
Analysis

- Weight $w_{it} \in \{0, 1\}$: Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1, i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{\rho}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$. Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lfloor \log_2 N \rfloor$.
Analysis

- Weight $w_{it} \in \{0, 1\}$:
 Is expert i alive at time t? (after y_t is received)
- Let $w_{i0} = 1, i = 1, 2, \ldots, N$.
- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t
- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$. Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lceil \log_2 N \rceil$.
Analysis

- Weight $w_{it} \in \{0, 1\}$:
 Is expert i alive at time t? (after y_t is received)

- Let $w_{i0} = 1$, $i = 1, 2, \ldots, N$.

- $W_t = \sum_{i=1}^{N} w_{it}$: Number of alive experts at time t

- \hat{L}_t: number of mistakes up to time t (including time t)

Claim

If Halving makes a mistake ($\ell(\hat{p}_t, y_t) = 1$) then $W_t \leq W_{t-1}/2$.
Further W_t cannot grow.

Corollary

$W_t \leq W_0/2^{\hat{L}_t} = N/2^{\hat{L}_t}$.

Finish: Now, $1 \leq W_t$, hence $1 \leq N/2^{\hat{L}_t}$, i.e., $\hat{L}_t \leq \lceil \log_2 N \rceil$.
Outline

1 High level overview of the talks

2 Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 Discrete prediction problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 Tracking the best expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 Non-stochastic bandit problems
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 Conclusions
Problem with elimination: fails if there is no perfect expert!

Improved algorithm: “Weighted Majority”

[Littlestone and Warmuth, 1994]
- Keep weights positive!
- Have weights of mistaken experts decay:
 \[
 w_i = \beta w_{i-1}, \quad \text{if } f_i \neq y_i \quad (0 < \beta < 1)\]
- Keep majority vote!

Theorem (Loss bound for WM)

\[
\hat{L}_n \leq \left[\log_2 \left(\frac{\frac{1}{\beta} L_n^* + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right) \right].
\]
Problem with elimination: fails if there is no perfect expert!

Improved algorithm: “Weighted Majority”
[Littlestone and Warmuth, 1994]
- Keep weights positive!
- Have weights of mistaken experts decay:

\[w_{it} = \beta w_{i,t-1}, \text{if } f_t \neq y_t (0 < \beta < 1) \]

- Keep majority vote!

Theorem (Loss bound for WM)

\[\hat{L}_n \leq \left\lfloor \frac{\log_2 \left(\frac{1}{\beta} \right) L^*_n + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right\rfloor. \]
Problem with elimination: fails if there is no perfect expert!

Improved algorithm: “Weighted Majority”
[Littlestone and Warmuth, 1994]

- Keep weights positive!
- Have weights of mistaken experts decay:
 \[w_{it} = \beta w_{i,t-1}, \text{if } f_{it} \neq y_t \quad (0 < \beta < 1) \]

- Keep majority vote!

Theorem (Loss bound for WM)

\[
\hat{L}_n \leq \left\lfloor \frac{\log_2 \left(\frac{1}{\beta} \right) L^*_n + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right\rfloor.
\]
NO PERFECT EXPERT: “WEIGHTED MAJORITY”

- Problem with elimination: fails if there is no perfect expert!
- Improved algorithm: “Weighted Majority” [Littlestone and Warmuth, 1994]
 - Keep weights positive!
 - Have weights of mistaken experts decay:
 \[w_{it} = \beta w_{i,t-1}, \text{ if } f_{it} \neq y_t \ (0 < \beta < 1) \]
- Keep majority vote!

THEOREM (LOSS BOUND FOR WM)

\[
\hat{L}_n \leq \left\lfloor \log_2\left(\frac{1}{\beta}\right) L_n^* + \log_2 N \right \rfloor \cdot \frac{\log_2 \frac{\beta}{2}}{\log_2 \frac{1}{1+\beta}}.
\]
Problem with elimination: fails if there is no perfect expert!

Improved algorithm: “Weighted Majority”

[Littlestone and Warmuth, 1994]

- Keep weights positive!
- Have weights of mistaken experts decay:
 \[w_{it} = \beta w_{i,t-1}, \text{ if } f_{it} \neq y_t \quad (0 < \beta < 1) \]

- Keep majority vote!

Theorem (Loss bound for WM)

\[
\hat{L}_n \leq \left[\frac{\log_2 \left(\frac{1}{\beta} \right) L^*_n + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right].
\]
No Perfect Expert: “Weighted Majority”

- Problem with elimination: fails if there is no perfect expert!
- Improved algorithm: “Weighted Majority”
 [Littlestone and Warmuth, 1994]
 - Keep weights positive!
 - Have weights of mistaken experts decay:
 \[w_{it} = \beta w_{i,t-1}, \text{ if } f_{it} \neq y_t (0 < \beta < 1) \]
 - Keep majority vote!

Theorem (Loss bound for WM)

\[
\hat{L}_n \leq \left\lfloor \frac{\log_2(\frac{1}{\beta})L^*_n + \log_2 N}{\log_2(\frac{2}{1+\beta})} \right\rfloor.
\]
Outline

1. High level overview of the talks
2. Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes
3. Discrete prediction problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader
4. Tracking the best expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts
5. Non-stochastic bandit problems
 - Exp3.P: An algorithm for non-stochastic bandit problems
6. Conclusions
What if $\mathcal{Y} = \mathcal{D} = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?

- Bounded loss: $\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1]$
- Example: $\mathcal{D} = \mathcal{Y} = [0, 1], \ell(p, y) = \frac{1}{2}|p - y|$.

Can we generalize the previous algorithm?

- Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}$$

How to set the weights?

$$w_{i,t} = w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}.$$
What if $Y = D = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?

Bounded loss: $\ell : D \times Y \rightarrow [0, 1]$

Example: $D = Y = [0, 1]$, $\ell(p, y) = \frac{1}{2} |p - y|$.

Can we generalize the previous algorithm?

Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i, t-1} f_{i t}}{\sum_{i=1}^{N} w_{i t}}$$

How to set the weights?

$$w_{i, t} = w_{i, t-1} e^{-\eta \ell(f_{i t}, y_t)}.$$
Predicting Continuous Outcomes

- What if $\mathcal{Y} = \mathcal{D} = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?
- Bounded loss: $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$
- Example: $\mathcal{D} = \mathcal{Y} = [0, 1]$, $\ell(p, y) = \frac{1}{2}|p - y|$.
- Can we generalize the previous algorithm?
- Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i, t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}$$

- How to set the weights?

$$w_{i, t} = w_{i, t-1} e^{-\eta \ell(f_{it}, y_t)}.$$
Predicting Continuous Outcomes

- What if \(\mathcal{Y} = \mathcal{D} = [0, 1] \) or \(\mathbb{R}^d \) (or a convex subset of some vector space)?
- Bounded loss: \(\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1] \)
- Example: \(\mathcal{D} = \mathcal{Y} = [0, 1] \), \(\ell(p, y) = \frac{1}{2} |p - y| \).
- Can we generalize the previous algorithm?
 - Take the weighted combination of the experts’ predictions!
 \[
 \hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}
 \]

 How to set the weights?
 \[
 w_{i,t} = w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}.
 \]
Predicting Continuous Outcomes

- What if $\mathcal{Y} = \mathcal{D} = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?
- Bounded loss: $\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1]$
- Example: $\mathcal{D} = \mathcal{Y} = [0, 1]$, $\ell(p, y) = \frac{1}{2} |p - y|$.
- Can we generalize the previous algorithm?
- Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}$$

- How to set the weights?

$$w_{i,t} = w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}.$$
What if $\mathcal{Y} = \mathcal{D} = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?

Bounded loss: $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$

Example: $\mathcal{D} = \mathcal{Y} = [0, 1]$, $\ell(p, y) = \frac{1}{2} |p - y|$.

Can we generalize the previous algorithm?

Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}$$

How to set the weights?

$$w_{i,t} = w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}.$$
Predicting Continuous Outcomes

- What if $\mathcal{Y} = \mathcal{D} = [0, 1]$ or \mathbb{R}^d (or a convex subset of some vector space)?
- Bounded loss: $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$
- Example: $\mathcal{D} = \mathcal{Y} = [0, 1]$, $\ell(p, y) = \frac{1}{2}|p - y|$.
- Can we generalize the previous algorithm?
- Take the weighted combination of the experts’ predictions!

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{it}}{\sum_{i=1}^{N} w_{it}}$$

- How to set the weights?

$$w_{i,t} = w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}.$$
EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

 $v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$

 $V_t := \sum_i v_{it}$

 $w_{it} := v_{it} / V_t$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (\(\eta\))

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N\)

At time \(t\) do:

1. Receive Expert predictions \((f_{1t}, \ldots, f_{Nt})\)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}\)
3. Send \(\hat{p}_t\) to the Environment
4. Receive \(y_t\) from the Environment
5. Update weights:
 \[
 v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}
 \]
 \[
 V_t := \sum_i v_{it}
 \]
 \[
 w_{it} := \frac{v_{it}}{V_t}
 \]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (\(\eta\))

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N\)

At time \(t\) do:

1. Receive Expert predictions \((f_{1t}, \ldots, f_{Nt})\)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}\)
3. Send \(\hat{p}_t\) to the Environment
4. Receive \(y_t\) from the Environment
5. Update weights:
 \[v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \]
 \[V_t := \sum_i v_{it} \]
 \[w_{it} := \frac{v_{it}}{V_t} \]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average Forecaster

EWA Algorithm\((\eta)\)

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N\)

At time \(t\) do:

1. **Receive Expert predictions** \((f_{1t}, \ldots, f_{Nt})\)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}\)
3. **Send** \(\hat{p}_t\) **to the Environment**
4. **Receive** \(y_t\) **from the Environment**
5. **Update weights:**
 \[
 v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \\
 V_t := \sum_i v_{it} \\
 w_{it} := \frac{v_{it}}{V_t}
 \]

Remark
- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average Forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})

2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$

3. Send \hat{p}_t to the Environment

4. Receive y_t from the Environment

5. Update weights:

$$v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$$

$$V_t := \sum_i v_{it}$$

$$w_{it} := v_{it} / V_t$$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

 $v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$

 $V_t := \sum_i v_{it}$

 $w_{it} := \frac{v_{it}}{V_t}$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N, \ i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

 $v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$

 $V_t := \sum_i v_{it}$

 $w_{it} := v_{it} / V_t$

Remark

- Normalization is good for numerical stability.
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

$$v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$$

$$V_t := \sum_i v_{it}$$

$$w_{it} := v_{it} / V_t$$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
EXponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{\rho}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send $\hat{\rho}_t$ to the Environment
4. Receive y_t from the Environment
5. Update weights:

 $v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$

 $V_t := \sum_i v_{it}$

 $w_{it} := v_{it} / V_t$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

\[
\begin{align*}
 v_{it} &:= w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \\
 V_t &:= \sum_i v_{it} \\
 w_{it} &:= v_{it} / V_t
\end{align*}
\]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average Forecaster

EWA Algorithm\((\eta)\)

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N\)

At time \(t\) do:

1. Receive Expert predictions \((f_{1t}, \ldots, f_{Nt})\)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}\)
3. Send \(\hat{p}_t\) to the Environment
4. Receive \(y_t\) from the Environment
5. Update weights:

\[
\begin{align*}
v_{it} &:= w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \\
v_t &:= \sum_i v_{it} \\
w_{it} &:= v_{it} / V_t
\end{align*}
\]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N \)

At time \(t \) do:

1. Receive Expert predictions \((f_{1t}, \ldots, f_{Nt})\)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it} \)
3. Send \(\hat{p}_t \) to the Environment
4. Receive \(y_t \) from the Environment
5. Update weights:
 \[
 v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \\
 V_t := \sum_i v_{it} \\
 w_{it} := v_{it} / V_t
 \]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average forecaster

EWA Algorithm (η)

Initialization: \(w_{it} := 1/N, \ i = 1, 2, \ldots, N \)

At time \(t \) do:

1. Receive Expert predictions \((f_{1t}, \ldots, f_{Nt}) \)
2. \(\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it} \)
3. Send \(\hat{p}_t \) to the Environment
4. Receive \(y_t \) from the Environment
5. Update weights:
 \[
 v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)} \\
 V_t := \sum_i v_{it} \\
 w_{it} := v_{it} / V_t
 \]

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Exponentially Weighted Average Forecaster

EWA Algorithm (η)

Initialization: $w_{it} := 1/N$, $i = 1, 2, \ldots, N$

At time t do:

1. Receive Expert predictions (f_{1t}, \ldots, f_{Nt})
2. $\hat{p}_t := \sum_{i=1}^{N} w_{i,t-1} f_{it}$
3. Send \hat{p}_t to the Environment
4. Receive y_t from the Environment
5. Update weights:

 $$v_{it} := w_{i,t-1} e^{-\eta \ell(f_{it}, y_t)}$$
 $$V_t := \sum_i v_{it}$$
 $$w_{it} := v_{it} / V_t$$

Remark

- Normalization is good for numerical stability
- Update resembles Bayes updates!
Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1]$ be convex in its first argument and consider the loss \hat{L}_n of EWA. Then:

$$\hat{L}_n \leq L^*_n + \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$,

$$\hat{L}_n \leq L^*_n + \sqrt{\frac{n \ln N}{2}}.$$
Problem: η depends on n, the horizon

Small losses

- Loss bound for WM, 0/1-predictions:

$$L_n \leq \left\lfloor \log_2 \left(\frac{1}{\beta} L_n^* + \log_2 N \right) \right\rfloor \log_2 \left(\frac{2}{1+\beta} \right).$$

- If $L_n = 0$ for some expert then the regret is finite!

