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A Composite Likelihood Approach to

Patrick J. HEAGERTY and Subhash R. LELE

Binary Spatial Data

Conventional geostatistics addresses the problem of estimation and prediction for continuous observations. But in many practical
applications in public health, environmental remediation, or ecological research the most commonly available data are in the form
of counts (e.g., number of cases) or indicator variables denoting above or below threshold values. Also, in many situations it is less
expensive to obtain an imprecise categorical observation than to obtain precise measurements of the variable of interest (such as a
contaminant). This article proposes a computationally simple method for estimation and prediction using binary or indicator data
in space. The proposed method is based on pairwise likelihood contributions, and the large-sample properties of the estimators are
obtained in a straightforward manner. We illustrate the methodology through application to indicator data related to gypsy moth

defoliation in Massachusetts.

KEY WORDS: Empirical Bayes; Estimating function; Hierarchical model; Indicator kriging; Iterated conditional modes; Latent

variables.

1. INTRODUCTION

Classical statistical models for regression and prediction
with spatial data are useful in situations where data are ap-
proximately Gaussian and can be modeled using a linear
mean structure. Such models and the accompanying meth-
ods for inference are well studied and understood (for thor-
ough reviews see Cressie 1991; Haining 1989). But applica-
tion of these methods may be misleading in situations where
the data are clearly non-Gaussian, such as with categorical
or count data. Indicator kriging (Journel 1983) for binary
data in space grew out of the need to extend the Gaussian
methods. Disjunctive kriging (Matheron 1976) is another
approach that uses nonlinear functions of the response for
prediction. Trans-Gaussian kriging (Cressie 1991, pp. 137-
138) accommodates non-Gaussian data by using marginal
transforms of the response. What these approaches share
is the goal of prediction through direct modeling of joint
and conditional distributions of the response. But in the
past decade, since the publication of Clayton and Kaldor
(1987), there has been intense development of hierarchical
models (Carlin and Louis 1996) for both longitudinal and
spatial data. These models build the joint probability struc-
ture through specification of an observational level model
that may depend on unobserved variables and a hidden
or latent level model for the unobserved quantities. Infer-
ence procedures have been developed based on approximate
maximum likelihood (Clayton and Kaldor 1987), penal-
ized quasi-likelihood (Breslow and Clayton 1993), Markov
chain Monte Carlo methods (Besag, York, and Mollie 1991,
Diggle, Moyeed, and Tawn 1997; Waller, Carlin, Xio, and
Gelfand 1997), and estimating functions (Yasui and Lele
1997).
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Most of these methods can have practical difficulty han-
dling large datasets due to computational demands. But
many of the spatial datasets in public health, ecological pest
control, or environmental remediation science contain thou-
sands of observations. Also, obtaining categorical informa-
tion such as an indicator that the amount of contamination
is above or below a threshold, or that the abundance of a
species is low, medium, or high can be substantially cheaper
than obtaining precise response measurements. Therefore,
it is often possible to obtain categorical information at many
locations, and with a large dataset it is often computational
feasibility rather than statistical efficiency that dominates
analytical concerns. Our goal is not to supplant the careful
collection of precise spatial data, but rather to recognize
the availability of potentially informative spatial categorical
datasets and to propose an alternative practical method for
regression analysis and prediction that use these data. This
article proposes a method of inference based on the con-
cept of composite likelihood (Lindsay 1988) for the estima-
tion of spatial hierarchical model parameters. Our method
is computationally simple and can handle large amounts of
data, and theoretical results such as consistency and asymp-
totic normality of the resultant estimators follow in a rea-
sonable fashion. This article focuses on the analysis of bi-
nary data in spatial situations. Extensions of the composite
likelihood approach to other categorical responses and to
space—time data are feasible and a primary goal for future
work.

In the next section we discuss a practical situation related
to pest management of gypsy moths in Massachusetts. The
problem is to relate the amount of defoliation, measured
as above or below a threshold, to egg mass densities in
the region. The purpose is to predict the amount of defo-
liation for the next season for management purposes. In
Section 3 we introduce a multivariate probit model used
for the analysis and discuss the interpretation of model pa-
rameters. In Section 4 we detail the method of composite
likelihood as applied to this model. In addition to point es-
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timation, we address the estimation of standard errors and
propose a resampling based method. Our predictions, de-
scribed in Section 5, are empirical Bayes estimates obtained
through an approach similar to iterated conditional modes
(ICM) described by Besag (1986). In Section 6 we illus-
trate the method through analysis of the defoliation data.
We conclude in Section 7 with a brief discussion. Proofs of
consistency and asymptotic normality are provided in the
Appendix.

2. DEFOLIATION AND GYPSY
MOTH PEST MANAGEMENT

The gypsy moth, Lymantria dispar (L.) is probably the
most important forest defoliating pest in the northeast-
ern United States. Defoliation and tree mortality associated
with gypsy moth outbreaks can cause a multitude of eco-
logical and economic effects (Gottschalk 1993). Every year,
more than 250,000 ha of forest land in the United States
are sprayed to minimize the adverse effects of defoliation
by the gypsy moth (USDA Forest Service 1992).

The Massachusetts Department of Environmental Man-
agement monitors gypsy moth defoliation annually in all
parts of the state using aerial sketch maps. Maps are
sketched during a series of low-level reconnaissance flights
in late July when defoliation is at its peak. Thirty percent
defoliation is considered the lower threshold for detection
from the air. In situations where there is a doubt as to
the cause of defoliation, ground checks for the presence
of gypsy moth life stages are made. The data are coded as
either O or 1, depending on whether defoliation exceeded
the detection threshold. A grid cell size of 2 km x 2 km
was selected as the standard, and each map consists of 198
x 93 cells. More details on the data can be obtained from
Liebhold et al. (1995).

Hohn, Liebhold, and Gribko (1993) developed a geosta-
tistical model that predicted future defoliation maps from
historical defoliation maps. The resulting landscape level
predictions of defoliation took into account both the spa-
tial and temporal dynamics. Liebhold et al. (1995) improved
upon this modeling by also taking into account the available
covariates such as egg mass data through marginal logistic
regression. Both of these papers utilize the classical indi-
cator kriging approach (Cressie 1991, pp. 281-283). In this
article we apply a model that can be considered “universal
indicator cokriging” where not only spatial correlations are
modeled but also covariates are used to model the mean
response. We utilize a composite likelihood method for es-
timation of the hierarchical model parameters and use a
version of Besag’s ICM method for prediction.

