Perturbation of Polynomial Ideals

Rong-Qing Jia*
Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1

Received M arch 3, 1994; accepted July 3, 1994

1. INTRODUCTION

In this paper we explore the interrelationship between the theory of polynomial ideals and certain branches of analysis including multivariate approximation theory and linear partial differential equations. Specifically, we use the perturbation technique from analysis to study the codimension of a multivariate polynomial ideal.

Let K be a field. In this paper, K will often be the field \mathbb{C} of complex numbers. We denote by $K\left[Z_{1}, \ldots, Z_{s}\right]$ (resp. $\left.K\left[\left[Z_{1}, \ldots, Z_{s}\right]\right]\right)$ the ring of polynomials (resp. the ring of formal power series) in s indeterminates over K. Let I be an ideal of $K\left[Z_{1}, \ldots, Z_{s}\right]$. The codimension of I is the dimension of the quotient space $K\left[Z_{1}, \ldots, Z_{s}\right] / I$ over K. If this dimension is finite, then I is said to be of finite codimension.

The perturbation technique for polynomial ideals was used in the study of polynomial mappings on \mathbb{C}^{s}. Suppose p_{1}, \ldots, p_{s} are homogeneous polynomials in $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$ such that the ideal I generated by them is of finite codimension. In this case, the origin is the only common zero of p_{1}, \ldots, p_{s}. Let F be the mapping from \mathbb{C}^{s} to \mathbb{C}^{s} given by

$$
F(z)=\left(p_{1}(z), \ldots, p_{s}(z)\right), \quad z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s} .
$$

The algebraic multiplicity of the mapping F is defined to be the codimension of I. Given $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \in \mathbb{C}^{s}$, we denote by $\mu(\varepsilon)$ the number of common zeros of the polynomials $p_{1}-\varepsilon_{1}, \ldots, p_{s}-\varepsilon_{s}$. The geometric multiplicity of F is defined to be $\sup \left\{\mu(\varepsilon): \varepsilon \in \mathbb{C}^{s}\right\}$. We may say that the ideal generated by $p_{1}-\varepsilon_{1}, \ldots, p_{s}-\varepsilon_{s}$ is a perturbation of the ideal generated by p_{1}, \ldots, p_{s}. A classical result states that the algebraic multi-

[^0]plicity of a polynomial mapping on \mathbb{C}^{s} agrees with its geometric multiplicity. A rnold, Gusein-Z ade, and V archenko in [2, p. 85] indicated that the first detailed proof of this deep result was published in Palamodov's paper [23].

Now let us consider the general case. Given two polynomials p and q in $K\left[Z_{1}, \ldots, Z_{s}\right]$, we say that q is a lower-order perturbation of p if $q-p$ is a polynomial of degree less than $\operatorname{deg} p$. Suppose I is an ideal in $K\left[Z_{1}, \ldots, Z_{s}\right]$ generated by polynomials p_{1}, \ldots, p_{m}. We say that an ideal J is a lower-order perturbation of I if J is generated by q_{1}, \ldots, q_{m}, where each q_{j} is a lower-order perturbation of $p_{j}, j=1, \ldots, m$ (see [5]). We are concerned with the relationship between I and J. In particular, we are interested in the relationship between $\operatorname{codim}(I)$ and $\operatorname{codim}(J)$. Here is the idea behind the perturbation technique: The codimension of I might be difficult to compute, but the computation of $\operatorname{codim}(J)$ is easier. Thus one can gain some information about $\operatorname{codim}(I)$ through computing the codimension of the perturbed ideal J. The usefulness of the perturbation technique was demonstrated in the previous paragraph.

How is the theory of polynomial ideals related to approximation theory and linear partial differential equations? To answer this question, we need to consider differentiation on the ring of formal power series. Let \mathbb{N} be the set of positive integers and let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. An element $\alpha \in \mathbb{N}_{0}^{s}$ is called a multi-index, or more precisely, an s-index. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ is a multi-index, then its length is $|\alpha|:=\alpha_{1}+\cdots+\alpha_{s}$, and its factorial $\alpha!:=$ $\alpha_{1}!\cdots \alpha_{s}$!. If $\beta=\left(\beta_{1}, \ldots, \beta_{s}\right)$ is another multi-index, then $\alpha \leq \beta$ means $\alpha_{j} \leq \beta_{j}$ for all $j=1, \ldots, s$. Let K be an algebraically closed field of characteristic 0 . A formal power series in $K\left[\left[Z_{1}, \ldots, Z_{s}\right]\right]$ is of the form $\sum_{\beta \in \mathbb{N}_{0}^{s}} b_{\beta} Z^{\beta}$, where $Z^{\beta}:=Z_{1}^{\beta_{1}} \cdots Z_{s}^{\beta_{s}}$ and $b_{\beta} \in K$ for all $\beta \in \mathbb{N}_{0}^{s}$. Given $\alpha \in \mathbb{N}_{0}^{s}$, the differential operator $D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{s}^{\alpha_{s}}$ on $K\left[\left[Z_{1}, \ldots, Z_{s}\right]\right]$ is defined by

$$
D^{\alpha}\left(\sum_{\beta \in \mathbb{N}_{0}^{s}} b_{\beta} Z^{\beta}\right)=\sum_{\beta \geq \alpha} b_{\beta} \frac{\beta!}{(\beta-\alpha)!} Z^{\beta-\alpha} .
$$

