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1. INTRODUCTION

In this paper we explore the interrelationship between the theory of
polynomial ideals and certain branches of analysis including multivariate
approximation theory and linear partial differential equations. Specifically,
we use the perturbation technique from analysis to study the codimension
of a multivariate polynomial ideal.

Let K be a field. In this paper, K will often be the field C of complex
numbers. We denote by K[Z,,...,Z] (resp. K[[Z,,..., Z,]D the ring of
polynomials (resp. the ring of formal power series) in s indeterminates
over K. Let I be an ideal of K[Z,,...,Z]. The codimension of I is the
dimension of the quotient space K[Z,, ..., Z,1/I over K. If this dimension
is finite, then I is said to be of finite codimension.

The perturbation technique for polynomial ideals was used in the study
of polynomial mappings on C°. Suppose p,, ..., p, are homogeneous
polynomials in C[Z,, ..., Z ] such that the ideal I generated by them is of
finite codimension. In this case, the origin is the only common zero of
P1, -+, D,- Let F be the mapping from C* to C* given by

F(z) = (py2),....p(2)), z=(z,...,z,) €C".

The algebraic multiplicity of the mapping F is defined to be the codimen-
sion of I. Given & = (&,,..., &) € C’, we denote by u(e) the number of
common zeros of the polynomials p, — &;,..., p, — &. The geometric
multiplicity of F is defined to be sup{ u(e): ¢ € C*}. We may say that the
ideal generated by p, — &,,..., p, — &, is a perturbation of the ideal
generated by p,,..., p,. A classical result states that the algebraic multi-
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plicity of a polynomial mapping on C* agrees with its geometric multiplic-
ity. Arnold, Gusein-Zade, and Varchenko in [2, p. 85] indicated that the
first detailed proof of this deep result was published in Palamodov’s paper
[23].

Now let us consider the general case. Given two polynomials p and g in
K[Z,, ..., Z,], we say that g is a lower-order perturbation of p if ¢ — p is
a polynomial of degree less than deg p. Suppose I is an ideal in
K[Z,,...,Z,]generated by polynomials p,,..., p,,. We say that an ideal J
is a lower-order perturbation of I if J is generated by ¢,...,q,,, Where
each g; is a lower-order perturbation of p;, j = 1,..., m (see [5]). We are
concerned with the relationship between I and J. In particular, we are
interested in the relationship between codim(7) and codim(J). Here is the
idea behind the perturbation technique: The codimension of I might be
difficult to compute, but the computation of codim(J) is easier. Thus one
can gain some information about codim(/) through computing the codi-
mension of the perturbed ideal J. The usefulness of the perturbation
technique was demonstrated in the previous paragraph.

How is the theory of polynomial ideals related to approximation theory
and linear partial differential equations? To answer this question, we need
to consider differentiation on the ring of formal power series. Let N be the
set of positive integers and let N := N U {0}. An element o € N} is
called a multi-index, or more precisely, an s-index. If a = (a4,..., a,) isa
multi-index, then its length is |a| == a; + -+ +«,, and its factorial a!:=
al - al If B=(By,..., B, is another multi-index, then a < B means
;< B forall j=1,...,s. Let K be an algebraically closed field of
characteristic 0. A formal power series in K[[Z,,..., Z]] is of the form
LgenybgZP where ZP =7 - ZP:and by € K for all g € Nj. Given
a € Nj, the differential operator D* = D+ --- D* on K[[Z,,...,Z]] is
defined by

D“( )y bﬁzﬂ) =X bﬁLzﬁ—a.

BEN} pra  (B—a)!

For a polynomial p = X _a,Z¢, the corresponding differential operator
p(D) is defined by p(D):= X, a,D* Now let I be an ideal in
K[Z,,...,Z,]. The kernel of I is the set

I, ={feK[[Z,,....Z,]]: p(D)f=0forall p €I}

(see [5] for the use of the notation 7). By the Hilbert basis theorem, any
ideal in K[Z,,...,Z] is finitely generated. Suppose I is generated by

s

Pire- Py €EKIZ,,...,Z,]]. Then fe I if and only if f satisfies the
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following system of linear partial differential equations with constant
coefficients:

pi(D)f=0, j=1,... m.

Obviously 7, is a linear subspace of K[[Z,, ..., Z 1] considered as a linear
space over K. When K is the complex field C, it was proved by de Boor
and Ron in [5] that if [ is of finite codimension, then I, is finite
dimensional, and

codim(I) = dim(7,).

This result is also valid for any algebraically closed field of characteristic 0
(see Section 2).

Certain systems of linear partial differential and difference equations
arise naturally from the study of multivariate approximation. In the follow-
ing we give a brief description of this phenomenon. Let X be a nonempty
finite set. Associate to each x € X a polynomial p, € C[Z,,..., Z,]. Fora
subset A4 of X, define

pa=T1p. (1.1)

x€A

Let % =%(X) be a collection of subsets of X, each of which has exactly
s elements. Let

7 =X, B(X)={AcX: AnNB+Jforany Be#(X)}. (1.2)

Consider the ideal I(X) = I(X, #(X)) generated by the polynomials p,,
A €. We are interested in the kernel space I(X) , . The significance of
the kernel space I(X), lies in the fact that it often determines the
approximation power of the integer translates of the corresponding box
spline (see [4, 13, 21]).

For a subset Y of X, let

B(Y) ={BCY:Be®B(X)). (1.3)

The ideal I(Y) = I(Y, (Y)) is defined correspondingly. In particular, for
each B € #(X), I(B) is the ideal generated by p,, x € B. Dahmen and
Micchelli in [11] investigated the relation between the dimension of I(X) |
and the dimensions of the “block spaces” I(B), . Their work was moti-
vated by some nontrivial examples in box spline theory (see [4, 9, 10).
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Among other things, Dahmen and Micchelli in [11, Theorem 3.1] proved
that the inequality

dim(I(X),) < ¥ dim(I(B),) (1.4)
Be#B(X)

holds if (X, (X)) has a matroid structure. They also gave a sufficient
condition for equality. In another paper [12], Dahmen and Micchelli
conjectured that equality would hold in (1.4), provided each p, (x € X) is
a homogeneous polynomial. Their conjecture was solved by Shen in [25].
Shen’s work was further extended by Jia, Riemenschneider, and Shen in
[20]. In particular, they proved the equality

dim(1(X),) = é‘,( )dim(I(B)L)

under the condition that (X)) is order-closed and each p, (x € X) is a
polynomial in K[Z,,..., Z ] (not necessarily homogeneous).

Along other lines, Ben-Artzi and Ron in [3], and Dyn and Ron in [13]
used the idea of perturbation in their study of exponential box splines.
Such an idea was refined in the work [5] of de Boor and Ron, who
considered the case where every p, (x € X) is a polynomial of degree 1.
On the other hand, the collection #(X) could be arbitrary (with no
matroid structure). In contrast to (1.4), de Boor and Ron in [5, Theorem
6.6] gave the lower bound

codim(/(X)) > ), codim(I(B)), (1.5)
BeB(X)

that is,

dim(I(X),) > ), dim(I(B),).
BeB(X)

They also proved that equality holds for this special case if 2(X) is
order-closed.

