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Abstract

This paper proposes a novel subspace approach towards identification of optimal residual models for process fault detection and

isolation (PFDI) in a multivariate continuous-time system. We formulate the problem in terms of the state space model of the con-
tinuous-time system. The motivation for such a formulation is that the fault gain matrix, which links the process faults to the state
variables of the system under consideration, is always available no matter how the faults vary with time. However, in the discrete-time
state space model, the fault gain matrix is only available when the faults follow some known function of time within each sampling

interval. To isolate faults, the fault gain matrix is essential. We develop subspace algorithms in the continuous-time domain to
directly identify the residual models from sampled noisy data without separate identification of the system matrices. Furthermore,
the proposed approach can also be extended towards the identification of the system matrices if they are needed. The newly proposed

approach is applied to a simulated four-tank system, where a small leak from any tank is successfully detected and isolated. To make a
comparison, we also apply the discrete time residual models to the tank system for detection and isolation of leaks. It is demonstrated
that the continuous-time PFDI approach is practical and has better performance than the discrete-time PFDI approach.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper proposes a novel subspace approach
towards identification of optimal residual models for
process fault detection and isolation (PFDI) in a multi-
variate continuous-time (CT) system. We formulate the
problem in terms of the CT state space model, i.e.
{A, B, C, D} of the system, because most physical sys-
tems are CT by nature. Representation of CT systems
by discrete-time (DT) models is only an approximation
of their dynamics. Since it is easier to identify DT
models than CT models and in many cases a CT sys-
tem’s dynamics can be well represented by a DT model,
DT models have been widely used with success. How-
ever, in some cases, e.g. in the isolation of process faults,
one has to use CT models. For example, while detection
and isolation of sensor faults in a CT system can be per-
formed using its DT state space model [5,12,21], most of
the work done on PFDI depends on the CT state space
model [7,13,15,27] of the system.

Note that to perform PFDI, besides knowing the
normal state space model: {A, B, C, D} the fault gain
matrix that links the process faults to the state variables
of the system is indispensable. We show in this paper
that for the CT state space model of the system, the
fault gain matrix is always available no matter how the
faults are varying with time. However, in the DT state
space model of the system, the fault gain matrix is
available only when the faults follow some known
functions of time, e.g. being piece-wise constant within
one sampling interval. Without knowing the fault gain
matrix, while process fault detection can still be carried
out, process fault isolation is absolutely impossible.

Most of the well known PFDI approaches, e.g. the
observer-based approaches and the Chow–Willsky
approach [6,7,13,15,27,29] assumes the availability of a
CT state space model of the system considered. In a
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limited number of cases, a CT state space model of the
system can be obtained from first principles when the
mechanisms of the system are well understood. How-
ever, in complex systems such as chemical engineering
processes, building the CT state space models by means
of the first principles is extremely difficult. An
empirical process model by use of subspace methods of
identification (SMI) is a good alternative.

SMI has become an active research area and has been
successfully applied to identification of multivariate DT
state space models since the late 1980s [17–20,23,24]. In
comparison with the traditional prediction errors meth-
ods (PEM) of identification [14] SMI has better numer-
ical properties for systems with high dimensionality. For
instance, a detailed remark regarding the advantage of
SMI over the PEM can be seen in [25]. SMI has also been
applied to the identification of primary residual models
(PRM) for sensor fault detection and isolation [12,21].

Recently, SMI for CT models has been proposed [11].
However, this approach has a drawback: it is sensitive
to the initial values of CT signals. In this paper, we
choose the numerical integrators proposed by [22] to
transform the signals and their derivatives in the CT
domain into sampled data. We propose a SMI and
apply it to the transformed signals for identification of
the primary residual model (PRM) for process fault
detection without identifying the system matrices:
{A, B, C, D}, explicitly. The chosen numerical inte-
grators are immune to initial values of the CT signals,
computationally efficient, and have sufficient accuracy.
Furthermore, we transform the PRM into a set of
structured residual models (SRMs) for fault isolation. The
SRMs are designed such that each structured residual
vector (SRV) generated by one SRM is most sensitive to
only one single fault while insensitive to the other faults.

The newly proposed approach is applied to a simu-
lated tank system, where detection and isolation of leaks
in any tanks is successfully conducted. Moreover,
although this approach is oriented for residual models
identification, it can be easily extended to the identifica-
tion of the complete system model {A, B, C, D}, if
necessary. For example, in many control relevant pro-
blems, a knowledge of {A, B, C, D} is usually required.

This paper is organized as follows. Section 2 is devo-
ted to motivation and problem formulation. Section 3
outlines the numerical integrators to be used to trans-
form the CT signals into DT data. Identification of the
PRM for fault detection is given in Section 4. In Section
5, identification of a set of SRMs for isolation of single
and multiple faults is investigated. The proposed
approach is numerically evaluated in Section 6, where
its effectiveness in detection and isolation of leaks in a
simulated tank system is demonstrated. In addition, to
make a comparison, the detection and isolation of leaks
by means of the DT residual models has also been per-
formed. The paper ends in Section 7 with conclusions
and remarks. A supplementary result concerned with the
estimation of {A, B, C, D} is given in the Appendices.
2. Motivation and problem formulation

2.1. Motivation

As depicted in Fig. 1, a four-tank system with leak
�i tð Þ in the ith tank, 8i 2 [1,4] can be represented by the
following equations [10]:
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where, Ai is the cross-section of tank i, ai is the cross-
section of the ith outlet hole, and hi is the water level in
tank i. Furthermore, in Eq. (1), �i is the voltage applied
to Pump i, and ki�i is the corresponding flow. The
parameters �1; �2 2 0; 1ð Þ are determined from how the
valves are set prior to an experiment. The flow to tank 1
is �1k1�1, the flow to tank 4 is 1 � �1ð Þk1�1 and similarly
for tanks 2 and 3. The acceleration due to gravity is
denoted by g. The measured level signals are
kch1; kch2; kch3 and kch4 where kc is a parameter asso-
ciated with the sensor gain. In addition,

�i ¼
1; if the ith tank leaks:
0; if the ith does not leak:

