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1 Introduction

A well-established empirical fact in the macroeconomic forecasting literature is that

predictability is unstable over time. For example, many individual indicators exhibit

significant out-of-sample predictive content for output growth and inflation but only

sporadically. This result has been documented in Stock and Watson (2003), Giacomini

and Rossi (2010), Rossi and Sekhposyan (2010), Rossi (2013), and Granziera and Sekh-

posyan (2017), among others. A recent literature has established a new (but related)

empirical fact: predictability varies across economic states. For example, Dotsey et al.

(2015) report that out-of-sample Phillips curve forecasts of the inflation rate tend to

be more accurate, relative to a benchmark model, during economic recessions but less

accurate during expansions (see also Gibbs and Vasnev, 2017). Similarly, Chauvet and

Potter (2013) find that most output growth forecasting models exhibit a similar perfor-

mance during economic expansions but one model performs significantly better during

recessions. Evidence of state-dependent predictability has also been documented in

the empirical finance literature. For example, work by Rapach et al. (2010), Henkel

et al. (2011), and Dangl and Halling (2012) shows stronger evidence for out-of-sample

stock return predictability during economic recessions than during expansions. Like-

wise, Gargano et al. (2016) find that the degree of predictability of bond excess returns

rises during recessions, while Gargano and Timmermann (2014) find similar results for

commodity prices.

The most common approach to test for state-dependent predictive ability relies on

exogenously provided shift dates and the results on conditional predictive ability of

Giacomini and White (2006). For example, the literature cited above uses peak and

trough dates determined by the Business Cycle Dating Committee of the National
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Bureau of Economic Research (NBER) to identify recession and expansion periods

in the US economy. The relative performance of the two forecasting models is then

evaluated using a test of unconditional predictive ability (Diebold and Mariano, 1995;

West, 1996; Clark and West, 2006; Giacomini and White, 2006) applied to recession

and expansion periods separately (see, for example, Chauvet and Potter, 2013). But

this testing strategy is not feasible if the econometrician is not able to observe when

the underlying states shift (for example, low and high volatility states).1 In addition,

existing methods for evaluating relative forecasting performance in unstable environ-

ments (Giacomini and Rossi, 2010; Martins and Perron, 2016) are inadequate when one

of the states is constrained to just a few observations. This is the case of recessions in

the US economy which tend to be short-lived, typically lasting less than four quarters.

For example, the Fluctuation test of Giacomini and Rossi (2010) is based on a rolling

average of loss differences and, as a result, it works best when the relative performance

of the two models changes abruptly (a structural break).

In this paper I propose a new test for comparing the out-of-sample forecasting

performance of two competing models for situations in which the predictive content

may be state-dependent. The main advantage of this test is that the econometrician

is not required to observe when the underlying states shift. Similar to Giacomini and

Rossi (2010) and Martins and Perron (2016), I use the framework of Giacomini and

White (2006) to treat the sequence of out-of-sample loss differences as observed data.

Next, forecast loss differences are modeled using a Markov-switching mean plus noise

process which can be used to test for state-dependent predictive ability. The test is

simple to implement and accommodates several different cases that can be of interest.

For example, two competing models (or predictors) can exhibit equal predictive ability

1I am assuming here that the NBER dating provides a reasonably accurate approximation to the
underlying recession and expansion states which are, of course, not observable.
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in one state, whereas one of the models is more accurate in the other. Alternatively,

one model could be more accurate in the first state while the other model could be

more accurate in the second. In addition, there can be differences in the degree of

persistence or expected duration of the two states. For example, both states could be

very persistent or one state could be very persistent (expansions) while the other state

is constrained to shorter periods (recessions). Finally, the test can also accommodate

a permanent structural break (one level shift) in the loss differences, as the one-time

reversal test of Giacomini and Rossi (2010).

In the next section I use an illustrative example to show that current tests of equal

predictive ability (Giacomini and White, 2006; Giacomini and Rossi, 2010) can fail to

reject the null hypothesis if the superior performance of one of the competing models is

constrained to very short periods (just a few observations), even if observed repeatedly.

This finding is consistent with results documented in Casini (2018). Next, I present an

(asymptotic) heteroskedasticity and autocorrelation consistent (HAC) Wald test of the

null hypothesis of equal and constant predictive ability against the alternative of state-

dependent predictive ability. In section 3 I investigate the small-sample properties of

the tests using Monte Carlo simulations. Size and power properties of the tests are

evaluated in two situations: (i) allowing for unequal but constant relative forecasting

performance of the two competing models; (ii) allowing for different relative forecasting

performance of the two models in different states (the business cycle). In section

4 I use an out-of-sample forecasting exercise for US output growth to illustrate the

usefulness of the proposed test over previous approaches to forecast comparison in

unstable environments. Finally, section 5 concludes.
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2 State-Dependent Predictive Ability

In this section I present the test for comparing the out-of-sample forecasting per-

formance of two models for situations in which the predictive content may be state-

dependent. Of special interest is the case in which one of the states is of short duration,

maybe just a few observations. The literature on testing for equal predictive ability is

substantial. The focus of this paper is on finite-sample predictive ability (Giacomini

and White, 2006), unstable environments (Giacomini and Rossi, 2010), and forecast

instabilities of short duration (Casini, 2018). See Clark and McCracken (2011), Gia-

comini (2011), Rossi (2013), and Casini and Perron (2018) for detailed surveys of the

literature.

2.1 Environment

The objective is to compare sequences of h-step ahead out-of-sample forecasts for

the variable yt obtained from two competing models. The models are characterized

by parameters δ and γ, respectively. It is assumed that a sample of size T has been

divided into an in-sample portion of sizeR and an out-of-sample portion of size P . For a

given loss function L(·), we have a sequence of P out-of-sample forecast loss differences

{∆Lt(δ̂t−h,R, γ̂t−h,R)}Tt=R+h with ∆Lt(δ̂t−h,R, γ̂t−h,R) = L(1)(yt, δ̂t−h,R)− L(2)(yt, γ̂t−h,R).

As in Giacomini and White (2006), the parameters of the models are estimated using

a fixed scheme (that is, estimated once using observations 1, . . . , R) or a rolling scheme

(that is, re-estimated at each t = R+h, . . . , T using observations t−h−R+1, . . . , t−h).

We are interested in testing the null hypothesis of equal predictive ability

H
(1)
0 : E

[
∆Lt(δ̂t−h,R, γ̂t−h,R)

]
= 0 for all t = R + h, . . . , T, (1)

which is tested against the alternative hypothesis that one of the models exhibits
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superior predictive ability (that is, E[∆Lt(δ̂t−h,R, γ̂t−h,R)] 6= 0). Giacomini and White

(2006) note that since the null hypothesis H
(1)
0 is stated in terms of the estimated

parameters δ̂t−h,R and γ̂t−h,R, not the population parameters δ and γ, this is a test

of predictive ability in the finite sample (that is, given models, estimation windows,

estimation procedures, etc.).