For a polynomial $p=\sum_{\alpha} a_{\alpha} Z^{\alpha}$, the corresponding differential operator $p(D)$ is defined by $p(D):=\sum_{\alpha} a_{\alpha} D^{\alpha}$. Now let I be an ideal in $K\left[Z_{1}, \ldots, Z_{s}\right]$. The kernel of I is the set

$$
I_{\perp}:=\left\{f \in K\left[\left[Z_{1}, \ldots, Z_{s}\right]\right]: p(D) f=0 \text { for all } p \in I\right\}
$$

(see [5] for the use of the notation I_{\perp}). By the Hilbert basis theorem, any ideal in $K\left[Z_{1}, \ldots, Z_{s}\right]$ is finitely generated. Suppose I is generated by $p_{1}, \ldots, p_{m} \in K\left[Z_{1}, \ldots, Z_{s}\right]$. Then $f \in I_{\perp}$ if and only if f satisfies the
following system of linear partial differential equations with constant coefficients:

$$
p_{j}(D) f=0, \quad j=1, \ldots, m .
$$

O bviously I_{\perp} is a linear subspace of $K\left[\left[Z_{1}, \ldots, Z_{s}\right]\right]$ considered as a linear space over K. When K is the complex field \mathbb{C}, it was proved by de Boor and Ron in [5] that if I is of finite codimension, then I_{\perp} is finite dimensional, and

$$
\operatorname{codim}(I)=\operatorname{dim}\left(I_{\perp}\right)
$$

This result is also valid for any algebraically closed field of characteristic 0 (see Section 2).

Certain systems of linear partial differential and difference equations arise naturally from the study of multivariate approximation. In the following we give a brief description of this phenomenon. Let X be a nonempty finite set. A ssociate to each $x \in X$ a polynomial $p_{x} \in \mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$. For a subset A of X, define

$$
\begin{equation*}
p_{A}:=\prod_{x \in A} p_{x} . \tag{1.1}
\end{equation*}
$$

Let $\mathscr{B}=\mathscr{B}(X)$ be a collection of subsets of X, each of which has exactly s elements. Let

$$
\begin{equation*}
\mathscr{A}=\mathscr{A}(X, \mathscr{B}(X)):=\{A \subseteq X: A \cap B \neq \varnothing \text { for any } B \in \mathscr{B}(X)\} . \tag{1.2}
\end{equation*}
$$

Consider the ideal $I(X)=I(X, \mathscr{B}(X))$ generated by the polynomials p_{A}, $A \in \mathscr{A}$. We are interested in the kernel space $I(X)_{\perp}$. The significance of the kernel space $I(X)_{\perp}$ lies in the fact that it often determines the approximation power of the integer translates of the corresponding box spline (see [4, 13, 21]).

For a subset Y of X, let

$$
\begin{equation*}
\mathscr{B}(Y):=\{B \subseteq Y: B \in \mathscr{B}(X)\} . \tag{1.3}
\end{equation*}
$$

The ideal $I(Y)=I(Y, \mathscr{B}(Y))$ is defined correspondingly. In particular, for each $B \in \mathscr{B}(X), I(B)$ is the ideal generated by $p_{x}, x \in B$. Dahmen and M icchelli in [11] investigated the relation between the dimension of $I(X)_{\perp}$ and the dimensions of the "block spaces" $I(B)_{\perp}$. Their work was motivated by some nontrivial examples in box spline theory (see [4, 9, 10]).

A mong other things, Dahmen and Micchelli in [11, Theorem 3.1] proved that the inequality

$$
\begin{equation*}
\operatorname{dim}\left(I(X)_{\perp}\right) \leq \sum_{B \in \mathscr{B}(X)} \operatorname{dim}\left(I(B)_{\perp}\right) \tag{1.4}
\end{equation*}
$$

holds if $(X, \mathscr{B}(X))$ has a matroid structure. They also gave a sufficient condition for equality. In another paper [12], Dahmen and Micchelli conjectured that equality would hold in (1.4), provided each $p_{x}(x \in X)$ is a homogeneous polynomial. Their conjecture was solved by Shen in [25]. Shen's work was further extended by Jia, R iemenschneider, and Shen in [20]. In particular, they proved the equality

$$
\operatorname{dim}\left(I(X)_{\perp}\right)=\sum_{B \in \mathscr{G}(X)} \operatorname{dim}\left(I(B)_{\perp}\right)
$$