In this paper our main goal is to establish the lower bound in (1.5) for
the general case where each p, (x € X) is an arbitrary polynomial. In
order to achieve this goal, we discuss polynomial ideals of finite codimen-
sion in Section 2 and study the perturbation technique in connection with
topological degree theory in Section 3. Section 4 is devoted to certain
properties of polynomial mappings and algebraic functions. The results in
Sections 2—4 are then used to establish the lower bound for the codimen-
sion of I(X). Finally, in Section 6, we investigate conditions under which
equality holds in (1.5).
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The major part of this work was done in 1989 and was reported in the
conference ‘“Algebraic and Combinatorial Problems in Multivariate Ap-
proximation Theory” organized by W. Dahmen and A. Dress in the
Oberwolfach Institute of Mathematics, Germany, October 21-27, 1990. In
preparing this paper, I was inspired by the work of C. de Boor and A. Ron,
and by that of W. Dahmen and C. A. Micchelli. I take this opportunity to
thank all of them.

2. POLYNOMIAL IDEALS OF FINITE CODIMENSION

This section is devoted to some elementary facts concerning polynomial
ideals of finite codimension. When the coefficient field is the complex field
C, the results in this section were proved in [5] by de Boor and Ron, who in
turn attributed these results to Grobner (see [16, Chap. 1V]). Throughout
this section, except Theorem 2.4, the coefficient field K is assumed to be
an algebraically closed field of characteristic 0. In contrast to the methods
used in [5], the proofs given here do not require primary decomposition of
ideals.

THEOREM 2.1. Let K be an algebraically closed field of characteristic zero.
If Iis an ideal of K[Z,, ..., Z,] with finite codimension, then

codim(I) = dim(/,).

Before providing a new proof for this theorem, we give two examples to
illustrate its significance.

ExAMPLE 2.2. Let s =1 and let I be the ideal in K[Z] generated by
one polynomial p of degree m > 1. Then codim(I) = m, because {Z: j =
0,...,m — 1} forms a basis for K[Z]/I, where Z/ denotes the residue
class of the monomial Z’/ in K[Z]/I. On the other hand, from the
elementary theory of differential equations we see that the number of
solutions f € K[[Z]] to the equation p(D)f = 0 equals m. In other words,
dim(I,) = m.

ExampLE 2.3. Let s > 1. Suppose p; (j = 1,...,s) are polynomials in
Z; of degree m;. Consider the ideal I generated by p,,...,p;. Then
codim(/) = m, -+ m,, because

{Txia=(al,...,as) e Ng, ozj<m]-f0ra|| ]}

forms a basis for K[Z,,..., Z,1/I, where Z* denotes the residue class of
the monomial Z* in K[Z,,...,Z,]/I. On the other hand, f eI if and
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only if f is a linear combination of formal power series of the form
fi -+ fi» where each f; € K[[Z;]] is a solution to the equation p;(D))f; = 0,
j=1,...,s. The linear span of all such formal power series has dimension
my --- m,. This shows that dim(I ) = m, --- m, = codim(I).

Proof of Theorem 2.1. Let I and J be two ideals in K[Z,,..., Z,] such
that J c I. It follows that 7, cJ, . Viewing I/J and J, /I, as quotient
linear spaces over K, we claim that

dim(J, /I,) <dim(1/J). (2.1)

If dim(1/J) = o, then (2.1) holds automatically; hence we assume that
dim(1/J) < o in what follows. Associate to each fJ, a linear func-
tional f* on 1/J given by

(p) =p(D)f(0), pel

where p denotes the residue class of p in I/J. Since p(D)f(0) = 0 for
peJand feJ,, f*is well defined. Let f denote the residue class of
fel, inJ /1, . 1ff=Ff, then f, —f, €1l ; hence p(DXf, — f,)0)
= 0 for p € I. This shows that f — f* is a linear mapping from J, /I, to
the linear dual of 1/J. Thus, the inequality (2.1) will be established if we
can show that the mapping f — f* is injective, i.e., f*=0=f=0. To
prove this we let f €J, be such that f* = 0. Then p(D)f(0) = 0 for all
p € 1. Since [ is an ideal, for a given p € I the polynomial Z“p is also in
I for all a € Nj. Consequently, D“p(D)f(0) = 0 for all a € Nj. It follows
that p(D)f =0 for all p € I. Therefore fe I, ,ie., f=0.

Having established (2.1), we choose I = K[Z,,..., Z.] in it. Then (2.1)
becomes dim(J ) < codim(J). Replacing J by I, we get

dim(/,) < codim(7). (2.2)
Moreover, if codim(J) < o, the inequality in (2.1) can be written as
dim(J,) —dim(7,) < codim(J) — codim([]). (2.3)

From (2.2) and (2.3) we see that in order to prove Theorem 2.1, it suffices
to find an ideal J c I with finite codimension such that codim(J) =
dim(J ).

An ideal J c I with the desired property can be constructed by employ-
ing a technique used in [12, Proposition 2.1; 8, Theorem 2.1]. For 0 =
(6,,...,6,) € K*, let ¢, be the formal power series given by

Y, 0°Z%/al,

5
aeNj
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where 6% := 0/ - 0% for a = (ay,...,a). When K=C, ¢, is the
usual exponential function z — ¢%? z = (z,,...,z,) € C*, where -z =
0,z, + - +0,z,. Let 7°(I) denote the algebraic variety of the ideal I.
Precisely,

7 (I) ={0€K*:p(6) =0forall p e1}.

A point in 7°(I) is also called a zero of I. We observe that p(D)e, =
p(0)e,; hence 6 € 7°(1) if and only if ¢, €1, . If dim(I,) = o, then
Theorem 2.1 follows from (2.2) at once. Consider the case dim(7,) < oo.
Since the set {e,: 6 € 7°(1)} is linearly independent, the number of points
in 7°(I) is at most dim(/ | ). Let

fi= 11 (Z=6), Jj=1...5s, (24)

0e7°(I)

where ¢, stands for the jth coordinate of 6, j =1,...,s. Every f; is a
polynomial vanishing on 2°(I). By Hilbert’s nullstellensatz, there exists an
integer n > 0 such that f" 1 for all j=1,...,s. Let J be the ideal
generated by f',..., f;". Then J C I. Moreover, it was shown in Example
2.3 that dim(J ) = codim(J). This finishes the proof. |

Next, let us consider the multiplicity of an ideal I in K[Z,,...,Z ] at a
point @ € 7°(I). Here the algebraically closed field K needs not to be of
characteristic 0. The set

S,={g€K[Z,,....,Z,]:g(0) # 0}

is a multiplicative set of R:=K[Z,,...,Z] Let @,:=S,'R be the

s

quotient ring of R by S, (the localization of R at S,); i.e.,

g,={f/g:f.g €K[Z,,...,Z,]and g(0) + 0}.

Thus, @, is the local ring of the point 6 on the algebraic variety 7°(1).
Suppose that 6 is an isolated zero of I, i.e., {0} is one of the irreducible
components of 7°(I). The (algebraic) multiplicity of I at 6, denoted
u,(D), is defined to be the dimension of the quotient space @,/(S, 1) over
K. A proof of the following theorem can be found on page 57 of Fulton’s
book [15].