- Regret bound for EWA:

$$L_n \leq L_n^* + \sqrt{n/2 \ln N} \rightarrow \infty \text{ as } n \rightarrow \infty$$

Theorem ([Auer et al., 2002b])

Consider EWA with $\eta_t = c \sqrt{\ln N / L_{t-1}^*}$, $c > 0$. Under the same conditions as in the previous theorem for some $\kappa > 0$,

$$R_n \leq 2\sqrt{2L_n^* \ln N} + \kappa \ln N.$$
ADAPTIVE AND SELF-CONFIDENT FORECASTERS

- Problem: η depends on n, the horizon
- Small losses
 - Loss bound for WM, 0/1-predictions:
 \[\hat{L}_n \leq \left\lfloor \frac{\log_2\left(\frac{1}{\beta}\right) L^*_{\eta} + \log_2 N}{\log_2\left(\frac{2}{1+\beta}\right)} \right\rfloor. \]
 - If $L_{in} = 0$ for some expert then the regret is finite!
 - Regret bound for EWA:
 \[\hat{L}_n \leq L^*_{\eta} + \sqrt{n/2 \ln N} \xrightarrow{n \to \infty} \infty \text{ even if } L^*_{\eta} = 0! \]

Theorem ([Auer et al., 2002b])

Consider EWA with $\eta_t = c \sqrt{\ln N / L^*_{t-1}}$, $c > 0$. Under the same conditions as in the previous theorem for some $\kappa > 0$,

\[R_n \leq 2\sqrt{2L^*_{\eta} \ln N} + \kappa \ln N. \]
ADAPTIVE AND SELF-CONFIDENT FORECASTERS

- Problem: \(\eta \) depends on \(n \), the horizon
- Small losses
 - Loss bound for WM, 0/1-predictions:
 \[
 \hat{L}_n \leq \left[\log_2 \left(\frac{1}{\beta} \right) L_n^* + \log_2 N \frac{\log_2 \left(\frac{2}{1+\beta} \right)}{\log_2 \left(\frac{2}{1+\beta} \right)} \right].
 \]
 - If \(L_{in} = 0 \) for some expert then the regret is finite!
 - Regret bound for EWA:
 \[
 \hat{L}_n \leq L_n^* + \sqrt{n/2 \ln N} \xrightarrow{n \to \infty} \infty \text{ even if } L_n^* = 0!
 \]

Theorem ([Auer et al., 2002b])

Consider EWA with \(\eta_t = c \sqrt{\ln N/L_{t-1}^*} \), \(c > 0 \). Under the same conditions as in the previous theorem for some \(\kappa > 0 \),

\[
R_n \leq 2 \sqrt{2L_n^* \ln N} + \kappa \ln N.
\]
Problem: η depends on n, the horizon

- **Small losses**
 - Loss bound for WM, 0/1-predictions:
 \[\hat{L}_n \leq \left\lfloor \frac{\log_2(\frac{1}{\beta}) L_n^* + \log_2 N}{\log_2(\frac{2}{1+\beta})} \right\rfloor. \]

If $L_{in} = 0$ for some expert then the regret is finite!

- Regret bound for EWA:
 \[\hat{L}_n \leq L_n^* + \sqrt{\frac{n}{2}} \ln N \xrightarrow{n \to \infty} \infty \text{ even if } L_n^* = 0! \]

Theorem ([Auer et al., 2002b])

Consider EWA with $\eta_t = c \sqrt{\ln N/L_{t-1}^*}$, $c > 0$. Under the same conditions as in the previous theorem for some $\kappa > 0$,

\[R_n \leq 2\sqrt{2L_n^* \ln N} + \kappa \ln N. \]
Problem: \(\eta \) depends on \(n \), the horizon

Small losses

- Loss bound for WM, 0/1-predictions:

\[
\hat{L}_n \leq \left\lfloor \frac{\log_2 \left(\frac{1}{\beta} \right) L_n^* + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right\rfloor.
\]

- If \(L_{in} = 0 \) for some expert then the regret is finite!

Regret bound for EWA:

\[
\hat{L}_n \leq L_n^* + \sqrt{\frac{n}{2} \ln N} \quad n \to \infty \quad \infty \quad \text{even if} \quad L_n^* = 0!
\]

Theorem ([Auer et al., 2002b])

Consider EWA with \(\eta_t = c \sqrt{\ln N / L_{t-1}^*} \), \(c > 0 \). Under the same conditions as in the previous theorem for some \(\kappa > 0 \),

\[
R_n \leq 2\sqrt{2L_n^* \ln N + \kappa \ln N}.
\]
Adaptive and self-confident forecasters

Problem: \(\eta \) depends on \(n \), the horizon

- Small losses
 - Loss bound for WM, 0/1-predictions:
 \[
 \hat{L}_n \leq \left\lfloor \log_2 \left(\frac{1}{\beta} \right) L^*_n + \log_2 N \right\rfloor \log_2 \left(\frac{2}{1+\beta} \right).
 \]

- If \(L_{in} = 0 \) for some expert then the regret is finite!

- Regret bound for EWA:
 \[
 \hat{L}_n \leq L^*_n + \sqrt{\frac{n}{2}} \ln N \quad \overset{n \to \infty}{\longrightarrow} \infty \quad \text{even if } L^*_n = 0!
 \]

Theorem ([Auer et al., 2002b])

Consider EWA with \(\eta_t = c \sqrt{\ln N/L^*_t} \), \(c > 0 \). Under the same conditions as in the previous theorem for some \(\kappa > 0 \),

\[
R_n \leq 2\sqrt{2L^*_n \ln N} + \kappa \ln N.
\]
Binary prediction problems

- **Binary prediction problem:**

\[D = \mathcal{Y} = \{0, 1\}, \quad \ell(p, y) = \mathbb{I}_{\{p \neq y\}} \]

- **Bound of WM:**

\[\hat{L}_n \leq \left\lceil \frac{\log_2 \left(\frac{1}{\beta} \right) L_n^* + \log_2 N}{\log_2 \left(\frac{2}{1+\beta} \right)} \right\rceil. \]

- **Question:** Can we have an additive bound, like that of EWA:

\[\hat{L}_n \leq L_n^* + B(n, N) \]

with \(B(n, N) = o(n) \)?

- Can we have such a bound for WM?
- For some other algorithm?
Binary prediction problems

- **Binary prediction problem:**
 \[\mathcal{D} = \mathcal{Y} = \{0, 1\}, \quad \ell(p, y) = \mathbb{I}\{p \neq y\} \]

- **Bound of WM:**
 \[\hat{L}_n \leq \left\lfloor \frac{\log_2(\frac{1}{\beta})L_n^* + \log_2 N}{\log_2(\frac{2}{1+\beta})} \right\rfloor. \]

Question: Can we have an additive bound, like that of EWA:
\[\hat{L}_n \leq L_n^* + B(n, N) \]

with \(B(n, N) = o(n) \)?

- Can we have such a bound for WM?
- For some other algorithm?
Binary prediction problem:

\[\mathcal{D} = \mathcal{Y} = \{0, 1\}, \quad \ell(p, y) = \mathbb{I}\{p \neq y\} \]

Bound of WM:

\[
\hat{L}_n \leq \left\lfloor \log_2\left(\frac{1}{\beta}\right)L^*_n + \log_2 N \right\rfloor \cdot \log_2\left(\frac{2}{1+\beta}\right).
\]

Question: Can we have an additive bound, like that of EWA:

\[
\hat{L}_n \leq L^*_n + B(n, N)
\]

with \(B(n, N) = o(n) \)?

- Can we have such a bound for WM?
- For some other algorithm?
Binary prediction problem:

\(\mathcal{D} = \mathcal{Y} = \{0, 1\}, \quad \ell(p, y) = I\{p \neq y\} \)

Bound of WM:

\[
\hat{L}_n \leq \left\lceil \frac{\log_2(\frac{1}{\beta})L^*_n + \log_2 N}{\log_2(\frac{2}{1+\beta})} \right\rceil.
\]

Question: Can we have an additive bound, like that of EWA:

\[
\hat{L}_n \leq L^*_n + B(n, N)
\]

with \(B(n, N) = o(n) \)?

- Can we have such a bound for WM?
- For some other algorithm?
Binary prediction problems

- **Binary prediction problem:**
 \[\mathcal{D} = \mathcal{Y} = \{0, 1\}, \quad \ell(p, y) = \mathbb{I}_{\{p \neq y\}} \]

- **Bound of WM:**
 \[\hat{L}_n \leq \left\lfloor \frac{\log_2(\frac{1}{\beta})L^*_n + \log_2 N}{\log_2(\frac{2}{1+\beta})} \right\rfloor. \]

- **Question:** Can we have an additive bound, like that of EWA:
 \[\hat{L}_n \leq L^*_n + B(n, N) \]
 with \(B(n, N) = o(n) \)?
 - Can we have such a bound for WM?
 - For some other algorithm?
Proposition

Consider binary prediction problems and pick any deterministic forecaster. Let $\hat{L}_n(y_1:n)$ be the forecaster’s loss on $y_1:n$. Then $\exists y_1:n$ s.t. $\hat{L}_n(y_1:n) = n$.

Proof.
Induction on n.

Corollary

No deterministic forecaster can have sublinear regret.

Proof.

Let $N = 2, f_1t \equiv 0, f_2t \equiv 1$. Then $\forall y_1:n, L^*_n(y_1:n) \leq n/2$. Pick some $y_1:n$ that forces $\hat{L}_n(y_1:n) = n$.

Idea

Randomize the forecaster!
Why randomize?

Proposition
Consider binary prediction problems and pick any deterministic forecaster. Let $\hat{L}_n(y_1:n)$ be the forecaster’s loss on $y_1:n$. Then $\exists y_1:n$ s.t. $\hat{L}_n(y_1:n) = n$.

Proof.
Induction on n.

Corollary
No deterministic forecaster can have sublinear regret.

Proof.
Let $N = 2$, $f_1t \equiv 0$, $f_2t \equiv 1$. Then $\forall y_1:n$, $L_n^*(y_1:n) \leq n/2$. Pick some $y_1:n$ that forces $\hat{L}_n(y_1:n) = n$.

Idea
Randomize the forecaster!
Why randomize?

Proposition
Consider binary prediction problems and pick any deterministic forecaster. Let $\hat{L}_n(y_{1:n})$ be the forecaster’s loss on $y_{1:n}$. Then $\exists y_{1:n}$ s.t. $\hat{L}_n(y_{1:n}) = n$.

Proof.
Induction on n. □

Corollary
No deterministic forecaster can have sublinear regret.

Proof.
Let $N = 2$, $f_{1t} \equiv 0$, $f_{2t} \equiv 1$. Then $\forall y_{1:n}$, $L^*_n(y_{1:n}) \leq n/2$. Pick some $y_{1:n}$ that forces $\hat{L}_n(y_{1:n}) = n$. □

Idea
Randomize the forecaster!
PROPOSITION
Consider binary prediction problems and pick any deterministic forecaster. Let \(\hat{L}_n(y_{1:n}) \) be the forecaster’s loss on \(y_{1:n} \). Then \(\exists y_{1:n} \) s.t. \(\hat{L}_n(y_{1:n}) = n \).

PROOF.
Induction on \(n \).

COROLLARY
No deterministic forecaster can have sublinear regret.

PROOF.
Let \(N = 2, f_1t \equiv 0, f_2t \equiv 1 \). Then \(\forall y_{1:n}, L^*_n(y_{1:n}) \leq n/2 \). Pick some \(y_{1:n} \) that forces \(\hat{L}_n(y_{1:n}) = n \).

IDEA
Randomize the forecaster!
PROPOSITION
Consider binary prediction problems and pick any deterministic forecaster. Let \(\hat{L}_n(y_{1:n}) \) be the forecaster’s loss on \(y_{1:n} \). Then \(\exists y_{1:n} \) s.t. \(\hat{L}_n(y_{1:n}) = n \).

PROOF.
Induction on \(n \).

COROLLARY
No deterministic forecaster can have sublinear regret.

PROOF.
Let \(N = 2, f_{1t} \equiv 0, f_{2t} \equiv 1 \). Then \(\forall y_{1:n}, L^*_n(y_{1:n}) \leq n/2 \). Pick some \(y_{1:n} \) that forces \(\hat{L}_n(y_{1:n}) = n \).

IDEA
Randomize the forecaster!
Outline

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 TRACKING THE BEST EXPERT
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
Can we use EWA to get sublinear regret?
.. but predictions must be binary!
Crucial differences:
• predictions cannot be combined
• \(\ell(w, y) \) is not convex
Idea: “Simulate EWA”:
\[
l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.
\]

Protocol

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)
At time \(t \):
0. Experts’ predictions \(f_1, \ldots, f_N \) are revealed to Learner.
0. Learner computes \(l_t \).
0. Environment computes outcome \(y_t \).
0. Losses \(\ell(1, y_t), \ell(2, y_t), \ldots, \ell(N, y_t) \) is revealed to Learner.