In this context, Giacomini and White (2006) propose an asymptotic test of equal

(unconditional) predictive ability that can be applied to both nested and non-nested

models. The statistic is a t-test of the hypothesis that µ = 0 in the simple linear

regression ∆Lt = µ+ ut for t = R + h, . . . , T and is given by

GW = σ̂−1P P 1/2∆LP , (2)

where ∆LP = P−1
∑T

t=R+h ∆Lt and σ̂2
P is the sample variance of ∆Lt if h = 1 or a

HAC estimator of the long-run variance if h > 1. A common choice for the latter is

the kernel-based estimator

σ̂2
P =

q−1∑
j=−(q−1)

k(j/q)P−1
T∑

t=R+h

∆L∗t∆L
∗
t−j (3)

where k(·) is a kernel weight function, for example the Bartlett kernel of Newey and

West (1987), q is a bandwidth that grows with P , and ∆L∗t = ∆Lt − ∆LP (see,

for example, Andrews, 1991). Under (1), GW
d→ N(0, 1) as P → ∞ and the null

hypothesis of equal unconditional predictive ability is rejected at the 5% level if |GW| >

1.96. As a result, the test of equal unconditional predictive ability of Giacomini and

White (2006) coincides with the test proposed in Diebold and Mariano (1995).2

2In addition to this test of equal unconditional predictive ability, Giacomini and White (2006)
also propose a test of conditional predictive ability. The intuition is that the econometrician could
use available information to predict which of the competing models will be more accurate at a given
time. In this case, the statistic is a Wald test of the hypothesis that β = 0 in the regression ∆Lt =
β′Xt−h + ut, where Xt−h includes a constant and other variables (for example, a business cycle
indicator).

5



In related work, Giacomini and Rossi (2010) propose asymptotic tests of the joint

hypothesis of equal and constant performance of the two models, H
(1)
0 , against the

alternative of local predictive ability. In the regression with time-varying parameters

∆Lt = µt + ut, they propose tests of the null hypothesis that µt = 0 for all t against

different specifications of the alternative hypothesis. For example, the Fluctuation test

is based on a rolling average of loss differences and the statistic is given by

Fluctt,m = σ̂−1P m−1/2
t+m/2+1∑
j=t−m/2

∆Lj. (4)

The statistic is computed for t = R + h+m/2, . . . , T −m/2 + 1, with m the window

size and σ̂2
P a HAC estimator of the long-run variance of ∆Lt, for example the kernel-

based estimator (3). The test rejects when maxt|Fluctt,m| > kα with the critical value

kα obtained by simulation. In addition, Giacomini and Rossi (2010) and Martins and

Perron (2016) consider tests based on structural break models that can accommodate

one or more sudden breaks in relative forecasting performance.

2.2 An illustrative example

A substantial recent literature on macroeconomic forecasting employs the tests of equal

predictive ability described above to evaluate the predictive content of different indi-

cators or models (see Rossi, 2013, for an extensive survey of this literature). Here I

use a simple simulated example to illustrate how these tests can fail to uncover the

superior performance of one of the two competing models when the predictive ability

is state-dependent.
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Consider a data generating process (DGP) given by

yt = −βst + σεεt,

xt = δst + σννt,

where εt and νt are i.i.d.N(0, 1) and st is a state variable identifying, for example,

recession (st = 1) and expansion (st = 0) periods. The econometrician does not

observe st but rather xt, which is correlated with st. For example, if xt ∈ [0, 1] for all

t, then xt+1 could be a predicted probability of recession for quarter t + 1. I consider

two competing forecasting models: (i) yt+1 = u1t+1 and (ii) yt+1 = γxt+1 + u2t+1. As a

result, the time-t one-step ahead forecasts of yt+1 are

f̂ 1
t,R = 0,

f̂ 2
t,R = γ̂t,Rxt+1,

where γ̂t,R is the in-sample rolling estimate of γ based on the last R observations

and xt+1 is assumed known at time t. Note that during expansions both models

yield forecasts that are on average 0. On the other hand, during recessions f̂ 2
t,R will

be (on average) closer to the actual value yt+1. As a result, while the two models

should exhibit similar predictive content during expansions, model (ii) should yield

more accurate forecasts during recessions. For this exercise, the variable st is the

actual quarterly time series of NBER recession dates for the sample 1960Q1-2015Q4

(that is, 224 quarters), β = 2, δ = 1, and σε = σν = .5. Based on this set-up, I simulate

one sample of yt and xt of size T = 224 and generate the sequence of one-step ahead

forecasts of yt+1 with R = 100 and P = 124.

Figure 1 shows the simulated time series (actual) and one-step ahead out-of-sample
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forecasts from the two competing models (top), as well as the forecast loss differences

computed using a quadratic loss function (bottom). As we can observe, loss differences

in recessions are generally large and positive suggesting that forecasts from model

(ii) are more accurate during these periods. In expansions, on the other hand, loss

differences are typically smaller and on average negative. Descriptive statistics and

tests of equal predictive ability are reported in Table 1. For the full hold-out sample

(OOS), the average loss difference is close to 0 and positively autocorrelated. In this

case, the GW and Fluctt,m tests fail to reject the null hypothesis of equal predictive

ability and we conclude that both models exhibit similar predictive content over the full

hold-out sample. Recently, researchers have used peak and trough dates determined by

the NBER to evaluate the performance of the two forecasting models during recession

and expansion periods separately. In this case, using the GW test we reject the null

hypothesis of equal predictive ability for both sub-periods and conclude that model

(ii) is more accurate during recessions (GW > 0) but less accurate during expansions

(GW < 0).3

[ FIGURE 1 ABOUT HERE ]

[ TABLE 1 ABOUT HERE ]

In sum, this exercise illustrates the following issues. First, the GW and Fluctt,m

tests can fail to reject the null hypothesis of equal predictive ability if the superior

performance of one of the two competing models is constrained to short periods as in

3This approach is used in Rapach et al. (2010), Henkel et al. (2011), Dangl and Halling (2012),
Chauvet and Potter (2013), Gargano and Timmermann (2014), Gargano et al. (2016), Dotsey et al.
(2015), and Gibbs and Vasnev (2017) to test for state-dependent predictive ability over the business
cycle and is equivalent to implementing the test of conditional predictive ability of Giacomini and
White (2006).
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the case of recessions (just a few observations, even if observed repeatedly). This in-

ability to reject extends to other tests of unconditional predictive ability (for example,

West, 1996). Second, state-dependent predictive content can be uncovered using tests

of unconditional predictive ability and exogenously provided shift dates if the econo-

metrician is able to observe when the underlying states shift. In many cases, however,

such a testing strategy would not be feasible since the underlying states may not be

observed by the econometrician.

2.3 State-dependent loss differences

To test for state-dependent predictive ability without exogenously provided shift dates,

the out-of-sample forecast loss differences can be modeled using the Markov-switching

mean plus noise regression

∆Lt(δ̂t−h,R, γ̂t−h,R) = µst + σstut, (5)

where st (= 0, 1) is an unobserved two-state first-order Markov process with transition

probabilities

Prob(st = j | st−1 = i) = pij i, j = 0, 1, (6)

and ut is an unobservable moving-average (MA) process with zero mean and non-zero

autocorrelations up to lag h− 1.