THEOREM 2.4. Let I be an ideal of K[ Z,, ..., Z,] with finite codimension.
Then

codim(I) = ¥ p(1).
07 (1)
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When the coefficient field K = C, de Boor and Ron in [5] used another
definition of multiplicity. For an isolated zero 6 of I, the multiplicity space
of I at 6, denoted M, ,, is defined by the rule

M, ,={peK[Z,....Z]: p(D)q(6) =0forall g € I}. (2.5)

The space M, , is D-invariant, i.e., closed under differentiation (see [5]).
The dimension of M, , is called the multiplicity of I at 6. It was proved in
[20, Theorem 3.2] that

uy(1) = dim( M, ,). (256)

Thus, the two notions of multiplicity agree with each other. This assertion
is also true if K is an algebraically closed field of characteristic 0.

Now let us investigate the structure of 7, . By the Leibniz differentia-
tion formula, one can easily prove that for two polynomials p and ¢ in
K[z, ...,Z],

p(D)(eyq)(0) =q(D)p(0), 6K

From this formula we see that e,q €1 if and only if g € M, ,. This
shows that

Y oegMy,cl, .
07 (1)

Since the sum on the left-hand side of the above inclusion relation is a
direct one, its dimension is X, ¢ ,(;, i,(I), which is dim(Z , ) by Theorems
2.1 and 2.4. Thus we arrive at the following conclusion (see [5, Corollary
3.21] for the case K = C).

THEOREM 2.5. Let I be an ideal of K[ Z,, ..., Z,] with finite codimension,
where K is an algebraically closed field of characteristic 0. Then

I, = @ egM; 4.
07 (1)

3. PERTURBATION OF POLYNOMIAL IDEALS

From now on the coefficient field K is taken to be the complex field C.
Let I be an ideal of C[Z,,..., Z,] with finite codimension. Then the
algebraic variety 7°(I) is a finite set. A zero 0 of I is called simple, if the
multiplicity of I at 6 is 1. The ideal [ is said to be simple if all its zeros are
simple. A lower-order perturbation J of I is said to be perfect, if J is
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simple and codim(J) = codim(I). In this section we investigate the possi-
bility of perfect perturbation of polynomial ideals.

Let us first recall some useful facts about (topological) degree theory
from Lloyd’s book [22]. Let ¢ = (&4,..., ¢,) be a continuously differen-
tiable mapping from R” to R". Given a € R", the Jacobian determinant of
¢ at a is denoted by

Jp(a) = det(Djd)k(a))lsj,ksn‘

where D; denotes the partial derivative operator with respect to the jth
coordinate, j = 1,..., n. We say that a is a critical point of ¢ if J,(a) = 0.
A point b € R" is called a regular value of ¢, if J,(a) # 0 for any
a € ¢ 1(b); otherwise, b is called a critical value of ¢. Let Q be a
bounded open subset of R”. We denote by dQ and Q the boundary and
the closure of Q, respectively. Let b € R\ ¢(9Q). If b is a regular value
of ¢la, then Q N ¢~ 1(b) is a finite set, and the degree of ¢ at b relative
to Q is defined to be

d(¢,Q,b) = Y. signJ(a).
acd H)NQ

If b is not a regular value of ¢|q, see [22, Chap. 1] for the definition of
d($, Q, b).

If a is an isolated zero of ¢, then the index of ¢ at a, denoted ind(¢, a),
is defined to be d(¢, U, 0), where U is any open set such that U does not
contain any other zeros of ¢. This definition is justified, because two such
open sets U; and U, give the same degree: d(¢, U;,0) = d(¢, U,,0). If Q
is an open set such that 0 € #(9Q) and ¢ has finitely many zeros in Q,
then

d(¢,Q,00= Y ind(¢ a). (3.1)

acdH0)NQ

We consider now holomorphic mappings on C°. The norm in C’ is
defined by the rule

|zl = max{lz;l:j = 1,...,s} forz=(z,...,z,) €C".

A holomorphic mapping ¢ from an open set O € C* to C* can also be
viewed as a mapping from an open subset of R” to R", where n = 2s. In
this way d(¢, Q, b) is defined, provided b & ¢(5Q). When ¢ is holomor-
phic, d(¢, Q, b) is always nonnegative (see [22, p. 145]). Moreover, if a is
an isolated zero of ¢, then the index ind(¢, a) is a positive integer. This
index is greater than 1 if and only if a is a critical point of ¢ (see Theorem
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9.3.3 of [22]). Thus, if 0 is a regular value of ¢, then (3.1) says that
d(¢, Q,0) equals the number of zeros of ¢ in Q.

The following important theorem will be used frequently. Its proof can
be found in [22, p. 147].

THE GENERALIZED ROUCHE THEOREM. Let Q) be a bounded, open set
in C*. If f and g are holomorphic mappings from a neighborhood of Q to C°,
and if 1g(2)| < |f(2)| for all z € dQ, then d(f, Q,0) = d(f + g, Q,0).

Let ¢ be a mapping from C* to C* given by ¢(z) = (py(2),..., p(2)),
z € C*%, where p,,..., p, are polynomials in C[Z,, ..., Z,]. Such a mapping
is called a polynomial mapping. Let a be an isolated zero of ¢. The
algebraic multiplicity of ¢ at a, denoted w,(¢), is defined to be w, (1),
where [ is the ideal generated by p,,..., p,. The index ind(¢, a) can be
interpreted as the geometric multiplicity of ¢ at a. Indeed, since a is an
isolated zero of ¢, there exists » > 0 such that ¢ does not vanish on
B,(a) \ {a}, where B,(a) is the ball {z € C*:|z —al <r}. Let & be the
minimum of ¢ on the sphere {z € C*:|z — a| = r}. Then & > 0. Given
e=(&q,..., &) € B;(0), consider the perturbation ¢° of ¢ given by
¢°(z) = (p(2) — &,...,p(2) — &) for z e C’. By the generalized
Rouché theorem,

d(#%, B,(a),0) = d(&, B,(a),0) = ind( ¢, a).

By Sard’s theorem (see [17, p. 205]), almost every & € B5(0) is a regular
value of ¢. Consequently, for almost every & € B,(0), the number of zeros
of ¢¢ in B.(a) equals d(¢?, B,(a),0), which in turn equals ind(¢, ). In
particular, if each p, = Z for some positive integer m;, then for any
e € (C\ {0}, 0is a regular value of ¢¢; hence ind(¢,0) = d($*, B,(0),0)
=my = mg.

A proof of the following important result can be found in [2, Chap. 5].
Here we give another proof based on the perturbation technique.

THEOREM 3.1. Let ¢ be a polynomial mapping from C° to C° such that
its zero set ¢~ *(0) is finite. Then for each a € ¢~ *(0),

n($) = ind($,a). (32)

Proof. 1t will be proved in Section 5 (as a special case of Lemma 5.2)
that

() = ind(¢p,0)  forevery 6 € ¢~ 1(0). (3.3)

Assuming that (3.3) is true, we prove (3.2) as follows. Suppose we can find
another polynomial mapping : z = (q(2),...,q,(2)), z € C%, such that
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¢ and the ideal J generated by g, ..., g, have the following properties:

codim(J) = d(y, Bg(0),0) <  for some ball B,(0) > 7°(J);

(3.4)
wo(¥) = py(); (3.5)
ind(y, a) = ind(, a). (3.6)

Then (3.2) is true. Indeed, Theorem 2.4, (3.4), and (3.1) tell us that

Y w(#) = codim(J) = d(, Be(0).0) = Y ind(w, 6).

o<y~ 10) o<y~ 20)

This in connection with our assumption pu,() > ind(¢y, #) shows that
we(p) = ind(, ) for all 6 € ¢ 1(0). In particular, w,(¢) = ind(¢, a).
Combining this with (3.3), (3.5), and (3.6), we obtain

ind(,a) = ind(y,a) = u,(#) = u,($) = ind(b, a).