under the condition that $\mathscr{B}(X)$ is order-closed and each $p_{x}(x \in X)$ is a polynomial in $K\left[Z_{1}, \ldots, Z_{s}\right]$ (not necessarily homogeneous).
A long other lines, Ben-A rtzi and R on in [3], and Dyn and R on in [13] used the idea of perturbation in their study of exponential box splines. Such an idea was refined in the work [5] of de Boor and Ron, who considered the case where every $p_{x}(x \in X)$ is a polynomial of degree 1. On the other hand, the collection $\mathscr{B}(X)$ could be arbitrary (with no matroid structure). In contrast to (1.4), de Boor and R on in [5, Theorem 6.6] gave the lower bound

$$
\begin{equation*}
\operatorname{codim}(I(X)) \geq \sum_{B \in \mathscr{B}(X)} \operatorname{codim}(I(B)) \tag{1.5}
\end{equation*}
$$

that is,

$$
\operatorname{dim}\left(I(X)_{\perp}\right) \geq \sum_{B \in \mathscr{F}(X)} \operatorname{dim}\left(I(B)_{\perp}\right) .
$$

They also proved that equality holds for this special case if $\mathscr{B}(X)$ is order-closed.

In this paper our main goal is to establish the lower bound in (1.5) for the general case where each $p_{x}(x \in X)$ is an arbitrary polynomial. In order to achieve this goal, we discuss polynomial ideals of finite codimension in Section 2 and study the perturbation technique in connection with topological degree theory in Section 3. Section 4 is devoted to certain properties of polynomial mappings and algebraic functions. The results in Sections 2-4 are then used to establish the lower bound for the codimension of $I(X)$. Finally, in Section 6, we investigate conditions under which equality holds in (1.5).

The major part of this work was done in 1989 and was reported in the conference "A Igebraic and Combinatorial Problems in Multivariate Approximation Theory" organized by W. Dahmen and A. Dress in the O berwolfach Institute of M athematics, Germany, O ctober 21-27, 1990. In preparing this paper, I was inspired by the work of C. de Boor and A. R on, and by that of W. Dahmen and C. A. M icchelli. I take this opportunity to thank all of them.

2. POLYNOMIAL IDEALS OF FINITE CODIMENSION

This section is devoted to some elementary facts concerning polynomial ideals of finite codimension. When the coefficient field is the complex field \mathbb{C}, the results in this section were proved in [5] by de Boor and R on, who in turn attributed these results to Gröbner (see [16, Chap. IV]). Throughout this section, except Theorem 2.4, the coefficient field K is assumed to be an algebraically closed field of characteristic 0 . In contrast to the methods used in [5], the proofs given here do not require primary decomposition of ideals.

Theorem 2.1. Let K be an algebraically closed field of characteristic zero. If I is an ideal of $K\left[Z_{1}, \ldots, Z_{s}\right]$ with finite codimension, then

$$
\operatorname{codim}(I)=\operatorname{dim}\left(I_{\perp}\right)
$$

Before providing a new proof for this theorem, we give two examples to illustrate its significance.

Example 2.2. Let $s=1$ and let I be the ideal in $K[Z]$ generated by one polynomial p of degree $m \geq 1$. Then $\operatorname{codim}(I)=m$, because $\left\{\overline{Z^{j}}: j=\right.$ $0, \ldots, m-1\}$ forms a basis for $K[Z] / I$, where $\overline{Z^{j}}$ denotes the residue class of the monomial Z^{j} in $K[Z] / I$. On the other hand, from the elementary theory of differential equations we see that the number of solutions $f \in K[[Z]]$ to the equation $p(D) f=0$ equals m. In other words, $\operatorname{dim}\left(I_{\perp}\right)=m$.

Example 2.3. Let $s>1$. Suppose $p_{j}(j=1, \ldots, s)$ are polynomials in Z_{j} of degree m_{j}. Consider the ideal I generated by p_{1}, \ldots, p_{s}. Then $\operatorname{codim}(I)=m_{1} \cdots m_{s}$, because

$$
\left\{\overline{Z^{\alpha}}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{0}^{s}, \alpha_{j}<m_{j} \text { for all } j\right\}
$$

forms a basis for $K\left[Z_{1}, \ldots, Z_{s}\right] / I$, where $\overline{Z^{\alpha}}$ denotes the residue class of the monomial Z^{α} in $K\left[Z_{1}, \ldots, Z_{s}\right] / I$. On the other hand, $f \in I_{\perp}$ if and
only if f is a linear combination of formal power series of the form $f_{1} \cdots f_{s}$, where each $f_{j} \in K\left[\left[Z_{j}\right]\right]$ is a solution to the equation $p_{j}\left(D_{j}\right) f_{j}=0$, $j=1, \ldots, s$. The linear span of all such formal power series has dimension $m_{1} \cdots m_{s}$. This shows that $\operatorname{dim}\left(I_{\perp}\right)=m_{1} \cdots m_{s}=\operatorname{codim}(I)$.

