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Estimating Functions in Chaotic Systems

Subhash LeLe*

Berliner considered Bayesian and likelihood-based approaches for estimation and prediction in a chaotic system with measurement
errar. This article proposes the use of estimating functions for this problem. Lagistic and exponential maps are anzalyzed. Estimators
are shown to be consistent and asymptaotically normal. Small-sample behaviar is studied with simulations.

KEY WORDS: Measurement errors; Nuisance parameters.

1. INTRODUCTION

The last decade or two has seen an explosion of devel-
opment in the theoretical as well as applied aspects of simple
nonlinear systems that lead to chaotic behavior. I refer the
reader to the Journal of the Royal Statistical Society, Ser. B,
Vol. 54, No. 2 (1992), hereinafter referred to as JRSS-B,
which contains papers presented at a special meeting of the
Royal Statistical Society in 1991, and also Berliner (1991).
These papers discuss various statistical aspects of chaotic
systems. They also contain a large bibliography related to
the subject of chaos. The main approach used in the JRSS-
B papers is nonparametric. On the other hand, Berliner
(1991) considered parametric models that lead to chaos on
a subset of the parameter space. He considered a likelihood-
based approach for estimation of the parameters of the un-
derlying deterministic system in the presence of measurement
error. He also considered Bayesian prediction for these so-
called “unpredictable processes.”

Estimating functions (Godambe 1960, [985, 1991) have
proved to be a promising alternative to maximum likelihood
estimation. They usually lead to simple numerical calcula-
tions and also possess a rabustness property (Godambe and
Thompson 1984) in that they need only the specification of
the first few, usually two, moments instead of the complete
specification of the underlying distribution.

The purpose of this article is to show the applicability of
the estimating functions approach to the setup considered
by Berliner {(1991). I will consider only the estimation and
not the prediction problem. The models I consider are the
logistic map and exponential map; these are described in
detail in Section 2. Introduction of measurement error in
these models is described in Section 3. Estimating functions
for these maps are derived, simulation results for the esti-
mators are presented, and asymptotic properties of consis-
tency and normality are proven in Section 4. A discussion
of some further problems is presented in Section 5.

2. CHAOQTIC SYSTEMS: TWQO EXAMPLES

Following Smith’s (1992) description, let {X,} denote a
scalar time series satisfving X, = F(X,—4, X,—gr1, .. .. Xm1)
for some integer d known as the embedding dimension and
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nonlinear function F( - ). For many F( -), this deterministic
system does not converge to a fixed point or limit cycle but
exhibits the apparently random behavior known as chaos.
In general, as ¢ & oo, the d vectors ¥, = (X4, ..., X))
become arbitranly close to a limiting set known as the at-
tractor. If the system converges to a stable fixed point or a
limit cycle, then the attractor consists of one or a finite num-
ber of points. In a chaotic system, the attractor is typically
a fractal (i.e., a set whose dimension is nonintegral}, and in
that case the attractor is known as a strange attractor. Fol-
lowing is a description of two such dynamical systems. May
(1976) attested to the importance of these simple maps for
various practical situations.

2.1 Logistic Map (Berliner 1991)

Consider a dynamical system where for all ¢ in T = {0, ,
2,...}, x4 = ax, (1 — x;) and where x, € [0, 1] and ¢ € [0,
4].Ifaec [0, 1], then x, > Q as ¢t — co. Ifa € (1, 3], then
X~ (1l —(1/a))yast— co.For a> 3, the behavior is quite
interesting. For 3 < a < | + 62 x, asymptotically oscillates
between two points forever. For slightly larger a, the asymp-
totic oscillation is on a 4-point attractor, then 16, and so on.
This period doubling continues to a “period” of 2% at a
= 3.569. ... For larger ¢ the behavior is even stranger and
“unpredictable.”

2.2 Exponential Map (May 1974)

Consider another dynamical system x,; = xexp{r(l
~ x,)}, where x3 € [0, oo) and ¢ € [0, 4]. This model de-
scribes a population with a propensity to simple exponential
growth at low densities and a tendency to decrease at high
densities. The steepness of this nonlinear behavior is tuned
by the parameter r. The model is plausible for a single-species
population regulated by an epidemic disease at high density.
Forre(0,2], x;,— l ast— . For r > 2, x, asymptotically
oscillates between two or more points. The “chaotic” region
begins at r > 2.6924. . .. In theory, the chaotic region ends
at r = oo, however, in practice, as r becomes large, x, even-
tually gets carried so low as to be effectively 0, thus producing
extinction in models of biological populations.