It follows that u (¢) = ind(¢, a), as desired.

Suppose ¢ is given by ¢(z) = (py(2),...,p(2)), z € C°. Let I be the
ideal generated by the polynomials p,,..., p,. In order to find a mapping
¢ with the desired properties, we use the polynomials f,..., f, given in
(2.4). By Hilbert’'s nullstellensatz, there exists an integer n >
max, _ ;. {deg p;} such that f"~* eI forall j=1,...,s. Set

qj:=fj"+pj, j=1,...,s.

We claim that the mapping ¢:z — (g(2),...,¢,(2)) satisfies all the
properties stated in (3.4)-(3.6).

First, we observe that the leading term of f; is Z", where m = #7°(1I),
the number of elements in 7°(1). Let h; = Z"" and let x be the mapping
given by x(z2) = (hy(2),...,h(2)), z € C°. For any R > 0, d( x, Bz(0),0)
= ind( x,0) = (mn)*, as was computed before. Furthermore, for each
Jj=1...,5 deg(g; — h;) <mn; hence for sufficiently large R > 0, [¢(z)
— x| <1 x(2) for all z € dBx(0). Then by the generalized Rouché
theorem,

d(, Br(0),0) = d( x. Bx(0),0) = (mn)’.

On the other hand, the ideal J generated by q,, ..., g, has codimension
(mn)*, because

(Z% a=(a;,..., a,) € Nj with &; < mn for all j}
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forms a basis for C[Z,, ..., Z,]/J, where Z* denotes the residue class of
Z“ in it. This verifies (3.4).

Second, since f/”‘l el for all j=1,...,s, we have J cI. Hence
) = p,(P).

Third, each fj”’1 can be written as X _, u; p, where u;, are polynomi-
als. Consequently, g, — p; = f" = Xj_1 Uy Pr, Where v, = fiuy. Thus,
vy(a) = 0, so that for r > 0 sufficiently small, [(z) — ¢(2)| < [$(2)| for
all z € dB(a). By the generalized Rouché theorem, this implies
d(y, B(a),0) = d(¢, B,(a),0), i.e., ind(yf, @) = ind(¢, a).

It has been verified that  satisfies all the three properties in (3.4)—(3.6),
so the proof of Theorem 3.1 is complete. |

The following result is an immediate consequence of this theorem and
Theorem 2.4.

COROLLARY 3.2. Let ¢ be a polynomial mapping from C° to C° such
that its zero set ¢~ *(0) is finite. If Q is a bounded open set in C° containing
¢ 0), then

codim(l) = d(¢,Q,0).

Of particular interest is a special case of Theorem 3.1 in which all the
polynomials p,, ..., p, are homogeneous. Given w = (w,,...,w,) € C’, let
I" be the ideal generated by the polynomials p, — w,,..., p, — w,, and let
¢" be the mapping given by ¢"(z) = (p(z2) — w4, ..., p(2) —w,), z € C*.
If R > 0 is sufficiently large, then by the generalized Rouché theorem,

d(4", B(0),0) = d(, B(0),0).

This together with Corollary 3.2 yields the following.

CoROLLARY 3.3. Let I be an ideal generated by s homogeneous polynomi-
als and let w be any point in C°. If I has finite codimension, then

codim(I) = codim(I").

It is essential in Corollary 3.3 to assume that [ is generated by homoge-
neous polynomials. For instance, let I be the ideal in C[Z,, Z,] generated
by the polynomials p, =Z, +Z, and p,=2(Z, +Z,) — 1. Then
codim(/) = 0, but codim(/*) = 1 for any w = (w,,w,) € C? with w, # 0.

Now let us consider the case in which I is generated by homogeneous
polynomials p,,..., p,, where m is not necessarily equal to s. It was
proved by de Boor and Ron in [5] that

codim(/) > codim(J)
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for every lower-order perturbation J of I. They conjectured that every
homogeneous ideal of polynomials has a perfect lower-order perturbation.
The following example supports their conjecture.

ExampLE 3.4. Let I be an ideal generated by monomials Z¢, a € A4,
where A is a finite subset of Ng. Foreach j =1,...,s, let(c;,),_q,  be
a sequence of distinct complex numbers. Define

ozjfl

qa:=l_[lk1_[0(Z].—cjk) fora= (..., o) €A.
J=1 k=

Then ¢, is a lower-order perturbation of Z¢ for every a € 4. Let J be
the ideal generated by {g,: « € A}. It can be easily proved that J is a
perfect perturbation of 7. In other words, every ideal of finite codimension
generated by monomials has a perfect perturbation.

4. THE ALTERNATIVE THEOREM

In this section we return to the study of the ideal I(X) as described in
Section 1. Recall that X is a nonempty set. Associated to each element
x € X is a polynomial p, € C[Z,,...,Z,]. Moreover, & =%(X) is a
collection of subsets of X, each of which has exactly s elements, and
& =X, #(X)) is defined as in (1.2). The ideal I(X) is generated by the
polynomials p,, A €., where each p, is defined as in (1.1). We assume
that

codim(/(B)) <~  forevery B € %(X).
The set X can be labeled so that X = {1,...,n}. Given w = (w,...,w,)
e C", let py be the polynomial p, —w, (k=1,...,n). For 4 C X,
define

pi=T1p¢
keA

Let I"(X) = I"(X, %(X)) be the ideal generated by {p!;: A € «}. Corre-
spondingly, for each B € #(X), the ideal generated by {p}: k € B} is
denoted by I'"(B). The main purpose of this section is to establish the
following result.

THEOREM 4.1. There exists a nontrivial polynomial q € Cl[Z,,...,Z,]
such that for every w € C" with q(w) # 0 the following two conditions are
satisfied:

(i) I"(B) is simple for every B € F;
(i) 77(I"(B)) and 77 (I"(B")) are disjoint for B, B’ € & with B + B'.
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If ¢ is a nontrivial polynomial in C[Z,, ..., Z,], then
7(q) ={z€C"q(z) =0}

is called a hypersurface. Note that a finite union of hypersurfaces is also a
hypersurface.

The proof of Theorem 4.1 is based on the so-called alternative theorem
stated as follows.

THEOREM 4.2. Let p,,..., p, be polynomials in m + n variables with
complex coefficients, and let W be the set of those points w = (w,,...,w,) €
C" for which the polynomials p(z,w),..., p,(z,w) have a common zero
z=1(2y,...,2,) € C". Then ecither W itself or its complement in C" is
contained in some hypersurface in C".

The proof of Theorem 4.2 is postponed. Assuming that Theorem 4.2 is
valid, we prove Theorem 4.1 first.

Proof of Theorem 4.1. Let B € %(X). Without loss of generality, we
may assume that B = {1,..., s}. Consider the system of equations in the
unknown z = (z,...,z,) € C*

pi(z) =w,; =0
p(z) —w,=0
J(z) =0,

where J(z) denotes the Jacobian determinant of p,,..., p, at z. Let W be
the set of those points w = (w,,...,w,) € C* for which the above system
of equations has a solution for z. Then, for each w & W, J(z) # 0 for any
z € 7(I"(B)); hence the zeros of I"(B) are all simple. By the alternative
theorem, W itself or its complement is contained in a hypersurface in C°.
But the second alternative cannot happen. To see this, let ¢ be the
mapping z — (p(z),..., p,(2)), z € C°. Note that J(z) = 0 if and only if
z is a critical point of ¢. Thus, w € W if and only if w is a critical value of
¢. By the well-known Sard theorem (see, e.g., [17, p. 40]), W has measure
zero. Therefore, only the first alternative can happen, i.e., W is contained
in a hypersurface in C°.