Proof of Theorem 2.1. Let I and J be two ideals in $K\left[Z_{1}, \ldots, Z_{s}\right]$ such that $J \subseteq I$. It follows that $I_{\perp} \subseteq J_{\perp} . V$ iewing I / J and J_{\perp} / I_{\perp} as quotient linear spaces over K, we claim that

$$
\begin{equation*}
\operatorname{dim}\left(J_{\perp} / I_{\perp}\right) \leq \operatorname{dim}(I / J) \tag{2.1}
\end{equation*}
$$

If $\operatorname{dim}(I / J)=\infty$, then (2.1) holds automatically; hence we assume that $\operatorname{dim}(I / J)<\infty$ in what follows. A ssociate to each $f \in J_{\perp}$ a linear functional f^{*} on I / J given by

$$
f^{*}(\bar{p}):=p(D) f(0), \quad p \in I,
$$

where \bar{p} denotes the residue class of p in I / J. Since $p(D) f(0)=0$ for $p \in J$ and $f \in J_{\perp}, f^{*}$ is well defined. Let \bar{f} denote the residue class of $f \in J_{\perp}$ in J_{\perp} / I_{\perp}. If $\overline{f_{1}}=\overline{f_{2}}$, then $f_{1}-f_{2} \in I_{\perp}$; hence $p(D)\left(f_{1}-f_{2}\right)(0)$ $=0$ for $p \in I$. This shows that $\bar{f} \mapsto f^{*}$ is a linear mapping from J_{\perp} / I_{\perp} to the linear dual of I / J. Thus, the inequality (2.1) will be established if we can show that the mapping $\bar{f} \mapsto f^{*}$ is injective, i.e., $f^{*}=0 \Rightarrow \bar{f}=0$. To prove this we let $f \in J_{\perp}$ be such that $f^{*}=0$. Then $p(D) f(0)=0$ for all $p \in I$. Since I is an ideal, for a given $p \in I$ the polynomial $Z^{\alpha} p$ is also in I for all $\alpha \in \mathbb{N}_{0}^{s}$. Consequently, $D^{\alpha} p(D) f(0)=0$ for all $\alpha \in \mathbb{N}_{0}^{s}$. It follows that $p(D) f=0$ for all $p \in I$. Therefore $f \in I_{\perp}$, i.e., $\bar{f}=0$.

H aving established (2.1), we choose $I=K\left[Z_{1}, \ldots, Z_{s}\right]$ in it. Then (2.1) becomes $\operatorname{dim}\left(J_{\perp}\right) \leq \operatorname{codim}(J)$. Replacing J by I, we get

$$
\begin{equation*}
\operatorname{dim}\left(I_{\perp}\right) \leq \operatorname{codim}(I) \tag{2.2}
\end{equation*}
$$

M oreover, if $\operatorname{codim}(J)<\infty$, the inequality in (2.1) can be written as

$$
\begin{equation*}
\operatorname{dim}\left(J_{\perp}\right)-\operatorname{dim}\left(I_{\perp}\right) \leq \operatorname{codim}(J)-\operatorname{codim}(I) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we see that in order to prove Theorem 2.1, it suffices to find an ideal $J \subseteq I$ with finite codimension such that $\operatorname{codim}(J)=$ $\operatorname{dim}\left(J_{\perp}\right)$.

An ideal $J \subseteq I$ with the desired property can be constructed by employing a technique used in [12, Proposition 2.1; 8, Theorem 2.1]. For $\theta=$ $\left(\theta_{1}, \ldots, \theta_{s}\right) \in K^{s}$, let e_{θ} be the formal power series given by

$$
\sum_{\alpha \in \mathbb{N}_{0}^{N}} \theta^{\alpha} Z^{\alpha} / \alpha!,
$$

where $\theta^{\alpha}:=\theta_{1}^{\alpha_{1}} \cdots \theta_{s}^{\alpha_{s}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$. When $K=\mathbb{C}, e_{\theta}$ is the usual exponential function $z \mapsto e^{\theta \cdot z}, z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s}$, where $\theta \cdot z:=$ $\theta_{1} z_{1}+\cdots+\theta_{s} z_{s}$. Let $\mathscr{V}(I)$ denote the algebraic variety of the ideal I. Precisely,

$$
\mathscr{V}(I):=\left\{\theta \in K^{s}: p(\theta)=0 \text { for all } p \in I\right\} .
$$

A point in $\mathscr{V}(I)$ is also called a zero of I. We observe that $p(D) e_{\theta}=$ $p(\theta) e_{\theta}$; hence $\theta \in \mathscr{V}(I)$ if and only if $e_{\theta} \in I_{\perp}$. If $\operatorname{dim}\left(I_{\perp}\right)=\infty$, then Theorem 2.1 follows from (2.2) at once. Consider the case $\operatorname{dim}\left(I_{\perp}\right)<\infty$. Since the set $\left\{e_{\theta}: \theta \in \mathscr{V}(I)\right\}$ is linearly independent, the number of points in $\mathscr{V}(I)$ is at most $\operatorname{dim}\left(I_{\perp}\right)$. Let

