Agnostic KWIK learning and efficient approximate reinforcement learning

István Szita Csaba Szepesvári

Department of Computing Science
University of Alberta

Annual Conference on Learning Theory, 2011
Outline

1 Basic concepts
 - Efficient reinforcement learning
 - The “Knows what it knows” (KWIK) framework

2 Agnostic KWIK learning
 - Definitions
 - Results for several problem classes

3 Summary
Reinforcement learning

- Maximize long-term reward
- but environment is unknown
- agent needs to explore, but exploration is costly
Efficient RL algorithms

- make bounded amount of non-optimal steps\(^1\)
- balance exploration and exploitation
- exist for many environment classes (e.g. MDPs)

\(^{1}\)alternative definitions exist
The “Rmax-construction”:
A general scheme for efficient RL

- keep track of “known” areas → KWIK learner
- assume that unknown areas have maximum reward
- plan optimal path within the known area
- collect new experience when leaving known area
The “Knows what it knows” (KWIK) framework

[Li, Walsh, Littman, 2008]

- Adversary picks a concept
- repeat:
 - Adversary picks query x
 - if Learner passes,
 - Adversary gives noisy feedback
 - Learner updates itself
 - if Learner predicts,
 - it has to be accurate
 - otherwise it fails
The Rmax construction with a KWIK learner

\[\text{KWIK-Rmax}(\text{MDPLearner}, \text{Planner}) \]
\[\text{MDPLearner}.initialize(...) \]
\[\text{Planner}.initialize(...) \]
\[\text{Observe } s_1 \]
\[\text{for } t := 1, 2, \ldots \text{ do} \]
\[\quad a_t = \text{Planner.plan}(\text{OPT}(\text{MDPLearner}), s_t) \]
\[\quad \text{Execute } a_t \text{ and observe } s_{t+1}, r_t \]
\[\quad \text{if } \text{MDPLearner}.predict(s_t, a_t) = \bot \text{ then} \]
\[\quad \text{MDPLearner}.learn((s_t, a_t), (\delta_{s_{t+1}}, r_t)) \]

\{Optimistic Wrapper\}
\[\text{Opt}(\text{MDPLearner}).predict(s, a) \]
\[\quad \text{if } \text{MDPLearner}.predict(s, a) = \bot \text{ then} \]
\[\quad \quad \text{return } (\delta_s(\cdot), (1 - \gamma)V_{\max}) \]
\[\quad \text{else} \]
\[\quad \quad \text{return } \text{MDPLearner}.predict(s, a) \]
The KWIK-Rmax theorem

[Li, Walsh, Littman, 2008]

Let G be a class of environment models. (e.g. the class of MDPs, factored MDPs, linear MDPs). If we have

- An efficient KWIK-learner for class G
- A near-optimal planner for models in G

then the KWIK-Rmax algorithm constructed from these is an efficient reinforcement learner on G.

but what if the environment is not contained in the class G?
The need for agnostic learning

In reinforcement learning, we often need to
- environment is almost a factored MDP, but modeled as an FMDP
- state abstraction (e.g., aggregation) is used, but MDP is uncompressible
- function approximation is used

In such cases, we should not assume that we know the class \mathcal{G} of the environment. We should be agnostic!

“Agnostic” = no knowledge of where the adversary chooses its concept from
Agnostic KWIK learning

- agent does not know the problem class \mathcal{G}
- it chooses from another class \mathcal{H}
- we assume that an upper bound on their distance is known:

$$D \geq \Delta(\mathcal{G}, \mathcal{H}) \overset{\text{def}}{=} \sup_{(X,Y,g,Z) \in \mathcal{G}} \inf_{h \in \mathcal{H}} \|h - g\|_{\infty}.$$
we cannot guarantee ϵ accuracy (of course)

interestingly, we cannot guarantee $D + \epsilon$

we require $r \cdot D + \epsilon$
 ▶ $r \geq 1$ is the competitiveness factor
Problems and problem classes

Definition (Problem)

A **problem** is a 5-tuple \(G = (\mathcal{X}, \mathcal{Y}, g, Z, \| \cdot \|) \), where

- \(\mathcal{X} \) is the set of inputs,
- \(\mathcal{Y} \subseteq \mathbb{R}^d \) is a measurable set of possible responses,
- \(Z : \mathcal{X} \rightarrow \mathcal{P}(\mathcal{Y}) \) is the noise distribution (zero-mean)
- \(\| \cdot \| : \mathbb{R}^d \rightarrow \mathbb{R}_+ \) is a semi-norm on \(\mathbb{R}^d \).