Test equation (5) can accommodate several cases of interest. For example, the two

models can exhibit equal predictive ability in one regime (µ0 = 0), whereas one of

the models is more accurate in the other regime (µ1 6= 0). Alternatively, one model

could be more accurate in the first regime (µ0 > 0) while the other model could be

more accurate in the second regime (µ1 < 0). In addition, there can be differences in
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the degree of persistence or expected duration of the two regimes. For example, both

regimes could be very persistent (both p00 and p11 are large) or one regime could be

very persistent while the other regime is constrained to shorter periods (p00 large and

p11 small). Finally, (5) can also accommodate a permanent structural break in the

relative forecasting performance (p11 = 1 and the second regime is absorbing), as the

one-time reversal test of Giacomini and Rossi (2010). As a result, several hypotheses

of interest can be formulated. For example, H
(1)
0 is the null hypothesis of equal and

constant predictive ability of the two forecasting models considered in Giacomini and

Rossi (2010) and implies testing µ0 = µ1 = 0. In contrast, Martins and Perron (2016)

suggest testing the null hypothesis of constant predictive ability given by

H
(2)
0 : E

[
∆Lt(δ̂t−h,R, γ̂t−h,R)

]
= c for all t = R + h, . . . , T, (7)

for some constant c against the alternative of changing or, in this case, state-dependent

predictive ability. H
(2)
0 implies testing µ0 = µ1 in (5).4

While tests of the null hypothesis of equal predictive ability are about µst , in the

test equation I allow for differences in the mean (µst) and also the variance (σst) of the

forecast loss differences across regimes. There are at least two reasons for not imposing

σ = σ0 = σ1 in (5). A practical one is that under µ0 = µ1 = 0 and σ0 = σ1 some

parameters are only identified under the alternative hypothesis. A more important

reason, however, is that allowing for different variances across regimes is empirically

relevant as shown both in the illustrative example above (section 2.2) and the empirical

application below (section 4). As a result, while tests that impose a constant variance

across regimes can be constructed, allowing for different variances can in fact help with

4In addition, Martins and Perron (2016) suggest the following testing strategy. If H
(2)
0 is rejected,

conclude that the relative forecasting ability of the two models is not constant. If H
(2)
0 is not rejected,

apply the GW test of unequal (but constant) predictive ability.
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the empirical identification of the two regimes.5

2.4 Asymptotic predictive ability tests

An important result of Giacomini and White (2006) is that under their framework we

can treat the sequence of P out-of-sample loss differences {∆Lt(δ̂t−h,R, γ̂t−h,R)}Tt=R+h

as observed data. For this result to hold, however, the estimation sample size R must

remain finite as the out-of-sample size P grows to infinity. As a result, the parameters

of the forecasting models (δ̂ and γ̂) are usually estimated using a rolling scheme with

a finite estimation window R, while a recursive scheme with an expanding estimation

window cannot be used.

In this context, the regime-switching regression (5) can be estimated by (quasi)

maximum likelihood (ML) following Hamilton (1989, 1990) or Kim (1994). Equation

(5) is characterized by six parameters θ = (µ0, µ1, σ0, σ1, p00, p11)
′ and under standard

asymptotic normality arguments the asymptotic distribution of the ML estimator θ̂ is
√
P
(
θ̂ − θ0

) d→ N
(
0,Ω

)
as P → ∞. Linear hypotheses of the form R0θ = 0 can be

tested by constructing the Wald test statistic

Wald = P
(
R0θ̂

)′(
R0Ω̂R

′
0

)−1(
R0θ̂

)
, (8)

where R0 is a r × 6 matrix with r is the number of restrictions, and Ω̂ is a consistent

estimator of Ω. Under the null hypothesis, Wald
d→ χ2(r) as P →∞. Wald statistics

for H
(1)
0 and H

(2)
0 , SD-Wald hereafter, can easily be constructed by appropriately se-

lecting the matrix of restrictions R0. For example, to test the null hypothesis of equal

and constant predictive ability H
(1)
0 , R0 = (I2, 02, 02) with I2 an identity matrix and

5For example, in section 4 I show that in the case of real GDP growth the parameter estimates of
the test equation (5) are: µ̂0 = 24.72 (6.10), µ̂1 = −0.06 (0.42), σ̂2

0 = 129.13 (57.90), σ̂2
1 = 9.37 (1.70),

p̂00 = 0.48 (0.25), and p̂11 = 0.98 (0.02). As a result, we observe a significant difference in variance
across regimes with σ̂2

0/σ̂
2
1 ≈ 13.78. See Table 3, Figure 7, and the empirical example below.
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02 a matrix of zeros both of dimension 2× 2. As a result, SD-Wald
a∼ χ2(2) and H

(1)
0

is rejected at the 5% level if SD-Wald > 5.99. Similarly, to test the null hypothesis

of constant predictive ability H
(2)
0 , R0 = (1,−1, 0, 0, 0, 0) and the SD-Wald statistic

is P (µ̂0 − µ̂1)
2/(ω̂11 + ω̂22 − 2ω̂21)

a∼ χ2(1), where ω̂ij is the (i, j) element of Ω̂. As a

result, H
(2)
0 is rejected at the 5% level if SD-Wald > 3.84. The rest of this paper will

focus on testing the null hypothesis H
(1)
0 .

Construction of the SD-Wald statistic requires a consistent estimator of Ω. Based on

the information matrix condition, two estimators are typically used. The first estimator

of the covariance matrix is minus the inverse of the average Hessian evaluated at the

ML estimates

Ω̂H = −

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1
, (9)

where Ht(θ) is the Hessian for observation t and
∑T

t=R+hHt(θ̂) is usually obtained

numerically as in Hamilton (1989). The second estimator of the covariance matrix

is the inverse of the average outer-product of the score vector evaluated at the ML

estimates

Ω̂OP =

[
1

P

T∑
t=R+h

gt(θ̂)gt(θ̂)
′

]−1
, (10)

where gt(θ) is the score vector for observation t as in Hamilton (1996). For multi-step

forecasts (that is, h > 1), however, the loss differences are autocorrelated up to lag

h − 1 and (5) is misspecified.6 In this case, the information matrix condition does

not hold, (9) and (10) are not valid, and a HAC estimator of the covariance matrix

is required (Diebold and Mariano, 1995). In addition, if there are instabilities (for

example, state-dependency), the forecast loss differences are also autocorrelated under

the null hypothesis of linearity (see the illustrative example above) and, as a result,

6For h > 1, (5) is estimated by quasi-ML ignoring the MA(h− 1) structure.
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a HAC estimator is required even if h = 1 (Morley and Rabah, 2014; Martins and

Perron, 2016).

An alternative estimator of the covariance matrix that remains valid when the

information matrix condition does not hold is the ‘sandwich’ estimator

Ω̂S =

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1
Σ̂(θ̂)

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1
, (11)

where Σ is the long-run variance of the score vector (see, for example, Hayashi, 2000).

A HAC estimate of Σ can be obtained using the kernel-based estimator

Σ̂(θ̂) =

q−1∑
j=−(q−1)

k(j/q)P−1
T∑

t=R+h

gt(θ̂)gt−j(θ̂)
′, (12)

where k(·) is a kernel weight function, q is a bandwidth that grows with P , and gt(θ)

is the score vector for observation t (see, for example, Andrews, 1991). For serially

uncorrelated scores q = 1 and (11) is the same estimator suggested in Hamilton (1996)

to calculate robust standard errors in a regime-switching regression.