3. MODEL

Generalized linear mixed models (Breslow and Clayton
1993; Diggle et al. 1997) are attractive models for depen-
dent data. These models permit regression modeling of
the dependence of a response variable on measured co-
variates while accounting for unmeasured or “random” ef-
fects. By adopting a probability model for the random ef-
fects, both appropriate inference for regression parameters
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and prediction of unobserved variables are possible. In the
spatial data context, hierarchical model specification first
involves identifying the conditional distribution of the re-
sponse variable Y (s), measured at site s, given both mea-
sured covariates X(s) and unobserved spatially varying
random effects, Z*(s). Typically, the response variables are
assumed to be conditionally independent exponential fam-
ily random variables and a generalized linear model for
E[Y (s)|X(s), Z*(s)] is formulated. The likelihood func-
tion for the observed data, Y'(s), is obtained by specify-
ing a second level in the hierarchical model, the joint dis-
tribution for the spatial process Z*(s). Model choices for
spatial variation in generalized linear mixed models have
included both a conditionally specified Gaussian Markov
random field model (e. g., Breslow and Clayton 1993) and
an unconditionally specified Gaussian random field model
(see Diggle et al. 1997).

The model that we propose for binary spatial data can
be considered a special case of the hierarchical generalized
linear model discussed by Diggle et al. (1997). But we adopt
a marginal specification of the mean regression parameter
that is made feasible by using a probit link function. In
this section we introduce the spatial probit model from a
latent variable perspective and discuss parameter identifia-
bility and parameter interpretation.

We assume that spatial binary responses, Y (s), measured
at sites s = 1,2,..., N, arise via a threshold model that
includes variance components due to spatial dependence
and measurement error. Specifically, the threshold model
assumes that there exists a Gaussian spatial process, Z*,
with binary responses, Y'(s), that are indicators of whether
Z*(s), measured with error, exceeds a certain value

Y(s) =1(Z*(s) +€"(s) > ¢),

where £*(s) is iid measurement error. Also, £*(s) is inde-
pendent of Z*. By specifying the distributions for Z*(s)
and £*(s) as Z*(s) ~ N(X(s)B*,5%) and €*(s) ~ N(0,72),
we obtain a probit model for Y'(s),

P[Y(s)=1]=® (X_@ﬁ_—_f) |

v

where v = /G2 + 72.

Finally, we obtain a multivariate probit model by spec-
ifying the covariance between Z*(s) and Z*(t). We as-
sume an isotropic covariance function, cov[Z*(s), Z*(¢)] =
72p(|ls — t2)-

The complete specification of Z* and &* yields the mul-
tivariate distribution for Y. Of particular interest for our
proposed estimation procedure is the pairwise distribution
of Y(s) and Y (¢). The pairwise distribution can be speci-
fied through the univariate marginal probabilities, P[Y (s) =
1, P[Y(t) = 1], and the pairwise marginal probability
P[Y(s) = 1,Y(t) = 1]. Using the multivariate probit model,
we obtain

PY(s) =1,Y(t) = 1]
o, (KO e XOF e Tl th),

v v V2



Heagerty and Lele: Composite Likelihood for Binary Spatial Data

where @, represents the standardized (0? = 02 = 1.0) bi-
variate Gaussian distribution function.

We note that only the parameters c/v, 3*/v, and [5%p
(|t — s||2)]/v? are estimable from the binary data Y (s), be-
cause the latent scale is arbitrary. For identifiability and
simplicity, we set the total variance 52 + 72 equal to 1.
We reparameterize in terms of Z(s) = (Z*(s) —¢)/v, Bo =
(85 — ©)/v,BL = Bi/v,e(s) = *(s)/v, and 0® = 5°/(% +
72). Thus the parameter 3 = (f,31) captures the de-
pendence of the unconditional probability P[Y (s) = 1] on
covariates X(s), whereas the proportion of total variation
attributable to spatial variation is given by the parameter
o2. (The proportion due to measurement error is given by
1 — 02.) The correlation function p(||s — t||2) describes the
dependence between sites as a function of distance. For a
fixed pair of sites, this correlation is known as the tetra-
choric correlation (Pearson 1901).

Given this reparameterization, we can represent the
model in terms of the covariate effects, X(s)3, spatially
correlated deviations, Z(s) — X(s)3, and measurement er-
ror, £(s), as follows:

Y(s)=1(Z(s) +¢&(s) > 0),

Z ~ N(XB,%(0? p)),

and
(s) ~ N(0,(1 —0?)) independent,
[To) To)
Y Y
o o
Y Y
2 2
° °
To] 0
o o
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Figure 1. Components of the Spatial Probit Model. Panel (a) shows

a hypothetical binary covariate. Panel (b) shows simulated spatially de-
pendent data. Panel (c) shows independent measurement error. Finally,
panel (d) shows binary data resulting from a threshold model after com-
bining the components shown in panels (a)-(c).
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where var[Z(s)] = 02 and cov[Z(s), Z(t)] = o2p(||t — s]|2).
The process Z(s) can be decomposed into X(s)3 + B(s),
where B represents a mean 0 spatially correlated Gaussian
process. This notation is similar to that used in the general-
ized linear mixed model literature (see Breslow and Clayton
1993).

Finally, note that because a probit model is adopted, the
parameters 3 and o2 also are sufficient to obtain the univari-
ate conditional distribution of Y (s) given Z(s) as follows:

Z(s)
PlY(s)=1Z(s)]=® <m> .

Figure 1 gives a graphical example of the model com-
ponents that we are using. This model has several key fea-
tures. First, it may be used for lattice and nonlattice data,
because no assumptions are required about the configura-
tion of the locations, s. The derivation of the model assumes
that the binary data are obtained by sampling a continuous
spatial region, say A, at a discrete set of points. But it is
also legitimate to use the model for data in which the binary
responses derive from a regular partition of A. For the ex-
ample in Section 6, Y (s) represents a measurement over a
2 km x 2 km region, and model parameters are to be inter-
preted with respect to this areal scale. Also, the parameters
3 capture the unconditional dependence of P[Y (s) = 1] on
covariates. This interpretation is similar to the parameter
interpretation in marginal models (Zeger, Liang, and Albert
1988; see Diggle et al. 1997 for discussion in the spatial
context). We make no explicit restrictions on the form of
the spatial covariance model used and allow variation due
to measurement error. Finally, the hierarchical structure al-
lows simple construction of a valid joint distribution and
permits the calculation of empirical Bayes estimates of the
spatial process and thus permits kriging with binary data,
which we discuss in Section 5.

4. ESTIMATION

Although the complete multivariate distribution of Y (s)
is specified by the parameter 8 = (3, g, p), likelihood evalu-
ation is computationally impractical. Nonetheless, pairwise
likelihoods are easily evaluated and can be used to form the
kernel of an unbiased estimating function.

4.1 Composite Likelihood Estimation

A composite likelihood is formed by adding together
individual component log-likelihoods each of which is a
valid marginal or conditional log-likelihood (Lindsay 1988).
The key utility of the composite log-likelihood is that
the composite score equations form an additive estimating
function that can be used to provide consistent parameter
estimates in settings where a full maximum likelihood es-
timator (MLE) is not feasible or is not available. Key
examples of successful composite likelihood approaches in-
clude working independence generalized estimating equa-
tions for longitudinal data (Liang and Zeger 1986) and
pseudolikelihood methods for spatial data (Besag 1974).
Composite likelihood simply refers to the pooling of likeli-
hood contributions in an additive fashion in circumstances



1102

where the components do not necessarily represent indepen-
dent replicates. Our use of composite likelihood methods al-
lows a high-dimensional likelihood to be approximated by
a sum of easily evaluated lower-dimensional components.
One advantage of using the composite likelihood score as
an estimating function is the ability to evaluate an objective
function, the maximized composite likelihood. This facili-
tates monitoring convergence, assessing multiple roots (if
they exist), and displaying of confidence regions by using
a rescaled profile composite likelihood function.

