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SUMMARY

Let (X, X3 ..., X,) be a vector of (possibly dependent) random variables having
distribution F(X, 8). Let G(X, ) = £%_,g,(X, #) = 0be an estimating equation for #, e.g.
the score function or the maximum pseudalikelihood estimating equation in spatial
processes. Let 8, be the estimator abtained from G such that 8, — 8, in probability and
n'8, -8, — N, V} in distribution, In many situations, it is difficult to derive an
analytical expression for V, e.g. for maximum pseudolikelihood estimators for the spatial
processes. In this paper, we give a jackknife estimator of V and show that it is weakly
consistent. The method consists of deleting one estimating equation {instead of one ohserva-
tion) at a time and thus obtaining the pseudovalues. The method of proof and conditions are
similar to those of Reeds with some modifications, The method applies equally to indepen-
dent and identically distributed random variables, independent but pot identically
distributed random variables, time- or space-dependent stochastic processes. Our
conditions are less severe than Carlstein’s who deals with a similar problem of estimating
for dependent observations. We also give some simulation resulis.

Keywords: ESTIMATING EQUATIONS; JACKKNIFE; SPATIAL PROCESSES; STOCHASTIC
PROCESSES

1. INTRODUCTION

Jackknife, bootstrap and other resampling methods of estimating bias, variance and
other distributional properties of the sample statistics are extensively used in many
areas of applications. Most of the results in these areas assume that the data come
from independent and identically distributed random variables. However, in many
interesting applications, the data come from a collection of independent but not iden-
tically distributed random wvariables or from a sequence of dependent random
variables such as a time series or a spatial process. Not much work has been done in
using jackknife techniques in these areas. We quote Miller (1974), section 3.7: ‘An
area in which the jackknife has had little or no success is time series analysis. Except
for the case g =2, the removal of data segments from a serially correlated sequence of
observations causes difficulty for the jackknife.” Frangos (1987) echoes the same
opinion. Zeger and Brookmeyer (1986) suggest the use of pseudolikelihood for time
series regression with censored data and comment: “The principal disadvantage . ..
(of the maximum pseudolikelihood estimator) . . . is that a consistent estimator of
variance is difficult to obtain’. Kiinsch in the discussion of Besag (1986) comments:
‘Note that in order to estimate the variance of 3 . . . (the maximum pseudolikelihood
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estimator) . . . similar (Monte Carlo) calculations are needed anyhow’. Guyon (1986)
proves that the maximum pseudolikelihood estimators for spatial processes are
asymptotically normal. However, the asymptotic variance can be calculated only if
the joint probability structure is known! This is, in general, very difficult to find. See
Besag (1974) for details. In this paper, we propose an extension of the jackknife
technique which provides a nonparametric estimate of variance, thus answering these
problems.

As a remark, we note here a paper by Carlstein (1986) which addresses the same
issue. He has suggested a consistent estimator of variance of an arbitrary statistic
calculated from a strictly stationary «-mixing process. He divides the whole series of
size n into several subseries of size m, such that m, — o but m,/n = 0. Loosely
speaking, our extension is such that we obtain a consistent estimator of the variance
for m,=n—1and n — o. In Section 5 we discuss the effect of this on the bias of the
estimator. In our case we do not need stationarity, however, we need conditions on the
rates of mixing and statistics given by estimating equations.

The idea involved is very easy. Suppose that we have (X, X, . . ., X)), avector of
possibly dependent random variables having distribution F(X, #). Let

G(X,8) = i 8(X,8) =0

i=]

be an estimating equation for #, e.g. the score function or the maximum pseudolikeli-
hood estimating equation (Besag, 1975). We call an estimating equation of this form a
linear estimating equation (Godambe, 1960, 1985). To obtain the pseudavalues, we
do not delete observations, but rather delete one component of the estimating
equation at a time. We show that the jackknife estimate of variance obtained from
these pseudovalues is weakly consistent.

The organization of the paper is as follows. Section 2 discusses the linear estimating
equations and introduces the jackknife estimate of variance. Section 3 gives the
notation, assumptions and the main theoretical result of the paper. The practical
validity of the theorem was checked by a simulation study presented in Section 4. In
Section 5 we compare our method with that of Carlstein (1986) and give some theo-
retical and simulation results. We prove the main theorem in Appendix A.