Outcomes can also be randomized.
Outcomes do not depend on the past actions

\(l_t \sim \) Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret?
.. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- $\ell(x, y)$ is not convex

Idea: “Simulate EWA”:

$$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

Protocol

Initialization: Algorithm gets N and $\ell, t := 1$

At time t:

- Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
- Learner computes l_t
- Environment computes outcome Y_t
- Losses $\ell(1, Y_t), \ldots, \ell(N, Y_t)$ is revealed to Learner

Outcomes can also be randomized.

Oblivious or non-reactive opponent/environment (stock, weather, etc.)
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:

$$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

PROTOCOL

Initialization: Algorithm gets N and $\ell, T = 1$

At time t:

- Experts' predictions f_1, \ldots, f_N are revealed to Learner
- Learner computes l_t
- Environment computes outcome Y_t
- Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t)$ is revealed to Learner

Outcomes can also be randomized.

Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret?
.. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- $\ell(\cdot, y)$ is not convex

Idea: “Simulate EWA”:

\[l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}. \]

Protocol

Initialization: Algorithm gets N and $\ell(t) = 1$

At time t:
- Experts’ predictions f_1, \ldots, f_N are revealed to Learner.
- Learner computes l_t.
- Environment computes outcome Y_t.
- Losses $\ell(1, Y_t), \ldots, \ell(N, Y_t)$ is revealed to Learner.

Outcomes can also be randomized.

Outcomes do not depend on the past actions

\(l_t \): Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret?
.. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- $\ell(\cdot, y)$ is not convex

Idea: “Simulate EWA”:

$$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.\]

Protocol

Initialization: Algorithm gets N and $\ell, t = 1$

At time t

- Experts' predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
- Learner computes l_t
- Environment computes outcome Y_t
- Losses $\ell(\cdot, Y_t)$ are revealed to Learner

Outcomes can also be randomized.

Outcomes do not depend on the past actions

1: $t - 1$!

Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret? .. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- $\ell(\cdot, y)$ is not convex

Idea: “Simulate EWA”:

$$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t
- Experts' predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
- Learner computes \hat{p}_t
- Environment computes outcome y_t
- Losses $\ell(1, y_t), \ell(2, y_t), \ldots, \ell(N, y_t)$ is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 - but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:

 $$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

PROTOCOL

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t))$ is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 - .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - \(\ell(\cdot, y) \) is not convex
- Idea: “Simulate EWA”:
 \[
l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{\rho}_t = f_{l_t,t}.
\]

PROTOCOL

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)

At time \(t \):
1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 .. but predictions must be binary!

- Crucial differences:
 - predictions cannot be combined
 - \(\ell(\cdot, y) \) is not convex

- Idea: “Simulate EWA”:

\[
l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.
\]

PROTOCOL

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)

At time \(t \)

1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 - .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:
 $$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

PROTOCOL

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t)$ is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:
 $$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

PROTOCOL

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t))$ is revealed to Learner.
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 - .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - \(\ell(\cdot, y) \) is not convex
- Idea: “Simulate EWA”:
 \[
 l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.
 \]

Protocol

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)

At time \(t \)

1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to learner
Randomized Forecasters

- Can we use EWA to get sublinear regret?
 - .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:
 \[l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}. \]

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t))$ is revealed to Learner

Outcomes can also be randomized.

Outcomes do not depend on the past actions

\mathcal{I}_1: Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret? .. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- \(\ell(\cdot, y) \) is not convex

Idea: “Simulate EWA”:

\[
l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.
\]

Protocol

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)

At time \(t \)

1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to Learner
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - $\ell(\cdot, y)$ is not convex
- Idea: “Simulate EWA”:

 $$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{\rho}_t = f_{l_t,t}.$$

PROTOCOL

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t)$ is revealed to Learner

Outcomes can also be randomized.

Outcomes do not depend on the past actions

1: $t-1$!

Oblivious or non-reactive opponent/environment (stock, weather, etc.)
RANDOMIZED FORECASTERS

- Can we use EWA to get sublinear regret?
 .. but predictions must be binary!
- Crucial differences:
 - predictions cannot be combined
 - \(\ell(\cdot, y) \) is not convex
- Idea: “Simulate EWA”:
 \[l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{\rho}_t = f_{l_t,t}. \]

PROTOCOL

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)

At time \(t \)

1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to Learner

Outcomes can also be randomized.

Outcomes do not depend on the past actions

\(I_1 : t - 1 \)

Oblivious or non-reactive opponent/environment (stock, weather, etc.)
Can we use EWA to get sublinear regret?

.. but predictions must be binary!

Crucial differences:
- predictions cannot be combined
- $\ell(\cdot, y)$ is not convex

Idea: “Simulate EWA”:

$$l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.$$

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t

1. Experts’ predictions $f_{1,t}, \ldots, f_{N,t}$ are revealed to Learner
2. Learner computes l_t
3. Environment computes outcome Y_t
4. Losses $\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t))$ is revealed to Learner

Outcomes can also be randomized.

Outcomes do not depend on the past actions

$\:\\
RANDOMIZED FORECASTERS

Can we use EWA to get sublinear regret?
.. but predictions must be binary!
Crucial differences:
• predictions cannot be combined
• \(\ell(\cdot, y) \) is not convex
Idea: “Simulate EWA”:

\[
l_t \sim (w_{1,t-1}, \ldots, w_{N,t-1}), \hat{p}_t = f_{l_t,t}.
\]

PROTOCOL

Initialization: Algorithm gets \(N \) and \(\ell, t := 1 \)
At time \(t \)

1. Experts’ predictions \(f_{1,t}, \ldots, f_{N,t} \) are revealed to Learner
2. Learner computes \(l_t \)
3. Environment computes outcome \(Y_t \)
4. Losses \(\ell(1, Y_t), \ell(2, Y_t), \ldots, \ell(N, Y_t) \) is revealed to Learner

Outcomes can also be randomized.
Outcomes do not depend on the past actions
\(I_1 : t-1 ! \sim \) Oblivious or non-reactive opponent/environment (stock, weather, etc.)
OUTLINE

1 **HIGH LEVEL OVERVIEW OF THE TALKS**

2 **MOTIVATION**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 **DISCRETE PREDICTION PROBLEMS**
 - Randomized forecasters
 - **Weighted Average Forecaster**
 - Follow the perturbed leader

4 **TRACKING THE BEST EXPERT**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 **NON-STOCHASTIC BANDIT PROBLEMS**
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 **CONCLUSIONS**
Previous result on EWA:

Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$ be convex in its first argument. Then, for EWA ($\hat{\mathbf{p}}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$) it holds:

$$\hat{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\hat{L}_n - L^*_n \leq \sqrt{\frac{n}{2}} \ln N$.

- Let $f_{it} = e_i$ (ith unit vector), $\hat{p}_{it} = \frac{w_{i,t-1}}{\sum_{j=1}^N w_{j,t-1}}$
- $\ell(p, y) \overset{\text{def}}{=} \sum_{i=1}^N p_i \ell(i, y)$, ℓ is convex in p
- $\mathcal{D} = \Delta_1 \overset{\text{def}}{=} \{ p \in \mathbb{R}^N | p_i \geq 0, \sum_j p_j = 1 \} \subset \mathbb{R}^N$ is convex.
Previous result on EWA:

Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1]$ be convex in its first argument. Then, for EWA ($\hat{\mathbf{p}}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$) it holds:

$$\hat{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\hat{L}_n - L^*_n \leq \sqrt{n/2} \ln N$.

- Let $f_{it} = e_i$ (ith unit vector), $\hat{p}_{it} = \frac{w_{i,t-1}}{\sum_{j=1}^N w_{j,t-1}}$

- $\bar{\ell}(\mathbf{p}, y) \overset{\text{def}}{=} \sum_{i=1}^N p_i \ell(i, y)$, $\Rightarrow \bar{\ell}$ is convex in \mathbf{p}

- $\mathcal{D} = \Delta_1 = \{ \mathbf{p} \in \mathbb{R}^N \mid p_i \geq 0, \sum_j p_j = 1 \} \subset \mathbb{R}^N$ is convex.
Weighted Average Forecaster
[Littlestone and Warmuth, 1994]

Previous result on EWA:

Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1]$ be convex in its first argument. Then, for EWA ($\hat{\mathbf{p}}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$) it holds:

$$\hat{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\hat{L}_n - L^*_n \leq \sqrt{n/2} \ln N$.

- Let $f_{it} = e_i$ (ith unit vector), $\hat{p}_{it} = \frac{w_{i,t-1}}{\sum_{j=1}^N w_{j,t-1}}$
- $\ell(p, y) \overset{\text{def}}{=} \sum_{i=1}^N p_i \ell(i, y)$, $\Rightarrow \ell$ is convex in p
- $\mathcal{D} = \Delta_1 \overset{\text{def}}{=} \{p \in \mathbb{R}^N | p_i \geq 0, \sum_j p_j = 1\} \subset \mathbb{R}^N$ is convex.
Previous result on EWA:

Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$ be convex in its first argument. Then, for EWA ($\hat{p}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$) it holds:

$$\hat{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\hat{L}_n - L^*_n \leq \sqrt{n/2} \ln N$.

- Let $f_{it} = e_i$ (ith unit vector), $\hat{p}_{it} = \frac{w_{i,t-1}}{\sum_{j=1}^{N} w_{j,t-1}}$
- $\bar{\ell}(p, y) \overset{\text{def}}{=} \sum_{i=1}^{N} p_i \ell(i, y)$, $\Rightarrow \bar{\ell}$ is convex in p
- $\mathcal{D} = \Delta_1 \overset{\text{def}}{=} \{ p \in \mathbb{R}^N | p_i \geq 0, \sum_j p_j = 1 \} \subset \mathbb{R}^N$ is convex.
Previous result on EWA:

Theorem (Loss bound for the EWA forecaster)

Assume that \mathcal{D} is a convex subset of some vector-space. Let $\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1]$ be convex in its first argument. Then, for EWA ($\hat{\mathbf{p}}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$) it holds:

$$
\hat{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.
$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\hat{L}_n - L^*_n \leq \sqrt{\frac{n}{2}} \ln N$.

- Let $f_{it} = e_i$ (ith unit vector), $\hat{p}_{it} = \frac{w_{i,t-1}}{\sum_{j=1}^N w_{j,t-1}}$
- $\bar{\ell}(p, y) \stackrel{\text{def}}{=} \sum_{i=1}^N p_i \ell(i, y)$, \Rightarrow $\bar{\ell}$ is convex in p
- $\mathcal{D} = \Delta_1 \stackrel{\text{def}}{=} \{ p \in \mathbb{R}^N \mid p_i \geq 0, \sum_j p_j = 1 \} \subset \mathbb{R}^N$ is convex.
Bound on the Pseudo-Expected Regret

EWA: $\hat{p}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}}$, $w_{i,t-1} = e^{-\eta L_{i,t-1}}$

Theorem (Loss bound for the EWA forecaster: Randomized predictions)

Let $\ell : \mathcal{N} \times \mathcal{Y} \to [0, 1]$. Then, for EWA it holds:

$$\bar{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n.$$

With $\eta = \sqrt{\frac{8 \ln N}{n}}$, $\bar{L}_n - L^*_n \leq \sqrt{n/2 \ln N}$. Here

$$\bar{L}_n = \sum_{t=1}^{n} \bar{\ell}(\hat{p}_t, Y_t) = \sum_{t=1}^{n} \sum_{i=1}^{N} \hat{p}_{it} \ell(i, Y_t).$$

Note:

$$\bar{\ell}(\hat{p}_t, Y_t) = \mathbb{E} [\ell(h_t, Y_t) \mid Y_{1:t}, h_{1:t-1}] (= \mathbb{E}_t [\ell(h_t, Y_t)]).$$
BOUND ON THE PSEUDO-EXPECTED REGRET

EWA: \(\hat{p}_t = \frac{\sum_i w_{i,t-1} f_{it}}{\sum_j w_{j,t-1}} \), \(w_{i,t-1} = e^{-\eta L_{i,t-1}} \)

THEOREM (LOSS BOUND FOR THE EWA FORECASTER: RANDOMIZED PREDICTIONS)

Let \(\ell : N \times \mathcal{Y} \to [0, 1] \). Then, for EWA it holds:

\[\bar{L}_n - L^*_n \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n. \]

With \(\eta = \sqrt{\frac{8 \ln N}{n}} \), \(\bar{L}_n - L^*_n \leq \sqrt{n/2} \ln N \). Here

\[\bar{L}_n = \sum_{t=1}^{n} \bar{\ell}(\hat{p}_t, Y_t) = \sum_{t=1}^{n} \sum_{i=1}^{N} \hat{p}_{it} \ell(i, Y_t). \]

Note:

\[\bar{\ell}(\hat{p}_t, Y_t) = \mathbb{E} [\ell(l_t, Y_t) \mid Y_{1:t}, l_{1:t-1}] (= \mathbb{E}_t [\ell(l_t, Y_t)]). \]
What about \(\hat{L}_n - L^*_n \)??

\[
\hat{L}_n = \sum_{t=1}^{n} \ell(I_t, Y_t) \approx \sum_{t=1}^{n} \bar{\ell}(\hat{p}_t, Y_t) = \bar{L}_n
\]

\(\bar{\ell}(\hat{p}_t, Y_t) \) is the (conditional) “expected value” of \(\ell(I_t, Y_t) \)

Hoeffding ⇒ Sums of i.i.d. random variables are \(\sqrt{n} \)-close to their expectations!