3. MEASUREMENT ERROR IN CHAOTIC SYSTEMS

In the formulation in the previous section, given the series
{x,t=0,1,2,...}, calculation of the parameter values of
a or ris trivial. But in practice what one usually observes is

© 1994 Ametrican Statistical Association
Journal of the American Statistical Association
June 1994, Vol. 89, No. 424, Theory and Methods

512



Lele: Estimating Functions

a “noise-introduced series” { y,,£=10, 1,2, .. .}. For example,
in ecology one may estimate x, (the population size at time
t) using capture-recapture methods or quadrat sampling
data, or there might be pure measurement error added to
the observations due to the measuring device.

I consider the following kinds of measurement errors:

Additive error. Here ¥, = x, + ae,, 0 > 0, where g's are
independent identically distributed random variables with
mean 0 and variance 1. Berliner (1991) assumed these to be
Gaussian.

Multiplicative error. Here ¥, = x,Z,; where Z,'s are in-
dependent identically distributed random variables with
mean 1, variance ¢, and range on [0, o).

Note that for the logistic map, although x,'s are in [0, (],
Y,’s are not necessarily so. But for the exponential map with
multiplicative error, x,’s and ¥,'s both have the same range
[0, o0).

To keep close correspondence with Berliner (1991}, I con-
sider additive error for the logistic map and multiplicative
error for the exponential map and assume that ¢ is known.
Xo, ¥, and & are unknown. [ am interested in estimating «
or ¥ with x considered to be a nuisance parameter.

4. ESTIMATING FUNCTIONS

In the following I briefly describe the estimating functions
approach and then apply it to the two models in Section 2.

Let 8 be a one-dimensional parameter taking values in 9.
Let S denote the sample space. An estimating function for
8 is defined (Godambe 1960} as any function g: S X @ - R
such that Eg[g(Y, 8)] = 0. This is also called a “zero unbiased
estimating function.” An estimator 8 is obtained by solving
the empirical version g(y, ) = 0. Under suitable regularity
conditions (see the Appendix), these estimators can be shown
to be consistent and asymptotically normal.

4.1 Logistic Map with Additive Error
In this case,
Xe = ax Al — x;)
and

(%)

Analogous to the equality 2 i=¢ (x,+ — ax{l — x)) = 0,
one may write

Vis1 = Xer1 T 0641

n-1
2 (Vs —avl — )y =0. (1}
=0

But note that the estimating function

"=l

g(Y, a)= 2 [Y — al (i — ¥))] (2)

t=0

is not zero unbiased. Hence & obtained from ({) may not be
(in fact, is not) consistent for 4. But a simple adjustment to
(2) yields a zero-unbiased estimating function, g(Y, a)
= S Yoy — alY, — Y2 + ¢?)]. Solving the empirical
version of this equation, namely 2% [y — a(y — yi
+ 6%)] = 0 one gets the estimator
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Using first principles one can demonstrate the strong con-
sistency and asymptotic normality of 4. Alternatively, one
can apply the theorem stated in the Appendix to get the
required result. In the following theorem, the result is stated
formally.

Theorem 1.
in Section 3,

For model (*), under the conditions stated

(a) d > awp. |, and
(b) Vn(d — a) - N, V) in law.

Table 1 gives simulation results for this model. For these
simulations, I have taken x3 = .1, ¢ = .I, and ¢/'s to be N(0,
1) variates. Four entries in each cell correspond to the mean,
standard deviation, skewness, and kurtosis of the distribution.
of 4 numerically estimated from 500 independent realiza-
tions of length » with given a. Both consistency and asymp-
totic normality are fairly apparent from the results. Changing
Xp did not have any noticeable effect on the results. The
value of ¢ is the same as considered by Berliner (1991). Also
note that even with samples of sizes 20 or 50, the estimator
is well behaved.

