Can we plan efficiently in large MDPs with only weak linear function approximation and no restrictions on MDP dynamics?

Assumption: Core States

A small subset of states (of size \(m \)) whose features’ convex hull covers all other state features

Planning in Large MDPs

Avoid scaling with number of states, or exponential scaling in horizon (\(H = 1/(1 - \gamma) \) is the effective horizon)

\(\checkmark \) Impossible without additional assumptions!

Need \((1/\varepsilon)^m \) samples for \(\varepsilon \)-suboptimal policy [Kearns, et al., 2002]

\(\times \) Impossible with weak function approximation, if policy must be \(\varepsilon \)-suboptimal [Du, et al., 2020]

\(\checkmark \) Possible for \((1/\varepsilon)^{m(H/\sqrt{d})} \)-suboptimal policies, but requires value functions of all policies to be representable with low error [Lattimore, et al., 2020; Van Roy & Dong, 2019]

\(\checkmark \) Possible with strong assumptions on MDP dynamics (linear MDPs, low Bellman rank, etc.)

CoreStoMP

A Saddle-Point Algorithm for Planning with Core States

Based on Relaxed Approximate Linear Program [Lakshminarayanan, et al., 2018]

Uses Stochastic Mirror-Prox to approximately solve saddle-point formulation of problem

Gradient estimates come from simulator

Main Result

Running CoreStoMP on state \(s \) for \(T \) iterations:

- Uses the simulator \(O(mA T) \) times
- Outputs random action \(a \) with
 \[\sum_{s \in S} \| v^*(s) - v_\pi(s) \| \leq O \left(\frac{\varepsilon_{\text{approx}}}{1 - \gamma} \right) + O \left(\frac{1}{(1 - \gamma)^2} \sqrt{\frac{m}{T}} \right) \]
- Results in policy \(\pi \) with value loss
 \[\max_{s \in S} \| v^*(s) - v_\pi(s) \| \leq O \left(\frac{\varepsilon_{\text{approx}}}{1 - \gamma} \right) + O \left(\frac{1}{(1 - \gamma)^2} \sqrt{\frac{m}{T}} \right) \]

References