Definition (Problem class)

A **problem class** \(\mathcal{G} \) is a set of problems.
Agnostic KWIK learner

- $D > 0$: approximation error bound
- $r \geq 1$: competitiveness factor
- $\epsilon \geq 0$: accuracy slack
- $\delta \geq 0$: confidence parameter

A learning agent is agnostic KWIK for (ϵ, δ, r, D) if outside of an event of probability at most δ, it holds that

- when it predicts, error is $\leq r \cdot D + \epsilon$
- \# of passes is bounded

Complexity: \# of passes $= f(\epsilon, \delta, D, r)$
Agnostic KWIK-Rmax theorem

Fix $\epsilon > 0$, $r \geq 1$, $0 < \delta \leq 1/2$. If we have

- an $(rD + \epsilon)$-accurate agnostic KWIK learner, with complexity bound $B(\delta)$, and
- a e_{planner}-accurate planner,

then with prob. $1 - 2\delta$, the KWIK-Rmax algorithm makes

$$O \left(\frac{V_{\max}(1 - \gamma)L}{rD + \epsilon} \left\{ B(\delta) + \log \left(\frac{L}{\delta} \right) \right\} \right)$$

mistakes larger than $\frac{5(rD + \epsilon)}{1 - \gamma} + e_{\text{planner}}$, where

$$L = O((1 - \gamma)^{-1} \log(V_{\max}(1 - \gamma)/(rD + \epsilon)))$$

is the $rD + \epsilon$-horizon time.
The agnostic KWIK-Rmax theorem justifies the agnostic KWIK framework!

.. but what can we “agnostic KWIK” learn?
Finite hypothesis class \mathcal{H}, deterministic case

- Learner is given D and the hypotheses $f_1, \ldots, f_{|\mathcal{H}|}$;
- does not know the true concept g
- for each query x, see if there is a prediction y such that $|y - f_i(x)| \leq D$ for all i
- if yes, then y is a good prediction! ($2D$-accurate)
- if not, then we have to pass
 - and receive $g(x)$
 - $|y - f_i(x)| > D$ for at least one f_i
 - so we can exclude it
Finite hypothesis class \mathcal{H}, deterministic case

The previous algorithm
- passes at most $|\mathcal{H}| - 1$ times (for each “i don’t know”, it excludes at least one hypothesis)
- gives $2D$-accurate predictions ($r = 2, \epsilon = 0$)
A sample run of the agnostic KWIK learner
solution is not trivial:

- We cannot exclude a hypothesis by a single sample. We need to take averages.
- If $\sum (y_t - f(x_t))$ is small, f may be still bad (adversary selects over- and underestimating places alternately)
- If $\sum (y_t - f(x_t))$ is large, f is definitely bad
 - but the adversary can prevent us from seeing such a case (for every 1000 small-error x_t it gives one large-error one)
Finite hypothesis class \mathcal{H}, noisy problems

If $f_1 < f_2 + 2D$ on some region, then sample average in that region is much closer to one of them. The other one can be excluded.

$\mathbf{f_1} > \mathbf{f_2}$
Finite hypothesis class \(\mathcal{H} \), noisy problems

Algorithm:

- keep a bag of samples for each \(f_i, f_j \)
- for each query \(x \), see if there is a prediction \(y \) such that
 \[|y - f_i(x)| < D + \epsilon/2 \] for all \(i \)
- if yes, then \(y \) is a good prediction! (\(2D + \epsilon \)-accurate)
- if not, then we have to pass
 - and receive \(y' = g(x) + \text{noise} \)
 - \(f_i(x) \ll f_j(x) \) for at least one \(f_i, f_j \)
 - add \((x, y')\) to the corresponding bag
- if \(m \) samples gathered in a bag, calculate sample average
 - one hypothesis can be excluded
<table>
<thead>
<tr>
<th>Hypothesis class</th>
<th>Approx.</th>
<th>Agnostic KWIK</th>
<th>KWIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite, deterministic</td>
<td>$2D$</td>
<td>$N - 1$</td>
<td>$N - 1$</td>
</tr>
<tr>
<td>Finite, noisy</td>
<td>$2D + \epsilon$</td>
<td>$O \left(\frac{N^2}{\epsilon^2} \log \frac{N}{\delta} \right)$</td>
<td>$O \left(\frac{N}{\epsilon^2} \log \frac{N}{\delta} \right)$</td>
</tr>
<tr>
<td>d-dim linear, deterministic</td>
<td>$2D + \epsilon$</td>
<td>$O \left(d! \left(\frac{1}{\epsilon} + 1 \right)^d \right)$</td>
<td>$d + 1$</td>
</tr>
<tr>
<td></td>
<td>$2D$</td>
<td>$\Omega(2^d)$</td>
<td>∞</td>
</tr>
<tr>
<td>d-dim linear, noisy</td>
<td>$2D + \epsilon$</td>
<td>$O \left(\frac{1}{\epsilon^{2d+2}} \log \frac{1}{\delta \epsilon^d} \right)$</td>
<td>$O \left(\frac{d^3}{\epsilon^4} \log \frac{1}{\delta \epsilon} \right)$</td>
</tr>
</tbody>
</table>
Summary

Agnostic KWIK learning...
- is a new online learning framework
- can be applied to efficient reinforcement learning with non-exact models
- is generally much harder than ordinary KWIK
- proofs and examples in the paper

Open problems:
- agnostic KWIK learner for transition probabilities (essential for agnostic learning of MDPs)
- How to do agnostic RL more efficiently, \textit{without} agnostic KWIK (agnostic KWIK is too restrictive)