3 Monte Carlo Evidence

In this section I evaluate the size and power properties of the three tests of equal

predictive ability (GW, Fluctt,m, and SD-Wald) using Monte Carlo simulation. The

performance of the quasi-ML estimator of θ and the HAC estimators of the covariance

matrix Ω is reported in the appendix.

3.1 Size properties

To evaluate the empirical size of the tests of the null hypothesis of equal predictive abil-

ity, I consider three DGPs. The first DGP considers the case of a fundamental-based
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model and a random walk benchmark for first differences (with no state-dependency)

and it is the same set up as in Giacomini and Rossi (2010) and Martins and Perron

(2016). DGP-1 is given by

yt = βxt + σεεt, (13)

xt = φxt−1 + σννt, (14)

where εt and νt are i.i.d.N(0, 1), with φ = .5 and σε = σν = 1. I consider one-step ahead

out-of-sample forecasts from two models: (1) yt+1 = u1t+1 and (2) yt+1 = βxt+1+u2t+1.

As a result, the time-t one-step ahead out-of-sample forecasts are

f̂ 1
t,R = 0,

f̂ 2
t,R = β̂t,Rxt+1,

where β̂t,R is the in-sample estimate of β based on the last R observations and xt+1 is

known at time t.

Under the null hypothesis H
(1)
0 the forecasting models are equally accurate in the

finite sample. Setting β = 0, however, implies that the competing models are equally

accurate in the population and, as a result, the smaller model (model 1) would be

preferred in the finite sample. To obtain properly sized tests, I follow Giacomini and

White (2006) and Giacomini and Rossi (2010) and select β such that the two models

have equal expected mean-squared errors

E

[(
yt+1 − f̂ 1

t,R

)2]
= E

[(
yt+1 − f̂ 2

t,R

)2]
. (15)

Since E[(yt+1 − f̂ 1
t,R)2] = σ2

ε + β2x2t+1 and E[(yt+1 − f̂ 2
t,R)2] = σ2

ε + σ2
ε

x2t+1∑t
j=t−R+1 x

2
j

, we

have that β0 =
√
σ2
ε/
∑t

j=t−R+1 x
2
j . Given that σε = σν = 1 and φ = 0.5, after some
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simplifications we have
∑t

j=t−R+1 x
2
j ≈ R4/3 and the value of β that satisfies (15) is

β0 ≈ 1/
√
R4/3. (16)

The second DGP considers the case of state-dependent predictive ability and is the

same set up as the illustrative example of section 2.2 but with a randomly generated

state variable. DGP-2 is given by

yt = −βst + σεεt, (17)

xt = δst + σννt, (18)

where εt and νt are i.i.d.N(0, 1), st (= 0, 1) is an unobserved two-state first-order

Markov process with transition probabilities Prob(st = j | st−1 = i) = pij for i, j = 0, 1.

The specification is completed by assuming δ = 1, σε = σν = 0.5, and p00 = p11 = 0.8.

As before, the two competing models are (1) yt+1 = u1t+1 and (2) yt+1 = γxt+1 +u2t+1,

and the time-t one-step ahead out-of-sample forecasts are

f̂ 1
t,R = 0,

f̂ 2
t,R = γ̂t,Rxt+1,

where γ̂t,R is the in-sample rolling estimate of γ based on the last R observations and

xt+1 is known at time t.

Again, to obtain properly sized tests, I select β such that the two models have equal

expected mean-squared errors. Since E[(yt+1 − f̂ 1
t,R)2] = σ2

ε + β2S2
t+1 and E[(yt+1 −

f̂ 2
t,R)2] = σ2

ε +δ2S2
t+1

σ2
ε+(β/δ)2σ2

ν∑t
j=t−R+1 x

2
j

, after some simplifications we have that
∑t

j=t−R+1 x
2
j ≈

R(δ2p1 + σ2
ν), p1 = 1−p00

2−p00−p11 , and the value of β that satisfies (15) is

β0 =

√
δ2
[
1− σ2

ν

R(δ2p1 + σ2
ν)

]−1
σ2
ε

R(δ2p1 + σ2
ν)
. (19)
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Finally, the third DGP also considers the case of state-dependent predictive ability

but, in this case, the state variable st is the actual quarterly time series of NBER

recession dates for the sample 1960Q1-2015Q4 (224 quarters) and equals 1 if the ob-

servation corresponds to a recession. DGP-3 is also given by (17), (18), and (19) with

the unconditional probability of recession given by p1 = T−1
∑T

t=1 st.

Table 2 reports rejection frequencies of the GW, Fluctt,m, and SD-Wald tests based

on 1,000 replications. The three tests are constructed using the HAC estimator of the

covariance matrix given by (11) and (12) and the Bartlett kernel of Newey and West

(1987). The Fluctt,m test is constructed using a window size m of .3P . The GW test

exhibits small size distortions under DGP-1 and DGP-2 but is oversized under DGP-3.

The Fluctt,m test exhibits small size distortions under all three DGPs. The SD-Wald

test also exhibits small size distortions under all three DGPs as long as the hold-out

sample P is sufficiently large (at least 74 observations). The test is oversized when

P = 50 under DGP-1 and DGP-2.

[ TABLE 2 ABOUT HERE ]

3.2 Power properties

Next, I evaluate the empirical power of the tests under the three DGPs discussed in

section 3.1. To obtain the power curves, rejection frequencies are computed under

the alternative hypothesis where data is generated assuming β = β0 + β+ with β0

given by (16) or (19) and β+ > 0. Under the Giacomini and White (2006) asymptotic

framework, the estimation sample size R must remain finite as the out-of-sample size

P grows to infinity. As a result, the parameters of the forecasting models need to be

estimated using a rolling scheme. In practice, however, researchers appear to favor
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a recursive scheme with an expanding estimation window. So, in addition to results

obtained using rolling estimation, I also report power curves using recursive estimation.

As before, the three tests are constructed using the HAC estimator of the covariance

matrix and the Bartlett kernel. All the results are based on 1,000 replications.

DGP-1 is given by (13), (14), and (16) and under the alternative hypothesis implies

a case of unequal performance of the forecasting models that is constant over time (that

is, no time variation or state-dependency). In this set up, model 2 is unconditionally

more accurate on average. Figure 2 reports power curves for the three tests as β+

is increased from 0 to 1 (with .1 increments) and R = P = 100. When the relative

performance of the models is constant over time the SD-Wald test has power that is

comparable to the Fluctt,m test with m = .3P but lower than the GW test. Higher

power of the GW test is expected as this is the set up for which the GW test is proposed

(see, Giacomini and White, 2006). Rolling and recursive estimation generate similar

results.

[ FIGURE 2 ABOUT HERE ]

DGP-2 and DGP-3 are given by (17), (18), and (19) and under the alternative

hypothesis both DGPs imply a case where the relative performance of the models

varies across states. In this set up, model 1 (the smaller model) is on average more

accurate when st = 0 (for example, economic expansions) but less accurate when st = 1

(for example, economic recessions). Figure 3 reports power curves for the three tests as

β+ is increased from 0 to 1 (with .1 increments) for p00 = p11 = 0.8 and R = P = 100.

