Detection and Isolation of Model-Plant-Mismatch for Multivariate Dynamic Systems

Hailei Jiang, Weihua Li, Sirish Shah

Department of Chemical and Materials Engineering
University of Alberta

Outline

- Motivation & Literature Review
- Problem Formulation
- MPM Detection and Isolation
- Numerical Example
- Conclusion
- Acknowledgement

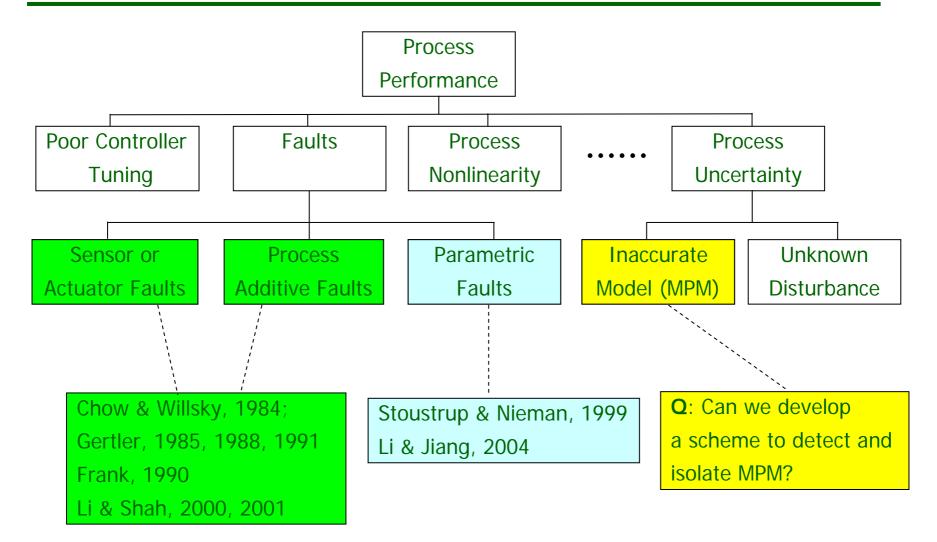
Motivation & Literature Review

Motivation

In industry, model-plant-mismatch (MPM) is a common and challenging problem for existing model-based control, e.g. MPC.

In academia, MPM is still a difficult problem in the research area of fault detection and isolation (FDI).

Literature Review on FDI



Problem Formulation

Problem Formulation

Consider a LTI Discrete Time (DT) system:

$$\begin{cases} x(k+1) = \mathbf{A}_o x(k) + \mathbf{B}_o u(k) + p(k) \\ y(k) = \mathbf{C}_o x(k) + o(k) \end{cases}$$

MPM effect:

Can we detect the mismatch?

Can we isolate the matrices that have mismatch?

$$\mathbf{A} = \mathbf{A}_o + \Delta \mathbf{A} \in R^{n \times n}$$
 $\mathbf{B} = \mathbf{B}_o + \Delta \mathbf{B} \in R^{n \times l}$
 $\mathbf{C} = \mathbf{C}_o + \Delta \mathbf{C} \in R^{m \times n}$

A DT system with MPM:

$$\begin{cases} x(k+1) = (\mathbf{A}_0 + \Delta \mathbf{A})x(k) + (\mathbf{B}_0 + \Delta \mathbf{B})u(k) + p(k) \\ y(k) = (\mathbf{C}_0 + \Delta \mathbf{C})x(k) + o(k) \end{cases}$$

Problem Formulation (con't)

Rewrite the MPM effect:

$$a(k) = \Delta \mathbf{A}x(k), \ b(k) = \Delta \mathbf{B}u(k), \ c(k) = \Delta \mathbf{C}x(k)$$

Rewrite the system with MPM:

$$\begin{cases} x(k+1) &= \mathbf{A}_0 x(k) + \mathbf{B}_0 u(k) + a(k) + b(k) + p(k) \\ y(k) &= \mathbf{C}_0 x(k) + c(k) + o(k) \end{cases}$$

$$a(k) \neq 0 \Rightarrow \Delta \mathbf{A} \neq 0$$

 $b(k) \neq 0 \Rightarrow \Delta \mathbf{B} \neq 0$
 $c(k) \neq 0 \Rightarrow \Delta \mathbf{C} \neq 0$

Can we indicate a(k), b(k) or c(k) are non-zero?