�
Eq. (1) can be linearized around an operating point

([10]): ho1; h
o
2; h

o
3 ; h

o
4 ; �

o
1 ; �

o
2

� �
, where hoi and, �o

j ; 8i 2 [1,4]
Fig. 1. Schematic of the four water tank system.
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and j 2 [1,2], are the values of levels and voltages,
respectively. As a consequence, the following state-
space model can be obtained:

x
:
tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Ndifdi tð Þ

y tð Þ ¼ Cx tð Þ ð2Þ

where, x(t)= h�1 tð Þ h
�
2 tð Þ h

�
3 tð Þ h

�
4 tð Þ

� �T
is the state vari-

able vector in terms of deviation variables with h�i tð Þ ¼

hi tð Þ � h
o
i ; 8i ¼ 1; 4; u tð Þ ¼ �1 tð Þ � �o

1 �2 tð Þ � �o
2

� �T
is the

input vector, y tð Þ ¼ kch
�
1 tð Þ kch

�
2 tð Þ kch

�
3 tð Þ kch

�
3 tð Þ

�
kch

�
4 tð Þ�

T is the output vector, and A;B;Cf g are system
matrices, assuming that some or all the elements of x(t)
are measurable. Details of A, B, and C can be seen in
[10]. Further, in Eq. (2), fdi tð Þ 2 Rdi is the equivalent
fault magnitude vector containing elements of
���

1
tð Þ

A1
� � �

���
4
tð Þ

A4

h iT
with Ndi standing for the associated

columns of the 4�4 identity matrix I4; 8di 2 [1,4]. Note
that ��i tð Þ ¼ �i tð Þ � �oi ; where �oi is the value of �i tð Þ at an
operating point, 8i 2 [1,4].

Although Eq. (2) is derived for the four-tank system, it
can be generalized to describe a wide class of multivariate
linear time-invariant CT systems with process faults as
follows:

x
:
tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Ndifdi tð Þ

y tð Þ ¼ Cx tð Þ þDu tð Þ ð3Þ

where u tð Þ 2 Rq; y tð Þ 2 Rm; x tð Þ 2 Rn; fdi tð Þ 2 Rdi ;N di 2

Rn�di ; 8di 2 1; n½ �, and {A, B, C, D} are similar to those
defined in Eq. (2) (therein D=0) with compatible dimen-
sions. We assume that {C, A} is observable. Furthermore,
in the sequel throughout the paper, we assume that the
order n is known, because schemes for the order deter-
mination in the subspace identification framework are
available [1]. Note that in Eq. (3), the fault model is
simply Ndi , i.e. columns of the identity matrix In 2 Rn�n.
However, as will be shown in the next paragraph, the fault
model in the DT state space model is not always available.

Discretizing Eq. (3) with a sampling period Ts leads to
the following DT state space model [2]

x kþ1ð Þ ¼Adx kð ÞþBdu kð ÞþeATs
ðTs

0

e�A�Ndi fdi kTsþ�ð Þd�

y kð Þ ¼ Cdx kð Þ þDdu kð Þ ð4Þ

where

Ad ¼ e
ATs ;Bd ¼

ðTs
0

eA�Bd�

Cd ¼ C;Dd¼ D ð5Þ

and the input is assumed to be invariant within each
sampling interval, i.e. u kTs þ �ð Þ ¼ u kð Þ for 0<� 4�s.
In Eq. (4), if fdi kTs þ �ð Þ is assumed to be invariant
within a sampling interval, fdi(kTs+�) =fdi(kTs), 8t2(0,
Ts), the fault related term is then equal to

eATs
ðTs

0

e�A�Ndid�

� �
fdi kð Þ;

where we denote fdi kTsð Þ ¼ fdi kð Þ. Consequently, the
fault gain matrix in the DT state space equation is

eATs
ðTs

0

e�A�Ndid� ¼ AdA
�1 In � A

�1
d


 �
Ndi:

However, almost invariably this assumption will not
hold, and therefore the fault-contribution term in the
right hand side (RHS) of Eq. (4) is

eATs
ðTs

0

e�A�Ndifdi kTs þ �ð Þd�

In this case, since fdi kTs þ �ð Þ is time varying,
8� 2 0;Ts½ �, the fault gain matrix in the DT state space
is not available. Without such a matrix, while fault
detection can still be carried out, nothing can be done
with respect to fault isolation in terms of the Chow–
Willsky scheme [5] and any observer-based scheme [6].
In particular, the assumption can be severely misleading
if the sampling period Ts is relatively large. To obtain
the aforementioned fault gain matrix, one way is to
increase the sampling frequency 1

Ts
significantly. How-

ever, this can increase the cost of collecting data and
cause numerical issues in system identification and con-
trol as pointed out by [16]. Therefore, for the purpose of
process fault isolation in a CT system, a knowledge of
its CT state space representation is essential. Note that
even if the assumption of piece-wise constancy holds, a
knowledge of A in the CT state space equation is
necessary for the calculation of the DT fault gain
matrix: AdA

�1 In � A
�1
d


 �
Ndi

2.2. Problem formulation

Differentiating Eq. (3) repeatedly, we obtain the ith
derivative of y(t) as follows:

y ið Þ tð Þ ¼ CAix tð Þ þ C
Xi�1

j¼0

Ai�1�j Bu jð Þ tð Þ þ Ndi f
jð Þ
di
tð Þ

h i
þDu ið Þ tð Þ;

where i 2 1; s½ �, and u jð Þ tð Þ; f jð Þ

d tð Þ
n o

are the jth deriva-

i

tives of u(t) and fdi (t), respectively. Subsequently, by
stacking, we arrive at

ys tð Þ ¼ Csx tð Þ þHsus tð Þ þGsNs;di fs;di tð Þ ð6Þ
W. Li et al. / Journal of Process Control 13 (2003) 407–421 409



where, Ns;di ¼ Isþ1 � Ndi 2 Rns�di sþ1ð Þ , and � denotes the
Kronecker tensor product;

ys tð Þ ¼

y tð Þ
y 1ð Þ tð Þ

..

.

y sð Þ tð Þ

26664
37775 2 Rms

is the stacked output vector;

Cs ¼

C

CA

..

.

CAs

2664
3775 2 Rms�n

is the extended observability matrix; and

Hs ¼

D 0 . . . 0

CB D ..
.

..

. . .
. . .

.

CAS-1 B . . . CB D

26664
37775 2 Rms�qs

is a lower triangular block Toeplitz matrix. In addition,

Gs ¼

0 . . . 0

C 0 ..
.

..

. . .
. . .

.