$$
\begin{equation*}
f_{j}:=\prod_{\theta \in \mathscr{V}(I)}\left(Z_{j}-\theta_{j}\right), \quad j=1, \ldots, s \tag{2.4}
\end{equation*}
$$

where θ_{j} stands for the j th coordinate of $\theta, j=1, \ldots, s$. Every f_{j} is a polynomial vanishing on $\mathscr{V}(I)$. By Hilbert's nullstellensatz, there exists an integer $n>0$ such that $f_{j}^{n} \in I$ for all $j=1, \ldots, s$. Let J be the ideal generated by $f_{1}^{n}, \ldots, f_{s}^{n}$. Then $J \subseteq I$. M oreover, it was shown in Example 2.3 that $\operatorname{dim}\left(J_{\perp}\right)=\operatorname{codim}(J)$. This finishes the proof.

Next, let us consider the multiplicity of an ideal I in $K\left[Z_{1}, \ldots, Z_{s}\right]$ at a point $\theta \in \mathscr{V}(I)$. Here the algebraically closed field K needs not to be of characteristic 0 . The set

$$
S_{\theta}:=\left\{g \in K\left[Z_{1}, \ldots, Z_{s}\right]: g(\theta) \neq 0\right\}
$$

is a multiplicative set of $R:=K\left[Z_{1}, \ldots, Z_{s}\right]$. Let $\mathscr{O}_{\theta}:=S_{\theta}^{-1} R$ be the quotient ring of R by S_{θ} (the localization of R at S_{θ}); i.e.,

$$
\mathscr{O}_{\theta}=\left\{f / g: f, g \in K\left[Z_{1}, \ldots, Z_{s}\right] \text { and } g(\theta) \neq 0\right\} .
$$

Thus, \mathscr{O}_{θ} is the local ring of the point θ on the algebraic variety $\mathscr{V}(I)$. Suppose that θ is an isolated zero of I, i.e., $\{\theta\}$ is one of the irreducible components of $\mathscr{V}(I)$. The (algebraic) multiplicity of I at θ, denoted $\mu_{\theta}(I)$, is defined to be the dimension of the quotient space $\mathscr{O}_{\theta} /\left(S_{\theta}^{-1} I\right)$ over K. A proof of the following theorem can be found on page 57 of Fulton's book [15].

Theorem 2.4. Let I be an ideal of $K\left[Z_{1}, \ldots, Z_{s}\right]$ with finite codimension. Then

$$
\operatorname{codim}(I)=\sum_{\theta \in \mathscr{V}(I)} \mu_{\theta}(I)
$$

When the coefficient field $K=\mathbb{C}$, de Boor and R on in [5] used another definition of multiplicity. For an isolated zero θ of I, the multiplicity space of I at θ, denoted $M_{I, \theta}$, is defined by the rule

$$
\begin{equation*}
M_{I, \theta}:=\left\{p \in K\left[Z_{1}, \ldots, Z_{s}\right]: p(D) q(\theta)=0 \text { for all } q \in I\right\} . \tag{2.5}
\end{equation*}
$$

The space $M_{I, \theta}$ is D-invariant, i.e., closed under differentiation (see [5]). The dimension of $M_{I, \theta}$ is called the multiplicity of I at θ. It was proved in [20, Theorem 3.2] that

$$
\begin{equation*}
\mu_{\theta}(I)=\operatorname{dim}\left(M_{I, \theta}\right) . \tag{2.6}
\end{equation*}
$$

Thus, the two notions of multiplicity agree with each other. This assertion is also true if K is an algebraically closed field of characteristic 0 .

Now let us investigate the structure of I_{\perp}. By the Leibniz differentiation formula, one can easily prove that for two polynomials p and q in $K\left[Z_{1}, \ldots, Z_{s}\right]$,

$$
p(D)\left(e_{\theta} q\right)(0)=q(D) p(\theta), \quad \theta \in K^{s} .
$$

From this formula we see that $e_{\theta} q \in I_{\perp}$ if and only if $q \in M_{I, \theta}$. This shows that

$$
\sum_{\theta \in \mathscr{V}(I)} e_{\theta} M_{I, \theta} \subseteq I_{\perp}
$$

Since the sum on the left-hand side of the above inclusion relation is a direct one, its dimension is $\sum_{\theta \in \mathscr{V}(I)} \mu_{\theta}(I)$, which is $\operatorname{dim}\left(I_{\perp}\right)$ by Theorems 2.1 and 2.4. Thus we arrive at the following conclusion (see [5, Corollary 3.21] for the case $K=\mathbb{C}$).

Theorem 2.5. Let I be an ideal of $K\left[Z_{1}, \ldots, Z_{s}\right]$ with finite codimension, where K is an algebraically closed field of characteristic 0 . Then

$$
I_{\perp}=\bigoplus_{\theta \in \mathscr{V}(I)} e_{\theta} M_{I, \theta} .
$$

3. PERTURBATION OF POLYNOMIAL IDEALS

From now on the coefficient field K is taken to be the complex field \mathbb{C}. Let I be an ideal of $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$ with finite codimension. Then the algebraic variety $\mathscr{V}(I)$ is a finite set. A zero θ of I is called simple, if the multiplicity of I at θ is 1 . The ideal I is said to be simple if all its zeros are simple. A lower-order perturbation J of I is said to be perfect, if J is
simple and $\operatorname{codim}(J)=\operatorname{codim}(I)$. In this section we investigate the possibility of perfect perturbation of polynomial ideals.