Extension to martingales ⇒ Hoeffding-Azuma
What about \(\hat{L}_n - L^\ast \)??

\[
\hat{L}_n = \sum_{t=1}^{n} \ell(I_t, Y_t) \approx \sum_{t=1}^{n} \bar{\ell}(\hat{p}_t, Y_t) = \overline{L}_n
\]

\(\bar{\ell}(\hat{p}_t, Y_t) \) is the (conditional) “expected value” of \(\ell(I_t, Y_t) \)

Hoeffding \(\Rightarrow \) Sums of i.i.d. random variables are \(\sqrt{n} \)-close to their expectations!

Extension to martingales \(\Rightarrow \) Hoeffding-Azuma
Bound on the Actual Regret

- What about $\hat{L}_n - L^*_n$??
- $\hat{L}_n = \sum_{t=1}^{n} \ell(I_t, Y_t) \approx \sum_{t=1}^{n} \ell(\hat{p}_t, Y_t) = \bar{L}_n$
- $\bar{\ell}(\hat{p}_t, Y_t)$ is the (conditional) “expected value” of $\ell(I_t, Y_t)$

Hoeffding \Rightarrow Sums of i.i.d. random variables are \sqrt{n}-close to their expectations!

Extension to martingales \Rightarrow Hoeffding-Azuma
What about $\hat{L}_n - L^*_n$??

$\hat{L}_n = \sum_{t=1}^{n} \ell(I_t, Y_t) \approx \sum_{t=1}^{n} \bar{\ell}(\hat{p}_t, Y_t) = \bar{L}_n$

$\bar{\ell}(\hat{p}_t, Y_t)$ is the (conditional) “expected value” of $\ell(I_t, Y_t)$

Hoeffding \Rightarrow Sums of i.i.d. random variables are \sqrt{n}-close to their expectations!

Extension to martingales \Rightarrow Hoeffding-Azuma
Bound on the Actual Regret

- What about $\hat{L}_n - L_n^*$??

- $\hat{L}_n = \sum_{t=1}^{n} \ell(I_t, Y_t) \approx \sum_{t=1}^{n} \ell(\hat{p}_t, Y_t) = \overline{L}_n$

- $\overline{\ell}(\hat{p}_t, Y_t)$ is the (conditional) “expected value” of $\ell(I_t, Y_t)$

- Hoeffding \Rightarrow Sums of i.i.d. random variables are \sqrt{n}-close to their expectations!

- Extension to martingales \Rightarrow Hoeffding-Azuma
Theorem (Loss bound for the EWA forecaster: Random regret)

Let \(\ell : \mathbb{N} \times \mathcal{Y} \to [0, 1] \). Then, for EWA it holds:

\[
\hat{L}_n - L^* \leq \frac{\ln N}{\eta} + \frac{\eta}{8} n + \sqrt{\frac{n}{2}} \ln(1/\delta)
\]

With \(\eta = \sqrt{\frac{8 \ln N}{n}} \),

\[
\hat{L}_n - L^* \leq \sqrt{\frac{n}{2}} \ln N + \sqrt{\frac{n}{2}} \ln(1/\delta).
\]
SMALL LOSSES

- Previous “small-loss” bound:
 \[2\sqrt{2L_n^* \ln N} + \kappa \ln N \]

- Random fluctuations: add \(\sqrt{n/2 \ln(1/\delta)} \) – too big!

- Bernstein’s inequality uses the “predictable variance” to bound the fluctuations

- Bound on the “predictable variance”:
 \[
 E_t \left[(\ell(I_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t))^2 \right] = E_t \left[\ell(I_t, Y_t)^2 \right] - \bar{\ell}^2(\hat{p}_t, Y_t)
 \]
 \[
 \leq E_t \left[\ell(I_t, Y_t)^2 \right] \leq E_t [\ell(I_t, Y_t)] = \bar{\ell}(\hat{p}_t, Y_t)
 \]

- \(\Rightarrow \) the effect of random fluctuations is comparable with the bound on the expected regret:
 \[
 \sum_{t=1}^{n} (\ell(I_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t)) \leq \sqrt{2L_n \ln(1/\delta)} + \frac{2\sqrt{2}}{3} \ln(1/\delta).
 \]
Small losses

- Previous “small-loss” bound:
 \[2\sqrt{2L^*_n \ln N} + \kappa \ln N \]

- Random fluctuations: add \(\sqrt{n/2 \ln(1/\delta)} \) – too big!

 - Bernstein’s inequality uses the “predictable variance” to bound the fluctuations
 - Bound on the “predictable variance”:
 \[
 E_t \left[(\ell(I_t, Y_t) - \bar{\ell}(\hat{\rho}_t, Y_t))^2 \right] = E_t \left[\ell(I_t, Y_t)^2 \right] - \ell^2(\hat{\rho}_t, Y_t)
 \leq E_t \left[\ell(I_t, Y_t)^2 \right] \leq E_t \left[\ell(I_t, Y_t) \right] = \ell(\hat{\rho}_t, Y_t)
 \]

 - \(\Rightarrow \) the effect of random fluctuations is comparable with the bound on the expected regret:
 \[
 \sum_{t=1}^{n} (\ell(I_t, Y_t) - \bar{\ell}(\hat{\rho}_t, Y_t)) \leq \sqrt{2L_n \ln(1/\delta)} + \frac{2\sqrt{2}}{3} \ln(1/\delta).\]
Small losses

- Previous “small-loss” bound:
 \[2\sqrt{2L_n^* \ln N} + \kappa \ln N \]

- Random fluctuations: add \(\sqrt{n/2 \ln(1/\delta)} \) – too big!

- **Bernstein’s inequality** uses the “predictable variance” to bound the fluctuations

- Bound on the “predictable variance”:
 \[\mathbb{E}_t \left[(\ell(I_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t))^2 \right] = \mathbb{E}_t \left[\ell(I_t, Y_t)^2 \right] - \bar{\ell}^2(\hat{p}_t, Y_t) \]
 \[\leq \mathbb{E}_t \left[\ell(I_t, Y_t)^2 \right] \leq \mathbb{E}_t [\ell(I_t, Y_t)] = \bar{\ell}(\hat{p}_t, Y_t) \]

- \(\Rightarrow \) the effect of random fluctuations is comparable with the bound on the expected regret:
 \[\sum_{t=1}^{n} (\ell(I_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t)) \leq \sqrt{2L_n \ln(1/\delta)} + \frac{2\sqrt{2}}{3} \ln(1/\delta). \]
Small losses

- Previous “small-loss” bound:
 \[
 2\sqrt{2L_n^* \ln N} + \kappa \ln N
 \]

- Random fluctuations: add \(\sqrt{n/2 \ln(1/\delta)}\) – too big!

- **Bernstein’s inequality** uses the “predictable variance” to bound the fluctuations

- Bound on the “predictable variance”:
 \[
 \mathbb{E}_t \left[(\ell(l_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t))^2 \right] = \mathbb{E}_t \left[\ell(l_t, Y_t)^2 \right] - \bar{\ell}^2(\hat{p}_t, Y_t)
 \leq \mathbb{E}_t \left[\ell(l_t, Y_t)^2 \right] \leq \mathbb{E}_t \left[\ell(l_t, Y_t) \right] = \bar{\ell}(\hat{p}_t, Y_t)
 \]

 \[\Rightarrow\] the effect of random fluctuations is comparable with the bound on the expected regret:

 \[
 \sum_{t=1}^{n} (\ell(l_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t)) \leq \sqrt{2L_n \ln(1/\delta)} + \frac{2\sqrt{2}}{3} \ln(1/\delta).
 \]
SMALL LOSSES

- Previous “small-loss” bound:
 \[2\sqrt{2L_n^* \ln N + \kappa \ln N}\]

- Random fluctuations: add \(\sqrt{n/2 \ln(1/\delta)}\) – too big!

- **Bernstein’s inequality** uses the “predictable variance” to bound the fluctuations

- Bound on the “predictable variance”:
 \[\mathbb{E}_t \left[\left(\ell(I_t, Y_t) - \ell(\hat{p}_t, Y_t) \right)^2 \right] = \mathbb{E}_t \left[\ell(I_t, Y_t)^2 \right] - \bar{\ell}^2(\hat{p}_t, Y_t) \leq \mathbb{E}_t \left[\ell(I_t, Y_t)^2 \right] \leq \mathbb{E}_t [\ell(I_t, Y_t)] = \bar{\ell}(\hat{p}_t, Y_t)\]

 \[\Rightarrow\] the effect of random fluctuations is comparable with the bound on the expected regret:

 \[\sum_{t=1}^{n} \left(\ell(I_t, Y_t) - \bar{\ell}(\hat{p}_t, Y_t) \right) \leq \sqrt{2L_n \ln(1/\delta)} + \frac{2\sqrt{2}}{3} \ln(1/\delta).\]
OUTLINE

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
 • What is it?
 • Why should we care?
 • Halving: Find the perfect expert! (0/1 loss)
 • No perfect expert? (0/1 loss)
 • Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
 • Randomized forecasters
 • Weighted Average Forecaster
 • Follow the perturbed leader

4 TRACKING THE BEST EXPERT
 • Fixed share forecaster
 • Variable-share forecaster
 • Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
 • Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
Does it work?

Take $N = 2$:

\[
\ell(1, y_t) : \frac{1}{2}, 0, 1, 0, 1, 0, \ldots \\
\ell(2, y_t) : \frac{1}{2}, 1, 0, 1, 0, 1, \ldots
\]

Choices:

\[
\ell(1, y_t) : \frac{1}{2}L_{11}=.5, 0L_{12}=.5, 1L_{13}=1.5, 0L_{14}=1.5, 1L_{15}=2.5, 0, \ldots \\
\ell(2, y_t) : \frac{1}{2}L_{21}=.5, 1L_{22}=1.5, 0L_{22}=1.5, 1L_{23}=2.5, 0L_{24}=2.5, 1, \ldots
\]

\[\Rightarrow \hat{L}_n = n - 2 + 0.5, \text{ whilst } L_{in} \leq n/2, i = 1, 2,\]

\[\hat{L}_n - L^*_n \geq n/2 - 1.5\]
Follow the perturbed leader [Hannan, 1957]

- Follow the perturbed leader (randomized fictitious play):

 \[l_t = \arg\min_{i=1,\ldots,N} \left(L_{i,t-1} + Z_{it} \right), \]

 \[Z_t \sim f(\cdot), \quad \text{i.i.d.} \]

- Goal: develop bound on \(\bar{L}_n \! \)
- Relate to BEH:

 \[\hat{l}_t = \arg\min_{i \in N} (L_{i,t} + Z_{i,t}) . \]
Follow the perturbed leader (randomized fictitious play):

\[l_t = \arg\min_{i=1,\ldots,N} \left(L_{i,t-1} + Z_{it} \right), \]
\[Z_t \sim f(\cdot), \quad \text{i.i.d.} \]

Goal: develop bound on \(\bar{L}_n \! \)

Relate to BEH:

\[\hat{l}_t = \arg\min_{i \in N} \left(L_{i,t} + Z_{i,t} \right). \]
Follow the perturbed leader (randomized fictitious play):

\[l_t = \arg\min_{i=1,\ldots,N} \left(L_{i,t-1} + Z_{it} \right), \]

\[Z_t \sim f(\cdot), \quad \text{i.i.d.} \]

Goal: develop bound on \(\bar{L}_n \! \)!

Relate to BEH:

\[\hat{l}_t = \arg\min_{i \in N} \left(L_{i,t} + Z_{i,t} \right). \]
FPL Bound

Theorem (FPL Bound [Kalai and Vempala, 2003])

Let \(\ell : \mathbb{N} \times \mathcal{Y} \to [0, 1] \) and consider FPL! Let

\[
Z_t \sim f(\cdot), \quad f(z) = (\frac{\eta}{2})^N e^{-\eta \|z\|_1}.
\]

Then

\[
\mathbb{E}[\hat{L}_n] \leq e^\eta \left(\mathbb{E}[L^*_n] + \frac{2(1 + \ln N)}{\eta} \right).
\]

Choose

\[
\eta = \min \left\{ 1, \sqrt{\frac{2(1 + \ln N)}{(e - 1)L^*_n}} \right\}.
\]

Then

\[
\mathbb{E}[L_n] - \mathbb{E}[L^*_n] \leq 2\sqrt{2L^*_n(e - 1)(1 + \ln N)} + 2(e + 1)(1 + \ln N).
\]
Tracking the best expert [Herbster and Warmuth, 1998]

- Discrete prediction problem
 - Want to compete with ‘compound action sets’:

\[
B_{n,m} = \{ (i_1, \ldots, i_n) \mid s(i_1, \ldots, i_n) \leq m \},
\]

where \(s(i_1, \ldots, i_n) = \sum_{t=2}^{n} I\{i_{t-1} \neq i_t\} \) is the number of switches.