CAs�1 . . . C 0

26664
37775 2 Rms�ns

is analogous to Hs in structure. Note that Gs is com-
pletely dependent on the first ms rows of Cs. Therefore,
once Cs is identified, from it Gs can be derived. In
addition, in Eq. (6), s is defined as the order of the
parity space or the maximum detectability index of the
fault [13] and is selected to be equal to n throughout the
paper without loss of generality; ms=(s+1)m;
ns=(s+1)n; and qs=(s+1)q. The stacked vectors us tð Þ 2
Rqs and fs;di tð Þ are expressed in the same formats as ys(t).

We introduce

eHHs ¼ Imsj �Hs½ � 2 Rms� msþqsð Þ

where Ims 2 Rms�ms is an identity matrix, then we can
rewrite Eq. (6) as

eHHs ys tð Þ
us tð Þ

� �
¼ Csx tð Þ þGsNs;di fs;di tð Þ ð7Þ

Pre-multiplying Eq. (7) by a matrixW0, which lies in the
null space of Cs, i.e. W0Cs ¼ 0, produces

�cs tð Þ � Ps
ys tð Þ
us tð Þ

� �
¼W0GsN s;di fs;di tð Þ 2 Rsn

ð8Þ
where Ps �W0
eHHs ¼ W0j �W0Hs½ � is defined as the

PRM for fault detection. Note that W0Gs is the fault
model in �cs tð Þ.

By extending the Chow–Willsky scheme in the DT
domain [5] to the CT domain, we define �cs tð Þ as the
continuous-time primary residual vector (CT-PRV),
because it is zero if no fault occurs, i.e. fdi tð Þ ¼ 0; or
nonzero if a fault occurs, i.e. fdi tð Þ 6¼ 0. In order to
ensure that the process fault fdi(t) is detected with the
highest sensitivity, we design W0 to have maximum
covariance with Gs while it is orthogonal to Cs. Mathe-
matically we establish the following objective functions,
8i; j ¼ 1;Rank Gsð Þ½ �

� �T
i 6¼ j
� �

.

Ji0 ¼ max
W0 i;:ð Þ

W0 i; :ð ÞGsG
T
sW

T
0 i; :ð Þ �W0 i; :ð ÞCs�

i
0

� li1 W0 i; :ð Þ
�� ��

2
�1


 �
� li2W0 i; :ð ÞWT

0 j; :ð Þ ð9Þ

whereW0(i; :) andW0(j; :) are the ith and jth rows ofW0,
respectively; �i0 2 Rn; li1; l

i
2

� �
are the Lagrange multi-

pliers; and || ||2 is the 2-norm of a vector. Note that in the
objective functions, W0 i; :ð ÞCs ¼ 0 and the orthonorm-
ality among the rows of W0 have been taken into con-
sideration.

In parallel with the development in [12], the optimal
solution to W0 can be obtained as follows:

WT
0 ¼ Eigenvectors related to non-zero eigenvalues

of the matrix C?
s GsG

T
s ;

where C?
s ¼ Ims � CsC

þ
s , and + indicates the Moore–

Penrose pseudo inverse of the argument. Note that
C?
s GsG

T
s is a non-symmetric matrix. To calculate W0,

we first translate this non-symmetric eigenproblem into
a symmetric eigenproblem. Then any existing standard
algorithms can be used. The calculation of W0 is given
in Appendix. Since Cs has rank n, C?

s will have rank ms-
n. Furthermore, note that GsG

T
s has a rank equal to

Rank(Gs). As a result, W0 will have min {ms–n,
Rank(Gs)} non-zero eigenvalues. Assume that m 5n
and Rank(C)=n, we can then conclude min {ms–n,
Rank(Gs)}=Rank(Gs)=sn, which is the number of
independent rows in W0, i.e. W0 2 Rsn�ms .

Assume that both the sampled inputs uo kð Þ and outputs
yo kð Þ are corrupted by independently Gaussian distributed
white noise vectors v kð Þ 2 Rq and o kð Þ 2 Rm, which have
covariance matrices R� and Ro, respectively, i.e.

uo kð Þ ¼ u kð Þ þ v kð Þ; yo kð Þ ¼ y kð Þ þ o kð Þ ð10Þ

This is referred to as the errors-in-variables (EIV) case
([4]). Note that the two noise vectors are mutually
independent and are independent of u(k) and y(k). The
problem of residual model identification then can be
stated as follows:
410 W. Li et al. / Journal of Process Control 13 (2003) 407–421



Given the sampled inputs and outputs when fdi (t)=0,
identify the PRM: Ps, which includes the consistent iden-
tification of Cs, calculation of W0, and identification of
W0Hs. Furthermore, from the PRM design a set of SRMs
for fault isolation.
3. Overview of the numerical integrators

To identify Cs and W0Hs, computationally we need
us(t) and ys(t), which contain the CT signals {u(t), y(t)}
and their derivatives from the 1st up to the sth order.
The derivatives are not directly measurable and many
approaches have been developed to deal with them
[3,28]. Herein we use the numerical integrator proposed
in [22] to transform the derivatives into discrete data,
because such an integrator has a number of attractive
features: simplicity of implementation, insensitivity to
initial values of the CT signals, and high accuracy.

The integral of a CT signal, e.g. u(t), over the time
interval t� lTs; t½ � can be approximately calculated by

&1 u tð Þ½ � ¼

ðt
t�lTs

u �ð Þd� � !0u tð Þ þ . . . þ !lu t� lTsð Þ

¼
Xl
i¼0

!iq
�iu tð Þ ð11Þ

where Ts is the integration step size, chosen to be the
same as the sampling interval for easy implementation; l
is considered as the length factor of the integrator (a
natural number); and q�1 is the unit delay operator, i.e.
q�1u(t)=u(t�Ts). The filter coefficients !i depend on the
type of numerical integration methods to be employed.
For instance, when the trapezoidal integration rule is
used, the filter coefficients are [22]:

!0 ¼ !l ¼
Ts
2
; !i ¼ Ts; i 2 1; l� 1½ �

Similarly, the sth multiple integral of the ith derivative
u(i) (t) of u(t) can be defined as follows:

&s u
ið Þ tð Þ

� �
¼

ðt
t�lTs

ð�1

�1�lTs

. . .