Let E be a subset of X of cardinality s + 1. Without loss of generality,
we may assume that E = {1,...,s + 1}. Consider the system of equations
in the unknown z € C*:

pi(z) —w, =0, k=1,...,s +1.
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Let ¢ be the mapping z — (py(2),..., p,.(2)), z € C°. By the mini-Sard
theorem (see [17, p. 205]), the image of ¢ has measure zero in the space
C**1. Let W be the set of those points w = (w,,...,w,,,) € C*** for
which the above system of equations has a solution for z. By the same
reasoning as before, we see that W is contained in a hypersurface in C***,

To summarize, we have proved that to each B € #(X) there corre-
sponds a nontrivial polynomial g, in s variables {w;: j € B} such that the
ideal 7*(B) is simple for every w with gz(w) # 0. Moreover, to each
subset E of X of cardinality s + 1 there coresponds a nontrivial polyno-
mial ¢, in s+ 1 variables {w,: k € E} such that the polynomials p}
(k € E) do not have any common zero, provided g,(w) # 0. View g, and
qg as polynomials in wy,...,w,. Let

g= TII a II a5
ECX = Be&(X)

#E=s+1
Then ¢ is a nontrivial polynomial in n variables. If g(w) # 0 then for
every B € %, qz(w) # 0, and, hence, I"(B) is simple. Moreover, if g(w)
# 0and B # B’, then 77(I"(B)) and 7°(I¥(B')) are disjoint, for other-
wise z € 77(I"(B)) N 7°(I"(B")) would imply p,(z) = 0 for all k € B U
B’,whence #(BUB') >s + 1. 1

In order to prove Theorem 4.2 we need some results from the theory of
resultant systems (see [18, Chap. 4]).

THEOREM 4.3. Let K be an algebraically closed field and u be an
indeterminate over K. Given an r-tuple (d,, ..., d,) of nonnegative integers, let
K[...,0, jie .1 denote the polynomial ring over K in the indeterminates v, i
(j=0,...,d,; k=1,...,r). Then there exist finitely many polynomials
R, ....R, K[...,Ukl», ...1 such that for polynomials f,,...,f, in Klu]
given by

dy
_ - _
fk—chjukf, k=1,...,r,
i=0

the following statements are true:

(i) A necessary condition that f,,...,f, have a common zero is
R,(...,ckj,...) =0 foralll=1,...,t, where Rl(...,ck]-,...) denotes the
result obtained by evaluating R, at vy; = c,; (j=0,....d; k=1,...,r).

(i) If at least one of the leading coefficients c,, ..., c,, is not zero,
then this condition is also sufficient.

Note that the polynomials R;,..., R, are determined by the r-tuple
(dy,...,d,). Thus, we may call the set {R,,..., R,} a resultant system for
(d,...,d).
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Proof of Theorem 4.2. The proof proceeds with induction on m. Con-
sider the case m = 1 first. Suppose for k =1,...,r,

dy
pi(z,w) = chj(w)zdk*f, zeC,weC",
j=0
where each ¢;; is a polynomial in w=(w,;,...,w,) €C" and, as a
polynomial in w, c,, # 0 for every k. Let {R,,..., R} be a resultant

system for (d,,...,d,). For 1 =1,...,¢, let
Qi(w) =Ry(....c,;(w),...), weC"

Then each Q, is a polynomial of w. If w € W, then p(z,w),..., p(z,w)
have a common zero z € C; hence by Theorem 4.3 we have Q,(w) = 0 for
all I=1,...,t. If at least one of these polynomials, say Q,, is nontrivial,
then W is contained in the hypersurface {w € C": Q,(w) = 0}. Otherwise,
all the polynomials Q,,...,Q, are identically zero. In the latter case,
Theorem 4.3 tells us that c;o(w) # 0 implies w € W. Hence C"\ W is
contained in the hypersurface {w € C": ¢;o(w) = 0}.

Next consider the case m > 1 and assume that the theorem is valid for
m — 1. Suppose p,, ..., p, are polynomials in (z,w) € C™ X C" given by

Pe= X aw)z®,  k=1,.,r,

|lal<dy

where d, is the degree of p, with respect to z. We observe that W is
invariant under an invertible linear transform of (z,...,z,) € C™. Let
(ay,)1 <, < be an invertible complex matrix and consider the linear
transform given by z, = X", a,,Z,, A = 1,..., m. After this transform we
have

Db = Z Cr o(Ww)z*, k=1,...,r,

lal<d,

where ¢, . (w) for a = (0,...,0,d,) € Nf' can be computed as

¢, 0.ap(W) = Y afy - “rg%cm(w)-
|Bl=d,

There exist a point w € C” and a multi-index 8 € Ng* with | 8| = d, such
that ¢, g(w) # 0; hence ¢, o o 4,(w) # 0 for an appropriate choice of
the matrix (a,,); _, , <, Thus, we may and we do assume from the
beginning that ¢, o 4, (w) # 0 for some w € C".
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Now we write

dy

P = Zbk/(Z’vW)Z,’f,Fj, k=1,...,r,
j=0

where z' = (zy,...,z,_,). Note that b, ((z',w) is independent of z' and
is a nontrivial polynomial in w; hence, we may write b, ((w) instead of
b, o(z',w). Let Ry,..., R, be a resultant system for {d,,...,d,}, and let

0,(z",w) :=R,(...,bk/-(z’,w),...), I=1,...,r.

Let W, be the set of those w € C” for which Q,(z",w), ..., Q/(z',w) have
a common zero z' € C™~*. By the induction hypothesis, either W, or its
complement is contained in a hypersurface in C". By Theorem 4.3, w € W
implies w € W,. Thus, if W, is contained in a hypersurface, so is W. Let V
be the set {w € C": b, ((w) = 0}. By our assumption about b, o, V is a
hypersurface in C". By Theorem 4.3, W, \ VV < W. It follows that

C'\Wc (C"\W,) UV.

Thus, if C" \ W, is contained in a hypersurface, so is C" \ W. This finishes
the induction procedure. i

In the rest of this section we discuss an interesting application of the
alternative theorem to the study of algebraic functions, which will be
needed later. Let us recall some elementary facts about algebraic functions
from [1, pp. 283-306]. In the sequel, by a region we mean a connected
open set. An analytic function f defined on a region  C C constitutes a
function element, denoted (f, }). Two function elements (f;, Q,) and
(f,,Q,) are said to be equivalent if (f,, Q,) is an analytic continuation of
(f1, Q). The equivalence classes are called global analytic functions. The
global analytic function determined by a function element (f, Q) will be
denoted by f, and (f, Q) is also referred to as a branch of f. A global
analytic function f is called an algebraic function if all its function
elements (f, Q) satisfy a relation P(f(z),z) =0 in Q, where P is a
nontrivial polynomial in two complex variables. Because of the perma-
nence of functional relations (see [1, p. 288]), in order that f be an
algebraic function it is sufficient to assume that one of its branches
satisfies the above relation.