4.2 Spatial Probit Pairwise Composite
Likelihood Estimation

Consider a single pair of sites s and ¢. The log-likelihood
for the pair of binary responses can be represented in canon-
ical form as

log P[Y(s), Y ()]
= ap(s,t) + a1 (s, )Y (s) + as(s, t)Y(t)
+ as(s, t)Y(s)Y(¢).

Thus the pairwise score equations are simple quadratic
functions of Y (s) and Y'(¢) given by

T -1
U(s»t) (0) = D(s;t)v(s,t)R(s?t)’

where p(s) = E[Y (s)], u(t) = E[Y ()], o(s, 1) = E[(Y (s) -
() (Y (t) = ()], Dy = (8/00)[u(s), p(t), o(s,t)l;
Ry = {Y(s) — p(s), Y(t) — u(d), [Y(s) — u(s)][Y (£) -
p(t)] — o(s,t)}, and V(.4 = var[R,4)]. See Appendix A
for details.

For N spatial observations, we define an estimating func-
tion (a composite score function) for the parameter 8 by
pooling all possible pairwise score functions as

1
UN(O) = —V[—/; Z w(s,t)U(s,t)(9)>
(s,t)

where w, ;) specifies a weight given to the contribution
from pair (s,t) and Wy = > w(sy). A simple weighting
choice is to let w(, ) = 0 for any pair whose distance ex-
ceeds a specified value, and to let w(, ;) = 1 otherwise,
allowing “distant” pairs to be excluded from the estimat-
ing function Uy (8). In practice, the choice of w, ;) can be
guided by a preliminary inspection of the correlation be-
tween Y (s) and Y (¢) as a function of ||s — t|| and pairs for
which the correlation is small can be excluded (w(s+) = 0)
without substantial loss of information regarding o and p
but resulting in reduced computational effort.

The estimating function Uy, (@) is similar to the esti-
mating functions used in GEE2 for longitudinal data (Liang,
Zeger, and Qagish 1992). As such, an important caveat is
that the consistency of the estimate of the mean regres-
sion parameter, 3, may depend on correct specification of
the dependence structure. Alternative estimating equation
approaches have been proposed in the longitudinal data lit-
erature that use paired but separate estimating functions
allowing consistent mean parameter estimation even un-
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der dependence model violation (Carey, Zeger, and Diggle
1993; Lipsitz, Laird, and Harrington 1991; Prentice 1988).
Similar approaches could be adopted for spatial categorical
data offering related alternatives to the composite likelihood
approach.

4.3 Penalized Composite Likelihood

One modification of the composite score is given by
adding a penalty term,

UL(6) = Un(0) — o AG,
Wi

where A is a penalty matrix. The penalized composite score
can be derived by using the composite likelihood function
in conjunction with a Gaussian prior on the parameters 6
where the prior mean is 0 and the prior variance is A~!. (See
Heagerty and Zeger 1996 for details in the longitudinal data
context.) Our motivation for using the penalization term is
simply to offer an extension that may result in stabilized
variance component estimates for application with small to
moderate sample sizes. For example, in the spatial model
where cov[Z(s), Z(t)] = o?pls—tlz, defining the variance
components in terms of parameter transformations logit(c)
and logit(p) results in unrestricted parameter spaces, and the
penalty term A#, for a positive definite penalty, will gener-
ally constrain estimates to be in the interior of the sample
space. Therefore, we consider using a nonzero penalty A as
a method for increasing the numerical stability of the esti-
mation algorithm and have in practice used a small penalty,
A = )1, with 0 < A < 1.0.

4.4 Large-Sample Properties

The key properties of an estimator defined as the root
of the function Uy (0) = 0 are consistency and asymptotic
normality under regularity conditions (Guyon 1995; Lind-
say 1988; White 1982).

To detail the large-sample properties, we begin by defin-
ing two matrices. The first matrix is the expected derivative
of U N (0),

1 0
IO = W—N (sZt)E<5§ w(s)t)U(s’t)> .

The second matrix gives the asymptotic variance of @
as follows assuming that the regularity conditions specified
here are satisfied:

- 1
Iyt = (I3 h) [‘WT > wenwiHE(UenUE )
N (s,),(,5)

x (ZgHT.

These matrices allow us to explicitly state the asymptotic
properties of the estimator 8y defined as the root of Uy (6).
Notice also that asymptotically as Wy — oo, Uy and
% (the penalized version) are equivalent, so the large-
sample properties of the composite likelihood and penalized
composite likelihood estimators are equivalent. For moder-
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ate sample sizes, the information matrix

1
-1
1
*\wz Z w(s,t)w@uy’)E(U(s»ﬂUg»j))
N (s,8),(1,9)

1 T
I — A
><<O+WN )

may be preferable to Zy.

Proposition 1. Define 8y as the root of the composite
score equations Uy () = 0 for N spatial locations. Let
Dy C R% be the domain over which Uy is evaluated and
let [Dy| be the cardinality of Dy. Let 8S(0,¢) denote the
boundary of a sphere of radius ¢ centered at 8. Given reg-
ularity conditions on the increasing domain (Guyon 1995,
cond. 3.1 and 3.2, p. 108):

A. Assume there exists & > 0 and (my) a strictly in-
creasing sequence of integers such that

> N¥Dpy| ™! < 00

N2>1
| D\ D |\ ?
Z D]

and the following conditions on the estimating func-
tions and information (Crowder 1986) hold:

R1. Uy(8) is continuous.

R2. infagg,.)(60 — )T Eg,[Un(6)] > 6 for some
6 > 0 and N sufficiently large.

R3. supssg,,.)[IUn (0) — Egy [Un (0)]]] — 0.

Then the composite likelihood estimator is weakly
convergent, 6y — fg.
Proof. See Appendix B.

In addition to consistency, we have asymptotic normality
under regularity conditions on the random variables U/ ;).

Proposition 2. Given that we can apply the central limit
theorem to the random vector U, 4), and that Uy (6) admits

Table 1. Strong Spatial Dependence; Composite Likelihood
Estimates Based on 100 Simulations of 24 x 24 Lattice
Data (5676 Observations) Using a Radius of 5 Units

Estimate  Relative  Simulation  Estimated
Parameter  Model  (mean) bias SD SD (mean)
Bo -.50 —.511 —2.2% 176 132
B1 .75 .755 7% 110 .091
a? .80 .855 6.9% 1.056 1.228
P .60 .566 —5.7% 443 .363

NOTE: The standard error calculations are based on transformed dependence parameters,
logit(c) and logit(p).
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a Taylor series expansion, 8y, defined as the solution to the
composite score equations, will be asymptotically Gaussian:

T/%(6 — 6) — N(0,I).
Proof. See Appendix B.