MPM Detection and Isolation

MPM Detection

By stacking the equation for the system with MPM

$$y_s(k)$$
 $+$ $\mathbf{G}_s^o[a_s(k) + b_s(k) + b_s(k)]$

$$y_{s}(k) = \begin{bmatrix} y(k-s) \\ y(k-s+1) \\ \vdots \\ y(k) \end{bmatrix} \in R^{m_{s}} \qquad \Gamma_{s}^{o} = \begin{bmatrix} \mathbf{C}_{o} \\ \mathbf{C}_{o} \mathbf{A}_{o} \\ \vdots \\ \mathbf{C}_{o} \mathbf{A}_{o}^{s} \end{bmatrix} \in R^{m_{s} \times n}$$

$$\mathsf{H}_{s}^{o} = egin{bmatrix} \mathbf{0} & \cdots & \cdots & \mathbf{0} & \mathbf{0} \\ \mathsf{C}_{o}\mathsf{B}_{o} & \mathbf{0} & \cdots & \vdots & \vdots \\ \mathsf{C}_{o}\mathsf{A}_{o}\mathsf{B}_{o} & \mathsf{C}_{o}\mathsf{B}_{o} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \cdots & \mathbf{0} & \mathbf{0} \\ \mathsf{C}_{o}\mathsf{A}_{o}^{s-1}\mathsf{B}_{o} & \mathsf{C}_{o}\mathsf{A}_{o}^{s-2}\mathsf{B}_{o} & \cdots & \mathsf{C}_{o}\mathsf{B}_{o} & \mathbf{0} \end{bmatrix} \quad \mathsf{G}_{s}^{o} = egin{bmatrix} \mathbf{0} & \cdots & \cdots & \mathbf{0} & \mathbf{0} \\ \mathsf{C}_{o} & \mathbf{0} & \cdots & \vdots & \vdots \\ \mathsf{C}_{o}\mathsf{A}_{o} & \mathsf{C}_{o} & \cdots & \mathsf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \mathsf{0} & \mathbf{0} \\ \mathsf{C}_{o}\mathsf{A}_{o}^{s-1} & \mathsf{C}_{o}\mathsf{A}_{o}^{s-2} & \cdots & \mathsf{C}_{o} & \mathbf{0} \end{bmatrix}$$

MPM Detection (con't)

By stacking the equation for the system with MPM

$$y_s(k) - \mathsf{H}_s^o u_s(k) = \Gamma_s^o x(k-s) + c_s(k) + o_s(k) \\ + \mathsf{G}_s^o [a_s(k) + b_s(k) + p_s(k)]$$

$$\mathsf{W}_o \Gamma_s^o = 0 \qquad \qquad \Gamma_s^o \in R^{m_s \times n} \Rightarrow \mathsf{W}_o \in R^{(m_s-n) \times m_s}$$

$$e_s(k) \equiv \mathsf{W}_o [y_s(k) - \mathsf{H}_s^o u_s(k)]$$

$$= \mathsf{W}_o [o_s(k) + \mathsf{G}_s^o p_s(k)] + \mathsf{W}_o \{c_s(k) + \mathsf{G}_s^o [a_s(k) + b_s(k)]\}$$

$$e_s^*(k) \qquad \qquad e_s^*(k)$$

$$\mathsf{Zero-mean}, \mathsf{Gaussian} \; \mathsf{distributed}$$

$$\mathsf{random} \; \mathsf{noise} \; \mathsf{vector}$$

PRV Properties

If we assume the covariance of p(k) & o(k) as

$$\mathbf{R}_p \in R^{n \times n}$$
, $\mathbf{R}_o \in R^{m \times m}$

■ Then the covariance of $p_s(k) \& o_s(k)$ is:

$$\mathbf{R}_{s,p} = \mathbf{I}_{s+1} \otimes \mathbf{R}_p \in \mathbb{R}^{n_s \times n_s}$$

$$\mathbf{R}_{s,o} = \mathbf{I}_{s+1} \otimes \mathbf{R}_o \in \mathbb{R}^{m_s \times m_s}$$