4.2 Exponential Map
In this case,

Xerr = Xexp{r(l — x)}

and

X1 Zsr s (%%)
I also assume that Z,'s are independent identically distributed
log-normal random variables with parameters ~(6%/2) and
¢, Thus E(Z) = 1, var(Z,) = ¢*, and E(log Z,) = —(o?/
2), var(log Z,) = o> '

Consider the following equation:

Vit =

n—l

g2(Y,ry= 2 [(log Yoy —log Vo) — (1 — ¥)]. (3)

t=0

It is easy to check that this is a zero-unbiased estimating

function. But note that
2\ =0 ‘

ln—l
— > (- )—=>EX—1.

=0

[ a
m E[é; &Y, r)]

My numerical experience suggests that for all values of r,
this is 0. Thus this violates the condition | E[(8/88)g(Y,
8)}| > 0 for the result in the Appendix to hold. Numerical
experience also suggests that 7, abtained by solving (3), is
very unstable and inconsistent.
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Tabie 1. Simutation Rasuits for the Model X, = ax,(T — x,) 80d Yot = Xewr + 08y, Xg = .1, a = .1, & ~ fld N{O, 1)

Sample size 1.5 2.5 3.25 3.50 3.75 3.95
20 1.4988 2.5056 3.2584 3.5017 3.7933 3.9908 mean
.a712 1517 2631 3382 4109 4544 standard deviation
.0001 .0008 .0103 0268 02758 .0661 skewness
3.1836 3.0552 3.5844 3.8651 3.0679 3.771 kurtosis
50 1.4966 2.5097 3.2483 3.5155 37709 3.9653 mean
0397 0977 .1525 2064 2331 2860 standard deviation
.0000Q .0002 .0010 .0033 0069 0121 skewness
2.9991 2.9806 2.8399 3.1379 3.2888 3.7084 kurtosis
100 1.4993 2.4938 3.2555 3.5045 3.7484 3.9566 mean
{0261 0633 .1193 .1495 1606 1924 standard deviation
.0000 .0000 {0005 0008 .0018 .0029 skewness
3.0285 2.8015 3.3289 2.9800 32197 3.2472 kurtosis
500 1.5004 2.5003 3.2504 3.5006 37513 3.9516 mean
0104 0292 .0481 .0622 0703 .0930 standard deviation
.0000 .0000 .0000 .0000 0000 0041 skewness
2.8054 2.9822 2.8089 2.8635 3.3975 3.4093 Kurtosis
1,000 1.4996 2.4999 3.2467 3.5015 a.7513 3.9506 mean
0077 .0206 0375 0444 0515 .0656 standard deviation
.0000 .0000 .Q000 .0000 .0000 .0000 skewngss
3.1843 3.0055 2.8782 2.9864 3.1055 2.7990 kurtosis
NOTE: Mean, standard deviation, skewness, and Kurtosis are d from 500 ind dent realizations.

P

Now consider the estimating function

n—I1

gY,ry= 2 {[(log Yie — log ¥,)? — 267]
=0
2
—r’([ —-2Y, + Y. 1)]
I + e°

E[(log Y, — log Y.)?] = (log x,1 — log x,)* + 242

Note that

and

2

E[[—2I’}+ ]=(1—x;)2.

[
1+ e
Hence this estimating function is zero unbiased. Moreover,

- FE(l-X)*>0
p (1-X)">0,

d
E[é;a 8y, f)}

unless X is degenerate at [.
The following theorem is a consequence of the result in
the Appendix.

Theorerr 2. For model (**), under the conditions stated
in Section 3 and for r > 2,

o (log yes1 — log ) — 26%7'72

bl
= (1 ~ 2y j’e)

7= abs

and

{(a) F=>rwp. |1
) Va(f — r) = N(O, V,) in law.

Table 2 reports the simulation results for this model. For
simulations, I have taken x; = 1.3, ¢ = .3, and Z.s to be
log-normal random variates with parameters —(¢?/2) and

&*. Four entries in each cell correspond to the mean, standard
deviation, skewness, and kurtosis of the distribution of 7 nu-
merically estimated from 500 independent realizations of
length » and specified r. Both consistency and asymptotic
normality are fairly apparent from the results. Changing xq
did not have any noticeable effect on the results. Note that
even with small sizes of 20 or 50, the estimator is well be-
haved.