LEMMA 4.4. Let ¢ be a holomorphic mapping from C° to C°, and let
be a holomorphic mapping from a region Q in C to C*. If y({) is a regular
value of ¢ for every { € Q, and if A is a simply connected region contained in
Q, then for every choice of points {, € A and z, € C* with ¢({,) = ¢(z,)
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there exists precisely one holomorphic mapping x:A — C° such that =
box and x(&) = zy. If, in addition, ¢ and  are polynomial mappings,
then in the representation

x(&) = (fi({). . f(8)), L€, (4.1)

each (f,A) (j=1,...,s) is a branch of an algebraic function with no
singularities in ().

Proof. The first statement follows from Theorem 4.17 of [14]. Let V' be
the set of all regular values of ¢, and let U = ¢~ *()). Then both U and VV
are open sets. Moreover, the Jacobian determinant J,(z) # 0 for any
z € U. By assumption we have (A) C V. It is easily seen that the
mapping ¢|y from U to V is a covering mapping. Suppose ¢, € A and
z, € C* satisfy ¢({,) = ¢(z,). Since A is a simply connected region in C,
Theorem 4.17 of [14] is applicable, so we conclude that there exists
precisely one mapping y:A — C® such that & = ¢ y and x({,) = z,.
The mapping y must be holomorphic (cf. Theorem 4.9 of [14]). Further-
more, it follows from Theorem 4.14 of [14] that the covering mapping
¢ly: U — V has the curve lifting property. Since () c IV, we conclude
that ( y, A) can be analytically continued along any curve inside (.

Now suppose ¢ and ¢ are polynomial mappings given by ¢(z) =
(p(2),...,p(2), ze C* and (¢) = (g (),...,g,L)), £ € C.Inorder
to prove the second statement, we consider the system of equations

(21,25, z,) —g(¢) =0, i=1,..., s. (4.2)
Let W denote the set of those pairs (z,, {) € C? for which the above
system of equations have solutions for (z,, ..., z,) € C*~*. By the alterna-

tive theorem, either W or its complement is contained in a hypersurface in
C?, i.e., an algebraic curve in C?. We claim that the second alternative
cannot happen. Indeed, there is an open ball O in C° containing ¢(¢,)
such that ¢~(0) = U/ U, where U,, ..., U, are disjoint open sets, and
$ly, is a homeomorphism from U; to O for each j. Denote by o; the
inverse mapping of ¢ly (j =1,. m) There exists an open disk G in C
such that {, € G C ¢~ “1(0). If g €G and z =(z,,...,z,) € C* satisfy
the system of equations in (4.2), then z € ¢~ *(4(G)); hence, z = o;(¥({))
for some { € G and j €{1,...,m}. Suppose for j = 1,...,m,

a(¥(¢)) = (hu( &), hi(£)), (€6

Then hy (j=1,...,m; k=1,...,s) are holomorphic functions on G.
Thus, we have

Az 0):eeGy = U lh(£):¢<a).
j=1
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This shows that there is no algebraic curve in C? containing C2\ W.
Therefore, W is contained in an algebraic curve in C2. In other words,
there exists a nontrivial polynomial P in two complex variables such that
P(z,,¢)=0forall (z;,{) € W. Since ¢~ x = ¢, the representation of y
given in (4.1) tells us that (f(¢), ) € W for all { € A; hence P(fi({), {)
= 0 for { € A. This shows that (f;, A) is a branch of an algebraic function.
The same reasoning shows that this is also the case for (f;, A) (j = 2,...,s).
Finally, it was proved before that each (f;, A) can be analytically continued
along any curve inside €, so the algebraic function determined by it has no
singularities in Q. |

5. LOWER BOUNDS FOR THE DIMENSION

In this section we prove the main result of this paper.

THEOREM 5.1. Let X be a nonempty finite set and % a collection of
subsets of X, each of which has exactly s elements. Suppose there corresponds
a polynomial p. € C[Z,,...,Z,] to each x € X. Let I(X) be the ideal

s

generated by {p,: A € &/}, where
& ={ACX:ANB+ forall B<%},
andp, = 11,c 4 p,. Then
codim(/(X)) = Y. codim(I(B)), (5.1)

BeZ#
where I(B) denotes the ideal generated by {p,: x € B}.

If codim(I(X)) =, then there is nothing to prove; we therefore
assume that codim(/(X)) < «. It follows that codim(I(B)) < « for all
B €.4%. In order to prove (5.1), by Theorem 2.4, it suffices to show that for
every § € 7(I1(X)),

ro(1(X)) = X wy(1(B)), (5:2)

BeZ

where, as was in Section 2, u,(I) denotes the multiplicity of the ideal I
at 0.

Label X sothat X ={1,...,n}. For B = {k,,..., k} €% with k, < --
< k,, let ¢, be the mapping given by

05(2) = (Pe(2)s v pi(2)),  zeEC

The proof of (5.2) is based on the following lemma.
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LEMMA 5.2.  For every § € 7 (1(X)),

w(1(X)) = X ind(y. ). (53)

BeZ

Indeed, taking X to be B in (5.3) gives

mo( ) = wy(1(B)) 2 ind(¢y,0)  for 6 € 7°(I(B)).

This verifies (3.3). Hence, if Lemma 5.2 is true, then Theorem 3.1 is
applicable. Consequently, w,(1(B)) = ind(¢g, 6). This, together with (5.3),
implies (5.2), and so Theorem 5.1 is true.

Proof of Lemma 5.2. Let 6 € 77 (I(X)),and let m == ¥ _ , ind(¢y, 0).
We shall use the perturbation technique to prove w,(I1(X)) > m. If
m = 1, there is nothing to prove; we therefore assume that m > 1.

Note that 0 € 7°(I(X)) implies § € 2" (I(B)) for some B €.%. Since
codim(/(B)) < =, § is an isolated zero of ¢;. Choose and fix a neighbor-
hood U of 6 such that ¢, has no zeros in U\ {6} for any B €%. It
follows that

ind( ¢z, 0) =d(¢z,U,0) forall B € %. (5.4)

For w=(w,,...,w,) eC" let p/ =p, —w, (k=1,...,n), and let
I"(X) be the ideal generated by {p!;: A €./}, where p} = I, 4, pr. For
B ={k,,...,k} €® with k, < --- <k, let ¢5 be the mapping given by

dp(2) = (pi(2),....pi(2)), zeC.
Since 0 & ¢5z(dU) for any B € %, we have

8 :== min min z)| > 0.
BE%’zeﬁUld)B( )l

By the generalized Rouché theorem, if |w| < & then
d(¢p,U,0) =d(ps,U,0) forall BB, (5.5)

Let g € Cl[Z,,...,Z,] be a polynomial satisfying the conditions in
Theorem 4.1. Fix a point ¢ = (¢y,...,¢,) € C" such that g(c) # 0. Since
q(c) # 0, there exists &> 0 such that g(c¢) # 0 for 0 < |{]| < &. For
simplicity, we write 7¢(X) instead of I°“(X). Correspondingly we write
I(B) for I°“(B), and ¢} for ¢5¢, B €.%. By reducing & if necessary, we
may assume that |ce| < 8. Since I¢(B) is simple, d(¢4, U,0) is just the
number of zeros of ¢5 in U. Thus, it follows from (5.4) and (5.5) that

ind( ¢y, 0) = #(U N 7 (I4(B))), 0<I[{|<e. (5.6)
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From the above analysis, we see that if U’ is an arbitrary neighborhood of
0 contained in U, then there isan &', 0 < &’ < &, such that

ind( ¢g, 0)
=#(Un7(1¢B))) foro<|il<e’.