2. LINEAR ESTIMATING EQUATIONS AND JACKKNIFING

Let (X, X3, . . ., X,)beavector of (possibly dependent) random variables. Let the
distribution of this vector be F with parameter 6. # may possibly be vector valued. For
simplicity of notation we give all the proofs for univariate 6. The proofs for vector-
valued @ are straightforward extensions. We assume that the estimating equation for 6
can be written as /. g,(X, 8) =0. See Godambe (1960, 1985) for general conditions
on the g;.

2.1. Some Examples of Linear Estimating Equations
Example 1. X, X,, ..., X, are independent but not identically distributed
random variables with densities f,(8), f2(8), . . ., f.(8) respectively. Then the score
fupction may be written as
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>4 3 {og (X, 0)} = Zg,(x 6) = 0.

i=1

Example2. A conditional least squares estimating equation for a Markov process
(Klimko and Nelson, 1978; Godambe, 1985) can be written as

Z {X E(XlXt 116)}[ E(X!Xre I 6)] = Z gt(xsa) =0
i=1 i=1

Example 3. A maximum pseudolikelihood estimating equation for spatial
processes (Besag, 1975) can be written as

H

d "
2 3 Lo (X XN, 0)} = 32X, 0) =
i=1 i=1

where N(i) denotes the neighbourhood of the site 7.

2.2. Jackknifing

In the usual jackknife, we delete one observation at a time and estimate 6 from the
remaining observations. See Miller (1974) and Efron (1982) for more details. As noted
by Miller (1974), removal of data segments from a serially correlated sequence of
observations causes difficulty for the jackknife. However, we may conceivably delete
a component of a linear estimating equation. In doing this, we are using the
information in X; conditionally but not unconditionally. As we show in the next
section, this idea works.

Let

G(X,0) = ) 8i(X,0) =0
i=1

be the original estimating equation and 8, be the estimate thereof.
Let

Gi(X,0)= > 2(X,0)=0

i#f

and 8, _; be the estimate thereof.
The jackknife estimate of @ is

IK Bn(Xls XZ) LR

_n)

ni 2.1

where R, = 0, _; — 8,.
If the estimating equations are uncorrelated in the sense that E(g,g;) = 0 for all
and J, then the jackknife estimate of variance is
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JKV 8, =(n—1) D] (R,— R,V (2.2)
;

where R, = (1/n)E;R,,;. This estimates ¥, the asymptotic variance of §,.
However, modification is needed when the estimating equations are not uncor-
related. Consider example 3 of Section 2.1. It is clear that

d . d .
E(@ {log S(X,| X(N(i)), 0)} E[logf(X;iX(N(J)).ﬂ)]) #0

for je N(i). In this case, E(g,g;} # 0if i and j are neighbours; otherwise it is zero. In
such a situation, the jackknife estimate of variance has to estimate these covariances
also. The modified estimate is given by

IKV* G, =(n—1) 25 25 (Ru—R)Ry—R,) (2.3)
i=1  jeN(i)
where N(7) is the set of sites for which E(g;g;} # 0.

In the first part of the paper we assume that E(g,g;) # 0 for only a finite number of
Jjsforafixedi,i.e. each site has only a finite number of neighbours. In the last section
we relax this condition.

The next section gives conditions under which this estimator is consistent.

3. NOTATION, ASSUMPTIONS AND MAIN RESULT

Let X, X,, . . . berandom elements of some measurable space (x, A). Let 6 € RY.
Wetake g = 1 for notational simplicity. The results hold for ¢ > | also. Let E; denote
expectation for a particular 6.

We make the following assumptions. Let the distribution P of X, X, ... be
such that F,|g,(8)| < oo for all 8, all i, and there is an interior point f,€ 0 with
Ey(g:(60)) = 0, E4(g:(8)) # 0(8 # §) for all .