Relative to the results under unequal but constant performance (Figure 2), the power

curves of the GW and Fluctt,m tests shift down. In contrast, the SD-Wald test exhibits

an improvement in power.
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[ FIGURE 3 ABOUT HERE ]

Recessions in the US economy tend to be short-lived, typically lasting less than

four quarters, while expansions are more persistent. Therefore, to account for this

difference in persistence, Figure 4 reports power curves for the three tests with p00 =

0.9, p11 = 0.75 and R = P = 100. This DGP implies economic expansions (st = 0)

with an expected duration of ten quarters and economic recessions (st = 1) with an

expected duration of four quarters.7 In this case, the GW and Fluctt,m tests exhibit

a substantial deterioration in power (power curves shift down). In contrast, while the

SD-Wald test also exhibits a reduction in power, the test is still able to frequently

reject the null hypothesis of equal predictive ability. Similarly, Figure 5 reports power

curves for the three tests but, in this case, st is the actual time series of NBER recession

dates for the period 1960Q1 to 2015Q4, with R = 100 and P = 124. The power curves

show that the GW and Fluctt,m tests are now unable to reject the null hypothesis when

the superior performance of one of the two competing models is constrained to very

short periods as in the case of recessions in the US economy. As a result, the GW and

Fluctt,m tests exhibit no power. In contrast, the SD-Wald test is still able to detect the

change in relative performance over the business cycle and exhibits superior power.

[ FIGURE 4 ABOUT HERE ]

[ FIGURE 5 ABOUT HERE ]

In sum, the simulation results suggest that the SD-Wald test has relatively more

power when the superior performance of one of the two competing forecasting models is

constrained to short periods as in the case of recessions in the US economy. In contrast,

7The expected duration (in quarters) of regime j is computed as 1/(1− pjj) for j = 0, 1.
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the GW and Fluctt,m tests can exhibit no power at all, generally failing to reject the

(incorrect) hypothesis of equal predictive ability. When the relative performance of the

models is constant over time, the SD-Wald test has power that is comparable to the

Fluctt,m test (with m = .3P ) but lower than the GW test. Overall, the tests exhibit

more power using recursive estimation than rolling estimation.

4 Empirical Example: Forecasting Output

Chauvet and Potter (2013) survey the recent literature on real-time forecasting of

US output growth and evaluate the accuracy of forecasts obtained from many differ-

ent models (linear and nonlinear models, reduced-form and structural models, survey

based forecasts, etc.). Among other results, they document that most output growth

forecasting models exhibit a similar performance during economic expansions but one

model performs significantly better during recessions. In this section I use this result to

illustrate the improvement of the proposed test over previous approaches to perform

forecast comparisons.

4.1 Forecasting models and data

The out-of-sample forecasting exercise is implemented as follows. The first forecasting

model, the benchmark, is a simple linear autoregressive (AR) model for output growth.

Let yt be 400 times the log difference of quarterly real GDP, then the AR(k) model for

output growth is given by

yt+1 = α +
k−1∑
i=0

βiyt−i + εt+1. (20)

Chauvet and Potter (2013) find that this model is the most accurate during expansions

(or at least as good as any of the other models considered). For recessions, on the
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other hand, they find that the AR model augmented with an estimated real activity

(dynamic) factor and an estimated probability of recession (AR-DF) exhibits the best

performance. As a result, the alternative forecasting model is given by

yt+1 = α +
k−1∑
i=0

βiyt−i + δĝt + γp̂t + εt+1, (21)

where ĝt is the estimated real activity factor and p̂t is the estimated probability of

recession.

Following Chauvet and Potter (2013), I estimate the factor and probabilities of

recession from a set of four monthly real activity indicators previously used in Stock and

Watson (1991), Diebold and Rudebusch (1996), Chauvet (1998), Chauvet and Piger

(2008), Camacho et al. (2015), and Fossati (2015, 2016), among many others. This

panel includes industrial production, real manufacturing sales, real personal income

less transfer payments, and employment. It is assumed that the series in the panel

have a factor structure of the form

xit = λigt + eit, (22)

where i = 1, . . . , 4, t = 1, . . . , T , gt is an unobserved common factor, λi is the factor

loading, and eit is the idiosyncratic error. The dynamics of the common factor are

driven by φ(L)gt = ηt with ηt ∼ i.i.d.N(0, 1), while the dynamics of the idiosyncratic

errors are driven by ψi(L)eit = νit with νit ∼ i.i.d.N(0, σ2
i ) for i = 1, . . . , 4. Identifica-

tion is achieved by assuming that all shocks are independent and the specification is

completed with all autoregressive processes including two lags. Next, I use a Markov-

switching model to generate recession probabilities directly from the dynamic factor as

in Diebold and Rudebusch (1996) and Camacho et al. (2015). Assume that the factor

ĝt switches between expansion and contraction regimes following a mean plus noise
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specification given by

ĝt = µst + εt, (23)

where st is defined such that st = 0 during expansions and st = 1 during recessions, and

εt ∼ i.i.d.N(0, σ2
ε ). As usual, st is an unobserved two-state first-order Markov process

with transition probabilities given by Prob(st = j | st−1 = i) = pij, with i, j = 0, 1.

The models can be estimated by maximum likelihood following Hamilton (1989, 1990)

and Kim and Nelson (1999).

Finally, we need to discuss the timing of the forecasting exercise. First, the dynamic

factor model is estimated recursively, using (standardized) real-time monthly data

from Camacho et al. (2015). In order to account for publication delay and important

revisions that are usually observed in the first and the second release (see Chauvet

and Piger, 2008), the four indicators are lagged two months. Next, the recession

probabilities are estimated by fitting the Markov-switching model to the estimated

dynamic factor. The AR models are estimated recursively using real-time data, a

rolling window of 80 quarters, and with the lag order (p) selected using the Akaike

information criterion. In this case, I use real-time quarterly data obtained from the

Federal Reserve Bank of Philadelphia’s Real Time Data Set for Macroeconomists.

The initial estimation sample is from 1967:Q1 to 1986:Q4, the first one-quarter-ahead

forecast is for 1987:Q1, and the last forecast corresponds to 2010:Q4 (that is, R = 80

and P = 96). As an example, in late March 1987 the econometrician would have access

to the February release of real GDP with data up to December 1986. The monthly real

activity indicators would be available up to January 1987 (a two-month publication

delay). These series are used to estimate the models described above and to generate

a one-quarter-ahead forecast for 1987:Q1, effectively a nowcast.8

8This exercise is similar but not exactly the same as the one in Chauvet and Potter (2013).
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4.2 Results

Figure 6 shows the actual time series of real-time real GDP growth (the second release)

and the one-quarter-ahead out-of-sample forecasts from the two competing models

(top), as well as the forecast loss differences computed using a quadratic loss function

for the hold-out sample 1987Q1-2010Q4 (bottom). As we can observe, both forecasts

track the actual time series reasonably well during expansions and, as a result, loss dif-

ferences are typically small and close to zero. In contrast, loss differences in recessions

are generally large and positive suggesting that forecasts from the AR-DF model are

more accurate during these periods. Descriptive statistics and tests of equal predictive

ability are reported in Table 3. For the full hold-out sample (OOS), the average loss

difference is greater than zero and positively autocorrelated. In this case, the GW

test fails to reject the null hypothesis of equal predictive ability. As a result, we con-

clude that both models exhibit similar predictive content over the full hold-out sample.