4.5 Standard Error Estimation

Although E[U|;, t)U(l ])] can be obtained analytically and
numerically using multivariate Gaussian quadrant probabil-
ities, each computation is relatively costly, and the total
number of such calculations may be prohibitive. To illus-
trate the potential difficulty, consider N spatial sites and a
composite likelihood based on all M = (') possible pairs.
The number of terms in the expression for the information
will be M + (7). Thus although the number calculations
for point estimation will be O(N?), the number of covari-
ance calculations will be O(N*), which quickly becomes
computationally impractical.

When direct evaluation of the covariance is not practi-
cal, we suggest using resampling methods similar to those
of Carlstein (1986), Kunsch (1989), or Sherman (1996).
Specifically, we assume that asymptotically

N x E[Un(6)Un(8)T] = Zwo

Given N spatial locations we can estimate ¥, using com-
posite score evaluations over K subregions of sizes S; using

ZS Us, (6

The large-sample variance of 6 can then be estimated using
IN = 75 '[(1/N)2)Z; . This standard error estimator
is a special case of a general empirical variance method
presented by Lumley and Heagerty (1998).

B)Us, (6)7.

4.6 Simulation Results

To assess the finite-sample properties of the composite
likelihood estimator, we conducted a series of simulation
exercises using 24 x 24 lattice data generated using the
threshold model. A single covariate, X (s), was generated
for each site as a realization of a uniform [—1,1] vari-
able. Let LLT be the Cholesky decomposition of the spa-
tial covariance matrix (o2, p). Define the random vector
Z = X3 + Lw, where w is a vector of iid standard nor-
mal random variables. Finally, the binary data, Y (s), are
the indicators 1(Z(s) +¢(s) > 0), where £(s) represents iid
normal random variables with variance 1 — o2.

Presented next are the results of two such simulation ex-
ercises that illustrate the performance in moderately small
datasets under different dependence models. Table 1 is
based on realizations from a fairly strong spatially de-
pendent process, (02 = .8,p = .6), whereas Table 2 is
based on realizations from a weakly dependent process,
(02 = .6,p = .4). Variance estimates were obtained by
evaluating the composite score over all possible overlap-
ping 10 x 10 subregions similar to the approach proposed
by Sherman (1996). Guidance concerning the selection of
the subregion size for estimators defined through estimating
functions has been given by Heagerty and Lumley (1998).
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Table 2. Weak Spatial Dependence: Composite Likelihood
Estimates Based on 100 Simulations of 24 x 24 Lattice
Data (576 Observations) Using a Radius of 5 Units
Estimate  Relative  Simulation  Estimated
Parameter ~ Model  (mean) bias SD SD (mean)
Bo —.50 —.487 2.6% .095 .082
B .75 .766 2.1% .106 .093
o? .60 .688 14.7% 1.009 1.061
p .40 .355 —-11.3% .594 523

NOTE: The standard error calculations are based on transformed dependence parameters,
logit(o) and logit(p).

These simulations indicate that the composite likelihood
approach can estimate both mean parameters and covari-
ance parameters even for moderate sample sizes. We find
little bias in the estimation of the mean parameters, but the
covariance parameters tend to overestimate o and under-
estimate p by as much as 15% in these simulations. Note
that the covariance parameter estimates are negatively cor-
related and yield estimated covariances that are slightly
small. For example, the average covariance for sites such
that ||t — s||2 = 1 is estimated for the strong dependence
simulations, on average, as .450 (02p! = .48) and is esti-
mated for the weak dependence simulations, on average, as
223 (02p! = .24).

Simulations reported here indicate that whereas point es-
timation is adequate for the 24 x 24 lattice data, the stan-
dard error estimates tend to slightly underestimate the sam-
pling variability. We expect the standard error estimation to
improve with larger sample sizes. This expectation is con-
sistent with the improvement seen in the weak dependence
simulations relative to the strong dependence simulations.

5. PREDICTION

One of the major purposes of kriging is prediction. Given
the-data Y, and the parameter estimates 8, we can recover
an empirical Bayes estimate of the underlying process Z.
We can also use the estimated spatial process to compute
a smooth estimate of the probability, P[Y (s) = 1/Z(s)], by
using ®[(Z(s)/v/1 — 62)]. One can also obtain a predicted
value of the underlying process at a new location. This can
be done using the classical kriging predictor (Cressie 1991,
pp. 119-123) applied to the empirical Bayes estimate of
the underlying process. In this article, we concentrate on
the first two possibilities.

Consider first the empirical Bayes prediction of the un-
derlying continuous process Z. This will usually be obtained
by considering the full posterior P[Z|Y,8]. But the exact
evaluation of the full posterior requires construction and
inversion of the covariance matrix cov(Z) = (), which
for sample sizes larger than 500 is computationally pro-
hibitive. We propose two procedures for obtaining posterior
modes in large samples. First, we define a local posterior
mode (LPM) estimator that uses only data in a local region
around the point at which the posterior is being computed.
This LPM estimator is naturally influenced by the choice
of the local region. To reduce this influence, given an initial
estimate of Z, we use an iterative method similar to ICM
(Besag 1986). But we again restrict attention to local con-
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ditional updating, referring to this method as iterative local
conditional modes (ILCM). This procedure is particularly
useful after LPM, because it tends to smooth the predictive
surface in regions that may be impacted by the choice of the
local regions used in LPM. Both procedures can be imple-
mented quickly and easily to construct spatially smoothed
empirical Bayes predictive surfaces on either the scale of
Z or the probability scale. We provide technical details of
the posterior score equations in Appendix C.

5.1

Let us consider a single site, s, where we want to obtain
the value of Z(s). Consider a neighborhood of s that in-
cludes all the sites ¢ such that ||s — ¢z < R. Let us denote
this set of sites by Z%. Consider the local posterior distribu-
tion, [ZE|Y E]. In practice, we assume that the correlations
decay quickly as the distances between sites increases. Thus
at site s the mode of this local posterior can be a reason-
able approximation of the mode of full posterior for this
site. The choice of R is governed by balancing competing
practical considerations. Computational considerations fa-
vor a small value for R, whereas approximation accuracy
favors a large value for R.

We now obtain the empirical Bayes estimate for this sub-
region by maximizing the local posterior. As shown in Ap-
pendix C, the local posterior mode Z% is given by solving
the local posterior score equations

Local Posterior Modes

our]"
|Gk (VEYYE ) - (502 - ) = 0
where the notation ZZ refers to the values Z(t) within R
units of site s, X% = cov(ZE), VE = var(YZF|ZE), and
ul = E(YE|ZE). Solution to the foregoing equations
yields the vector ZE. We record only the value Z(s). Sim-
ilar to empirical Bayes estimators in general, the estimator
Z(s) balances fidelity of the observed data to the latent sur-
face and fidelity of the latent surface to its estimated mean
and covariance. The aforementioned process is iterated for
all the sites to obtain the initial empirical Bayes estimate
of the underlying process.