There exists a compact neighbourhood X of 8, such that, for all # in X,

(@) Eyfgi8g]* < o Vi,
3

(b) E, @g;(ﬂ)le., < @ Y,
© L=2E(L 0 T=Le( S0
H A & & 36 i ’ H n a(ll: i ) 1

JE— l — ——
= lim, .. I, is non-singular, J = lim,_.,J,and V = I-'J I,
3 d N
@ | 5580 - 3580 | <m |s—1]

uniformly in i for some random variable X (this is a Lipshitz-type condition),

(e) E,(gg) = 0for d(i,j) > P for some P < oo (this says that the estimating
equations should become uncorrelated after certain finite distance; here
d(i, j) is distance between site i and site j),

(fy nY*6,—6,) = N0, V)in distribution and

(g) 8, — 6,in probability.

]|

We do not state the additional conditions needed to derive assumptions (f) and (g).
They are assumed to be satisfied in each individual case. For the regularity conditions



1991] JACKKNIFING LINEAR ESTIMATING EQUATIONS 257

in spatial processes, see Guyon (1986). For the regularity conditions in stochastic
processes, see Hall and Heyde (1980) or Klimko and Nelson (1978).

Theorem 1. Under these assumptions, with JK 8, as given in equation (2.1) and
JKV 8, as given in equation (2.2) or equation (2.3),

(a) n'*(JK 6,—8,) — 0in probability,
(b) IJKV 8, — Vin probability and
(© nY2(JKV 6,)"V2(JK 8, — 6,) — N(0, I) in distribution.

For the proof see Appendix A.

4. SIMULATION RESULTS

We applied this method of jackknifing to three different situations: the first-order
Gaussian autoregressive process, bilinear time series and a two-neighbour line
process. In all these cases we know the asymptotic variance and hence we can check
the performance of the procedure. To generate the random numbers we used
International Mathematical and Statistical Libraries (1984) subroutine GGNML. The
simulation results indicate that the jackknife estimate of variance is consistent.

4.1. Gaussian Autoregressive Process
The Gaussian first-order autoregressive (AR(1)} process that we consider here is

Xiv1 = pX; + €4y

where |pl < 1 and ¢;are independent identically distributed normal random variables
with zero mean and unit variance. We consider the maximum likelihood estimating
equation for estimating p

(Xi—pX:_ )X = 0.
1

"

!

It is well known that the asymptotic variance of this estimator is | —p? (Basawa and
Prakasa Rao, 1980). Table 1 contains the simulation results. We can easily see that the
jackknife estimate of variance is consistent.

4.2. Bilinear Time Series
For a bilinear time series (Granger and Anderson, 1978) we consider the maodel

Xiv1 = pXi + €41 + BXigp

where the ¢; are independent identically distributed Gaussian random variables with
zero mean and unit variance.
We consider the conditional least squares estimating equation for g,

Z (Xi—pX,_)X;- = 0,

i=1

which is identical with the estimating equation in the previous case. However, the
asymptotic variance of 4 is different and can be calculated using standard methods of
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TABLE 1
Jackknife estimate of variance for a first-order autoregressive processt

a True asymptoric Jackknife variance Standard deviation
variance (1 —a 2) JKVL aof JKV§
0.0 .00 0.9622 0.1995
0.0 (.99 1.0028 0.2109
0.2 .94 (.9654 0. 1965
0.4 .91 (¢.9436 G.1977
0.4 .84 0.8584 0.0(849
Q0.5 0.75 0.7642 01871
0.6 0.64 0.6360 0,1543
0.7 0.51 0.5581 0.1833
0.8 .36 0.4057 0,1319
0.9 0.19 0.2246 0.0964

1100 simulations, # = 100.
1IKV is the average of the estimates of V from. 100 simulations.
§The standard deviation of TKV is the standard deviation of the estimates of ¥ from 100 simulaticns.

TABLE 2
Jackicnife estimate of variance for a bifinear time series {

) Estimates for the following values of 8:
a.1 0.15 0,26
0.5 AV 0.8150 0.9170 1.0585
JKVS 0.8171 (.8780 1.0360
SD$§ 0.2876 0.3488 0,4524
0.75 AVL 0.5279 0.6472 0.9063
IKV$ 0.5324 ¢.6127 0.8027
SD§$ 0.1559 0.2274 0.4549

1100 simulations, # = 100 for the model X, =oX,,_ | +8e, X, +¢,.

tTheoretical asymptotic variance,

§JKV, the jackknife estimate of variance, is the average of the estimates of ¥ from 100 simulations.

$$SD, the standard deviation of JKV, is the standard deviation of the estimates of ¥ from L00 simulations.