- Shorthand notation \(i_{1:n} = (i_1, \ldots, i_n) \)

- Regret:

\[
R_{n,m} \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(i_t, y_t) - \min_{i_{1:n} \in B_{n,m}} \sum_{t=1}^{n} \ell(i_t, y_t).
\]

- Instead we use \(\overline{R}_{n,m} \), where

\[
\overline{R}_{n,m} \overset{\text{def}}{=} \max_{i_{1:n} \in B_{n,m}} \overline{R}(i_{1:n}), \quad \overline{R}(i_{1:n}) \overset{\text{def}}{=} \sum_{t=1}^{n} \overline{\ell}(p_t, y_t) - \sum_{t=1}^{n} \ell(i_t, y_t).
\]
Discrete prediction problem

Want to compete with ‘compound action sets’:

\[B_{n,m} = \{ (i_1, \ldots, i_n) \mid s(i_1, \ldots, i_n) \leq m \}, \]

where \(s(i_1, \ldots, i_n) = \sum_{t=2}^{n} \mathbb{I}\{i_{t-1} \neq i_t\} \) is the number of switches.

Shorthand notation \(i_{1:n} = (i_1, \ldots, i_n) \)

Regret:

\[
R_{n,m} \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i_{1:n} \in B_{n,m}} \sum_{t=1}^{n} \ell(i_t, y_t).
\]

Instead we use \(\overline{R}_{n,m} \), where

\[
\overline{R}_{n,m} \overset{\text{def}}{=} \max_{i_{1:n} \in B_{n,m}} \overline{R}(i_{1:n}), \quad \overline{R}(i_{1:n}) \overset{\text{def}}{=} \sum_{t=1}^{n} \overline{\ell}(p_t, y_t) - \sum_{t=1}^{n} \ell(i_t, y_t).
\]
Discrete prediction problem
Want to compete with ‘compound action sets’:

\[B_{n,m} = \{(i_1, \ldots, i_n) \mid s(i_1, \ldots, i_n) \leq m\}, \]

where \(s(i_1, \ldots, i_n) = \sum_{t=2}^{n} \mathbb{1}_{\{i_{t-1} \neq i_t\}} \) is the number of switches.

Shorthand notation \(i_{1:n} = (i_1, \ldots, i_n) \)

Regret:

\[R_{n,m} \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(l_t, y_t) - \min_{i_{1:n} \in B_{n,m}} \sum_{t=1}^{n} \ell(i_t, y_t). \]

Instead we use \(\overline{R}_{n,m} \), where

\[\overline{R}_{n,m} \overset{\text{def}}{=} \max_{i_{1:n} \in B_{n,m}} \overline{R}(i_{1:n}), \quad \overline{R}(i_{1:n}) \overset{\text{def}}{=} \sum_{t=1}^{n} \overline{\ell}(p_t, y_t) - \sum_{t=1}^{n} \ell(i_t, y_t). \]
Discrete prediction problem
Want to compete with ‘compound action sets’:

\[B_{n,m} = \{ (i_1, \ldots, i_n) \mid s(i_1, \ldots, i_n) \leq m \}, \]

where \(s(i_1, \ldots, i_n) = \sum_{t=2}^{n} \mathbb{I}\{i_{t-1} \neq i_t\} \) is the number of switches.

Shorthand notation \(i_{1:n} = (i_1, \ldots, i_n) \)

Regret:

\[R_{n,m} \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i_{1:n} \in B_{n,m}} \sum_{t=1}^{n} \ell(i_t, y_t). \]

Instead we use \(\overline{R}_{n,m} \), where

\[\overline{R}_{n,m} \overset{\text{def}}{=} \max_{i_{1:n} \in B_{n,m}} R(i_{1:n}), \quad \overline{R}(i_{1:n}) \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(p_t, y_t) - \sum_{t=1}^{n} \ell(i_t, y_t). \]
Discrete prediction problem
Want to compete with ‘compound action sets’:

\[B_{n,m} = \{ (i_1, \ldots, i_n) \mid s(i_1, \ldots, i_n) \leq m \}, \]

where \(s(i_1, \ldots, i_n) = \sum_{t=2}^{n} \mathbb{I}\{i_{t-1} \neq i_t\} \) is the number of switches.

Shorthand notation \(i_{1:n} = (i_1, \ldots, i_n) \)

Regret:

\[R_{n,m} \overset{\text{def}}{=} \sum_{t=1}^{n} \ell(I_t, y_t) - \min_{i_{1:n} \in B_{n,m}} \sum_{t=1}^{n} \ell(i_t, y_t). \]

Instead we use \(\overline{R}_{n,m} \), where

\[\overline{R}_{n,m} \overset{\text{def}}{=} \max_{i_{1:n} \in B_{n,m}} R(i_{1:n}), \quad R(i_{1:n}) \overset{\text{def}}{=} \sum_{t=1}^{n} \overline{\ell}(p_t, y_t) - \sum_{t=1}^{n} \ell(i_t, y_t). \]
OUTLINE

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
- What is it?
- Why should we care?
- Halving: Find the perfect expert! (0/1 loss)
- No perfect expert? (0/1 loss)
- Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
- Randomized forecasters
- Weighted Average Forecaster
- Follow the perturbed leader

4 TRACKING THE BEST EXPERT
- Fixed share forecaster
- Variable-share forecaster
- Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
- Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
Action set: $B_{n,m}$.

We always select a compound, but just play the next primitive action.

Previous regret bound gives:

$$\bar{R}_{n,m} \leq \sqrt{n \ln(|B_{n,m}|)}.$$

$$M = |B_{n,m}| \leq?$$

$$M = \sum_{k=0}^{m} \binom{n-1}{k} N(N - 1)^k.$$

$$M \leq N^{m+1} \exp((n - 1)H\left(\frac{m}{n-1}\right)),$$

where

$$H : [0, 1] \rightarrow \mathbb{R}, \ H(x) = -x \ln x - (1 - x) \ln(1 - x).$$

Hence

$$\bar{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m + 1) \ln N + (n - 1)H\left(\frac{m}{n-1}\right)\right)}.$$

Problem: randomized EWA is not efficient (M weights!)
Randomized EWA applied to tracking problems

- Action set: \(B_{n,m} \).
- We always select a compound, but just play the next primitive action.
- Previous regret bound gives:
 \[
 \overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \ln(|B_{n,m}|)}.
 \]

- \(M = |B_{n,m}| \leq ? \)
- \(M = \sum_{k=0}^{m} \binom{n-1}{k} N(N-1)^k \).
- \(M \leq N^{m+1} \exp((n-1)H\left(\frac{m}{n-1}\right)) \),
 \(H : [0, 1] \to \mathbb{R}, \quad H(x) = -x \ln x - (1-x) \ln(1-x) \).
- Hence
 \[
 \overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m+1) \ln N + (n-1)H\left(\frac{m}{n-1}\right) \right)}.
 \]

- Problem: randomized EWA is not efficient (\(M \) weights!)
Randomized EWA Applied to Tracking Problems

- Action set: $B_{n,m}$.
- We always select a compound, but just play the next primitive action.
- Previous regret bound gives:

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \ln(|B_{n,m}|)}.$$

- $M = |B_{n,m}| \leq ?$
- $M = \sum_{k=0}^{m} \binom{n-1}{k} N(N-1)^k$.
- $M \leq N^{m+1} \exp((n-1)H\left(\frac{m}{n-1}\right)),$
 where $H : [0, 1] \to \mathbb{R}$, $H(x) = -x \ln x - (1 - x) \ln(1 - x)$.
- Hence

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m+1) \ln N + (n-1)H\left(\frac{m}{n-1}\right)\right)}.$$

- Problem: randomized EWA is not efficient (M weights!)
Action set: $B_{n,m}$.

We always select a compound, but just play the next primitive action.

Previous regret bound gives:

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \ln(|B_{n,m}|)}.$$

$M = |B_{n,m}| \leq ?$

$M = \sum_{k=0}^{m} \binom{n-1}{k} N(N-1)^k$.

$M \leq N^{m+1} \exp((n-1)H\left(\frac{m}{n-1}\right)),$

$H : [0,1] \rightarrow \mathbb{R}, H(x) = -x \ln x - (1-x) \ln(1-x)$.

Hence

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m+1) \ln N + (n-1)H\left(\frac{m}{n-1}\right)\right)}.$$

Problem: randomized EWA is not efficient (M weights!)
Randomized EWA Applied to Tracking Problems

- Action set: $B_{n,m}$.
- We always select a compound, but just play the next primitive action.
- Previous regret bound gives:

$$
\overline{R}_{n,m} \leq \sqrt{\frac{n}{2}} \ln(|B_{n,m}|).
$$

- $M = |B_{n,m}| \leq ?$
- $M = \sum_{k=0}^{m} \binom{n-1}{k} N(N-1)^k$.
- $M \leq N^{m+1} \exp((n-1)H\left(\frac{m}{n-1}\right)),$
 where $H : [0, 1] \rightarrow \mathbb{R}$, $H(x) = -x \ln x - (1 - x) \ln(1 - x)$.
- Hence

$$
\overline{R}_{n,m} \leq \sqrt{\frac{n}{2}} \left((m + 1) \ln N + (n - 1)H\left(\frac{m}{n-1}\right)\right).
$$

- Problem: randomized EWA is not efficient (M weights!)
Action set: $B_{n,m}$.

We always select a compound, but just play the next primitive action.

Previous regret bound gives:

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \ln(|B_{n,m}|)}.$$

$$M = |B_{n,m}| \leq ?$$

$$M = \sum_{k=0}^{m} \binom{n-1}{k} N(N-1)^k.$$

$$M \leq N^{m+1} \exp((n-1)H\left(\frac{m}{n-1}\right)),$$

$$H : [0, 1] \rightarrow \mathbb{R}, \quad H(x) = -x \ln x - (1 - x) \ln(1 - x).$$

Hence

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m + 1) \ln N + (n - 1)H\left(\frac{m}{n-1}\right)\right)}.$$
Action set: $B_{n,m}$.

We always select a compound, but just play the next primitive action.

Previous regret bound gives:

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \ln(|B_{n,m}|)}.$$

- $M = |B_{n,m}| \leq ?$
- $M = \sum_{k=0}^{m} \binom{n-1}{k} N(N - 1)^k.$
- $M \leq N^{m+1} \exp((n - 1)H\left(\frac{m}{n-1}\right)),$

 $H : [0, 1] \rightarrow \mathbb{R}, \quad H(x) = -x \ln x - (1 - x) \ln(1 - x).$
- Hence

$$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m + 1) \ln N + (n - 1)H\left(\frac{m}{n-1}\right) \right)}.$$

Problem: randomized EWA is not efficient (M weights!)
Randomized EWA Applied to Tracking Problems

- Action set: $B_{n,m}$.
- We always select a compound, but just play the next primitive action.
- Previous regret bound gives:
 $$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2}} \ln(|B_{n,m}|).$$

- $M = |B_{n,m}| \leq ?$
- $M = \sum_{k=0}^{m} \binom{n-1}{k} N(N - 1)^k$.
- $M \leq N^{m+1} \exp((n - 1) H\left(\frac{m}{n-1}\right))$,
 $$H : [0, 1] \rightarrow \mathbb{R}, \quad H(x) = -x \ln x - (1 - x) \ln(1 - x).$$
- Hence
 $$\overline{R}_{n,m} \leq \sqrt{\frac{n}{2}} \left((m + 1) \ln N + (n - 1) H\left(\frac{m}{n-1}\right)\right).$$

- Problem: randomized EWA is not efficient (M weights!)
Fixed-share forecaster (FSF)

Initialize: $w_{i0} = 1/N$.

1. Draw expert index I_t from $w_{i,t-1}/\sum_{j=1}^N w_{j,t-1}$.
2. Send I_t to Environment
3. Receive y_t and losses $(\ell(i, y_t))_i$ from Environment
4. Update weights:

 $v_{it} := w_{i,t-1} e^{-\eta \ell(i, y_t)}$

 $V_t := \sum_{j=1}^N v_{jt}$

 $w_{it} := \frac{\alpha}{N} V_t + (1 - \alpha) v_{it}$
THEOREM ([HERBSTER AND WARMUTH, 1998])

Consider a discrete prediction problem and pick any sequence $y_{1:n}$. For any compound action $i_{1:n}$,

$$
\overline{R}(i_{1:n}) \leq \frac{s(i_{1:n}) + 1}{\eta} \ln N + \frac{1}{\eta} \ln \left(\frac{1}{\alpha s(i_{1:n})(1 - \alpha)^{n-s(i_{1:n})}} \right) + \frac{\eta}{8} n.
$$

For $0 \leq m \leq n$, $\alpha = m/(n - 1)$, with a specific choice of $\eta = \eta(n, m, N)$,

$$
\overline{R}_{n,m} \leq \sqrt{\frac{n}{2} \left((m + 1) \ln N + (n - 1)H \left(\frac{m}{n - 1} \right) + \ln \left(\frac{1}{1 - \frac{m}{n-1}} \right) \right)}.
$$
OUTLINE

1 HIGH LEVEL OVERVIEW OF THE TALKS

2 MOTIVATION
 • What is it?
 • Why should we care?
 • Halving: Find the perfect expert! (0/1 loss)
 • No perfect expert? (0/1 loss)
 • Predicting Continuous Outcomes

3 DISCRETE PREDICTION PROBLEMS
 • Randomized forecasters
 • Weighted Average Forecaster
 • Follow the perturbed leader

4 TRACKING THE BEST EXPERT
 • Fixed share forecaster
 • Variable-share forecaster
 • Other large classes of experts

5 NON-STOCHASTIC BANDIT PROBLEMS
 • Exp3.P: An algorithm for non-stochastic bandit problems

6 CONCLUSIONS
Variable-share forecaster: Algorithm

Variable-share forecaster (VSF)

Initialize: $w_{i0} = 1/N$.