Chauvet and Potter (2013) then use peak and trough dates determined by the NBER

to evaluate the performance of the two forecasting models during recession (OOS1)

and expansion (OOS0) periods separately. In recessions, the GW test rejects the null

hypothesis of equal predictive ability and we conclude that the AR-DF model is more

accurate (GW > 0). In expansions, however, we fail to reject the null hypothesis of

equal predictive ability and conclude that both models exhibit a similar performance

(GW ≈ 0).

[ FIGURE 6 ABOUT HERE ]

The main differences are: (1) Chauvet and Potter (2013) estimate the dynamic factor and recession
probabilities simultaneously following Chauvet (1998) while I follow the two-step approach of Diebold
and Rudebusch (1996). See also Camacho et al. (2015). (2) Chauvet and Potter (2013) estimate the
AR models using a recursive scheme while I estimate the models using a rolling scheme with a fixed
window of 80 quarters. (3) The hold-out sample in this paper is 1987:Q1-2010Q4 and includes the
last three US recessions. In contrast, Chauvet and Potter (2013) use the sample 1992:Q1-2010Q4 and
include only the last two recessions. As a result, there are some differences in the results reported.
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[ TABLE 3 ABOUT HERE ]

Next, we turn our attention to the Fluctuation test of Giacomini and Rossi (2010).

The maxt|Fluctt,m| test statistics are reported in Table 3 and show that with a window

size set to m = .3P the test fails to reject the null hypothesis of equal predictive

ability over the full hold-out sample. Given that recessions in the US are typically

short-lived events, a smaller window size may be more appropriate. For example,

setting the window size to m = .1P we find that the test rejects the null hypothesis

at the 5% level. Figure 7 (top) reports the time series of Fluctt,m test statistics and

the corresponding two-sided critical values at the 5% level. Positive values of the test

statistic indicate that the AR-DF model is more accurate. The results suggest that

most of the time the two models exhibit a similar predictive ability (Fluctt,m ≈ 0), but

there is some evidence that the AR-DF model is better during the 2007-09 recession

(Fluctt,m > 0).

[ FIGURE 7 ABOUT HERE ]

Finally, the results reported in Table 3 show that the SD-Wald test rejects the

null hypothesis of equal predictive ability. The parameter estimates (standard errors

in parentheses) of the test equation (5) are: µ̂0 = 24.72 (6.10), µ̂1 = −0.06 (0.42),

σ̂2
0 = 129.13 (57.90), σ̂2

1 = 9.37 (1.70), p̂00 = 0.48 (0.25), and p̂11 = 0.98 (0.02). The

results suggest the presence of a regime in which the AR-DF model is more accurate

(µ̂0 > 0) and that this regime has an expected duration of (about) two quarters. In

the other regime, the two models exhibit a similar performance (µ̂1 ≈ 0). In addition,

we observe a significant difference in variance across regimes with σ̂2
0/σ̂

2
1 ≈ 13.78.

The estimated state probabilities reported in Figure 7 (bottom) show that the AR-DF
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model performed better than the AR model during the 1990-91 and 2007-09 recessions,

but not during the 2001 recession.

In sum, in this exercise I show that tests of the null hypothesis of equal predictive

ability based on averages (unconditional or rolling) are inadequate when predictability

is constrained to just a few observations. For example, the Fluctt,m test only rejects

the null hypothesis during the longest recession in the sample and only if a very small

window is used (m = .1P ). But using such a small window typically yields oversized

tests (Giacomini and Rossi, 2010). Using NBER peak and through dates and a test of

unconditional predictive ability as in Chauvet and Potter (2013) I find that the AR-DF

model performs significantly better during recessions. The SD-Wald test proposed in

this paper is able to uncover this result without making assumptions about the state

of the economy. In addition, we learn that the rejection of the null hypothesis for

recessions is driven by two recessions (the 1990-91 and 2007-09 recessions) and just

four observations.

5 Conclusion

In the macroeconomic forecasting literature, predictability has been shown to be both

unstable over time and state-dependent. In this paper I show that tests of the null

hypothesis of equal predictive ability based on averages (unconditional or rolling) are

inadequate when the predictive content is constrained to just a few observations be-

cause the superior accuracy of a model can be averaged out. As a result, two models

may appear to be equally accurate when they are not. This finding is consistent with

results documented in Casini (2018). To address this issue, this paper proposed a new

test for comparing the out-of-sample forecasting performance of two competing mod-
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els for situations in which the predictive content may be state-dependent and of short

duration. The main improvement over previous approaches to conditional forecast

comparison is that the econometrician is not required to observe when the underlying

states shift and, as a result, the test can be applied in situations in which the states

are not observed (for example, expansion and recession states, low and high volatility

states, etc.). I illustrate these results by analyzing the real-time performance of two

forecasting models for US output growth discussed in Chauvet and Potter (2013).

The results discussed in this paper have implications for applied macroeconomic

forecasting. For example, Gibbs and Vasnev (2017) show that if one model is found to

be more accurate in one state but the other model is more accurate in the other state, a

forecast combination strategy that weighs forecasts based on the predicted probability

of being in each state (forward-looking weights) yields more accurate predictions of the

inflation rate. The methods proposed in this paper may uncover states in which one

model exhibits superior predictive ability and these results could be used to improve

the overall accuracy of macroeconomic forecasts.
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Appendix

HAC estimators and asymptotic confidence intervals

To evaluate the finite sample properties of the HAC estimators of the covariance matrix

(discussed in section 2.4), sequences of loss differences ∆Lt are generated for the same

parameterization of (5) considered in Hamilton (1996): µ0 = −2, µ1 = 2, σ2
0 = σ2

1 = 1,

and p00 = p11 = 0.8. In this case, however, the error term is the MA(1) process

ut = (1 + θ2)−1/2(1 + θL)εt, (24)

where εt is i.i.d.N(0, 1). Multiplying by (1 + θ2)−1/2 normalizes the unconditional

variance of ut to 1. I consider sample sizes T = 50, 100, 250 and parameter values θ =

0, 0.5, 0.9. For each sample, quasi-ML estimates are obtained using the EM algorithm

described in Hamilton (1990). Next, the covariance matrix of θ̂ is estimated using the

Hessian (H) estimator (9), the outer-product (OP) estimator (10), and the ‘sandwich’

estimator (11) implemented using three common kernels: the Bartlett kernel (NW),

the Parzen kernel (PK), and the quadratic spectral kernel (QS). The results reported

below are based on 1,000 replications, with the same set of random errors used across

values of θ.

Table 4 reports the finite sample properties of the ML estimates of µ0. The bias of

the estimator is calculated as the average value of (µ̂i0−µ0) across the 1,000 replications

(that is, i = 1, . . . , 1000). The actual variation (SD) is the square root of the average

value of (µ̂i0 − µ0)
2. Table 4 also summarizes the average standard errors and the

exact confidence levels of the nominal 95% confidence intervals using each of the five

estimators of the covariance matrix. For T = 50 and θ = 0, estimates of µ0 are slightly

biased and the average standard errors from all five estimators slightly understate
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the actual variation of µ̂0. As a result, exact confidence levels are just below the

nominal level (between 0.920 and 0.936). As θ is increased from 0 to 0.5 to 0.9 the

actual variation of µ̂0 increases while the average standard errors using the H and

OP estimators remain mostly constant and, as a result, exact confidence levels drop

substantially. This is expected as these commonly used estimators assume i.i.d errors.