Taylor series expansions. We want to check whether the jackknife method suggested
earlier is robust against model specification provided that the g; remain uncorrelated.
The results are shown in Table 2. The jackknife technique is estimating the variance
of 5 correctly.

4.3, Spatial Process on Real Line
In this case we consider a spatial process on the real line. The model that we
consider is such that
E(X X, X)) = a(Xio + Xiv1)s
var(X; | X,_y, Xipy) = 0’
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We estimate « using Besag’s method of maximum pseudolikelihood. The estimating
equation is

S {Xi— (X + X DX+ X)) = 0.

i=1

Guyon (1986) and Besag (1977) give the analytic expression for the asymptotic
variance.

We give the simulation results in Table 3. It shows that the jackknife estimate of
variance is consistent.

5. JACKKNIFING ESTIMATING EQUATIONS WITH CORRELATED
COMPONENTS

In this section, we deal with the question: what if E(g;g;) # 0 for all  and j? To
show that this is not vacuous, we consider the estimation of the mean in the Gaussian
AR(1) process. The model under consideration is

Xir=u+t oXi + €4
Let X estimate u. Then the corresponding estimating equation may be written as
H i
2 (Xi—p)= 28X, u) =0,
i=1 i=1

It is obvious that E(g,g;) + 0 for all / and j. In such a situation we modify our
estimator as follows:

IKVy, 8, = (n—1) i 2 (Ru—R)R,—R,) (5.1)

i=1  jeM,i)

TABLE 3
Jackknife estimate of variance for a spatial process on the real line with two neighbours

a Asymprotic varignee Jackknife variance Standard
AV JRKVE deviation of JKV§
0.00000 1.00000 0.97086 0.1375
0.09900 0,94910 0.92747 0¢.1769
0.19231 0.78779 0.78946 0.1744
0.27523 (.586465 0,59872 0.1375
0,34483 0,38970 0.38660 0.0179
0. 40000 0.23040 0.22187 0.0800
0.44118 a.11974 0.1308( 0.0548
0.46980 0.05277 (.06130 G.03106
0,48781 0.01792 0.01995 0.0130
0.49724 0.00336 0.00374 (.0053

150 simulations, n=300.
1IKV is the average of the estimates of ¥ from 50 simulations.
§The standard deviation of JKV is the standard deviation of the estimates of ¥ from 50 simulations.
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where M, ({) denotes a neighbourhood of i with 2M, + 1 sites. Now if we let n — oo,
M, o such that M,/n — 0, it can be seen very easily that JKV,, 8, — V. This
scheme is very similar to that of Carlstein (1986). We now compare our scheme with
that of Carlstein. We consider the case of estimating the variance of X where X, are
observations from a Gaussian AR(1) process, with p=0. We know that

(X — u)N1—— N©, 1/(1-p)).

5.1. Caristein’s Scheme
Let X, X3, . . ., X, be the observations from a Gaussian AR(1) process.

(a) Divide the series into &, subseries each of length M,,.
(b) Caleulate X,, X, . . ., X¢, and X = (1/K,) 1 X,

K, _
€ &= AK{ 2 (X = %)

n oi=]

In his paper, Carlstein shows that

o* — EGYH =0 (Ml—)

for fixed M,. Now we consider the scheme presented in this paper. The jackknife
estimator of variance is

KV, =n-1)2, D (Xuy—XNX,;-X)

i=1 JeM, (i}

where

X'(n E Xies X'(J) =

1 & kﬁr
M, (i) = {XE—M,!XI—MM+|9XE—I: Xy Xivts - - -sX£+MM}'
After some algebra, we can write
JKV 8, = —— Z ST (X - X)X, - X).
i=1 jeM. i
Assuming that for each i all the neighbouring values are available, we can see that
n(p-+pit.. .+pM‘)]

E(UKV 8,) = 11[ n S

1—p?
__n { +2(p+ )}
n—1
__n [2(1 o “)/(I—p)—l]
n—1
_n [ 1+ p—2pMn ]
n—10(1-p*(1—-p)
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14+ p0—2pMe
(1-p)(1-p)

Thus, for the jackknife estimator, the asymptotic bias for fixed M, is o(1/M,,). We are
able to reduce the bias because we are using more information that is available in the
data than Carlstein’s scheme does.