Let us first recall some useful facts about (topological) degree theory from Lloyd's book [22]. Let $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ be a continuously differentiable mapping from \mathbb{R}^{n} to \mathbb{R}^{n}. Given $a \in \mathbb{R}^{n}$, the J acobian determinant of ϕ at a is denoted by

$$
J_{\phi}(a):=\operatorname{det}\left(D_{j} \phi_{k}(a)\right)_{1 \leq j, k \leq n},
$$

where D_{j} denotes the partial derivative operator with respect to the j th coordinate, $j=1, \ldots, n$. We say that a is a critical point of ϕ if $J_{\phi}(a)=0$. A point $b \in \mathbb{R}^{n}$ is called a regular value of ϕ, if $J_{\phi}(a) \neq 0$ for any $a \in \phi^{-1}(b)$; otherwise, b is called a critical value of ϕ. Let Ω be a bounded open subset of \mathbb{R}^{n}. We denote by $\partial \Omega$ and $\bar{\Omega}$ the boundary and the closure of Ω, respectively. Let $b \in \mathbb{R}^{n} \backslash \phi(\partial \Omega)$. If b is a regular value of $\left.\phi\right|_{\Omega}$, then $\Omega \cap \phi^{-1}(b)$ is a finite set, and the degree of ϕ at b relative to Ω is defined to be

$$
d(\phi, \Omega, b):=\sum_{a \in \phi^{-1}(b) \cap \Omega} \operatorname{sign} J_{\phi}(a) .
$$

If b is not a regular value of $\left.\phi\right|_{\Omega}$, see [22, Chap. 1] for the definition of $d(\phi, \Omega, b)$.

If a is an isolated zero of ϕ, then the index of ϕ at a, denoted ind (ϕ, a), is defined to be $d(\phi, U, 0)$, where U is any open set such that \bar{U} does not contain any other zeros of ϕ. This definition is justified, because two such open sets U_{1} and U_{2} give the same degree: $d\left(\phi, U_{1}, 0\right)=d\left(\phi, U_{2}, 0\right)$. If Ω is an open set such that $0 \notin \phi(\partial \Omega)$ and ϕ has finitely many zeros in Ω, then

$$
\begin{equation*}
d(\phi, \Omega, 0)=\sum_{a \in \phi^{-1}(0) \cap \Omega} \operatorname{ind}(\phi, a) . \tag{3.1}
\end{equation*}
$$

We consider now holomorphic mappings on \mathbb{C}^{s}. The norm in \mathbb{C}^{s} is defined by the rule

$$
|z|:=\max \left\{\left|z_{j}\right|: j=1, \ldots, s\right\} \quad \text { for } z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s} .
$$

A holomorphic mapping ϕ from an open set $\Omega \subseteq \mathbb{C}^{s}$ to \mathbb{C}^{s} can also be viewed as a mapping from an open subset of \mathbb{R}^{n} to \mathbb{R}^{n}, where $n=2 s$. In this way $d(\phi, \Omega, b)$ is defined, provided $b \notin \phi(\partial \Omega)$. W hen ϕ is holomorphic, $d(\phi, \Omega, b)$ is always nonnegative (see [22, p. 145]). M oreover, if a is an isolated zero of ϕ, then the index $\operatorname{ind}(\phi, a)$ is a positive integer. This index is greater than 1 if and only if a is a critical point of ϕ (see Theorem
9.3.3 of [22]). Thus, if 0 is a regular value of ϕ, then (3.1) says that $d(\phi, \Omega, 0)$ equals the number of zeros of ϕ in Ω.

The following important theorem will be used frequently. Its proof can be found in [22, p. 147].

The Generalized Rouché Theorem. Let Ω be a bounded, open set in \mathbb{C}^{s}. If f and g are holomorphic mappings from a neighborhood of $\bar{\Omega}$ to \mathbb{C}^{s}, and if $|g(z)|<|f(z)|$ for all $z \in \partial \Omega$, then $d(f, \Omega, 0)=d(f+g, \Omega, 0)$.