In contrast, average standard errors from the three HAC estimators increase and exact

confidence levels remain (somewhat) closer to the nominal level. When the sample size

is increased from 50 to 100 we observe a similar pattern but with improved confidence

levels. For T = 250, the difference between the average standard errors from any of

the three HAC estimators and the actual variation of µ̂0 almost disappears and exact

confidence levels are very close to the nominal 95% level.

[ TABLE 4 ABOUT HERE ]

In sum, when the model is correctly specified and no residual autocorrelation is

present (θ = 0), the H and OP estimators of the covariance matrix work well and

generate average standard errors that accurately measure the actual variation of µ̂0

and exact confidence levels that are close to the nominal level. On the other hand,

when autocorrelation is present (θ > 0), the H and OP estimators understate the actual

variation of µ̂0 and exact confidence levels can be substantially below the nominal level.

In contrast, the three HAC estimators of the covariance matrix are more accurate (on

average) and exact confidence levels are closer to the nominal level.

27



References

Andrews, D.W.K. (1991): “Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation”, Econometrica, 59, 817–858.

Casini, A. (2018): “Tests for Forecast Instability and Forecast Failure under a Con-

tinuous Record Asymptotic Framework”, unpublished manuscript, Department of

Economics, Boston University.

Casini, A., and Perron, P. (2018): “Structural Breaks in Time Series”, unpublished

manuscript, Department of Economics, Boston University.

Camacho, M., Perez-Quiros, G., and Poncela, P. (2015): “Extracting Nonlinear Signals

from Several Economic Indicators”, Journal of Applied Econometrics, 30, 1073–1089.

Chauvet, M. (1998): “An Econometric Characterization of Business Cycle Dynamics

with Factor Structure and Regime Switches”, International Economic Review, 39(4),

969–996.

Chauvet, M., and Piger, J. (2008): “A Comparison of the Real-Time Performance of

Business Cycle Dating Methods”, Journal of Business and Economic Statistics, 26,

42–49.

Chauvet, M., and Potter, S. (2013): “Forecasting output”, Handbook of Forecasting,

81, 608–616.

Clark, T., and McCracken M.W. (2011): “Testing for unconditional predictive ability”,

Oxford Handbook of Economic Forecasting, ed. M. Clements and D. Hendry, Oxford

University Press.

28



Clark, T., and West K.D. (2006): “Using out-of-sample mean squared prediction errors

to test the martingale difference hypothesis”, Journal Econometrics, 135, 155–186.

Dangl, T., and Halling, M. (2012): “Predictive regressions with time-varying coeffi-

cients”, Journal of Financial Economics, 106, 157–181.

Diebold, F.X., and Mariano, R.S. (1995): “Comparing predictive accuracy”, Journal

of Business and Economic Statistics, 13, 253–263.

Diebold, F., and Rudebusch, G. (1996): “Measuring Business Cycles: A Modern Per-

spective”, Review of Economics and Statistics, 78, 66–77.

Dotsey, M., Fujita, S., and Stark, T. (2015): “Do Phillips curves conditionally help to

forecast inflation?”, Working Paper 15-16, Federal Reserve Bank of Philadelphia.

Fossati, S. (2015): “Forecasting US Recessions with Macro Factors”, Applied Eco-

nomics, 47, 5726–5738.

Fossati, S. (2016): “Dating US Business Cycles with Macro Factors”, Studies in Non-

linear Dynamics & Econometrics, 20, 529–547.

Gargano, A., Pettenuzzo, D., and Timmermann, A. (2016): “Bond return predictabil-

ity: economic value and links to the macroeconomy”, Management Science, forth-

coming.

Gargano, A., and Timmermann, A. (2014): “Forecasting commodity price indexes

using macroeconomic and financial predictors”, International Journal of Forecasting,

30, 825–843.

Giacomini, R., and White, H. (2006): “Tests for conditional predictive ability”, Econo-

metrica, 74, 1545–1578.

29



Giacomini, R., and Rossi, B. (2010): “Forecast comparison in unstable environments”,

Journal of Applied Econometrics, 25, 595–620.

Giacomini, R. (2011): “Testing conditional predictive ability”, Oxford Handbook of

Economic Forecasting, ed. M. Clements and D. Hendry, Oxford University Press.

Gibbs, C.G., and Vasnev, A.L. (2017): “Conditionally optimal weights and forward-

looking approaches to combining forecasts”, Discussion Papers 2017-10, School of

Economics, The University of New South Wales.

Granziera, E., and Sekhposyan, T. (2017): “How to Predict Your Next Forecasting

Model: Conditional Predictive Ability Approach”, unpublished manuscript.

Hamilton, J.D. (1989): “A new approach to the economic analysis of nonstationary

time series and the business cycle”, Econometrica, 57, 357–384.

Hamilton, J.D. (1990): “Analysis of time series subject to changes in regime”, Journal

of Econometrics, 45, 39–70.

Hamilton, J.D. (1996): “Specification testing in Markov-switching time-series models”,

Journal of Econometrics, 70, 127–157.

Hayashi, F. (2000): Econometrics, Princeton University Press, Princeton, New Jersey.

Henkel, S.J., Martin, J.S., and Nardari, F. (2011): “Time-varying short-horizon pre-

dictability”, Journal of Financial Economics, 99, 560–580.

Kim, C.J. (1994): “Dynamic linear models with Markov-switching”, Journal of Econo-

metrics , 60, 1–22.

Kim, C.J., and Nelson, C.R. (1999): State-Space Models with Regime Switching: Clas-

sical and Gibbs-Sampling Approaches with Applications, The MIT Press.

30



Martins, L.F., and Perron, P. (2016): “Improved tests for forecast comparisons in the

presence of instabilities”, Journal of Time Series Analysis, 37, 650–659.

Morley, J., and Rabah, Z. (2014): “Testing for a Markov-switching mean in serially

correlated data”, in J. Ma and M. Wohar (eds.), Recent Advances in Estimating

Nonlinear Models (Springer, Berlin, 2014, 85–97).

Newey, W.K., and West, K.D. (1987): “A simple, positive semi-definite, heteroskedas-

ticity and autocorrelation consistent covariance matrix”, Econometrica, 55, 703–708.

Rapach, D.E., Strauss, J.K., and Zhou, G. (2010): “Out-of-sample equity premium

prediction: combination forecasts and links to the real economy”, The Review of

Financial Studies, 23(2), 821–862.

Rossi, B. (2013): “Advances in forecasting under instability”, Handbook of Economic

Forecasting, Volume 2, Part B, 1203–1324.

Rossi, B., and Sekhposyan, T. (2010): “Have economic models’ forecasting performance

for US output growth and inflation changed over time, and when?”, International

Journal of Forecasting, 26, 808–835.