To confirm our claim we did some simulation studies for this model. The results are
displayed in Tables 4 and 5. The jackknife estimate of variance clearly has less bias.
The calculations of bias and mean-squared error were done following the formulae on
pp. 1176 and 1178 of Carlstein (1986).

In applying the jackknife technique we have chosen the value of M, arbitrarily.
This choice is subjective in general. The same comment applies to Carlstein’s method.
In practice we may draw a correlogram to choose a reasonable value.

6. MISCELLANEOUS REMARKS

Remark I. 1t can be easily seen that, when the estimating equations are
correlated, the jackknife estimate of variance can be negative. This problem will not
be acute when there is a large sample; however, this is still a somewhat troubling fact.

TABLE 4
Jackknife estimate of variance of X for a first-order autoregressive process t

0 Asymplotic Jackknife varignce

variance =100 n=200 n=2300
0.3 2.04 TKVE (.90 1.89 (.9918
5D¢§ 0.8062 0.5196 0,4850
Bias .14 0,15 0.0432
Mean-squared errer (.6696 0.2923 0.2375

0.5 4.00 JKVi 151 3.54 375
Sp§ 1.4663 0.9434 0.8775

Bias 0.49 0.46 0,25
Mean-squared error 2.3901 1.1014 0.8325

1100 simulations, M, = 50.
1IKV is the average of the estimates of V from 100 simulations.
§SD, the standard deviatian of TKV, is the standard deviation of the estimates of ¥ from 100 simulations.

TABLE 5
Caristein’s method with optimal M,

g Asymptotic n=100 n=200 n=2360
variahce

0.3 2.04 Bias 0,3337 0.2685 0,2685

Mean-squared error 0.4323 02717 0.2071

0.5 4.00 Bias 0.8750 0.7559 0.664!1

Mean-squared error 2.7858 L,7631 1.3491
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A referee has suggested the following estimator with smooth weights instead of the
hard cut-off in our paper:

IKV = (n-1) 3} 3 (R~ R)R,—R,) N, /).

From experience with spectral analysis an estimate of this form may be preferable,

Remark 2. An obvious comment on the jackknife method of estimation of
variance is: ‘why not use the analogue of observed information?’,i.e. V = I;VJ, 1"
where

1 Fi]
T ; ?3“ :'(X;G)iezen

and

LS
n

Z > 2(X,6,) g(X,0,).

JeN(i)

See Royall (1986) for a similar estimator in the independent identically distributed
random variables set-up. We give below conclusions from a small simulation study.
The simulation study was done for the autoregressive process of order 1 as described
in Section 4. The sample size # was 100 and the number of simulations was also 100.
The basic conclusions are as follows.

(a) The jackknife estimator overestimates the variance whereas the observed
information underestimates it. See Efron and Stein (1981) for a similar result
in the independent and identically distributed random variables set-up.

(b) The confidence intervals obtained by using the jackknife estimate of variance
have more accurate nominal coverage probability than those obtained by
using the observed information.

These findings raise two possible issues, Does Efron-Stein inequality hold true for
jackknifing linear estimating equations? Is JKV a better ‘Studentizing® variance
estimator than observed information? To date we do not have answers to these
guestions.
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APPENDIX A

We provethe main result of the paper. The proofis very similar to that given in Reeds (1978)
for jackknifing maximum likelihood estimates. To simplify the presentation of our proof, we
follow his notation closely and use some of his results without proof,

The basic approach of the proof is as follows. By using the expansions of Reeds (1978), we
show that
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K8, =8,+R,... A.1)
and
IKVa, =V, +R*.... (A.2)
These expressions are obtained in equations (A.4)-(A.6).
Then to prove part (a) of theorem 1, we show that R ~/n — ¢ in probability. To show part
(b), we show that V,, — Vin probability and R * — @ in probability.