5.2

One disadvantage of using LPM is the potential for a
sharp change in the prediction surface due to the choice of
R. One potential solution would be to use LPM but with
a larger radius, R’ > R. But the computational burden in-
creases as R increases. A second approach is to follow LPM
with ILCM estimation. ILCM updates the estimated poste-
rior mode at site s by maximizing the posterior mode of
Z(s) given the data Y and the current local empirical Bayes
estimates of Z excluding Z(s) in a region defined by the ra-
dius R*, denoted Zf_*s). A single update at a single site is
achieved by solving the local conditional posterior score
equations

[ (?g((sS ))

lterated Local Conditional Posterior Modes

}W%Wﬂﬂﬁ—ﬁ@]
(0B H2(s) — B2} = 0,
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where pf(s) = E[Y(s)|Z(s)],Ve(s) = [Y(s)|Z(s)], and
o = var[Z (s)|Zf%_*s)] (see App. C). Note that depending
on X(6), the conditional posterior of Z(s) may depend on
all Z(t) but we use the local conditional posterior as an
approximation to the full conditional posterior. Also notice
that the posterior depends on Y only through Y (s). Finally,
the choice of R* here has no relation to the choice of R
in LPM.

Besag (1986) proved that iteratively updating the poste-
rior mode estimates in this fashion will converge to the true
posterior when the full conditional distribution is used. But
his results do not apply to our setting, because we are using
a local approximation to the full conditional distribution. In
practice we have found that ILCM does converge and can
refine the initial estimates given by LPM.

In application, one must choose values for R and R*.
We recommend choosing R and R* as large as feasible,
recognizing that a matrix of size m x m where m ~ cR?
must be inverted for each location. By using R < oo or
R* < oo, we are effectively setting partial correlations to 0
for sites greater than R(R*) units apart. This may impact
either the direct calculation of the posterior mode or the
iterative calculation based on the conditional expectations
E[Z(s)|Z(t),t # s|. Therefore, we seek R and R* large
enough relative to the range of the dependence so as to
minimize the impact of these approximations. In practice,
some sensitivity analysis that varies these tuning parameters
should be considered.
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Figure 2. Data for 1990. Panel (a) shows the defoliation sites in
black and panel (b) shows the sites that were ground sampled where
egg masses were not found (light gray) and where egg masses were
found (black).
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6. EXAMPLE

In this section we apply the foregoing methodology to
analyze data, described in Section 2, on defoliation due to
gypsy moths. Scientific interest focuses on three related as-
pects. The first and foremost is to smooth the threshold data
to obtain empirical Bayes predictions of the underlying de-
foliation risk. In general, the use of covariates should help in
this task. Therefore, one also needs to estimate the relation-
ship between various measured covariates and the probabil-
ity of detectable defoliation. Finally, current and historical
data on defoliation can serve as the basis for forecasting fu-
ture defoliation to guide pest control decision making. We
summarize the predictive potential of spatially smooth risk
estimates through receiver operating characteristic (ROC)
curves calculated using the 1990 risk estimates to predict
the 1991 defoliation data.

Our analysis of the gypsy moth data is intended to be il-
lustrative rather than definitive. To truly use the covariates
in a fruitful fashion, one needs covariates that have the same
coverage as the observed thresholded process. Similarly, to
truly address temporal prediction, one should consider us-
ing space—time models. For covariates, we have chosen to
illustrate with two binary covariates that relate to ground
measurements taken only at a subsample of sites. A more
definitive and detailed ecological analysis of these data
(with additional covariates that have full coverage) and
other defoliation data from George Washington National
Forest and Shenandoah National Park is presented else-
where (Lele, Heagerty, and Liebhold 1998). We do, how-
ever, illustrate the estimation of regression parameters and
the calculation of spatially smooth empirical Bayes esti-
mates and present graphical methods for displaying and
quantifying the use of these estimates for predicting 1991
defoliation data.

Figure 2(a) shows the binary defoliation data for 1990,
collected via aerial surveillance, and Figure 2(b) shows the
sites that also had ground measurements of the presence or
absence of gypsy moth egg masses. Only a subset of all
sites was chosen to have the ground measurements taken.
We use a marginal regression model

&~ (P[Y (s) = 1]) = Bo + B1.X1(s) + B2Xa(s),

where X(s) is an indicator variable for a site having
ground measurements and X3(s) is an indicator variable for
whether egg masses were found at the site. Because X» is
nested in X, B contrasts the percentage of sites defoliated
where egg masses are found versus the percentage of sites
defoliated where egg masses are not found. Note that 3, is
based only on contrasts among sampled sites and may not
be generalized without further assumptions. Similarly, (34
compares the defoliation rate at sites with ground samples
compared to those sites without ground measurements.
The model parameters were estimated using the penalized
composite likelihood approach with a weak penalty, A = AI
with A = .1, although A = 0 yields nearly identical results.
We formed the composite likelihood using all pairs of sites
less than eight units apart, with the choice of the inclusion
radius based solely on computational feasibility. The esti-
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mated parameters are reported in Table 3. The first model
assumes no spatial dependence, as in a standard probit anal-

ysis. The naive standard errors correspond to the standard.

error estimates under the independence model. The next two
columns show the standard errors obtained using the spatial
bootstrap method discussed in Section 4.5. These standard
error estimates show that ignoring the spatial dependence
can have serious impact on precision estimates and subse-
quently on inference. In addition, the estimated standard
errors using subregions show the variability in standard er-
ror estimates that may result from different subset sizes
suggesting the need for research into subset size selection
or jackknife estimates (Lele 1991) as an alternative.

We next fit a pair of spatial dependence models us-
ing the pairwise composite likelihood method. For these
models, we use the covariance model cov[Z(s), Z(¢t)] =
o2 expllog(p)||s — t||3] (see Diggle et al. 1997). Our model
assumes that the process Z is isotropic, although alterna-
tive anisotropic models may also be considered if suggested
by scientific or empirical evidence. We estimated o and p
for fixed § with § = 1.0 or § = .5, the latter model al-
lowing a slower correlation decay than the former. In each
case the parameter estimates indicate strong spatial depen-
dence. The maximized composite likelihood gives an ob-
jective criterion for comparing the two ¢ values. For these
data, § = 1.0 gives a slightly larger maximized composite
likelihood. For the range of distances used to estimate the
parameters, ||s — ¢|]l2 < 8, a plot of the fitted correlation
functions shows the two models to be nearly indistinguish-
able. But we see that these models yield different correlation
decay and thus give different empirical Bayes estimates of
Z(s) as seen in Figures 3(b) and 4(a). Note that the posterior
contours decay faster in 3(b) than in Figure 4(a).