ð�s�1

�s�1�lTs

u ið Þ �ð Þd�s . . . d�1;

i 2 0; s½ �: ð12Þ

Furthermore, Eq. (12) can be approximately
calculated by

&s u
ið Þ tð Þ

� �
¼ �s;i q

�1

 �

u tð Þ; i 2 0; s½ � ð13Þ

where,
�s;i q
�1


 �
¼ 1 � q�l

 �i

!0 þ !1q
�1 þ � � � þ !lq

�l

 �s�i

¼
Xsl
�¼0

�i�q
��

and �i� is the coefficient in the polynomial �s;i q
�1


 �
. A rig-

orous proof of Eq. (13) and comments on the numerical
integrator can be found in [22]. Note that the optimal
choice of the filter length is an open issue especially for
multivariate systems. The approach of minimizing the
prediction error proposed by [26] might provide a solution.
4. Identification of the PRM

4.1. Descriptions of the identification model

When fs,di(t)=0, Eq. (6) is reduced to

ys tð Þ ¼ C sx tð Þ þHsus tð Þ ð14Þ

Performing multiple integration of Eq. (14) s times by
using Eq. (13), we obtain

�s q
�1; y tð Þ

� �
¼ Cs�s;0 q

�1

 �

x tð Þ þHs�s q
�1; u tð Þ

� �
þ es t;Tsð Þ ð15Þ

where, for any vector � tð Þ, e.g. � tð Þ ¼ u tð Þ or � tð Þ ¼ y tð Þ

�s q
�1;� tð Þ

� �
¼

�s;0 q
�1


 �
� tð Þ

�s;1 q
�1


 �
� tð Þ

..

.

�s;s q
�1


 �
� tð Þ

26664
37775 ð16Þ

and such a convention will be used throughout the
paper. In addition, es(t,Ts) is a truncation-error due to
numerical integration of inputs and outputs.

With available sampled data uo kð Þ; yo kð Þ
� �

substitut-
ing Eq. (10) into Eq. (15) at t=kTs gives

�s q
�1; yo kð Þ

� �
¼ Cs�s;0 q

�1

 �

x kð Þ

þHs�s q
�1; uo kð Þ

� �
þ Es kð Þ ð17Þ

where,

Es kð Þ ¼ �Hs�s q
�1; v kð Þ

� �
þ �s q

�1; o kð Þ
� �

þ es k;Tsð Þ

2 Rms

The first term in Es(k) is a moving average (MA) process

of v(k) and o(k). In addition, as addressed by [22], the
truncation error es(k, Ts) can be controlled with the
sampling interval Ts. For simplicity, in the following
W. Li et al. / Journal of Process Control 13 (2003) 407–421 411



analysis, it is assumed that a small Ts is used so that the
influence of es(k, Ts) on the identification of Ps can be
negligible, i.e. es k;Tsð Þ � 0.

We form the following data matrix for inputs uo(k)

Uo
k;s;N ¼ �s q

�1; uo kð Þ

 �

� � ��s q
�1; uo kþN� 1ð Þ


 �� �
2 Rqs�N;

where N is the number of data samples in the matrix.

Similarly, we form the output data matrix
Yo
k;s;N 2 Rms�N. The use of the newly formed data

matrices in Eq. (17) gives

Yo
k;s;N ¼ CsXk;N þHsU

o
k;s;N þ Ek;s;N 2 Rms�N ð18Þ

where,

Xk;N ¼ �s;0 q
�1


 �
x kð Þ � � ��s;0 q

�1

 �

x kþN-1ð Þ
� �

2 Rn�N

and Ek;s;N 2 Rms�N resembles Uo
k;s;N or Yo

k;s;N in format.
After the establishment of Eq. 18, the following

remarks can be made:
Remark 1. The data matrices Uo

k;s;N and Yo
k;s;N are

composed of sampled inputs and outputs and their
time-lagged values, respectively. Further, each data
matrix has s+1 row blocks andN columns. For example,
in the ith column of Uo

k;s;N one row block contains the
linear combination of uo kþ i� 1ð Þ and the time-lagged
values uo kþ i� 2ð Þ � � � uo kþ i� 1 � slð Þ

� �
for i 2 1;N½ �.

Remark 2. The observability matrix Cs and the lower
triangular block Topeliz matrix Hs in Eq. (18) are
exactly the same as those in the CT model given by Eq.
(14), showing that although the numerical integrator
transforms the CT signals into discrete data, it preserves
the original CT system model in the DT domain. This
excels other CT identification approaches [3,11], which
transform the CT signals and result in a different DT
model at the same time.
Remark 3. The matrix Xk,N is not measurable. How-

ever, as will be shown later one does not have to know it
in order to identify the models in which we are interested.
Remark 4. With a similar structure to Uo

k;s;N or Yo
k;s;N,

Ek;s;N 2 Rms�N has s+1 row blocks and N columns. To
obtain consistent estimates of Cs and Hs, one has to
remove the effect of Ek,s,N on the identification.
Remark 5. With the identified Ps, one can generate the

primary residual vector (PRV) using sampled data for
fault detection. From Eqs. (6) and (17), the PRV is
ð

"s kð Þ ¼ Ps
�s q

�1; yo kð Þ

 �

�s q
�1; uo kð Þ


 �" #

¼
W0Es kð Þ; no fault

W0Es kð Þ þW0GsNs;di�s fs;di kð Þ
� �

;with fault:

�

where on the RHS, (i) the first and the second lines are
the computational and the internal forms of the PRV,
respectively; and (ii) �s fs;di kð Þ

� �
is the sth multiple inte-

gral of fs,di(t) with t ranging from kTs -lTs to kTs, i.e.

�s fs;di kð Þ
� �

¼

ðkTs
kTs�lTs

ð�1

�1�lTs

� � �

ð�s�1

�s�1�lTs

fs;di �sð Þd�s . . . d�1

Remark 6. We denote the fault-free value of "s kð Þ and
the fault-contributed term by "�s kð Þ �W0Es kð Þ and
"fs kð Þ �W0GsN s;di�s fs;di kð Þ

� �
, respectively.

Apparently "�s kð Þ is also a MA process of the noise
vector vT kð Þ oT kð Þ

� �T
, and follows a zero mean multi-

variate Gaussian distribution, due to the assumed dis-
tribution of vT kð Þ oT kð Þ

� �T
. Consequently, it turns out

from Eq. (19) that

"s kð Þ ¼
"�s kð Þ � N 0;R";s


 �
; no fault

"�s kð Þ þ " fs kð Þ � N " fs kð Þ;R";s


 �
; with fault

�
where R";s is the covariance of "�s kð Þ. From Eq. (17),

R";s ¼W0 HsCov �s q
�1


 �
v kð Þ

� �
HTs þ Cov �s q

�1

 �

o kð Þ
� �� �

WT
0

where, Cov( ) is the covariance of the argument. There-
fore, one can perform fault detection by simply check-
ing if "s kð Þ is zero mean. We define a chi-square
distributed variable �s;o kð Þ ¼ "Ts kð ÞR�1

";s"s kð Þ. With a pre-
selected level of significance a, e.g. a=0.01, �s;o kð Þ >
�2
� nsð Þ indicates that the faults have occurred.
Remark 7. The fault gain matrix in "s kð Þ is W0GsNs;di

depending on which we can design a set of SRMs for
fault isolation as will be shown in Section 5.