The convergences of R, and R¥ are proved by using lemma 2 repeatedly. The proof is
straightforward but needs careful bookkeeping.

Some Preliminaries
To avoid unnecessary repetition we follow the notation of Reeds (1978) closely and point
out the relevant sections and lemmas from his paper. We shall state and prove only those
results which are different from Reeds’s.
We assume all the preliminaries on spaces as given in Reeds (1978), section 3. Let G =
E%_,8.(8) = 0bethe estimating function. Then in Reeds’s notation, we obtain the result that
the random functions g;(#) belong to B and that F, ||g,(6)| < oo. Hence

Eo(88)) = v,(8) < = (v{(f8) = 0),
Y, = oo(g—v) — £, 0} — vi(6y) = g(x,0)) €V,
Z; = a)(g—v) = &/(X,0p) — 7/(6p) eV x V¥,
;= ag—v) =8, 8) — v, — &(x, 6,
- {8/(x,8)) — v/(0)}(6—8,) € B,
Here

VO = o4O,
ad “

Let U, = (¥,, Z,, #,). The equation §,(6) = 0 can be written as
¥(8) + ¥, + (6-8)Z, + ¢,(8) = 0. (A3)
For sufficiently small vectors in U = (¥, z, ¢) € U, the equation
' Y(0) + ¥ + (-0 + 6(8) = 0

has a solution in # which we denote by 8 = f{y, z, ¢).

Now we assumie the knowledge of section 4 of Reeds, particularly his lemmas I and 2 which
give the necessary expansions. We also assume all his notation. None of this section depends
on the independent and identically distributed nature of the random variables. Now we state
two lemmas which facilitate us to assert that O statements about A,;, B,;, C,;and D, onp. 736
of Reeds’s paper can be replaced by O, statements. Also in our case f,(0) = I .

Let U,, ¥, etc. and U,,, ¥,, etc. be as defined in section 3, p. 732, and section 5, p. 735, of
Reeds (1978). Then

— n—14g
K 6, = f(U,) - — >R,
i=l

Lemina 1.

@ lim,., P(U,el) = 1and
(b) lim,_ ., P(T, el) =1

where U is as in lemma I, section 4, of Reeds (1978).
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Proaof. Assertion (a) is trivial, considering the fact that L_!,, has mean zero and the weak
law of large numbers can be applied. The fact that the U, are bounded in probability and
U, = nU,/(n—1) — U /(n— 1) together give (b).

Lemma 2. Suppose that

(a) (X,,Y,)— 0inprobability and
(b) (X,, ¥,) el implies that /(.X,) — g(¥,) = O(k(X,, Y,)) for specified functions 1, g
and h:

then
J(X,) — g(¥,) = O,(n(X,, ¥,)).
Proaf. Part (a) implies that
PUX, Y el)—1.
This and part (b) together imply that

J(X,)—g(¥,) )
P ——— g M| — 1.
( WX, Y,)
Hence the proof follows.
Consider
— n—1
K 8, = f(U)—— DR, (A.4)
no5

Again following Reeds (1978), we find that
R, = fy(an)(?nj_ ?n) +fz(£_;ﬂ)(zu_z_ﬂ} + A"J' T B"f + C”f M D"f' (A.5)

WhereAnj = Op(||¢n;_¢nl| | 17J1'J| l+}\) ete. L

The only difference here is that Os are replaced by O,s, using lemmas [ and 2. This is the
expression needed in equation (A.1). Hence to prove part {a) of theorem I, we need to prove
that

VD R, =Nn D (A, +By+C,+D,)— 0 (A.6)
£ i
in probability.
Now consider the jackknife estimate of the variance. We note the following facts:

l H
JKV 6, = — >, (nR )%
n

i=1

L

ST D riR,R,.