The coefficient estimate for the presence of egg masses
is .561, indicating that the presence of egg masses is a bio-
logically sensible predictor of defoliation risk (although not
nominally significant). It should be noted that collecting egg
mass data is very difficult, and the strength of the measured
relationship can be used to determine whether the costs are
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warranted. An ideal covariate would be such that it is highly
correlated with defoliation and is easily collected or avail-
able. The ecology of gypsy moths would suggest that such
covariates as that forest type, forest cover, and temperature
be considered (A. M. Liebhold, personal communication).

We next obtained empirical Bayes predictions for Z(s)
using LPM with a radius of 6 followed by ILCM with a
radius of 4. We used these values, R = 6 and R* = 4,
to have reasonably fast computation and did not find evi-
dence that larger values had appreciable impact on the final
estimates. We interpret Z(s) as an estimate of the “risk
of defoliation” based on the measured covariates and the
model for spatial correlation. In describing data collection,
we recognized that Y'(s) is indeed a thresholded measure-
ment with Y'(s) = 1 if the fraction of defoliation at a site,
D(s), exceeds 30%. Without some actual collection of data
on D(s), we can not calibrate Z(s) in terms of the unob-
served defoliation fraction. We can, however, use 2 (s)asa
standardized score for the sites and/or use it to compute the
probability of observable defoliation given covariates and
the spatial process Z(s). If scientific interest is in predicting
D(s), then composite likelihood methods can be developed
to accommodate data (Y(s), D(s’)), where the broad col-
lection of binary response data is augmented by selected
measurements of the continuous response.

We compared the model-based predictions assuming that
6 = .5 and § = 1.0 with the simple nonparametric approach
of a probit transformed locally weighted average of the ob-
served defoliation data where the weights are inversely pro-
portional to distance. The model-based and ad hoc methods
can provide very similar smoothing when the “weighting”
of data is comparable, as is seen in Figure 4. This is sat-
isfying and gives the empirical Bayes estimates intuitive
appeal. However, the method of empirical Bayes has sev-
eral advantages over the simple statistics. First, the model-
based approach can easily accommodate covariate informa-
tion which may be strongly associated with the response.
Second, the “weighting” of proximal observations toward
prediction at a given site is based on estimated model pa--

Table 3. Regression Estimates for the 1990 Gypsy Moth Defoliation Data

Independence
SE SE SE

Variable Estimate naive (10 x 13) (20 x 26)

Intercept —1.922 (.034) (.090) (.106)

Sample —.225 (.392) (.362) (.278)

Eggs .607 (.448) (.447) (.450)

Spatial
SE SE SE SE

Variable Estimate (10 x 13) (20 x 26) Estimate (10 x 13) (20 x 26)
Intercept —1.878 (.091) (.121) —1.878 (.083) (.105)
Sample —.197 (.325) (.286) —.197 (.288) (.236)
Eggs .561 (.415) (.466) .561 (.371) (.399)
o .841 (.818) (.575) .995 (1.741) (1.709)
p .798 (.241) (.214) 525 (.256) (.252)
é 1.0 0.5
Max log CL —136,832.5 —136,843.5

NOTE: Standard error estimates for the covariance parameters are for the logit transformed parameters. The sizes of the subregions used to compute standard errors were (10 x 13) and (20 x
26). Independence refers to the usual probit point estimate, spatial refers to estimates based on the pairwise composite likelihood.
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Figure 3. Posterior Estimates of the Spatially Correlated Deviations
Z(s) — X(s)B for 1990 Data Using 6 = 1. (a) LPM posterior mode; (b)
LPM + ILCM posterior mode.

rameters that describe spatial dependence and thus are de-
termined in an objective fashion within the model class
used. Furthermore, the methods that we propose can use
general covariance structures including anisotropic models.
Finally, empirical Bayes methods can, in principle, provide
prediction intervals through the use of local posteriors that
are available given the estimated parameter values.

An interesting distinction between the two fitted spa-
tial covariance models arises since using 6 = 1.0 yields
&% = 707, whereas using § = .5 yields 62 = .989. In both
cases this parameter represents an extrapolation of the co-
variance function cov[Z(s), Z(t)] = o2 exp[log(p)||s — t||3]
to ||s—t||2 = 0, which is not observed in these data. Because
the proportion of total variability that can be attributed to
pure measurement error is given by 1 — o2, we see that the
model with 6 = .5 admits almost no measurement error.
This materializes in the predictions Z(s) such that for all
168 sites with Y'(s) = 1, we have Z(s) > 0. Recall that we
model Y (s) = 1(Z(s) + (s) > 0) and with var[e(s)] ~ 0,
we can expect Z(s) > 0 whenever Y (s) = 1. This is sim-
ilar to classical kriging methods where the observed data
are interpolated for models that do not incorporate mea-
surement error. On the other hand, for 6 = 1.0, the 29%
measurement error allows smoothing such that only 39 sites
have Z(s) > 0. Finally, note that these covariance parame-
ters have little impact on the estimated marginal regression
parameter, 3, whereas they would have substantial impact
on the estimated conditional regression parameters had we
chosen to model a conditionally specified parameter.
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To compare these prediction approaches in a compact
fashion, and because the future observations are binary, we
used ROC curves to display the prediction potential. We
thresholded the predicted values based on the 1990 data and
compared them with the 1991 data. The sensitivity corre-
sponds to the percentage of future defoliation sites that are
correctly predicted by 1(Z(s) > ¢) and the specificity to the
percentage of future nondefoliated sites correctly predicted
by 1(Z(s) < c). Figure 5 displays dependence of the clas-
sification rates on the level ¢ by the ROC curves, indicating
the management potential that could be realized by each
of the predictors. In this example we find that the model-
based empirical Bayes estimates can be used for fairly high
correct classification rates, particularly for the model with
0 = .5, where correlations decay more slowly as a function
of distance.

Figure 6 shows two regions defined by 1(Z(s) > ¢) with
¢ chosen to yield different sensitivity and specificity com-
binations. Such regions have clear use in providing recom-
mendations for pest control intervention application, given
that their predictive use can be validated through further,
longer-term studies. The ROC curve also indicates that it
is difficult to raise the sensitivity above 93% without a se-
rious reduction in specificity. This reflects a collection of
defoliation sites in the NW (n = 6 sites) and a collection
of defoliation sites in the NE (n = 10), comprising approx-
imately 7% of 1991 defoliation sites, that are far from any
1990 defoliation site.

80
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Figure 4. (a) Posterior Estimates of Z(s) for 1990 Using 6 = .5; (b) a
Plot of Probit Transformed Local Weighted Averages, ®~'[S(s)] Where
S(s) = {1//Zw(s, V]}Z w(s, )Y(t), and w(s, t) = {||s — t||z + 1} 2.
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Finally, we note that the proposed estimation strategy
is based on the fit of the model to observed data and not
on predictive ability. But the ROC curves indicate that the
model can produce spatially smooth estimates that outper-
form the ad hoc estimators that we considered. As pointed
out by a referee, the ad hoc weighted average should be
comparable to the empirical Bayes estimates when covari-
ates vary smoothly in space, because the local average com-
bines both spatial dependence and spatial covariate effects.
The advantage of the empirical Bayes approach may best be
realized in situations where covariates do not have smooth
spatial variation.