It should be mentioned that to derive the zero-unbiased
estimating function for this model, I have assumed a partic-
ular model for Z;'s viz. log-normal errors. Strictly speaking,
all that one needs to know is var(Z,) and var(log Z,) to get
zero unbiasedness.

I would also like to point out a curious result that if »
€ (1, 2] (i.e., when {x,} process is stable and x, = 1 as ¢
— o0, r cannot be estimated consistently using the afore-
mentioned procedure. This happens perhaps because (1/
ME[(3/3(r*))g(Y, r})] = 0 in this case. Unstable and cha-
otic processes lead to consistent estimation, whereas stable
processes lead to inconsistency.

5. DISCUSSION

This article demonstrates that estimating functions can
be successfully applied for the estimation of parameters of
chaotic systems in the presence of measurement error. A
comparison with the likelihood approach yields the following
points;

a. The nuisance parameter xy is eliminated very easily.
Of course, whether or not X, is a nuisance parameter
could be debated. But note that in the discussion of
his paper, Berliner {1991) noted that if # is large, even
for prediction purposes, then it is computationally bet-
ter to ignore X, and consider only a previous few ob-
servations. '
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Table 2. Simulation Results for the Mode! X..; = xexp{r(1 — x,)} and Yy; = %1205 With X3 = 1.3, 2, ~ lognormal{—d*/2, %), with = .3

Sample size 25 3.0 3.25 3.50 3.75 3.95
20 2.5471 31621 3.3592 3.6351 3.8417 4.2634 mean
0.2490Q 0.4373 .4320 .4440 .5808 7223 standard deviation
—.0050 .0205 —.0004 ~.0089 .0329 .0503 skewness
3.0801 2.8671 2.8739 2.7659 2.7154 2.5502 kurtosis
50 25194 2.9463 3.3026 2.4746 3.8498 4.0687 mean
1713 2778 .2654 .3098 3697 4074 standard deviation
—.0005 — 0041 .0002 —.0012 —.0004 .0031 skewness
2.6883 3.5359 2.7830 29494 2.6608 28774 kurtosis
100 2.5078 3.0169 3.2321 3.5595 3.7962 3.9957 mean
1106 1996 1940 2461 2643 3019 standard deviation
—.0003 —-.0000 .0008 .0034 —.0021 —.0029 skewness
29286 3.5018 2.66823 3.0184 2.8794 2.9628 kurtosis
500 2502 2.9947 3.2595 3.5074 3.7567 3.9511 mean
0573 0811 .0864 1050 1205 1326 standard deviation
.0000 0000 ~.0001 ~.0001 0000 0003 skewness
3.0732 2991 2.0812 3.452H 2.8987 3.0630 kurtosis
1,000 2.5047 3.0046 3.24R9 3.5016 KWLYa 3.9451 mean
.0736 03792 .0609 .0738 0817 .0925 standard deviation
0000 20000 .0000 .0000 .0000 .0000 skewness
2.8002 2.8411 3.2843 3123 2.6021 3.2468 kurtosis
NOTE: Mean, standard deviation, skewness, and kuriosis ara estimated irom 500 independent realizations.

. As noted by Berliner (1991}, the likelihood surface for

chaotic systems looks very choppy, thus finding the
maximum is a difficult task. Estimating functions seem
to yield computationally simple (and for the cases con-
sidered in this article, unique) estimators.

. Asymptotic properties for the estimators obtained hy

using estimating functions are easily derived.

. Following Lele (1991}, one ¢an estimate the asymptotic

vanance of these estimates by jackknifing the linear
estimating functions.

. Assumption of the knowledge of o2 is, of course, some-

what unrealistic. But there are instances where repeated
observations with the same x, are available (Sauer, per-
sonal communication). In such cases one may estimate
&* from these repeated observations and behave as if
it is the true value in the spirit of pseudolikelii- ~d
suggested by Gong and Samaniego ([986).

If one does not have repeated observations, then one
can possibly estimate ¢ by applying the semipara-
metric approach described by Kiefer and Wolfowitz
(1956) and Lindsay (£983). For example, consider the
logistic map with Gaussian errors. In this case,

Y, x, ~ N(x, ¢*) t=1,2,....

Moreover, let Q) denote the invariant distribution
of the {x,} process. Then, for sufficiently large ¢,

F) = fo Pl e, 0) dO(x).