Let ϕ be a mapping from \mathbb{C}^{s} to \mathbb{C}^{s} given by $\phi(z)=\left(p_{1}(z), \ldots, p_{s}(z)\right)$, $z \in \mathbb{C}^{s}$, where p_{1}, \ldots, p_{s} are polynomials in $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$. Such a mapping is called a polynomial mapping. Let a be an isolated zero of ϕ. The algebraic multiplicity of ϕ at a, denoted $\mu_{a}(\phi)$, is defined to be $\mu_{a}(I)$, where I is the ideal generated by p_{1}, \ldots, p_{s}. The index ind (ϕ, a) can be interpreted as the geometric multiplicity of ϕ at a. Indeed, since a is an isolated zero of ϕ, there exists $r>0$ such that ϕ does not vanish on $\overline{B_{r}(a)} \backslash\{a\}$, where $B_{r}(a)$ is the ball $\left\{z \in \mathbb{C}^{s}:|z-a|<r\right\}$. Let δ be the minimum of ϕ on the sphere $\left\{z \in \mathbb{C}^{s}:|z-a|=r\right\}$. Then $\delta>0$. Given $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \in B_{\delta}(0)$, consider the perturbation ϕ^{ε} of ϕ given by $\phi^{\varepsilon}(z)=\left(p_{1}(z)-\varepsilon_{1}, \ldots, p_{s}(z)-\varepsilon_{s}\right)$ for $z \in \mathbb{C}^{s}$. By the generalized R ouché theorem,

$$
d\left(\phi^{\varepsilon}, B_{r}(a), 0\right)=d\left(\phi, B_{r}(a), 0\right)=\operatorname{ind}(\phi, a)
$$

By Sard's theorem (see [17, p. 205]), almost every $\varepsilon \in B_{\delta}(0)$ is a regular value of ϕ. Consequently, for almost every $\varepsilon \in B_{\delta}(0)$, the number of zeros of ϕ^{ε} in $B_{r}(a)$ equals $d\left(\phi^{\varepsilon}, B_{r}(a), 0\right)$, which in turn equals ind (ϕ, a). In particular, if each $p_{j}=Z_{j}^{m_{j}}$ for some positive integer m_{j}, then for any $\varepsilon \in(\mathbb{C} \backslash\{0\})^{s}, 0$ is a regular value of ϕ^{ε}; hence $\operatorname{ind}(\phi, 0)=d\left(\phi^{\varepsilon}, B_{r}(0), 0\right)$ $=m_{1} \cdots m_{s}$.
A proof of the following important result can be found in [2, Chap. 5]. Here we give another proof based on the perturbation technique.

Theorem 3.1. Let ϕ be a polynomial mapping from \mathbb{C}^{s} to \mathbb{C}^{s} such that its zero set $\phi^{-1}(0)$ is finite. Then for each $a \in \phi^{-1}(0)$,

$$
\begin{equation*}
\mu_{a}(\phi)=\operatorname{ind}(\phi, a) \tag{3.2}
\end{equation*}
$$

Proof. It will be proved in Section 5 (as a special case of Lemma 5.2) that

$$
\begin{equation*}
\mu_{\theta}(\phi) \geq \operatorname{ind}(\phi, \theta) \quad \text { for every } \theta \in \phi^{-1}(0) \tag{3.3}
\end{equation*}
$$

A ssuming that (3.3) is true, we prove (3.2) as follows. Suppose we can find another polynomial mapping $\psi: z \mapsto\left(q_{1}(z), \ldots, q_{s}(z)\right), z \in \mathbb{C}^{s}$, such that
ψ and the ideal J generated by q_{1}, \ldots, q_{s} have the following properties:

$$
\begin{align*}
& \operatorname{codim}(J)=d\left(\psi, B_{R}(0), 0\right)<\infty \quad \text { for some ball } B_{R}(0) \supset \mathscr{V}(J) ; \tag{3.4}\\
& \mu_{a}(\psi) \geq \mu_{a}(\phi) ; \tag{3.5}\\
& \operatorname{ind}(\psi, a)=\operatorname{ind}(\phi, a) . \tag{3.6}
\end{align*}
$$

Then (3.2) is true. Indeed, Theorem 2.4, (3.4), and (3.1) tell us that

$$
\sum_{\theta \in \psi^{-1}(0)} \mu_{\theta}(\psi)=\operatorname{codim}(J)=d\left(\psi, B_{R}(0), 0\right)=\sum_{\theta \in \psi^{-1}(0)} \operatorname{ind}(\psi, \theta)
$$

This in connection with our assumption $\mu_{\theta}(\psi) \geq \operatorname{ind}(\psi, \theta)$ shows that $\mu_{\theta}(\psi)=\operatorname{ind}(\psi, \theta)$ for all $\theta \in \psi^{-1}(0)$. In particular, $\mu_{a}(\psi)=\operatorname{ind}(\psi, a)$. Combining this with (3.3), (3.5), and (3.6), we obtain

$$
\operatorname{ind}(\phi, a)=\operatorname{ind}(\psi, a)=\mu_{a}(\psi) \geq \mu_{a}(\phi) \geq \operatorname{ind}(\phi, a) .
$$

It follows that $\mu_{a}(\phi)=\operatorname{ind}(\phi, a)$, as desired.
Suppose ϕ is given by $\phi(z)=\left(p_{1}(z), \ldots, p_{s}(z)\right), z \in \mathbb{C}^{s}$. Let I be the ideal generated by the polynomials p_{1}, \ldots, p_{s}. In order to find a mapping ψ with the desired properties, we use the polynomials f_{1}, \ldots, f_{s} given in (2.4). By Hilbert's nullstellensatz, there exists an integer $n>$ $\max _{1 \leq j \leq s}\left\{\operatorname{deg} p_{j}\right\}$ such that $f_{j}^{n-1} \in I$ for all $j=1, \ldots, s$. Set

$$
q_{j}:=f_{j}^{n}+p_{j}, \quad j=1, \ldots, s .
$$

We claim that the mapping $\psi: z \mapsto\left(q_{1}(z), \ldots, q_{s}(z)\right)$ satisfies all the properties stated in (3.4)-(3.6).