1. Draw primitive action l_t from $w_{i,t-1}/\sum_{j=1}^{N} w_{j,t-1}$.
2. Observe y_t, losses $\ell(i, y_t)$ (suffers loss $\ell(l_t, y_t)$).
3. Compute $v_{it} = w_{i,t-1} e^{-\eta \ell(i,y_t)}$.
4. Let $w_{it} = \frac{1}{N-1} \sum_{j \neq i} (1 - (1 - \alpha)\ell(j,y_t)) v_{jt} + (1 - \alpha)\ell(i,y_t) v_{it}$.
 // If loss of current action is small, stay at it, otherwise encourage switching!

Result: For binary losses, $\frac{n-s(i_{1:n})}{\eta} \ln \frac{1}{1-\alpha}$ is replaced by $s(i_{1:n}) + \frac{1}{\eta} L(i_{1:n}) \ln \frac{1}{1-\alpha}$.

Small complexity ($s(i_{1:n})$) and small loss ($L(i_{1:n})$): big win
Variable-share forecaster:

Algorithm

Variable-share forecaster (VSF)

Initialize: \(w_{i0} = 1/N \).

1. Draw primitive action \(l_t \) from \(w_{i,t-1} / \sum_{j=1}^{N} w_{j,t-1} \).
2. Observe \(y_t \), losses \(\ell(i, y_t) \) (suffers loss \(\ell(l_t, y_t) \)).
3. Compute \(v_{it} = w_{i,t-1} e^{-\eta \ell(i, y_t)} \).
4. Let \(w_{it} = \frac{1}{N-1} \sum_{j \neq i} (1 - (1 - \alpha) \ell(j, y_t)) v_{jt} + (1 - \alpha) \ell(i, y_t) v_{it} \).

// If loss of current action is small, stay at it, otherwise encourage switching!

Result: For binary losses, \(\frac{n-s(i_1:n)-1}{\eta} \ln \frac{1}{1-\alpha} \) is replaced by \(s(i_1:n) + \frac{1}{\eta} L(i_1:n) \ln \frac{1}{1-\alpha} \).

Small complexity \(s(i_1:n) \) and small loss \(L(i_1:n) \): big win.
Variable-share forecaster (VSF)

Initialize: $w_{i0} = 1/N$.

1. Draw primitive action I_t from $w_{i,t-1}/\sum_{j=1}^{N} w_{j,t-1}$.
2. Observe y_t, losses $\ell(i, y_t)$ (suffers loss $\ell(I_t, y_t)$).
3. Compute $v_{it} = w_{i,t-1}e^{-\eta \ell(i, y_t)}$.
4. Let $w_{it} = \frac{1}{N-1} \sum_{j \neq i} \left(1 - (1 - \alpha)\ell(j, y_t) \right) v_{jt} + (1 - \alpha)\ell(i, y_t) v_{it}$.
 // If loss of current action is small, stay at it, otherwise encourage switching!

- **Result:** For binary losses, $\frac{n - s(i_1:n) - 1}{\eta} \ln \frac{1}{1 - \alpha}$ is replaced by $s(i_1:n) + \frac{1}{\eta} L(i_1:n) \ln \frac{1}{1 - \alpha}$.
- Small complexity ($s(i_1:n)$) and small loss ($L(i_1:n)$): big win.
1 High level overview of the talks

2 Motivation
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes

3 Discrete prediction problems
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader

4 Tracking the best expert
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts

5 Non-stochastic bandit problems
 - Exp3.P: An algorithm for non-stochastic bandit problems

6 Conclusions
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
 - Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]

- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking

Further applications:
- Sequential allocation
- Motion planning (robot arms)
- Opponent modeling in poker
Other Examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Tree experts (side info); e.g. [D.P. Helmbold, 1997]
Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
Shortest path tracking
Further applications:
- Sequential allocation
- Motion planning (robot arms)
- Opponent modeling in poker
Other examples

- Tree experts (side info); e.g. [D.P. Helmbold, 1997]
- Shortest path FPL: [Kalai and Vempala, 2003]; additive losses
- Shortest path EWA [György et al., 2005]; compression – best scalar quantizers [György et al., 2004]
- Shortest path tracking
- Further applications:
 - Sequential allocation
 - Motion planning (robot arms)
 - Opponent modeling in poker
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $I_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(I_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq I_t$
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $l_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(l_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq l_t$
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $i_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(i_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq i_t$
Bandit Setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $l_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(l_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq l_t$
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $I_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(I_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq I_t$
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $I_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(I_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq I_t$.
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $l_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(l_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq l_t$
Bandit setting

Feedback is restricted to the expert (action) chosen

Protocol

Initialization: Algorithm gets N and ℓ, $t := 1$

At time t:

1. Expert predictions are revealed to Learner
2. Learner chooses expert $l_t \in \{1, \ldots, N\}$
3. Environment generates outcome Y_t
4. Learner receives $\ell_t = \ell(l_t, Y_t)$ from Environment
5. $t := t + 1$; go to Step 1

No feedback is received for actions $i \neq l_t$
Observation

That we do not receive feedback for all experts does not mean that no “appropriate” feedback can be derived for them!

- Consider randomized EWA and expected losses
- Only $\mathbb{E}[\ell(i, Y_t)]$ matters:

 When ℓ, ℓ' are such that for $\forall i, t$: $\mathbb{E}[\ell(i, Y_t)] = \mathbb{E}[\ell'(i, Y_t)]$ and $0 \leq \ell, \ell' \leq 1$, then the bounds on the expected regret of EWA are the same for both ℓ and ℓ'.
- Idea: construct feedback for the unselected experts
PARTIAL- vs. FULL-INFORMATION PROBLEMS

Observation

That we do not receive feedback for all experts does not mean that no “appropriate” feedback can be derived for them!

- Consider randomized EWA and expected losses
 - Only $\mathbb{E}[\ell(i, Y_t)]$ matters:
 - When ℓ, ℓ' are such that for $\forall i, t: \mathbb{E}[\ell(i, Y_t)] = \mathbb{E}[\ell'(i, Y_t)]$ and $0 \leq \ell, \ell' \leq 1$, then the bounds on the expected regret of EWA are the same for both ℓ and ℓ'.
 - Idea: construct feedback for the unselected experts
Partial- vs. full-information problems

Observation
That we do not receive feedback for all experts does not mean that no “appropriate” feedback can be derived for them!

- Consider randomized EWA and expected losses
- Only $\mathbb{E} [\ell(i, Y_t)]$ matters:
 When ℓ, ℓ' are such that for $\forall i, t$: $\mathbb{E} [\ell(i, Y_t)] = \mathbb{E} [\ell'(i, Y_t)]$ and $0 \leq \ell, \ell' \leq 1$, then the bounds on the expected regret of EWA are the same for both ℓ and ℓ'.
- Idea: construct feedback for the unselected experts
PARTIAL- vs. FULL-INFORMATION PROBLEMS

Observation

That we do not receive feedback for all experts does not mean that no “appropriate” feedback can be derived for them!

- Consider randomized EWA and expected losses
- Only $\mathbb{E} [\ell(i, Y_t)]$ matters:
 - When ℓ, ℓ' are such that for $\forall i, t$: $\mathbb{E} [\ell(i, Y_t)] = \mathbb{E} [\ell'(i, Y_t)]$ and $0 \leq \ell, \ell' \leq 1$, then the bounds on the expected regret of EWA are the same for both ℓ and ℓ'.
- Idea: construct feedback for the unselected experts
Outline

1. **High Level Overview of the Talks**
2. **Motivation**
 - What is it?
 - Why should we care?
 - Halving: Find the perfect expert! (0/1 loss)
 - No perfect expert? (0/1 loss)
 - Predicting Continuous Outcomes
3. **Discrete Prediction Problems**
 - Randomized forecasters
 - Weighted Average Forecaster
 - Follow the perturbed leader
4. **Tracking the Best Expert**
 - Fixed share forecaster
 - Variable-share forecaster
 - Other large classes of experts
5. **Non-stochastic Bandit Problems**
 - Exp3.P: An algorithm for non-stochastic bandit problems
6. **Conclusions**
Feedback for all experts!

- Work with gains: $g(i, Y_t) = 1 - \ell(i, Y_t)$
- Proposed feedback:

$$\tilde{g}(i, Y_t) = \begin{cases} \frac{g(i, Y_t)}{p_{i,t}}, & \text{if } l_t = i \\ 0, & \text{otherwise.} \end{cases}$$

- Compact notation: $\tilde{g}(i, Y_t) = \mathbb{I}_{\{l_t = i\}} g(l_t, Y_t)/p_{l_t,t}$.
- Prop: If $p_{j,t} > 0$ holds $\forall j \in \mathbb{N}$, where p_{jt} depends on $g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1})$, then $\forall i \in \mathbb{N}$,

$$\mathbb{E} [\tilde{g}(i, Y_t) | g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).$$

- 1st problem: as $p_{it} \to 0$, $\tilde{g}(i, Y_t) \to \infty$ (not $\tilde{g}(i, Y_t) \leq 1$!).
- Idea: prevent $p_{it} \to 0$ by adding exploration!
- 2nd problem: If $\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t)$, starvation may happen.
FEEDBACK FOR ALL EXPERTS!

- Work with gains: \(g(i, Y_t) = 1 - \ell(i, Y_t) \)
- Proposed feedback:

\[
\tilde{g}(i, Y_t) = \begin{cases}
\frac{g(i, Y_t)}{p_{i,t}}, & \text{if } l_t = i \\
0, & \text{otherwise.}
\end{cases}
\]

- Compact notation: \(\tilde{g}(i, Y_t) = \mathbb{I}_{\{l_t=i\}} \frac{g(l_t, Y_t)}{p_{l,t}} \).
- Prop: If \(p_{j,t} > 0 \) holds \(\forall j \in \mathbb{N} \), where \(p_{j,t} \) depends on \(g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}) \), then \(\forall i \in \mathbb{N} \),

\[
\mathbb{E} [\tilde{g}(i, Y_t) | g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
\]

- 1st problem: as \(p_{i,t} \to 0 \), \(\tilde{g}(i, Y_t) \to \infty \) (not \(\tilde{g}(i, Y_t) \leq 1 \)!
- Idea: prevent \(p_{i,t} \to 0 \) by adding exploration!
- 2nd problem: If \(\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t) \), starvation may happen.
Feedback for all experts!

- Work with gains: \(g(i, Y_t) = 1 - \ell(i, Y_t) \)
- Proposed feedback:
 \[
 \tilde{g}(i, Y_t) = \begin{cases}
 \frac{g(i, Y_t)}{p_{i,t}}, & \text{if } I_t = i \\
 0, & \text{otherwise.}
 \end{cases}
 \]
- Compact notation: \(\tilde{g}(i, Y_t) = \mathbb{I}_{\{I_t=i\}} \frac{g(I_t, Y_t)}{p_{I_t,t}}. \)

Prop: If \(p_{j,t} > 0 \) holds \(\forall j \in N \), where \(p_{jt} \) depends on \(g(I_1, Y_1) \), \ldots, \(g(I_{t-1}, Y_{t-1}) \), then \(\forall i \in N, \)

\[
\mathbb{E} [\tilde{g}(i, Y_t) | g(I_1, Y_1), \ldots, g(I_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
\]

1\(^{st}\) problem: as \(p_{it} \to 0 \), \(\tilde{g}(i, Y_t) \to \infty \) (not \(\tilde{g}(i, Y_t) \leq 1! \)).

Idea: prevent \(p_{it} \to 0 \) by adding exploration!

2\(^{nd}\) problem: If \(\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t) \), starvation may happen.
Feedback for all experts!

- Work with gains: \(g(i, Y_t) = 1 - \ell(i, Y_t) \)
- Proposed feedback:
 \[
 \tilde{g}(i, Y_t) = \begin{cases}
 \frac{g(i, Y_t)}{p_{i,t}}, & \text{if } I_t = i \\
 0, & \text{otherwise.}
 \end{cases}
 \]
- Compact notation: \(\tilde{g}(i, Y_t) = \mathbb{1}_{\{I_t = i\}} \frac{g(I_t, Y_t)}{p_{I_t,t}} \).
- Prop: If \(p_{j,t} > 0 \) holds \(\forall j \in \mathbb{N} \), where \(p_{jt} \) depends on \(g(I_1, Y_1), \ldots, g(I_{t-1}, Y_{t-1}) \), then \(\forall i \in \mathbb{N} \),
 \[
 \mathbb{E} [\tilde{g}(i, Y_t)|g(I_1, Y_1), \ldots, g(I_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
 \]
- 1st problem: as \(p_{it} \to 0 \), \(\tilde{g}(i, Y_t) \to \infty \) (not \(\tilde{g}(i, Y_t) \leq 1 \)).
- Idea: prevent \(p_{it} \to 0 \) by adding exploration!
- 2nd problem: If \(\sum_{t=1}^n g'(i, Y_t) \leq \sum_{t=1}^n g(i, Y_t) \), starvation may happen.
Feedback for all experts!