4.2. Consistent estimation of Cs

With a choice of k=1 in Eq. (18), we obtain

Yo
1;s;N ¼ CsX1;N þHsU

o
1;s;N þ E1;s;N ð20Þ

Post-multiplying Eq. (20) by
1

N
UoT
L;s;N YoT

Ls;N

� �
gives

1

N
Yo

1;s;N U
oT
L;s;N Y

oT
L;s;N

� �
¼

1

N
CsX1;N U

oT
L;s;N Y

oT
L;s;N

� �
þ

1

N
Hs U

o
1;s;N U

oT
L;s;N Y

oT
L;s;N

� �
þ

1

N
E1;s;N U

oT
L;s;N Y

oT
L;s;N

� �
ð21Þ

Since the numerical integrator is an (sl)th order filter,
we can show that selecting L=sl+2 in Eq. (21) makes
the last term on the RHS asymptotically vanish as
N ! 1.

Substituting the following QR decomposition
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Uo
1;s;N

Yo
1;s;N

� �
UoT
L;sN YoT

L;s;N

� �
¼
R11 0

R21 R22

� �
Q1

Q2

� �
into Eq. (21) leads to

Ims j �Hs
� � R21Q1 þ R22Q2

R11Q1

� �
¼ CsX1;N U

oT
L;s;N Y

oT
L;s;N

� �
ð22Þ

where
QTi Qj ¼
I; i ¼ j; i; j 2 1; 2½ �

0; i 6¼ j; i; j 2 1; 2½ �

�
has been employed with I standing for an identity
matrix of appropriate dimensions.

Post-multiplying Eq. (22) by QT2 results in

R22 ¼ CsX1;N U
oT
L;s;N Y

oT
L;s;N

� �
QT2

Applying singular value decomposition (SVD) to R22,
we obtain

R22 ¼ UlKV
T
r

Therefore, the first n vectors of Ul give consistent
estimate of Cs (up to a column space), i.e.

Cs ¼ Ul :; 1 : nð Þ ð23Þ

assuming that X1;N U
oT
L;s;N Y

oT
L;s;N

� �
QT2 has rank n.

To ensure the validity of this assumption, we have to
fully understand the consistency conditions. At this
moment, we concentrate on the identification of Ps.
However, the consistency analysis is under further
investigation.

4.3. Identification of W0Hs

With the identified Cs, one can derive Gs and calculate
W0 following the steps shown earlier. Further, pre-mul-
tiplying Eq. (22) by W0 yields

W0j �W0Hs½ �
R21Q1 þ R22Q2

R11Q1

� �
¼ 0

where W0Cs � 0 is employed. Post-multiplying the pre-
ceding equation by QT1 gives

W0R21 ¼W0HsR11

Consequently

W0Hs ¼W0R21R
þ
11 ð24Þ

Eventually, Ps ¼ W0j �W0R21R
þ
11

� �
5. Design of the SRMs for fault isolation

With the identified Ps, we can generate the PRV for
fault detection. Further, to isolate faults, we can trans-
form the PRV into a set of structured residual vectors
(SRVs) [12], where one SRV is designed to be immune
to a specified subset of faults, but has maximized sensi-
tivity to the remaining faults. The performance of the
vector-based fault isolation is much better than the per-
formance of the scalar residual based isolation, as has
been proved in [12]. Here we extend the SRVs to the
isolation of process faults in the CT systems. To gen-
erate SRVs, we can design a set of SRMs, including the
selection of an incidence matrix to characterize the
SRVs. The incidence matrix is dependent on the number
of faults to be isolated, the system order n and the order
of the parity space, and is not unique. A detailed dis-
cussion with respect to the selection can be found in
[8,9,12].

In the system under consideration given in Eq. (2), the
dimension of the fault magnitude vector fdi(t) can be up
to n, i.e. 14di 4n. In the simplest case, we only have to
isolate a single fault. However, in the most difficult case,
we have to isolate up to n multiple faults, although the
probability for multiple faults to occur simultaneously is

small. Hence there are
Pn

i¼0C
n
i ¼

Pn
i¼0

n!
i! n�ið Þ!

fault
scenarios in total, where Cn

i is the combination of i from
n and i! is the factorial. To isolate these scenarios, an
ideal design is to transform the PRV into n SRVs, where
the ith SRV is affected with highest sensitivity only by
the ith fault, while it is immune to all the other faults,
8i 2 1; n½ �. As will be analyzed later, such an ideal design
can be achievable provided that certain conditions are
satisfied.

Computationally, the ith SRV is equal to

rs;i kð Þ ¼Wi"s kð Þ ¼WiPs
�s q

�1; y
�

kð Þ

 �

�s q
�1; u

�

kð Þ

 �� �

¼Wi "
�
s kð Þ þ "fs kð Þ

� �
ð25Þ

where WiPs is defined as the ith SRM. Denote W0Gs 2

R snð Þ�ns by G~ s, since "fs kð Þ ¼W0GsNs;di�s fs;di kð Þ
� �

, we
have the fault-contributed term:

r fs;i kð Þ ¼Wi"
f
s kð Þ ¼WiG~ sNs;di�s fs;di kð Þ

� �
in rs,i(k). Note that G~ s has ns non-zero columns because
its last n columns are zeros. Apparently, if rs,i(k) is designed
to be insensitive to all but the ith fault fi(t),Wi should be
orthogonal to the (n�1)s columns associated with
f1 tð Þ:::fi�1 tð Þ fiþ1 tð Þ:::fn tð Þ½ �
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in G~ s; 8i 2 1; n½ �.

Denote

G~ s;i � G~ s :; ið ÞjG~ s :; nþ ið Þ; :::;G~s :; s� 1ð Þnþ ið Þ

h i
2 R snð Þ�s; 8i ¼ 1; n

and the remaining columns in G~ s after leaving out G~ s;i
~� snð Þ� n�1ð Þsð Þ
by Gs;i 2 R , respectively. It is desired that Wi

has maximized covariance with G~ s under the constraint
WiG~

�
s;i. Since G~�s;i 2 R snð Þ� n�1ð Þsð Þ,Wi will have sn�(n�1)s

=s independent rows. Similarly, it can be shown that,
8i 2 1; n½ �:

WT
i ¼ Eigenvectors related to non-zero eigen

values of G~�;?
s;i G
~
sG~

T
s

where, G~�;?
s;i ¼ Isn �G~

�
s;i G
~�
s;i

 !þ
2 R snð Þ� snð Þ.