1
JKV* g, = —
Mol jeN)

In the uncorrelated case,
1 &, — -
Vo=~ D HONY,- Y~V
=i

in probability and, in the correlated case,
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1 & - = 7
V=~ 20 2 FHUXY-Y)Y,-Y)-~V

=1 JeMu)
in probability. Thus to prove part (b) of theorem | we need

@ IKV 4, - V, = (I/n)L;(nR,)* — (I/n) E,f(U,XY,~ Y,) - 0in probability and
(b) JKV*E, — V¥ = (1/n) L, Eiony niRm‘an — (/1) &; Ypngy ff(U")(Y,.— Y,) »> Gin
probability.

These expressions are similar to equation (A.2).

We now state and prove lemma 3. This lemma is the most important part of the proof. It
facilitates the proof of n'/?L;| A, | etc. — O inprobability. Reeds (1978) needs a lemma similar
to this (his lemma 3 on p. 736). He proves it under the assumption of independent identically
distributed random variables; we extend it to the non-independent identically distributed
random variables case. The method of proof used here can be applied to show some of the con-
vergences claimed earlier.

Lemmal3. Let(V,, W), (V,, W), ..., beasequence of random vectors, Let

N V-V, [P W-W,
(@) Tnzn"ZI Ll ‘ L "1 and
i=i n n
" V-V, [ | W—W,|"*
@ Tready | Pl HEE
i=1 jeN() n n

where 8 and v are non-negative real numbers.
Let Z; be | V;|®| W,|" or | V;|® or | W;|* and 8 and » in (0, 2]. Then T, = 0 (T* — 0) in
probability provided that

(@) |V,| and | W,| converge to a finite quantity,

® =Y 2 Ezy-c<w,
M ENG)
(c) var( Z Z Z,-J,-) = O(n)and
i=1 JeM)

d) Bz20andf +v>a + 1.

Proaf. Weprove the convergence of T*. Convergence of T, follows on the same lines.
Note that

[Vi= VI W,— W * < 25| V[P+ |V, |50 W, + | W, ]*).

Hence

D 20 V=V PIW=Wr < 2 20 22 VIP— | VI W1 — | W,

r=1 JEM() i=l JeMN{)
Consider

n

TH* = n® ),

i=1  jeN(i)

Then taking (V;, W/)equalto (1, 1), {1, | W;|}, (| V], Yand (| V}|, | W;|), we can dominate T}
by a weighted linear combination of T** with weights being monomial functions of |V,]
and | W,|. Thus it suffices to show that T¥* — 0 in probability.

Vr_f
4

4

ﬁ‘ W

M
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Let Z; = | V/|?| W;|*. Then by assumptions (b)-(d) it follows that
1 "
_Z Z {Zr;r'_E(zfj)}_’O
R jenNg

in probability. Now

' f# '
w555
n
=1 jeNG) " H
. L
D IV AL AR
i=1 JeMG)

LetA=8+pv —a—12> 0. Then

T,,"‘*—n”““"i] D1 Z,~0

i=i jeNU)

in probability. Since (1/1) L/, E;eney Zy — € < o in probability and # ~* = 0 almost surely,
hence the proof follows.

In the proof of the main theorem, the (V;, W)) vectors are (¢,, Z)), (¢, Y)) and (Z,, ¥}).
Bylemma | we know that | ¥,/ |, | W, | are convergent since ¢, = 0, Z, = Oand ¥, — 0in prob-
ability. Conditions (b) and {c) are essentially those that are needed to prove the consistency of
the estimator 4, . In the stochastic processes and spatial processes setting these correspond to
strong or uniform mixing of the process with exponential rate. Some pertinent references are
Hall and Heyde (1980) and Guyon (1986).

Now the convergences of n V2L | A, | — Gete. follow asin Reeds {1978). The proof of part
(a) of theorem 1 is now immediate. The proof of part (b) in the uncorrelated case is complete if
we show that

Sn' =H E Ifa(an)(Ze;_Za)zl - 0

f=1

in probability. By lemma 2(ii) of Reeds’s section 4, we know that

s, = Op(ln“z?,.ﬁ > |z}—z_,,|1)

i=1

and |n'? Y,|? — x* random variable, £/ |Z, —Z,|* = 0 in probability. Hence S, — 0 in
probability. The proof for the correlated case is essentially the same.
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