- Work with gains: $g(i, Y_t) = 1 - \ell(i, Y_t)$
- Proposed feedback:
 \[
 \tilde{g}(i, Y_t) = \begin{cases}
 \frac{g(i, Y_t)}{p_{i,t}}, & \text{if } l_t = i \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- Compact notation: $\tilde{g}(i, Y_t) = \mathbb{I}_{\{l_t = i\}} g(l_t, Y_t) / p_{l_t,t}$.
- Prop: If $p_{j,t} > 0$ holds $\forall j \in N$, where p_{jt} depends on $g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1})$, then $\forall i \in N$,
 \[
 \mathbb{E} [\tilde{g}(i, Y_t) | g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
 \]

- 1st problem: as $p_{it} \to 0$, $\tilde{g}(i, Y_t) \to \infty$ (not $\tilde{g}(i, Y_t) \leq 1$).
 - Idea: prevent $p_{it} \to 0$ by adding exploration!

- 2nd problem: If $\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t)$, starvation may happen.
Feedback for all experts!

- Work with gains: \(g(i, Y_t) = 1 - \ell(i, Y_t) \)
- Proposed feedback:

\[
\tilde{g}(i, Y_t) = \begin{cases}
\frac{g(i, Y_t)}{p_{i,t}}, & \text{if } l_t = i \\
0, & \text{otherwise.}
\end{cases}
\]

- Compact notation: \(\tilde{g}(i, Y_t) = \mathbb{I}_{\{l_t=i\}} g(l_t, Y_t)/p_{l_t,t}. \)
- Prop: If \(p_{j,t} > 0 \) holds \(\forall j \in N \), where \(p_{j,t} \) depends on \(g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}) \), then \(\forall i \in N \),

\[
\mathbb{E} [\tilde{g}(i, Y_t)|g(l_1, Y_1), \ldots, g(l_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
\]

- 1st problem: as \(p_{it} \to 0 \), \(\tilde{g}(i, Y_t) \to \infty \) (not \(\tilde{g}(i, Y_t) \leq 1 \)).
- Idea: prevent \(p_{it} \to 0 \) by adding exploration!

- 2nd problem: If \(\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t) \), starvation may happen.
FEEDBACK FOR ALL EXPERTS!

- Work with gains: \(g(i, Y_t) = 1 - \ell(i, Y_t) \)
- Proposed feedback:
 \[
 \tilde{g}(i, Y_t) = \begin{cases}
 \frac{g(i, Y_t)}{p_{i,t}}, & \text{if } I_t = i \\
 0 & \text{otherwise.}
 \end{cases}
 \]
- Compact notation: \(\tilde{g}(i, Y_t) = \mathbb{1}_{\{I_t=i\}} g(I_t, Y_t)/p_{I_t,t} \).
- Prop: If \(p_{j,t} > 0 \) holds \(\forall j \in N \), where \(p_{j,t} \) depends on \(g(I_1, Y_1), \ldots, g(I_{t-1}, Y_{t-1}) \), then \(\forall i \in N \),
 \[
 \mathbb{E} [\tilde{g}(i, Y_t)|g(I_1, Y_1), \ldots, g(I_{t-1}, Y_{t-1}), Y_t] = g(i, Y_t).
 \]
- 1st problem: as \(p_{i,t} \to 0 \), \(\tilde{g}(i, Y_t) \to \infty \) (not \(\tilde{g}(i, Y_t) \leq 1 \)).
- Idea: prevent \(p_{i,t} \to 0 \) by adding exploration!
- 2nd problem: If \(\sum_{t=1}^{n} g'(i, Y_t) \leq \sum_{t=1}^{n} g(i, Y_t) \), starvation may happen.
Algorithm

Exp3.P($\eta, \beta, \gamma > 0$) [Auer et al., 2002a]

Initialize: $w_{i0} = 1$, $p_{i1} = 1/N$

A time t do:

1. Compute action selection probabilities:

$$p_{it} = (1 - \gamma) \frac{w_{i,t-1}}{\sum_{j=1}^{N} w_{j,t-1}} + \gamma \frac{1}{N}.$$

2. Select $l_t \sim p_{.,t}$

3. Compute inflated feedbacks:

$$g'(i, Y_t) = \tilde{g}(i, Y_t) + \frac{\beta}{p_{it}}.$$

4. Update weights:

$$w_{it} = w_{i,t-1} e^{\eta g'(i, Y_t)}$$
Algorithm

Exp3.P($\eta, \beta, \gamma > 0$) [Auer et al., 2002a]

Initialize: $w_{i0} = 1$, $p_{i1} = 1/N$

A time t do:

1. Compute action selection probabilities:

 $$p_{it} = (1 - \gamma) \frac{w_{i,t-1}}{\sum_{j=1}^{N} w_{j,t-1}} + \gamma \frac{1}{N}.$$

2. Select $l_t \sim p_{.,t}$

3. Compute inflated feedbacks:

 $$g'(i, Y_t) = \tilde{g}(i, Y_t) + \frac{\beta}{p_{it}}.$$

4. Update weights:

 $$w_{it} = w_{i,t-1} e^{\eta g'(i, Y_t)}.$$
Algorithm

Exp3.P(η, β, γ > 0) [Auer et al., 2002a]

Initialize: $w_{i0} = 1$, $p_{i1} = 1/N$

A time t do:

1. **Compute action selection probabilities:**
 $$p_{it} = (1 - γ) \frac{w_{i,t-1}}{\sum_{j=1}^{N} w_{j,t-1}} + γ \frac{1}{N}.$$

2. **Select** $l_t \sim p_{.,t}$

3. **Compute inflated feedbacks:**
 $$g'(i, Y_t) = \tilde{g}(i, Y_t) + \frac{β}{p_{it}}.$$

4. **Update weights:**
 $$w_{it} = w_{i,t-1} e^{ηg'(i, Y_t)}.$$
Algorithm

EXP3.P(\(\eta, \beta, \gamma > 0\)) [Auer et al., 2002a]

Initialize: \(w_{i0} = 1, p_{i1} = 1/N\)

A time \(t\) do:

1. **Compute action selection probabilities:**

 \[
 p_{it} = (1 - \gamma) \frac{w_{i,t-1}}{\sum_{j=1}^{N} w_{j,t-1}} + \gamma \frac{1}{N}.
 \]

2. **Select** \(l_t \sim p_{.,t}\)

3. **Compute inflated feedbacks:**

 \[
 g'(i, Y_t) = \tilde{g}(i, Y_t) + \frac{\beta}{p_{it}}.
 \]

4. **Update weights:**

 \[
 w_{it} = w_{i,t-1} e^{\eta g'(i, Y_t)}
 \]
Regret bound for Exp3.P

Theorem (Regret of Exp3.P [Auer et al., 2002a])

Consider Exp3.P. Let $0 < \delta < 1$ arbitrary, $n \geq 8N\ln(N/\delta)$,

$$
\gamma \leq \frac{1}{2}, \quad 0 < \eta \leq \frac{\gamma}{2N}, \quad \sqrt{\frac{1}{nN} \ln \frac{N}{\delta}} \leq \beta \leq 1.
$$

Then with probability at least $1 - \delta$, we have

$$
\hat{L}_n - L^*_n \leq n(\gamma + \eta(1 + \beta)N) + \frac{\ln N}{\eta} + 2nN\beta.
$$

Choosing β as its lower bound, η as its upper bound, $\gamma = 4N\beta/(3 + \beta)$, then

$$
\hat{L}_n - \min_i L_{in} \leq \frac{11}{2} \sqrt{nN \ln \frac{N}{\delta}} + \frac{\ln N}{2}.
$$

Note: $n \geq 8N\ln(N/\delta)$ ensures that γ (2nd part) is at most $1/2$.
Theorem (Regret of Exp3.P [Auer et al., 2002a])

Consider Exp3.P. Let $0 < \delta < 1$ arbitrary, $n \geq 8N \ln(N/\delta)$,

$$\gamma \leq \frac{1}{2}, \quad 0 < \eta \leq \frac{\gamma}{2N}, \quad \sqrt{\frac{1}{nN} \ln \frac{N}{\delta}} \leq \beta \leq 1.$$

Then with probability at least $1 - \delta$, we have

$$\hat{L}_n - L^*_n \leq n(\gamma + \eta(1 + \beta)N) + \frac{\ln N}{\eta} + 2nN\beta.$$

Choosing β as its lower bound, η as its upper bound, $\gamma = 4N\beta/(3 + \beta)$, then

$$\hat{L}_n - \min_i L_{in} \leq \frac{11}{2} \sqrt{nN \ln \frac{N}{\delta}} + \frac{\ln N}{2}.$$

Note: $n \geq 8N \ln(N/\delta)$ ensures that γ (2nd part) is at most $1/2$.
Why use inflated values?

- $\beta = 0 \Rightarrow \text{Exp3}$

- The expected regret of Exp3 is $O(\sqrt{nN \ln N})$.

Problem:

No high-probability bound on the actual regret!

- Inflated values \Rightarrow
 estimated gains are upper bounds on the true gains with high probability
Why use inflated values?

- $\beta = 0 \Rightarrow \text{Exp3}$
- The expected regret of Exp3 is $O(\sqrt{nN \ln N})$.

Problem:

No high-probability bound on the actual regret!

- Inflated values \Rightarrow
 estimated gains are upper bounds on the true gains with high probability
Why use inflated values?

- $\beta = 0 \Rightarrow \text{Exp3}
- \text{The expected regret of Exp3 is } O(\sqrt{nN \ln N}).

Problem:

No high-probability bound on the actual regret!

- Inflated values \Rightarrow
 estimated gains are upper bounds on the true gains with high probability.
Why use inflated values?

- \(\beta = 0 \Rightarrow \text{Exp3} \)
- The expected regret of Exp3 is
 \[
 O(\sqrt{nN \ln N}).
 \]

Problem:

No high-probability bound on the actual regret!

Inflated values \(\Rightarrow \)
estimated gains are upper bounds on the true gains with high probability
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
Losses vs. Gains

- The algorithm could work with losses, too!

- **Gains:**
 - When an action becomes bad, its weight ceases to grow
 - When an action becomes good, its weight grows

- **Losses:**
 - When an action becomes bad, its weight decreases
 - When an action becomes good (loss=0), its weight is not decreased

- Working with losses:
 - Better when an action becomes bad
 - Quickly reacts then

- Working with gains:
 - Better when an action becomes good
 - Warning: Takes \(N/\gamma \) steps to find out about this action!

- Work with losses: [Cesa-Bianchi et al., 2005]
Losses vs. Gains

- The algorithm could work with losses, too!

- **Gains:**
 - When an action becomes bad, its weight ceases to grow
 - When an action becomes good, its weight grows

- **Losses:**
 - When an action becomes bad, its weight decreases
 - When an action becomes good (loss=0), its weight is not decreased

- Working with losses:
 - Better when an action becomes bad
 - Quickly reacts then

- Working with gains:
 - Better when an action becomes good
 - Warning: Takes N/γ steps to find out about this action!

- Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes $\frac{N}{\gamma}$ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
Losses vs. Gains

- The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes $\frac{N}{\gamma}$ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
 - Warning: Takes $\frac{N}{\gamma}$ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
Losses vs. Gains

The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes \(N/\gamma \) steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
The algorithm could work with losses, too!

Gains:
- When an action becomes bad, its weight ceases to grow
- When an action becomes good, its weight grows

Losses:
- When an action becomes bad, its weight decreases
- When an action becomes good (loss=0), its weight is not decreased

Working with losses:
- Better when an action becomes bad
- Quickly reacts then

Working with gains:
- Better when an action becomes good
- Warning: Takes N/γ steps to find out about this action!

Work with losses: [Cesa-Bianchi et al., 2005]
Full information vs. partial information

- Full information, discrete predictions:
 \[\frac{R_n}{n} \leq C_1 \sqrt{\frac{\ln N}{n}} \]

- Bandit setting:
 \[\frac{R_n}{n} \leq C_2 \sqrt{\frac{N \ln N}{n}} = C_2 \sqrt{\frac{\ln N}{\frac{n}{N}}} \]

- In the bandit case, it takes \(N \)-times more to drive the average one-step regret down to some level as it takes in the full information case.

- Makes sense!!
Full information, discrete predictions:

$$\frac{R_n}{n} \leq C_1 \sqrt{\frac{\ln N}{n}}$$

Bandit setting:

$$\frac{R_n}{n} \leq C_2 \sqrt{\frac{N \ln N}{n}} = C_2 \sqrt{\frac{\ln N}{n/N}}$$

In the bandit case, it takes N-times more to drive the average one-step regret down to some level as it takes in the full information case.

Makes sense!!
Full information vs. partial information

- Full information, discrete predictions:
 \[\frac{R_n}{n} \leq C_1 \sqrt{\frac{\ln N}{n}} \]

- Bandit setting:
 \[\frac{R_n}{n} \leq C_2 \sqrt{\frac{N \ln N}{n}} = C_2 \sqrt{\frac{\ln N}{n}} \]

- In the bandit case, it takes \(N\)-times more to drive the average one-step regret down to some level as it takes in the full information case.