Eq. (25) can be further expressed as

rs;i kð Þ ¼ r�s;i kð Þ þ r
f
s;i kð Þ 2 Rn

ð26Þ

where r�s;i ¼Wi"
�
s kð Þ follows a zero mean Gaussian dis-

tribution with covariance Ri";s ¼WiR";sW
T
i . Hence fi(t)

6¼ 0 can be detected and uniquely isolated if the mean of
rs,i(k) is non-zero. Moreover, we define a chi-square
distributed isolation index

�s;i kð Þ ¼ rTs;i kð Þ R i";s

 ��1

rs;i kð Þ;

which has a threshold �2
� nð Þ. We denote the normalized

isolation index by �(s;i kð Þ � �s;i kð Þ=�2
� nð Þ. Then �(s;i kð Þ > 1

indicates the presence of jfi tð Þj 6¼ 0 (the mean of rs,i(k) is
non-zero), while �(s;i kð Þ < 1 indicates jfi tð Þj ¼ 0 (the mean
of rs,i(k) is zero). In addition, to isolate multiple faults,
e.g. fi tð Þ 6¼ 0

� �T
fj tð Þ 6¼ 0
� �

, we can simply check if �(s;i kð Þ

and �(s;j kð Þ are greater than 1, simultaneously.
For easy reference, we give the incidence matrix in

Table 1 to describe how the n SRVs are correlated with
the n faults [f1(t) . . . fn(t)], where a ‘‘0’’ means the
insensitivity of one SRV to a fault (the corresponding
isolation index is smaller than the threshold), while a
‘‘1’’ indicates that an SRV has highest sensitivity to a
fault (the corresponding isolation index is larger than
the threshold).

Eventually, the complete procedure of identifying
the PRM and SRMs, as well as performing PFDI in
a CT system using sampled data, is summarized as
follows:

(1) Given a set of training data, construct Y�
1;s;N;

�
U�

1;s;N;Y
�
L;s;N;U

�
L;s;N; g with L=sl+2.

(2) Identify Cs using Eq. (23). Derive Gs from Cs and
calculate W0. Identify W0Hs using Eq. (24). Then
obtain Ps=|W0| – W0Hs].
(3) Select an incidence matrix as illustrated in Table 1
to characterize the SRVs. Subsequently, calculate
Wi; 8i 2 1; n½ �. Consequently, the ith SRM is Wi Ps.
(4) With newly sampled test data, first construct

�s q
�1; u� kð Þ

� �
;�s q

�1; y� kð Þ
� �� �

as shown in Eq. (16). Then, calculate the PRV as shown

in the first line of Eq. (19) for fault detection, and a set
of SRVs as shown in Eq. (25) for fault isolation.

6. Numerical results

In this section, we use the water tank system [10] illu-
strated in Fig. 1 as a pilot plant to demonstrate the
effectiveness of the proposed approach for the identifica-
tion of residual models. Further, to make a comparison
we also use DT residual models to carry out detection and
isolation of leaks in the tanks. As will be shown, the CT
residual models are much more powerful than their DT
counterparts at isolating fast time-varying faults.

The parameter values and the chosen operating point
of the laboratory process are given in Table 2. Conse-
quently, linearizing Eq. (1) under these conditions gives
the following CT state space equations [10]:
Table 1

Incidence matrix to characterize the isolation logic
f1(t)
 f2(t)
 f3(t)
 . . .
 fn(t)
rs;1 kð Þ �(s;1 kð Þ

 �
 �
 1
 0
 0
 . . .
 0
rs;2 kð Þ �(s;2 kð Þ
 �
 0
 1
 0
 . . ..
 0
rs;3 kð Þ �(s;3 kð Þ.
 0.
 0.
 1.

. ..
 0.
.. 
 �
 ..
 . .
 . .
 . .
 ..
rs;n kð Þ �(s;n kð Þ
 0
 . . .
 . . .
 . . .
 1
Table 2

Parameter values and chosen operating point of the laboratory process
Parameters
 Units
 Values
A1; A3
 (cm2)
 28
A2; A4
 (cm2)
 32
a1; a3
 (cm2)
 0.071
a2; a4
 (cm2)
 0.057
k1; k2
 (cm3/Vs)
 3.33, 3.35
h�1; h
�
2
 (cm)
 12.4, 12.7
h�3; h
�
4
 (cm)
 1.8, 1.4
��1; �
�
2
 (V)
 3.00
kc
 (V/cm)
 0.50
g
 (cm/s2)
 981
�1; �2
 0.70, 0.60
414 W. Li et al. / Journal of Process Control 13 (2003) 407–421



x
:
tð Þ ¼

�0:0159 0 0:0419 0
0 �0:0111 0 0:0333
0 0 �0:0419 0
0 0 0 �0:0333

2664
3775x tð Þ

þ

0:0833 0
0 0:0628
0 0:0479
0:0312 0

2664
3775u tð Þ

�

1

28
0 0 0

0
1

32
0 0

0 0
1

28
0

0 0 0
1

32

2666666664

3777777775
�1�

�
1 tð Þ

�2�
�
2 tð Þ

�3�
�
3 tð Þ

�4�
�
4 tð Þ

2664
3775y tð Þ

¼

0:5 0 0 0
0 0:5 0 0
0 0 0:5 0
0 0 0 0:5

2664
3775x tð Þ

ð27Þ

The noise-free CT inputs to the system, i.e. u(t), are
simulated by pseudo random binary signals with small
magnitude. The frequency band for the frequency con-
tents of the inputs is chosen to be [0, 0.03], expressed in
fractions of the Nyquist frequency (see the idinput com-
mand in MATLAB).

First, we use SIMULINK in the CT domain to simu-
late Eq. (27) in the fault-free case, i.e. �i=0 for i 2 1; 4½ �,
generating the noise-free and fault-free CT outputs.
Subsequently, the CT input and output signals are
sampled with a sampling interval Ts, giving {u(k), y(k)}.
Further, an independently Gaussian distributed white
noise vector with covariance 0.12 I6, i.e. N (0, 0.12 I6), in
the DT domain is introduced to the sampled noise-free
inputs and outputs, resulting in a set of noise-con-
taminated training data with 5000 samples.