■ Then the covariance of $e_s^*(k) = \mathbf{W}_o[o_s(k) + \mathbf{G}_s^o p_s(k)]$ is:

$$\mathbf{R}_{s,e} = \mathbf{W}_o(\mathbf{G}_s^o \mathbf{R}_{s,p} \mathbf{G}_s^{oT} + \mathbf{R}_{s,o}) \mathbf{W}_o^T$$

$$\in R^{(m_s-n) \times (m_s-n)}$$

PRV Properties (con't)

The PRV follows multivariate Gaussian distribution

No MPM
$$\mathbf{e}_s(k)=\mathbf{e}_s^*(k)\sim leph(0,\mathsf{R}_{s,e})$$

MPM $\mathbf{e}_s(k)=\mathbf{e}_s^*(k)+\mathbf{e}_s^f(k)\sim leph((\mathbf{e}_s^f(k),\mathsf{R}_{s,e}))$

The PRV can be further transformed into a square weighted residual which is sensitive to the mismatch in {A,B,C}.

$$\eta_{ABC}(k) = (e_s(k))^T \times \mathbf{R}_{s,e}^{-1} \times e_s(k)$$

MPM Detection Index (1)

It follows chi-square distribution if there is no MPM:

$$\eta_{ABC}(k) \sim \chi^2_{m_s-n}(\alpha)$$

• Given a confidence limit, e.g. $\alpha = 1\%$.

$$\eta_{ABC}(k) > \chi^2_{m_s-n}(\alpha) \Rightarrow \begin{array}{l} \text{This is mismatch in } \mathbf{A} \\ \text{or } \mathbf{B} \text{ or } \mathbf{C} \end{array}$$

$$\eta_{ABC}(k) < \chi^2_{m_s-n}(\alpha) \Rightarrow$$
 This is no mismatch in \triangle , **B** and \triangle .

MPM Detection Indices (2) & (3)

- Other two MDIs are proposed in the similar way:
 - $\eta_{AC}(k)$ is only sensitive to the mismatch in $\{A,C\}$;
 - $\eta_C(k)$ is only sensitive to the mismatch in $\{C\}$.

Isolation Logic

Fault Matrix	$\eta_C(k)$	$\eta_{AC}(k)$	$\eta_{ABC}(k)$
В	0	0	1
A or AB	0	1	1
C or AC or BC or ABC	1	1	1

'1': the according MDI does indicate MPM

'0': the according MDI doesn't indicate MPM

Isolation Logic (con't)

- Usually, matrix C is the sensor gain matrix, which is unlikely to deviate.
- Therefore, if we assume there is no mismatch in matrix C, the isolation logic becomes:

$\overline{\eta_{ABC}(k)}$	$\eta_{AC}(k)$	Fault Matrix
1	0	В
1	1	A or AB

'1': the according MDI does indicate MPM

'0': the according MDI doesn't indicate MPM

Numerical Example

The simulated process

- The simulated process is a second order dynamic system.
- The system matrices in discrete time domain are:

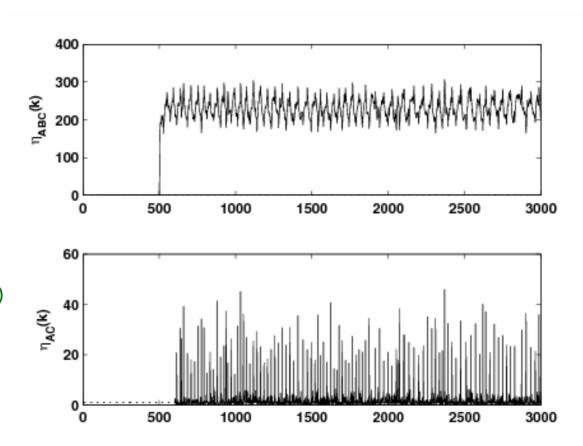
$$\mathbf{A}_0 = \begin{bmatrix} 0.6082 & -0.0100 \\ 2.2668 & 0.0364 \end{bmatrix} \quad \mathbf{B}_0 = \begin{bmatrix} 0.5602 & 0.0008 \\ 1.3760 & 0.3026 \end{bmatrix}$$

$$\mathbf{C}_0 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

• Matrix C is the sensor gain matrix and we assume there is no mismatch in this matrix.