 Makes sense!!
Full information, discrete predictions:

\[
\frac{R_n}{n} \leq C_1 \sqrt{\frac{\ln N}{n}}
\]

Bandit setting:

\[
\frac{R_n}{n} \leq C_2 \sqrt{\frac{N \ln N}{n}} = C_2 \sqrt{\frac{\ln N}{N}}
\]

In the bandit case, it takes \(N\)-times more to drive the average one-step regret down to some level as it takes in the full information case

Makes sense!!
LOWER BOUND

THEOREM (MINIMAX LOWER BOUND [AUER ET AL., 2002A])

Fix $n, N \geq 1$. Let $n > N/(4 \ln(4/3))$ and assume that the output space \mathcal{Y} has at least 2^N elements. Then there exists a loss function such that

$$\sup_{y_{1:n}} \left(\mathbb{E} \left[\hat{L}_n \right] - \min_{i=1,...,N} L_i \right) \geq \frac{\sqrt{2} - 1}{\sqrt{23 \ln(4/3)}} \sqrt{nN}.$$

Proof.

- One uniform random variable decides which action should be the best.
- Payoffs are Bernoulli $(1/2, 1/2)$, except for the best arm, which is Bernoulli $(1/2 - \epsilon, 1/2 + \epsilon)$.
- Making ϵ sufficiently small (given n, N) makes the N arms hard enough to distinguish in n trials.
Lower Bound

Theorem (Minimax Lower Bound [Auer et al., 2002a])

Fix \(n, N \geq 1 \). Let \(n > N/(4 \ln(4/3)) \) and assume that the output space \(\mathcal{Y} \) has at least \(2^N \) elements. Then there exists a loss function such that

\[
\sup_{\mathcal{Y}_{1:n}} \left(\mathbb{E} \left[\hat{L}_n \right] - \min_{i=1,\ldots,N} L_{in} \right) \geq \frac{\sqrt{2} - 1}{\sqrt{23 \ln(4/3)}} \sqrt{nN}.
\]

Proof.

- One uniform random variable decides which action should be the best.
- Payoffs are Bernoulli \((1/2, 1/2)\), except for the best arm, which is Bernoulli \((1/2 - \epsilon, 1/2 + \epsilon)\).
- Making \(\epsilon \) sufficiently small (given \(n, N \)) makes the \(N \) arms hard enough to distinguish in \(n \) trials.
Theorem (Minimax Lower Bound [Auer et al., 2002a])

Fix \(n, N \geq 1 \). Let \(n > N/(4 \ln(4/3)) \) and assume that the output space \(\mathcal{Y} \) has at least \(2^N \) elements. Then there exists a loss function such that

\[
\sup_{Y_{1:n}} \left(\mathbb{E} \left[\hat{L}_n \right] - \min_{i=1,\ldots,N} L_{in} \right) \geq \frac{\sqrt{2} - 1}{\sqrt{23 \ln(4/3)}} \sqrt{nN}.
\]

Proof.

- One uniform random variable decides which action should be the best.
- Payoffs are Bernoulli \((1/2, 1/2)\), except for the best arm, which is Bernoulli \((1/2 - \epsilon, 1/2 + \epsilon)\).
- Making \(\epsilon \) sufficiently small (given \(n, N \)) makes the \(N \) arms hard enough to distinguish in \(n \) trials.
LOWER BOUND

THEOREM (MINIMAX LOWER BOUND [AUER ET AL., 2002A])

Fix $n, N \geq 1$. Let $n > N/(4 \ln(4/3))$ and assume that the output space \mathcal{Y} has at least 2^N elements. Then there exists a loss function such that

$$\sup_{y_{1:n}} \left(\mathbb{E} \left[\hat{L}_n \right] - \min_{i=1,\ldots,N} L_{in} \right) \geq \frac{\sqrt{2} - 1}{\sqrt{23 \ln(4/3)}} \sqrt{nN}.$$

PROOF.

- One uniform random variable decides which action should be the best.
- Payoffs are Bernoulli $(1/2, 1/2)$, except for the best arm, which is Bernoulli $(1/2 - \epsilon, 1/2 + \epsilon)$.
- Making ϵ sufficiently small (given n, N) makes the N arms hard enough to distinguish in n trials.
LOWER BOUND

Theorem (Minimax Lower Bound [Auer et al., 2002a])

Fix $n, N \geq 1$. Let $n > N/(4 \ln(4/3))$ and assume that the output space \mathcal{Y} has at least 2^N elements. Then there exists a loss function such that

$$
\sup_{y_{1:n}} \left(\mathbb{E} \left[\hat{L}_n \right] - \min_{i=1,\ldots,N} L_{in} \right) \geq \frac{\sqrt{2} - 1}{\sqrt{23 \ln(4/3)}} \sqrt{nN}.
$$

Proof.

- One uniform random variable decides which action should be the best.
- Payoffs are Bernoulli $(1/2, 1/2)$, except for the best arm, which is Bernoulli $(1/2 - \epsilon, 1/2 + \epsilon)$.
- Making ϵ sufficiently small (given n, N) makes the N arms hard enough to distinguish in n trials.
Examples:

- Dynamic pricing: \(h(l_t, Y_t) = (Y_t - l_t)I_{\{Y_t \geq l_t\}} + Y_tI_{\{Y_t < l_t\}} \)
 - we sell; if our price \(l_t \) is higher than \(Y_t \), we lose \(Y_t \),
 otherwise lose \(Y_t - l_t \)
 We get price of customer only if product was sold

- Apple (product) testing: \(\mathcal{Y} = J = \{ \text{"rotten"}, \text{"good for sale"} \} \),
 \(\ell(i, Y_t) = aI_{\{i = \text{"rotten"}\}} + bI_{\{i \neq \text{"rotten"}, Y_t = \text{"rotten"}\}} \)
 Only apples declared as “rotten” are tested

- Bandit problems, routing in a network, cost-efficient prediction (“revealing actions” are costly)

Result: Minimax regret bound: \((Nn)^{2/3}(\ln N)^{1/3} \)

Matching lower bound

Examples:

- Dynamic pricing: \(h(I_t, Y_t) = (Y_t - I_t)\mathbb{I}_{Y_t \geq I_t} + Y_t\mathbb{I}_{Y_t < I_t} \)

 - we sell; if our price \(I_t \) is higher than \(Y_t \), we loose \(Y_t \), otherwise loose \(Y_t - I_t \)

 We get price of customer only if product was sold

- Apple (product) testing: \(\mathcal{Y} = J = \{ "rotten", "good for sale" \} \),
 \(\ell(i, Y_t) = a\mathbb{I}_{i = "rotten"} + b\mathbb{I}_{i \neq "rotten", Y_t = "rotten"} \)

 Only apples declared as "rotten" are tested

- Bandit problems, routing in a network, cost-efficient prediction ("revealing actions" are costly)

Result: Minimax regret bound: \((Nn)^{2/3}(\ln N)^{1/3} \)

Matching lower bound

Examples:

- Dynamic pricing: $h(l_t, Y_t) = (Y_t - l_t)I\{Y_t \geq l_t\} + Y_tI\{Y_t < l_t\}$

 - we sell; if our price l_t is higher than Y_t, we loose Y_t
 - otherwise loose $Y_t - l_t$

 We get price of customer only if product was sold

- Apple (product) testing: $\mathcal{Y} = J = \{\text{“rotten’’}, \text{“good for sale’’}\}$,
 $\ell(i, Y_t) = aI\{i = \text{“rotten’’}\} + bI\{i \neq \text{“rotten’’}, Y_t = \text{“rotten’’}\}$

 Only apples declared as “rotten” are tested

- Bandit problems, routing in a network, cost-efficient prediction (“revealing actions” are costly)

Result: Minimax regret bound: $(Nn)^{2/3}(\ln N)^{1/3}$

Matching lower bound

Examples:

- Dynamic pricing: \(h(l_t, y_t) = (y_t - l_t)\mathbb{I}_{\{y_t \geq l_t\}} + y_t\mathbb{I}_{\{y_t < l_t\}} \)
 - we sell; if our price \(l_t \) is higher than \(y_t \), we lose \(y_t \), otherwise lose \(y_t - l_t \)
 - We get price of customer only if product was sold

- Apple (product) testing: \(\mathcal{Y} = J = \{"rotten", "good for sale"\} \)
 \(\ell(i, y_t) = a\mathbb{I}_{i = "rotten"} + b\mathbb{I}_{i \neq "rotten", y_t = "rotten"} \)
 Only apples declared as "rotten" are tested

- Bandit problems, routing in a network, cost-efficient prediction ("revealing actions" are costly)

Result: Minimax regret bound: \((Nn)^{2/3}(\ln N)^{1/3} \)

Matching lower bound

Examples:

- Dynamic pricing: \(h(I_t, Y_t) = (Y_t - I_t)\mathbb{1}_{\{Y_t \geq I_t\}} + Y_t\mathbb{1}_{\{Y_t < I_t\}} \)

 - we sell; if our price \(I_t \) is higher than \(Y_t \), we loose \(Y_t \),

 otherwise loose \(Y_t - I_t \)

 We get price of customer only if product was sold

- Apple (product) testing: \(\mathcal{Y} = J = \{"rotten", "good for sale"\} \),

 \(\ell(i, Y_t) = a\mathbb{1}_{\{i = "rotten"\}} + b\mathbb{1}_{\{i \neq "rotten", Y_t = "rotten"\}} \)

 Only apples declared as "rotten" are tested

- Bandit problems, routing in a network, cost-efficient

 prediction ("revealing actions" are costly)

Result: Minimax regret bound: \((Nn)^{2/3}(\ln N)^{1/3}\)

Matching lower bound

[Mertens et al., 1994, Rustichini, 1999, Mannor and Shimkin, 2003,
Piccolboni and Schindelhauer, 2001]
Examples:

- **Dynamic pricing:** $h(I_t, Y_t) = (Y_t - I_t)I\{Y_t \geq I_t\} + Y_tI\{Y_t < I_t\}$
 - we sell; if our price I_t is higher than Y_t, we loose Y_t,
 otherwise loose $Y_t - I_t$
 We get price of customer only if product was sold

- **Apple (product) testing:** $\mathcal{Y} = J = \{"rotten", "good for sale"\}$, $\ell(i, Y_t) = aI\{i = \text{"rotten"}\} + bI\{i \neq \text{"rotten"}, Y_t = \text{"rotten"}\}$
 Only apples declared as “rotten” are tested

- **Bandit problems, routing in a network, cost-efficient prediction (“revealing actions” are costly)**

Result: Minimax regret bound: $(Nn)^{2/3}(\ln N)^{1/3}$

Matching lower bound

Examples:

- Dynamic pricing: \(h(l_t, Y_t) = (Y_t - l_t)I\{Y_t \geq l_t\} + Y_tI\{Y_t < l_t\} \)
 - we sell; if our price \(l_t \) is higher than \(Y_t \), we lose \(Y_t \), otherwise loose \(Y_t - l_t \)
 We get price of customer only if product was sold
- Apple (product) testing: \(Y = J = \{\text{"rotten"}, \text{"good for sale"}\} \),
 \(\ell(i, Y_t) = aI\{i = \text{"rotten"}\} + bI\{i \neq \text{"rotten"}, Y_t = \text{"rotten"}\} \)
 Only apples declared as “rotten” are tested
- Bandit problems, routing in a network, cost-efficient prediction ("revealing actions" are costly)

Result: Minimax regret bound: \((Nn)^{2/3}(\ln N)^{1/3}\)

Matching lower bound

Conclusion

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Self-confident forecaster [Auer et al., 2002b]
- Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 - [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 - [Vovk, 2001, Azoury and Warmuth, 2001]
- Great book: [Cesa-Bianchi and Lugosi, 2006]
Conclusions

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)

- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 - [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 - [Vovk, 2001, Azoury and Warmuth, 2001]

- Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - ...
- Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - ...
 - Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Self-confident forecaster [Auer et al., 2002b]
 - ...
- Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Self-confident forecaster [Auer et al., 2002b]
- Great book: [Cesa-Bianchi and Lugosi, 2006]
Conclusions

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]

 ...

- Great book: [Cesa-Bianchi and Lugosi, 2006]
CONCLUSIONS

- Algorithms might work outside of their intended domain
- Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
- Caveat: Algorithms might become too aggressive (risky)
- Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - ...

- Great book: [Cesa-Bianchi and Lugosi, 2006]
Algorithms might work outside of their intended domain
Increasing robustness: larger learning rates, multiplicative updates, tracking, ...
Caveat: Algorithms might become too aggressive (risky)
Side information
 - Gradient based linear forecaster
 - Self-confident forecaster [Auer et al., 2002b]
 - Ridge regression forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - Vovk-Azoury-Warmuth (VAW) forecaster
 [Vovk, 2001, Azoury and Warmuth, 2001]
 - ...
Great book: [Cesa-Bianchi and Lugosi, 2006]

Improved second-order bounds for prediction with expert advice.

D.P. Helmbold, R. S. (1997).
Predicting nearly as well as the best pruning of a decision tree.

General convergence results for linear discriminant updates.

Efficient algorithms and minimax bounds for zero-delay lossy source coding.

Tracking the best of many experts.
pages 204–216.

Hannan, J. (1957).
Approximation to bayes risk in repeated play.
Contributions to the theory of games, 3(97–139).

Tracking the best expert.
Efficient algorithms for the online decision problem.

The weighted majority algorithm.

On-line learning with imperfect monitoring.

Repeated games.
CORE Discussion paper, no. 9420, 9421, 9422, Louvain-la-Neuve, Belgium.

Discrete prediction games with arbitrary feedback and loss.

Minimizing regret: The general case.

Competitive on-line statistics.