Unfortunately, the covariance model adopted for the la-
tent Gaussian process can have a major impact on the em-
pirical Bayes estimates. Also, as this example shows, with
categorical data it may be difficult to discriminate among
nonnested models such as § = 1.0 versus § = .5. Our ap-
proach has been to assess the direct impact of the covariance
form on the ultimate applied use. For prediction of categor-
ical response data we have used ROC curves to characterize
and compare competing estimators.

In practice several model choices are required, including
the form of the covariance and the selection of tuning pa-
rameters. Inspection of the empirical correlations can guide
choice of the covariance model. Also, the use of a small
penalization term, although asymptotically negligible, can
yield improved numerical convergence for small or moder-
ate datasets. If a penalty is used, then analysis of the sen-
sitivity of final results with respect to this choice should
be conducted. Finally, for the empirical Bayes estimates,
we recommend choosing R and R* as large as is compu-
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Figure 5. ROC Curves Based on the Posterior Estimates Obtained
From the Spatial Probit Models Fit to 1990 Data. The dashed lines
are the ROC curves obtained using a weighted mean at each site:
S = {I/[S w(s, )]} = w(s, )Y(t), where w(s, t) = {||s — t||]2 + 1}~P
for p = 1, 2. —o— Posterior mode (d = .5); — x —, posterior mode
(d = 1.0); --- weighted average (p = 1); ———, weighted average
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Figure 6. Forecast Contours Based on the Posterior Modes Obtained
From the Spatial Probit Model with § = .5. These define map regions
that yield (sensitivity, specificity) combinations of (89%, 72%,; ——-) and
(78%, 83%, —). The 1991 defoliation data are also shown.

tationally feasible to have maximal precision in the local
approximations to the joint posterior.

Through this example we have illustrated the use of hier-
archical models for the analysis of spatial binary data. The
application to ecological pest data shows how covariates can
be assessed as correlates to damage as well as how empirical
Bayes methods can be employed to create spatially smooth
surfaces useful for management or intervention planning.
Methods that accommodate space—time data with a goal of
accurate prediction need to be developed for binary data
and the methods we use here give an indication of future
research directions.

7. DISCUSSION

We have proposed a method for regression estimation
and prediction for spatial categorical data. By using a hi-
erarchical model that yields easily evaluated marginal first
and second moments, we are able to use composite likeli-
hood methods (Lindsay 1988) for estimation and propose
empirical Bayes methods similar to those of Besag (1986)
for prediction.

Indeed, there are other approaches to estimation and pre-
diction for spatial categorical data. Albert and McShane
(1995) utilized a generalized estimating equations approach
for the estimation of marginal mean parameters. They do
not consider a hierarchical structure presumably because
prediction is not a key goal of their application.

Diggle et al. (1997) and Waller et al. (1997) utilize a
full Bayesian framework, using Markov chain Monte Carlo
(MCMC) for estimation and prediction. Key advantages of
this approach are that full posterior distributions are avail-
able and that posterior estimates also include the uncer-
tainty in parameter estimates, an aspect of the use of em-
pirical Bayes that we do not address. But it is increasingly
well known that caveats are associated with MCMC meth-
ods. Both Diggle et al. (1997) and Waller et al. (1997) cau-
tioned about parameterization and convergence monitoring.
In practical settings the impact of informative priors must
be addressed and the use of noninformative priors can be
dangerous (Hobert and Casella 1996). In addition, the in-
herent computational burden of MCMC methods can hinder
their application to large datasets of practical importance.
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Approximate likelihood methods provide another alter-
native. These include methods based on a Laplace approx-
imation discussed as penalized quasi-likelihood (PQL) by
Breslow and Clayton (1993). These methods have proven
adequate for count data; however, the potential for severe
bias with binary data is recognized. McCulloch (1997) il-
lustrated problems associated with PQL for binary data. In
addition, PQL requires an N? matrix inversion for blocks
of N dependent observations, limiting its use to moderate-
sized spatial datasets.

The composite likelihood approach has its own limita-
tions as well. It is well suited for situations in which lower-
dimensional marginal moments are easily described. But if
the underlying process is modeled as a non-Gaussian pro-
cess, or if, for example, a logit link is used, then the use
of composite likelihood may require the use of one- and
two-dimensional numerical integration.

Spatially correlated binary data occur in many practi-
cal situations. Indicator kriging has shown its usefulness
in applications that include environmental remediation and
ecological pest control. As noted by Albert and McShane
(1995), spatial categorical data are also increasingly com-
mon in medical applications where response measurements
are obtained at different physiologic locations. Application
of hierarchical models to dependent categorical data can
provide for both regression analysis and empirical Bayes
smoothing. In this article we have suggested a method of
estimation and prediction that is particularly suited to large
datasets where likelihood methods for hierarchical models
are not feasible.

APPENDIX A: COMPOSITE SCORE EQUATIONS

The estimator @y is defined as the solution to Uy (0) = 0,
where Un(0) = 1/Wn > w(s,1)Us,1)(0), where each U,y is
the derivative of the log-likelihood based on the single pair of
observations (s, t). The parameter 6 is comprised of a marginal
mean regression parameter, 3, and a covariance parameter, -,
that specifies the correlation function p(s,t) = cov[Z(s) + &(s),
Z(t) +e(t)].

The pairwise score is given as

Ue)(8) = D ) Vieiy Resnys

where pu(s) = E[Y(s)] = ®:1[X(s)B],0(s,t) = E[(Y(s) — p(s))
(Y (#) = p@®))] = 7(s,t) — u(s)u(t), Ds,ey = (8/00)[u(s), u(t),
o(,8)], Reewy = {¥ () — (), Y (£) — p(8), [¥ (s) — pu(s)][Y (£) -
u(t)] — o(s,t)}, and V4 4y = var[Ry, 1)]. Here we denote (s, t)
= PlY(s) = LY(t) = 1] = &;[X(s)8,X(t)B, p(s, 1)], where
@, is the standardized (0} = 03) bivariate Gaussian distribution
function and ®; the univariate distribution function.
The elements of D, ;) are

aphls) 0
agh(t) 0 :

a5l (s,t) = u(s)u®)] Zm(s,t)

where under the marginal probit model we have (8/98)u(s) =
¢1([X(5)B])X(s) and (6/0B)m(s, t) = ¢1[X(s)B]P1[£(s, 1)]X(s)
+ 61 [X (1) B]D1[E(2, 5)]X(t), where £(s, ) = (X(s)B — p(s, t)
X(8)B)/[v/1 — p(s,1)?]. Also, (9/0)m (s, t) =$2[X(s)B, X (1),
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p(s,1)]([0p(s,t)]/O~). Here ¢1 and ¢, are the univariate and bi-
variate standard normal density functions.
Finally, the elements of the covariance matrix V , ¢ are

o (s, t)[L — 2pu(s)]
o(s,t)[1 —2u®)] |,
ng(s,t)

u(s)[L = u(s)] o(s,t)

o(s,t) pB)[1 = u(t)]
o(s,)[1 —2u(s)] o(s,t)[1 —2u(t)]

where

Vaa(s,t) = m(s, t)[1—m(s, )] + (s, ) [6p(s)u(t) — 2u(s) — 2u(t)]
+ p(s)u(t)[u(s) + p(t) — 4u(s)u(t)]-

APPENDIX B: LARGE-SAMPLE PROPERTIES
OF SPATIAL PROBIT COMPOSITE
LIKELIHOOD ESTIMATOR

This appendix sketches the proof of the consistency and asymp-
totic normality of the maximum pairwise composite likelihood
estimator for spatial binary data.