To identify the CT residual models, two important
parameters: the sampling time Ts and the length para-
meter of the integral filter l need to be determined.

The effect of Ts and l on the estimation of the CT
model parameters is shown in Fig. 2, where the estima-
tion error is defined by:

eest ¼ jjeig Aestð Þ � eig Að Þjj2

with eig( ) standing for a vector containing all the eigen-
values of a matrix in a descending order. Ts and l are
chosen to be equal to 2 and 14, respectively in this case.

With the chosen l and Ts, using the training data we
identify Cs 2 R20�4, from which we derive Gs 2 R20�20.
Further we calculate Ws 2 R16�20 and identify
W0Hs 2 R16�10, resulting in Ps ¼ W0j �W0Hs½ �

2 R16�30. Furthermore, in accordance with the fault
isolation logic summarized in Table 1, we calculate four
transformation matrices {W1, W2, W3, W4} and the
corresponding SRMs: WiPs 2 R4�30, for i 2 1; 4½ �.

We use the training data and the identified Ps to gen-
erate a sequence of PRVs, from which we estimate the
covariance R";s 2 R16�16. Moreover, we calculate cov-
ariances Ri";s ¼WiR

i
";sW

T
i 2 R4�4 of the SRVs: rs,i(k),

for i 2 1; 4½ �, respectively. Due to limited space in this
paper we have not reproduced these matrices.

Faults are introduced as leaks in any tanks as men-
tioned earlier. It turns out from the laws of fluid
mechanics that a leak is proportional to the square root
of the water level in the tank, and is time-varying, i.e.

��i tð Þ ¼ afi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gh�i tð Þ

p
; 8i 2 1; 4½ �

where, a fi is the size of the leak orifice. Clearly, such a
fault is not piece-wise constant because h�i tð Þ can vary
with time within one sampling interval.

In the presence of fault(s), we also use SIMULINK to
simulate Eq. (27), generating noise-free faulty CT sig-
nals. For instance, when we simulate a leak in tank 3,
we choose �3=1, while �i=0, for i=1, 2, 4. We sample
the CT signals with the same period Ts=2 s. Then, we
introduce a white noise vector N (0,0.12I6) to the sam-
pled noise-free signals. We conduct PFDI in the fol-
lowing four cases:

Case 1. A leak simulated by a fi=0.01 cm2 is intro-
duced to a single tank starting at the 1000th s. The
relevant PFDI results are shown in Fig. 3, where the
detection and isolation is done instantly without any
time delay. In the figure, all the isolation indices have
been scaled to have unit threshold and the x-axis
represents times, i.e. t=kTs, in seconds rather than
number of samples, i.e. k. Note that in the following
cases, all the fault isolation indices have also been
scaled to have unit threshold, and the x-axis in each
corresponding figure also represents times t=kTs in
seconds. Since �(s:i tð Þ is greater than its confidence
limit 1, but �(s:i tð Þ are all less than their confidence
limits, 8i 2 2; 4½ �, resulting in an incidence vector [1 0
0 0], it can be inferred from the isolation logic given in
Table 1 that tank 1 is leaking.
Case 2. Two leaks simulated with the choice of a
a fi1 ¼ a fi2 ¼ 0:01� t� 1000ð Þ=2000 cm2 are introduced
to two different tanks simultaneously after the 1000th
s. In this case, note that the magnitude of a leak is
0.01(t�1000)/2000, which increases very slowly. This
type of fault is called the incipient fault, and its
detection is difficult. As shown in Fig. 4, our pro-
posed scheme is still able to detect the incipient faults
after they have occurred for a period of time, e.g.
when t51553 seconds. Furthermore, since �(s;3 tð Þ and
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�(s;4 tð Þ are greater than their confidence limits 1, but
�(s;1 tð Þ and �(s;2 tð Þ are lower than their confidence limits,
it is indicated that tanks 3 and 4 are leaking at the same
time.
Case 3. Three leaks with a a fi1=a

f
i2
=a fi3=0.01 cm, 8i1,

i2, i3 2 [1,4], are introduced to three different tanks
simultaneously after the 1000th s and the PFDI
results are shown in Fig. 5. After immediate detection
of faults, since �(s;2 tð Þ, �(s;3 tð Þ and �(s;4 tð Þ are greater
than their confidence limits 1 simultaneously, but
�(s;1 tð Þ is lower than the confidence limit, it can be
concluded that tanks 2, 3 and 4 are leaking.
Case 4. Leaks with a fi1=a

f
i2
=a fi3=a

f
i4
=0.01 cm2, 8i1,

i2, i3, i42 [1,4] are introduced to all four tanks simul-
taneously after the 1000th s. As Fig. 6 shows, the
faults are detected promptly. Furthermore, since
�(s;i tð Þ; 8i ¼ 1; 2; 3; 4, are all greater than their con-
fidence limits 1, it is known that all the tanks are
leaking.

6.1. Comparison of CT and DT residual models-based
PFDI

To make a comparison, we use the DT state space
model to design the PRM and SRMs. With Ts=2, we
obtain Ad=eATs , Bd =

Ð Ts
0 e
AtBd�;Cd ¼ C;Dd ¼ D, and

the fault model eATs
Ð Ts

0 e
�A�Ndid� assuming piece-wise

constancy of the faults, where the true values of A, B, C,
and D are used. Subsequently, we compute the DT
counterparts of PRM and four SRMs similarly by
Fig. 2. Selection of Ts and l for continuous time system identification.
Fig. 3. CT residual model-based detection and isolation of a leak in tank 1. The incidence vector for isolation is

�(s;1 tð Þ �(s;2 tð Þ�(s;3 tð Þ �(s;4 tð Þ
� �

jt¼kTs ¼ 1 0 0 0
� �

.
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simply replacing {A, B, C, D} with {Ad, Bd, Cd, Dd},
respectively.

We introduce a single leak to a tank. Then we apply
the CT and DT residual models to the same test data,
respectively. It is shown in Figs. 7 and 8 that while the
identified CT residual models successfully detect and
isolate a leak in tank 3, the DT residual models fail to
detect and isolate the time-varying fault even if they
are calculated from the exactly known A, B, C and D.
Eventually we introduce a ZOH to the fault, assuming
that the fault is piecewise constant within one sampling
interval. As depicted in Fig. 9, in this case, the
Fig. 4. CT residual model-based detection and isolation of two simultaneous leaks in tanks 3 and 4. The incidence vector for isolation is

�(s;1 tð Þ �(s;2 tð Þ �(s;3 tð Þ �(s;4 tð Þ
� �

jt¼kTs ¼ 0 0 1 1
� �

.