Stock, J.H., and Watson, M.W. (1991): “A Probability Model of the Coincident Eco-

nomic Indicators”, in Leading Economic Indicators: New Approaches and Forecast-

ing Records, edited by K. Lahiri and G, Moore, Cambridge University Press.

Stock, J.H., and Watson, M.W. (2003): “Forecasting output and inflation: The role of

asset prices”, Journal of Economic Literature, volume XLI, 788–829.

West, K.D. (1996): “Asymptotic inference about predictive ability”, Econometrica, 64,

1067–1084.

31



Table 1: Loss difference statistics for a simulated time series

OOS OOS0 OOS1

Observations 124 110 14

Average 0.092 -0.179 2.217
Standard Dev. 0.969 0.492 1.169
AR(1) 0.407∗∗ -0.137 -0.005

GW 1.056 -3.809∗∗ 7.096∗∗

GW(HAC) 0.683

Fluctuation(HAC,m = .1P ) 2.704
Fluctuation(HAC,m = .3P ) 2.568

Notes: Significance of the AR(1) coefficients is tested based on the

asymptotic result
√
T ρ̂

d→ N(0, 1). HAC tests constructed using the
Bartlett kernel of Newey and West (1987). The 5% (10%) critical
value is 1.96 (1.645) for a two-sided GW test, 3.012 (2.766) for a
two-sided Fluctuation test with a rolling window size of m = .3P ,
and 3.393 (3.170) for m = .1P . ∗∗ (∗) denotes rejection of the null
hypothesis at the 5% (10%) level.

Table 2: Empirical size under quadratic loss

R P GW Fluct SD-W GW Fluct SD-W

DGP-1 DGP-2

50 50 0.044 0.043 0.084 0.053 0.056 0.093
100 0.055 0.048 0.044 0.057 0.040 0.045
250 0.031 0.037 0.034 0.076 0.044 0.055

100 50 0.059 0.043 0.103 0.047 0.053 0.097
100 0.038 0.045 0.053 0.067 0.062 0.049
250 0.038 0.051 0.030 0.064 0.030 0.046

250 50 0.054 0.052 0.118 0.075 0.068 0.114
100 0.061 0.065 0.056 0.052 0.063 0.052
250 0.047 0.071 0.041 0.073 0.062 0.045

DGP-3

50 174 0.104 0.053 0.056
100 124 0.081 0.061 0.051
150 74 0.058 0.065 0.062

Notes: The Fluctt,m test constructed using a window size of .3P .
Nominal size 0.05.
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Table 3: Loss difference statistics for real GDP growth

OOS OOS0 OOS1

Observations 96 82 14

Average 1.032 -0.159 8.005
Standard Dev. 6.388 3.019 13.422
AR(1) 0.279∗∗ -0.136 0.121

GW 1.582 -0.477 2.232∗∗

GW(HAC) 1.360

Fluctuation(HAC,m = .1P ) 3.517∗∗

Fluctuation(HAC,m = .3P ) 2.232

SD-Wald(HAC) 16.484∗∗

Notes: Significance of the AR(1) coefficients is tested based on the

asymptotic result
√
T ρ̂1

d→ N(0, 1). HAC tests constructed using the
Bartlett kernel of Newey and West (1987). The 5% (10%) critical
value is 1.96 (1.645) for a two-sided GW test, 3.012 (2.766) for a
two-sided Fluctuation test with a rolling window size of m = .3P ,
and 3.393 (3.170) for m = .1P . The 5% (10%) critical value for
a SD-Wald test is 5.99 (4.61). ∗∗ (∗) denotes rejection of the null
hypothesis at the 5% (10%) level.
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Table 4: Small sample properties of the ML estimates of µ0

θ Bias SD H OP NW PK QS

T = 50 0 0.008 0.256 0.223 0.235 0.247 0.243 0.245
0.920 0.929 0.936 0.920 0.928

0.5 0.007 0.314 0.219 0.231 0.266 0.275 0.276
0.830 0.841 0.875 0.886 0.887

0.9 0.025 0.345 0.226 0.228 0.291 0.301 0.302
0.798 0.810 0.867 0.868 0.871

T = 100 0 0.006 0.159 0.154 0.156 0.163 0.162 0.163
0.933 0.938 0.946 0.942 0.945

0.5 0.015 0.220 0.161 0.156 0.202 0.210 0.210
0.846 0.838 0.896 0.909 0.910

0.9 0.010 0.233 0.163 0.157 0.211 0.219 0.220
0.824 0.817 0.904 0.908 0.913

T = 250 0 -0.004 0.096 0.098 0.099 0.101 0.100 0.101
0.962 0.959 0.963 0.961 0.963

0.5 0.006 0.128 0.101 0.098 0.120 0.125 0.125
0.869 0.856 0.925 0.939 0.937

0.9 -0.001 0.135 0.102 0.098 0.129 0.134 0.134
0.874 0.856 0.932 0.942 0.943

Notes: The true model is ∆Lt(δ̂t−h,R, γ̂t−h,R) = µst + σstut with
st = 0, 1, µ0 = −2, µ1 = 2, σ2

0 = σ2
1 = 1, and p00 = p11 = 0.8.

The error term is an MA(1) process ut = (1 + θ2)−1/2(1 + θL)εt where
εt ∼ i.i.d.N(0, 1). The covariance matrix estimators are: Hessian (H),
outer-product (OP), Bartlett (NW), Parzen (PK), and quadratic spec-
tral kernel (QS). Bias is the average value of (µ̂i

0−µ0). SD is the square
root of the average value of (µ̂i

0 − µ0)2.
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Figure 1: Shows the simulated time series and forecasts from the two competing models
(top) and loss differences with sample averages (bottom). The two forecasting models
are: (i) f̂ 1

t,R = 0 and (ii) f̂ 2
t,R = γ̂t,Rxt+1. Shaded areas denote NBER recessions.
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Figure 2: Empirical power (rejection frequencies) of the GW, Fluctt,m (m = .3P ), and
SD-Wald tests in the case of unequal but constant relative forecasting performance of
the two models with R = P = 100.
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Figure 3: Empirical power (rejection frequencies) of the GW, Fluctt,m (m = .3P ),
and SD-Wald tests in the case of different relative forecasting performance of the two
models in different states with p00 = p11 = 0.8 and R = P = 100.
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Figure 4: Empirical power (rejection frequencies) of the GW, Fluctt,m (m = .3P ),
and SD-Wald tests in the case of different relative forecasting performance of the two
models in different states with p00 = 0.90, p11 = 0.75, and R = P = 100.
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Figure 5: Empirical power (rejection frequencies) of the GW, Fluctt,m (m = .3P ),
and SD-Wald tests in the case of different relative forecasting performance of the two
models in different states with st the actual time series of NBER recession dates for
the period 1960Q1 to 2015Q4, R = 100, and P = 124.
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Figure 6: Shows real-time GDP growth and forecasts from the two competing models
(top) and loss differences with sample averages (bottom). The two forecasting models
are: (i) f̂ 1

t,R = AR and (ii) f̂ 2
t,R = AR-DF. Shaded areas denote NBER recessions.
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Figure 7: Shows the Fluctt,m test statistics for m = .1P and m = .3P with the
corresponding critical values (top) and the state probabilities from the SD-Wald test
(bottom). Shaded areas denote NBER recessions.
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