Case(1): mismatch in A matrix

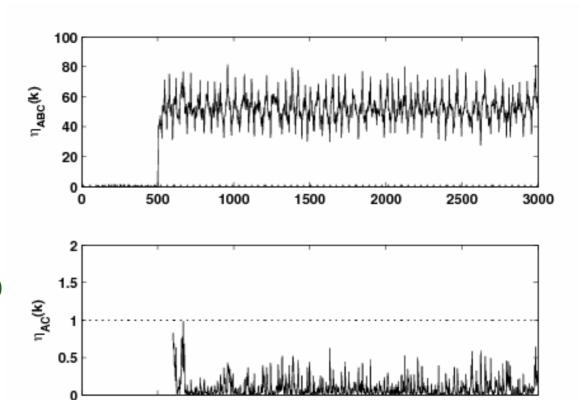
- 10% mismatch in A matrix;
- 3000 samples of input and output data;
- Mismatch is introduced at 500th sample;
- Noise-to-signal ration (NSR) for the two outputs are 11.19% and 2.73%.



Remark: The MDIs have confirmed that there is mismatch in matrix A.

Case(2): mismatch in **B** matrix

- 10% mismatch in B matrix;
- 3000 samples of input and output data;
- Mismatch is introduced at 500th sample;
- Noise-to-signal ration (NSR) for the two outputs are 14.81% and 4.12%.



1500

2000

2500

3000

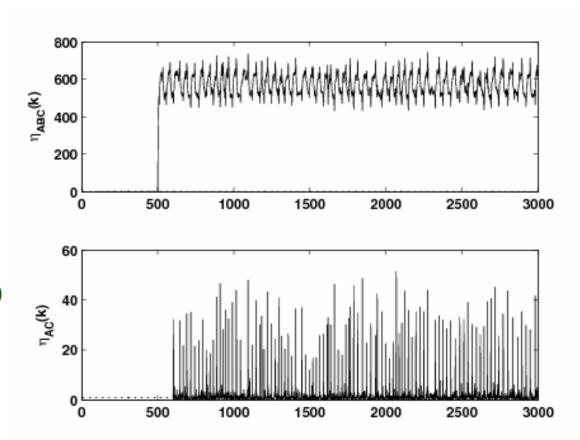
Remark: The MDIs have confirmed that the mismatch is only in matrix B.

500

1000

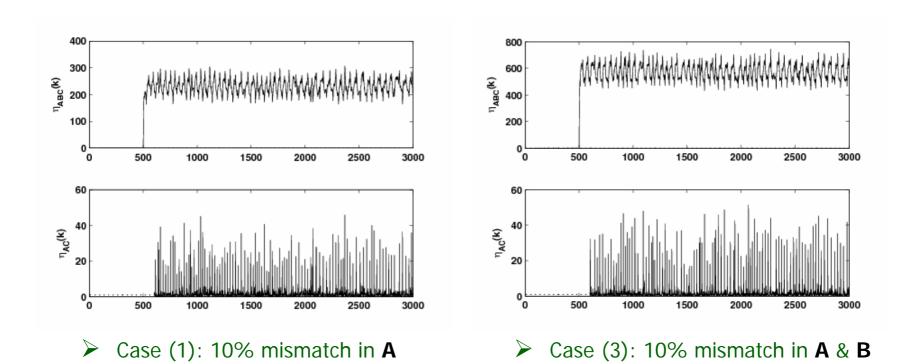
Case(3): mismatch in A & B matrices

- 10% mismatch in A & B matrices;
- 3000 samples of input and output data;
- Mismatch is introduced at 500th sample;
- Noise-to-signal ration (NSR) for the two outputs are 6.94% and 1.74%.



Remark: The MDIs have confirmed that there is mismatch in matrix A.

Comparison of case (1) & case (3)



- $\eta_{ABC}(k)$ is sensitive to both mismatch in **A** & **B**
- $\eta_{AC}(k)$ is only sensitive to mismatch in **A**

Conclusion

Conclusion

- The types of faults that can affect process performance haven been reviewed.
- Three different MDIs have been proposed to detect MPM.
- An isolation logic framework has been proposed to isolate the system matrices that have MPM.
- A numerical example has been presented to demonstrate the efficacy of the new scheme for detection and isolation of MPM.

Acknowledgement

Acknowledgement

 NSERC, Matrikon and ASRA for financial support

Colleagues of CPC group