Fig. 5. CT residual model-based detection and isolation of three simultaneous leaks in tanks 2, 3 and 4. The incidence vector for isolation is

�(s;1 tð Þ �(s;2 tð Þ �(s;3 tð Þ �(s;4 tð Þ
� �

jt¼kTs ¼ 0 1 1 1
� �

.
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performance of fault detection and isolation based on
the DT residual models is improved as compared with
the performance displayed in Fig. 8. However, appar-
ently it is still much worse than the CT residual models-
based performance shown in Fig. 7.
7. Conclusions

A novel subspace approach to the identification of the
PRM for process fault detection and the design of a set
of SRMs for process fault isolation in multivariate CT
Fig. 7. The CT residual model-based PFDI scheme successfully detects and isolates a time-varying leak in tank 3. The incidence vector for isolation

is �(s;1 tð Þ �(s;2 tð Þ �(s;3 tð Þ �(s;4 tð Þ
� �

jt¼kTs ¼ 0 0 1 0
� �

.

Fig. 6. CT residual model-based detection and isolation of simultaneous leaks in all 4 tanks. The incidence vector for isolation is

�(s;1 tð Þ �(s;2 tð Þ �(s;3 tð Þ �(s;4 tð Þ
� �

jt¼kTs ¼ 1 1 1 1
� �

.
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systems has been proposed. When the number of out-
puts is not less than the system order, any single and
multiple faults can be uniquely isolated by the use of n
SRVs, where one SRV is designed to be affected only by
a single fault but unaffected by the other faults. The
proposed scheme is computationally robust and effic-
cient, without the need to separately identify the system
matrices {A, B, C, D}. Furthermore, the proposed
approach can be extended to the identification of the
system matrices {A, B, C, D} if they are needed. The
newly proposed approach is applied to a simulated
water tank system, where detection and isolation of
leaks in a single tank one at a time and in multiple tanks
simultaneously has been successfully conducted. In
addition, to make a comparison, the results of detecting
and isolating leaks in the tanks using the PRM and
Fig. 8. The DT residual model-based PFDI scheme fails to detect and isolate a time-varying leak in tank 3.
Fig. 9. The DT residual models can detect and isolate a leak with a ZOH in tank 3, with relatively poor performance.
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SRMs in the DT domain are also provided. It is shown
that the DT residual models-based approach can just
barely detect and isolate only the piece-wise constant
fault. In contrast, the CT residual models-based scheme
works well for detecting and isolating single as well as
multiple leaks from any tanks.

Although the proposed identification approach has
demonstrated its effectiveness in PFDI, several issues
such as the consistency analysis, fault detectability and
isolability analysis and robustness with respect to pro-
cess uncertainties, deserve further investigation. Work
in this aspect is in progress.
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Appendix A. Calculation of W0

To calculate the eigenvectors of C?
s GsG

T
s , we express

the problem as:

C?
s GsG

T
s �i ¼ l�i;

where �i is the ith column of the matrixWT
0 , and li is the

associated eigenvalue.
Introducing �i ¼ C?

s !i leads to

C?
s GsG

T
s C

?
s !i ¼ �iC

?
s !i:

?
Further, since Cs is idempotent, we obtain

C?
s GsG

T
s C

?
s C

?
s !i ¼ liC?

s !i

and

C?
s GsG

T
s C

?
s �i ¼ li�i:
Hence, �i is the ith eigenvector corresponding to the
ith non-zero eigenvalue of C ?

s GsG
T
s C

?
s . Eventually,

WT
0 =Eigenvectors associated with all the non-zero

eigenvalues of the matrix C?
s GsG

T
s C

?
s .
Appendix B. Consistent estimation of {A; B; C; D}

In many scenarios, e.g. in the design of controllers,
knowledge of the system matrices is crucial. Therefore,
we discuss the identification of {AT ; BT ; CT ; DT} from
Cs and W0Hs in this Appendix. Note that the identified
system matrices {AT, BT, CT, DT} are in fact the simi-
larity transformations of the original ones, e.g.

AT ¼ TAT�1;BT ¼ TB;CT ¼ CT�1;DT ¼ D;

where T 2 Rn�n is a non-singular matrix.
The estimate of CT is simply equal to the first m rows

of Ul (:; 1 : n), i.e., CT=Ul(1 : m; 1 : n). On the other
hand, observing that

Ul mþ 1 : ms; 1 : nð Þ ¼

CTAT

..

.

CTA
s
T

2664
3775 ¼

CT

..

.

CTA
s�1
T

2664
3775AT

¼ Ul 1 : ms �m; 1 : nð ÞAT

one arrives at
AT ¼ Uþ
l 1 : ms �m; 1 : nð ÞUl mþ 1 : ms; 1 : nð Þ

In order to estimate BT and DT, we have to construct
a series of matrix equations from W0Hs. As illustrated
in Section 2.2, in matrix Hs all the elements above the
main diagonal are zero. As a consequence, for each
column block with q columns in W0Hs, it can be clearly
seen, 8 i=0, that

W0 :;miþ 1 : msð ÞHs :;miþ 1 : ms; qiþ 1 : qiþ qð Þ

¼W0 :;miþ 1 : msð Þ
Im 0

0 Cs�1�iT
�1

� �
DT

BT

� �
¼W0 :;miþ 1 : msð Þ

Im 0

0 Ul 1:ms�mi�m; 1¼nð Þ

� �
DT

BT

� �
ð28Þ

where C�1 ¼ 0.
Denoting

Ni ¼W0 :;miþ 1 : msð ÞHs miþ 1 : ms; qiþ 1 : qiþ qð Þ

and

Mi ¼W0 :;miþ 1 : msð Þ

�
Im 0
0 Ul 1 : ms �mi�m; 1 ¼ nð Þ

� �
;

from Eq. (28) we establish the following set of
equations:
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N0

N1

..

.

Ns

2664
3775 ¼

M0

M1

..

.

Ms

2664
3775 DT
BT

� �
ð29Þ

Therefore, the least squares (LS) solution to {BT ; DT} is

DT
BT

� �
¼

Xs
j¼0

MT
j Mj

" #�1 Xs
j¼0

MT
j Nj

" #
:
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