1. Consistency
Define the following:

1. Y(s) = 0/1, a binary indicator for sites s = 1,2,..., N.

2. Let ||s — t||2 be a distance metric between pairs of sites.

3. Let Ug,5(8) = D, ;5(0)V:)(0)R,,)(6) be the score
equations based on a single pair of sites (i, 7), where ngj) =
Y (6) — (), Y (5) — n(3), and S(,5) — o(i, )] such that S(3, 5)
= Y (i) — k@)Y (5) - n(3)]-

4. Let w(; ;) be a bounded scalar weight such that for all
i, w(,5 > 0 only for j such that || — j||2 < R, where R is a
fixed constant. Let Wy =Y w(; ).

5. Define UN(O) = (1/WN) Z’w(i,j)U(@,j)(e).

The spatial probit composite likelihood estimator is consistent
and asymptotically Gaussian under regularity conditions given by
Crowder (1986) or Guyon (1995). We restate those regularity con-
ditions, make further simplifying assumptions, and show that the
required conditions are satisfied by the spatial probit model.

In either case we assume that the spatial domain is increasing
in a regular fashion. Let Dy C R? be the domain over which
Un is evaluated and let |Dy| be the cardinality of Dy. The reg-
ularity conditions that we assume are given in the statement of
Proposition 1 and are denoted conditions A, R1, R2, and R3.

Furthermore, we assume the following simplifying assumptions
that are sufficient for R2 and R3:

Al. Assume a spatial covariance model such that sup E[U, )]
< oo and supy E(NU%) = K < co.

A2 Assume (1/Wn) 3o wenDE, ) Vi,
limit.

A3. Define I = (1/Wn) Y Elw(,,;(8/860) U, ;(6)]. As-
sume Iz(vl) - I&lj) where A1, the minimum eigenvalue of I&l)), is
strictly positive.

T -1
A4 Assume that (0/060)D(; ;) V;
(i, 4).

Condition A1l is as given in theorem (3.2.1) of Guyon (1995),
which yields strong convergence of Uy — 0. The covariance
conditions need to be verified in practice but can be shown to be
satisfied by the exponential correlation models we have considered
here.

— B, a finite

is bounded uniformly in
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Condition A2, with the continuity assumption R1, allows a first-
order Taylor series expansion of Eg,[Un(0)] yielding

(80 — )" Eg, [Un(6)] = (80 — 8)"Z (8o — 6) + 0|6 — 6]

This expression and condition A3 are then sufficient for condi-
tion R2. Condition A3 for the spatial probit model implies that
(1/WN)ZW(l)])DZ,])Y&}j)D(iJ? converges to a matrix with
positive eigenvalues, which is satisfied in practice by assuming
that covariates enter into the sample in a regular fashion.
Lemmas 2.2 and 3.2 of Crowder (1986) show that condition
R3 is equivalent to conditions on (8/80)U  (0). Assumption A4,
together with the strong law of large numbers for Uy is then
a sufficient condition for R3 and can be verified in practice by
assuming both bounded covariates and a bounded parameter space.

2. Asymptotical Normality

Guyon (1995) gave quite general conditions for the asymptotic
normality of estimators defined through a “contrast function,” the
composite likelihood being a special case. We restate a slightly
stronger version of Guyon'’s regularity conditions in our notation
and discuss verification for our estimator.

Consider the following conditions:

H1. There exists an open neighborhood V of 6, € R?
over which Uy is continuously differentiable, and there exists
an integrable random variable h such that for all elements of
(6/06)UN(0) and all & € V,|(8/900)Un (e, Y)| < h(Y).

H2. There exists a limiting covariance matrix 72 such that
7@ = N x E[Un(8)Un(0)T] where

a. Ic(,f,) > 0 and Iﬁ) > Iéi) for N > m for some m and
b. VNIZZ]Y2Un — N(0,Lxyp).

H3. There exists a sequence of nonstochastic matrices I}Vl) such
that
a. There exists Z% such that II(\}) > I8 for N > m for
some m and
b. limy[(8/860)Ux — Z{] = 0 in probability.

Given that these conditions are satisfied, we can use theorem
(3.4.5) of Guyon (1995), yielding

VNIZP 2L (65 — 60) = N(0,Ipxp).

Condition H2 requires that a central limit theorem can be ap-
plied to the sequence Uy. Standard mixing conditions, such as
those given in Theorem (3.3.1) of Guyon (1995), yield the de-
sired result and are satisfied in our application by assuming an
exponential correlation decay and a finite radius of w; ;) > 0 for
each point. Satisfaction of conditions H1 and H3 is a result of
assumptions A3 and A4.

APPENDIX C: POSTERIOR SCORE EQUATIONS

We adopt an empirical Bayes approach to the creation of spa-
tially smooth estimates and thus need to find posterior means
or posterior modes. For the calculation of posterior modes, we
solve score equations defined as (8/8Z) log(P[Z|Y,8]) = 0. The
log-posterior distribution (for fixed 6), is given by K(6,Y) +
> oo, log(P[Y ()| Z(s),6]) - 1/2(Z — XB)T=71(60)(Z - Xp),
because we assume that the data Y'(s) are conditionally inde-
pendent given Z and that Z has a joint Gaussian distribution
with mean X3 and covariance 3(6). Because we use a gen-
eralized linear model for Y with Z as the linear predictor,
the derivative of the log-likelihood with respect to Z(s) will
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be {[0p°()I/[0Z()I}V(s)] ' [Y () — p(s)], where V°(s) =
var[Y (s)|Z(s)] and p°(s) = B[Y (s)|Z(s)] = @([2(s)]/V1 - 0?).

Therefore, the derivative of the log posterior will have the form

6#/0 T 1 . -1
where V = diag[V°(s)].

Note also that the posterior distribution for Z(s) given all
Z(t)t # s can be obtained as [Z(s)|Z(t),t # s, Y] o [Z(s),
Y|Z(t),t # s] = [YI|Z][Z(s)|Z(t),t # s] o< [Y(s)|Z(s)][Z(5)]
Z(t),t # s]. Thus conditional posterior score equations combine
the likelihood contribution from site s only with the Gaussian
conditional distribution of Z(s) given other sites, Z(¢),t # s,

el et - e
— oM - BIZ(:)12(0),1 £ ) =0,
where o, = V[Z(s)|Z(t),t # s].

[Received February 1997. Revised March 1998.]
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