(U 0 7 (15(B)))

This shows that U N 7°(1¢(B)) c U’ for 0 < |{| < &'. To paraphrase this
fact, we say that the family of the sets U N #°(1¢(B)) converges to 6 as {
tends to 0.

For B = {k,,..., k,} €% with k; < --- < k_, consider the mapping s,
given by

() = (co,brrven ), 0<Igl<e.

Since the ideal 1¢(B) is simple for 0 < || < &, ¥,({) is a regular value of
¢y for 0 <[] < e. Let {, be a fixed point in the simply connected region

A, ={pem0<p<e, —m<n<m}

We deduce from Lemma 4.4 that for a given ¢ € 7" (1%(B)), there is
precisely one holomorphic mapping ' from A to C* such that ¢ ° o’ =
P and o'({,) = t. It follows from ¢, ° w' = i that

w'({)e7(I*(B)) c7(I*(X)) forieA,.
Moreover, in the representation

o' ({) = (fi({). - fi(§)) foriel,,

each (f/,A,) (j =1,...,s) is a branch of an algebraic function with no
singularities in the punctuated disk {Z:0 < |Z| < e}. Furthermore, since
U n 77(I1°(B)) converges to ¢ as { tends to 0, we have lim,  ; »'({) = 6.

Recall that 7°(I¢(B)) and 7(I¢(B')) are disjoint for B + B’ and
0 < |Z]| < e. This fact, together with (5.6), tells us that m =
Yp e 5 iNd(¢y, 0) is just the number of points in U N (Uy < , 7 (I%(B))).
Let ¢,,...,t, be these points. We denote by w, the holomorphic mapping
o' k=1,..., m.

On the other hand, (2.6) says that

po(I(X)) = dim(M;x, 4),

where M, , is the multiplicity space of /(X) at 6 as given in (2.5). For
simplicity, we write M, instead of My, ,. Without loss of any generality,
we may assume that 6 = 0 in what follows. For two polynomials ~ and p
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inC[Z,,..., Z] itis easily seen that 2(D)p(0) = 0 if and only if p(D)Ah(0)
= 0. Hence,

={heClZ,...,Z,]: p(D)h(0) = 0forall p € I(X)}.

Lemma 5.2 will be established, if we can find m linearly independent
elements h,,..., h, in M.

For each { € A_, we denote by M¢ the linear space spanned by the
exponential functions e, ;),..., e, () Since w,({) € 7’ (I*(X)) for k =
1,...,m, we have

pi(D)e, =0 foral 4 e,
where p§ == p¢. It follows that
pi(D)h=0 forallhe M*, Ay, (5.7)

Our goal is to find m functions hf,..., h% € M* for each { € A, so that
lim, h§ exists and equals a polynomlal hyin M(j=1,..., m) and, in
addition, h,,...,h,, are linearly mdependent The desired functions
h{, ..., k& are chosen by the equation

hf wy( é)ﬁl/ﬁl! wy( g)ﬁm/ﬁm! €0i(0)
= : : L] (58)
I w0, (OB 0, ()P /B | CenO

where (B,,..., B,) € (Ny)" is to be determined. Each function A{ lies in
M¢, so it can be expanded as a power series:

hi(z) = ) af,z% zeC

aeNj

Since e,(2) = L, c s (0“/al)z*, it follows from (5.8) that

o (O)P /B w0 (O)P /B || af 0y (¢)"/al

wm(é’)ﬁl/ﬁl! wm(g)ﬁm/ﬁm! afilva wm(g)a/a!
By Cramer’s rule, we have

_ 8B @B s €) fen
e 8pr. (&) ’ .

(5.9)
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..... s ({) denotes the determinant of the matrix (w;({)#/
BDicir<m Note that () =t for j=1,...,m. There exists
(y1, -0 y,) € (N)™ such that 8iyur. ... does not vanlsh at ¢, for
otherwise e, ,...,e, would be Ilnearly dependent which contradicts the
fact that 7,, ..., tm are pairwise distinct. Fix a choice of such (y,...,,).

In order to make an appropriate choice for (B, ..., B,), we need the
Puiseux expansion of algebraic functions (see [1, p. 304; 14, p. 58)). If
(g, A,) is a branch of some nontrivial algebraic function with no singulari-
ties in the punctuated disk {{:0 <[] < &}, and if lim,_, , g({) = O, then
g has the Puiseux expansion

g(pei”)= ZCn(pei")n/b, O<p<e, —m<n<m,

where «, ¢ are positive integers, C, # 0. Denote by 7(g) the number /1.
When g =0, we set 7(g) to be . If & is another function of the same
kind, then 7(gh) = 7(g) + 7(h). Moreover, lim, _, ; 1({)/g({) exists, pro-
vided 7(g) < 7(h). This limit is 0 if and only if 7(g) < 7(h).

Each w; (j = 1,...,m) has the representation

w,(£) = (f1(L).- fi(8)), (€A,

where the function elements (f,A,) (k=1,...,s) are branches of
algebraic functions that have no singularities in the punctuated disk
{:0 <[] < &} Let

7 =min{r(f),....7(f5)};

each 7, (j=1,...,m) is positive or «. Using the Laplace expansion of
determlnants we see that g, ., also has a Puiseux expansion in A,
for each (ay,..., ,) € (NA)’” We claim that Ilmpo 8y a({) = 0.
Indeed, this is true if «;# 0 for at least one j. Otherwise, all «; =0
(j=1,...,m) implies that g, ., , is identically zero, because m > 1.
Thus, T(g(a ..... o) 15 well defined and is a positive number or o«. We write
w(ay,..., a,) for T(8(ay..... o)) ReCAl that (yy,...,,) € (Ng)™ was so
chosen that 8y, , does not vanish at ¢,. Hence 0 < 7(yy,...,7,) <.
Now choose a suff|C|entIy large integer N such that N > max{|y,|, ..., |vy,}
and

Nmin{7,,....,7,} > 7(y1, -\ ¥n)- (5.10)

Let 7., denote the minimum of 7(«a,, ..., a,,), Where a,..., a,, run over
all possible s-indices of length < N. Then

T(Yive s V) = Tmin > 0. (5.11)
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Choose ( B,,..., B,) € (N§)™ such that

ax{l Bl B} <N, 7(Biiev Bu) = Tin-

We claim that with this choice of (B,,..., 8,,) the functions hf{,..., hS
obtained from (5.8) possess the desired properties. To verify our claim, we
observe that

T(Bl"” -1 & j+l""'Bm)ZTmin for |a| < N.
ja — (f{,)a(l) “en (fslj)a(s);

Moreover, if a« = (a(l),..., a(s)) € N, then w
hence,

N

T(wja)= Y. a(k)T ( )>|a|1’

k=1

This, together with (5.10) and (5.11), implies that for |a| > N
T(Bl,...,ijl, a, Hl,...,,Bm) > Nmin{7,,...,7,} > Tin-

Noting that 7,;, = 7(B,,..., B,), we conclude from (5.9) that lim, _, , af
exists for every a € N§, and this limit is 0 if [a| > N. Let a;
lim, a] «» and let i; be the polynomial given by

h(z)= ) a;,z% z€C.