Then, under certain regularity and identifiability con-
ditions (Kiefer and Wolfowitz 1956), it is possible to
estimate o7 consistently by the method of maximum
likelihood. Existence but no particular form for G(+)
is assumed. Unfortunately, this needs the assumption
of a known form of the error distribution.

The models considered in this article are simple, but they
demonstrate the point that using estimating functions is a
reasonable approach for statistical analysis of chaotic systems
with measurement error. Multiparameter models would
necessarily require more ingenuity in deriving zero-unbiased
estimating functions than was needed here. It is also not
obvious whether and how estimating functions can be used
for the prediction problem.

APPENDIX. ASYMPTOTIC PROPERTIES

Consistency and asymptotic normality for the estimators based
on zero-unbiased estimating functions can be proved as follows.

Let {¥,, ¥3, ..., ¥,, ...} be a sequence of independent and
identically distributed random variables. Let S denote the sample
space and @ denote the parameter space with @ being an open in-
terval in &,

LﬁtSn= SX&X -+ X Sand Y('n)z(yl, Y}, ca
\-—.-_v__.l
1 times
Let g: S, X @ = R be a function such that E g(¥,,) = 0 for
all # €6 and for all 1.
The function g( + } is called a zero-unbiased estimating function.

Further assume that g( « ) is a linear estimating function {Godambe
1985, Lele 1991); that is, it has the form

A

g(Y{n}: ﬁ) = E g(YI: 6)1
=

where ¥, = (¥,, ¥}, j € N(t)}+ N(t) denotes the finite collection of
“neighbors” of 1, For the cases considered in this article, ¥, = (¥,
Y._1). An estimator 8 of 8 is the salution of

E g(}"n T) = 01
=1

where (¥, ¥4, - - . , ¥u) i8 the realization of (¥, ¥, ..., ¥a).
Additional Assumgptions tor Consistency of 4

Cl. g(Yy, 1) is strictly monotone in r for all #.
C2. E4[g(¥euy, 7)] 1s finite and strictly monotone in = for all #.
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C3. {g(¥,, 7)} is a weakly stationary, m-dependent sequence
with finite variances and covariances for all + € 6,

Uinder these assumptions, the following résult is a consequence of
the strong law of large numbers for m-dependent sequences (Stout
1974, p. 207):

1
o [8(¥Ye), 7) — EL8(¥t), 7)) > O

with probability | VY€ 0.

Given this result and the uniqueness of 8, by lemma 7.2.1A of
Serfling {1980, p. 249}, it follows that

§ - ¢ with probability |.

Asymptotic Normality of 4

This proof follows by the linearization technique described by
Serfling (1980, pp. 144-148).

Let S,(r) = (1/Vn} T2y g( i, 7).

Assume that:

NL. E|g¥, M =R < o forallt.

N2, My Lin 20 E[(0/89)g(Y,, 8)] = ¢y where ¢4 # 0 and
< a0,
N3, [(I1/n) 25, Ef(8% 87 )e(Y,, 7)]] = M < oo for some M,

for all and r € 8.
N4. & — 8 in praobability.
NS. imp(1/R)E(TL, (Y 8)) = 1 < a0,

Under suitable smoothness conditions on g(¥,,, v}, expand
5,(8) around 8 to get

12 a

-2 ";g(Yn T)|f=-e]

n_ 8

S8y = S,(0) + V(8 — s)[

(-1 2 a*
+ N HE; a‘.l'}g(Y“ f)|r=s‘ L]
where #* is such that [6* — 8| < |8 — 6].

Application of the central limit theorem for stationary m-depen-
dent sequences (Fraser 1957, p. 219, thm. 4.2), it follows that

Journal of the American Statisticat Association, June 19%4
S(0) = N0, n) inlaw, )

Under conditions similar to C3 for the sequences {(8/d7)g(¥,,

1)} and {(8*/87%)g(¥,, 7)|,cp+ }, namely of finite variances

and covariances, it follows that

L2 4
- z 5, 8 T} ,2s = ¢ with probability
T

=1

and
2 @ 3)1{1 53 v ]_,0 with peobability 1
= |~ o ts T)lr=g* ’
2 n 5 art

These together yield the result

V(@ — 8) > N(O, %) in law.
a

[Received June 1992. Revised August 1993}
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