S5
aeNj

It remains to prove that 4, ..., &, are linearly independent elements in
M. In order to prove h; € M, we use the truncation method. For a positive
integer r, define nf (z) =X, ., af,z%z € C’ Let p € I(X). Then p
can be written as p Y icuyUapq, Where u, € Cl[Z,,...,Z] for each
A €. Choose r sufficiently large such that » > N and r > deg(u, p,) for

all 4 €. Then we deduce from (5.7) that
p5(D)hf ,(0) =p5(D)hf(0) = 0.
It follows that

p(D)hj(O) = Z “A(D)PA(D)hj(O)
Acy

= lim Y u,(D)p} (D)hf,(0) = 0.
0 yey
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This shows that #;, € M (j = 1,...,m). Finally, (5.9) yields
af g, = 8, k,j=1,...,m,

where §;; is the Kronecker sign. Thus we have a; , = lim,_,, a]{Bk = &),
thereby showing that %,,..., A, are linearly independent. The proof of
Lemma 5.2 is complete. |

m

To conclude this section we mention the following result on simple
polynomial ideals.

THEOREM 5.3. If I(X) is simple, then equality holds in (5.1). Moreover,
the ideal I1(X) is simple if and only if it satisfies the following two conditions:

(i) I(B) is simple for each B € %,
(i) 7I(B) Nn7U(B") = D for B,B' €% with B+ B’.

Proof. 1t is easily seen that

7(1(X)) < U 7(I(B)).

Be%#

If I(X) is simple, then

codim(I(X)) = #7°(I(X)) < ). #7(I(B)) < ), codim(I(B)).
BeZ# BeZ
(5.12)

This in connection with (5.1) tells us that all the inequalities in (5.12) are
actually equalities. This shows that equality holds in (5.1) and the two
conditions (i) and (ii) are satisfied.

Conversely, suppose the two conditions (i) and (ii) are satisfied. We wish
to show that I(X) is simple. If I(X) is not simple, then there is some
6 € 7°(I1(X)) such that the multiplicity space M, y, , has dimension > 1.
Since M, y, , is D-invariant, one can find a polynomial Q in C[Z,, ..., Z(]
of degree 1 such that Q(D)p,(0) = 0 for all A .«. The point 0 belongs
to 7°(I1(B,)) for some B, €.%. By condition (ii), 6 & 7" (I(B)) for any
B €2\ {B,}; hence, there exists some y; € B such that p, (6) # 0. Let

={yz: B€% and B # B}. Then Y U {x} €« for every x € B,. Thus,
we see from our choice of Q that Q(D)(p,p,X6) = 0 for every x € B,
But p,(6) =0, so we have p,(0)Q(D)p,(6)=0. Since p,(6) # 0, it
follows that Q(D)p (0) = 0 for all x € B,. This implies that I(B,) is not
simple, violating condition (i). 1
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6. UPPER BOUNDS FOR THE DIMENSION

Having established the lower bound for the codimension of I(X), we
would like to find a sharp upper bound for it. In the case when I(X) is not
simple, de Boor and Ron indicated in Example 6.5 of [5] that equality
might not hold in (5.1). However, when (X, %) is a matroid, a sharp upper
bound for codim(I(X)) is available. This kind of study was initiated by
Dahmen and Micchelli in [11].

Let us recall from [26, p. 8] that (X, %) is a matroid if and only if the
following base-change property is satisfied: For B,, B, €% and y € B, \
B,, there exists x € B, \ B; such that (B; \y) Ux €%. A subset E of X
is called a spanning set if E includes some B € .%; otherwise, E is called a
nonspanning set. For Y c X, let #(Y) be defined as in (1.3). By AY) we
denote the collection of all maximally nonspanning subsets of Y.

The dimension problem studied in [11] can be described as follows.
Given a linear space S (over some field), we denote by L(S) the set of all
linear mappings from S to itself. Associate to each x € X a linear
mapping [, € L(S). The linear mappings /, (x € X) are assumed to
commute with each other:

11 =11, x,y €X.
Thus, the product
=111, AcCX,

x€A

is well defined. Let &/ =X, (X)) be defined as in (1.2). We are
interested in the dimension of the joint kernel

K(X) = () kerl,.
Aey

For any subset Y of X, K(Y) is defined accordingly. In particular, for each
B €% the kernel space K(B) is just N, kerl,. The kernel space
I(X), discussed in Section 1 is a special but important example of this
general situation. In that case, S is the linear space of all formal power
series in s indeterminates, and each [, is a differential operator p (D)
induced by a polynomial p, in s variables. Dahmen and Micchelli in
Theorem 3.3 of [11] established the following theorem on the dimension of
K(X).

THEOREM 6.1. If (X, %) is a matroid, then

dimK(X) < Y dim K(B). (6.1)
Be#
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By taking a closer look into their proof, | found that Theorem 6.1 could
be extended as follows.

THEOREM 6.2. The inequality (6.1) is valid, provided that for any subset Y
of X with #B(Y) > 1 there exists ay € Y such that

(i) Y\ is a spanning set, and
(i) for any H,H, €AY \y) with H # H,, (H N H,) Uy is a
nonspanning set.

Proof. The proof proceeds with induction on #X. If ##(X) < 1, then
(6.1) holds trivially. In particular, this is true when #X < s. Now assume
that #X > s and #%(X) > 1. Pick y € X such that the above conditions
(i) and (ii) are satisfied for Y = X. Consider the linear mapping 7 from
K(X) to ITy c »(x\ ) K(H U y) given by

T:f = (Lx\yuf) werny
The kernel of T is K(X\ y). Hence we have

dim K(X) <dimK(X\y)+ Y. dimK(HUy).
HeZ(X\y)

Thus, by the induction hypothesis, it follows that

dmK(X)< Y KB)+ Y Y dimK(B). (6.2)
BeZ(X\y) HeZ(X\y) BEB(HUy)

If H, and H, are two different elements of Z( X \ y), then by (ii) the set
(H,Uy)n(H,Uy)=(H, N H,) Uy is a nonspanning one; hence,

B(H,Uy) N#B(H,Uy) =.
This shows that

F=@(X\y)u U B(HUY)
He#(X\y)

is a disjoint union. Therefore, the right-hand side of (6.2) equals
Y5 < » K(B), and the proof of the theorem is complete. |

Theorem 6.2 and Theorem 5.1 together yield the following.
THEOREM 6.3. Under the conditions of Theorem 6.2,

codim(I(X)) = Y codim(I(B)).
Bex
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Theorems 6.2 and 6.3 were reported in [19]. It was also pointed out in
[19] that Theorem 6.2 is a true generalization of Theorem 6.1.

Condition (ii) in Theorem 6.2 is called the intersection condition. In [6],
de Boor, Ron, and Shen proved that the intersection condition is equiva-
lent to having y replaceable in % (see [6] for the definition of replaceabil-
ity). If (X, %) satisfies all the conditions in Theorem 6.2, then (X, %) is
called fair by them.

Finally, we remark that Theorem 8.10 of [6] gives a better result than
Theorem 6.3 of this paper. Also, using the Ext functor from homological
algebra, Dahmen, Dress, and Micchelli in [7] studied the dimension
problem comprehensively. In both [6, 7], however, some conditions involv-
ing % must be imposed. In contrast to their work, the lower bound for
codim(I) established in Theorem 5.1 of this paper is valid for an arbitrary
% (as long as each B €. % has s elements).
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