First, we observe that the leading term of f_{j} is Z_{j}^{m}, where $m=\# \mathscr{V}(I)$, the number of elements in $\mathscr{V}(I)$. Let $h_{j}:=Z_{j}^{m n}$ and let χ be the mapping given by $\chi(z)=\left(h_{1}(z), \ldots, h_{s}(z)\right), z \in \mathbb{C}^{s}$. For any $R>0, d\left(\chi, B_{R}(0), 0\right)$ $=\operatorname{ind}(\chi, 0)=(m n)^{s}$, as was computed before. Furthermore, for each $j=1, \ldots, s, \operatorname{deg}\left(q_{j}-h_{j}\right)<m n$; hence for sufficiently large $R>0, \mid \psi(z)$ $-\chi(z)\left|<|\chi(z)|\right.$ for all $z \in \partial B_{R}(0)$. Then by the generalized Rouché theorem,

$$
d\left(\psi, B_{R}(0), 0\right)=d\left(\chi, B_{R}(0), 0\right)=(m n)^{s} .
$$

On the other hand, the ideal J generated by q_{1}, \ldots, q_{s} has codimension $(m n)^{s}$, because

$$
\left\{\overline{Z^{\alpha}}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{0}^{s} \text { with } \alpha_{j}<m n \text { for all } j\right\}
$$

forms a basis for $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right] / J$, where $\overline{Z^{\alpha}}$ denotes the residue class of Z^{α} in it. This verifies (3.4).

Second, since $f_{j}^{n-1} \in I$ for all $j=1, \ldots, s$, we have $J \subseteq I$. Hence $\mu_{a}(\psi) \geq \mu_{a}(\phi)$.

Third, each f_{j}^{n-1} can be written as $\sum_{k=1}^{s} u_{j k} p_{k}$, where $u_{j k}$ are polynomials. Consequently, $q_{j}-p_{j}=f_{j}^{n}=\sum_{k=1}^{s} v_{j k} p_{k}$, where $v_{j k}=f_{j} u_{j k}$. Thus, $v_{j k}(a)=0$, so that for $r>0$ sufficiently small, $|\psi(z)-\phi(z)|<|\phi(z)|$ for all $z \in \partial B_{r}(a)$. By the generalized Rouché theorem, this implies $d\left(\psi, B_{r}(a), 0\right)=d\left(\phi, B_{r}(a), 0\right)$, i.e., $\operatorname{ind}(\psi, a)=\operatorname{ind}(\phi, a)$.

It has been verified that ψ satisfies all the three properties in (3.4)-(3.6), so the proof of Theorem 3.1 is complete.

The following result is an immediate consequence of this theorem and Theorem 2.4.

Corollary 3.2. Let ϕ be a polynomial mapping from \mathbb{C}^{s} to \mathbb{C}^{s} such that its zero set $\phi^{-1}(0)$ is finite. If Ω is a bounded open set in \mathbb{C}^{s} containing $\phi^{-1}(0)$, then

$$
\operatorname{codim}(I)=d(\phi, \Omega, 0) .
$$

Of particular interest is a special case of Theorem 3.1 in which all the polynomials p_{1}, \ldots, p_{s} are homogeneous. Given $w=\left(w_{1}, \ldots, w_{s}\right) \in \mathbb{C}^{s}$, let I^{w} be the ideal generated by the polynomials $p_{1}-w_{1}, \ldots, p_{s}-w_{s}$, and let ϕ^{w} be the mapping given by $\phi^{w}(z)=\left(p_{1}(z)-w_{1}, \ldots, p_{s}(z)-w_{s}\right), z \in \mathbb{C}^{s}$. If $R>0$ is sufficiently large, then by the generalized Rouché theorem,

$$
d\left(\phi^{w}, B_{R}(0), 0\right)=d\left(\phi, B_{R}(0), 0\right) .
$$

This together with Corollary 3.2 yields the following.
Corollary 3.3. Let I be an ideal generated by s homogeneous polynomials and let w be any point in \mathbb{C}^{s}. If I has finite codimension, then

$$
\operatorname{codim}(I)=\operatorname{codim}\left(I^{w}\right) .
$$

It is essential in Corollary 3.3 to assume that I is generated by homogeneous polynomials. For instance, let I be the ideal in $\mathbb{C}\left[Z_{1}, Z_{2}\right]$ generated by the polynomials $p_{1}=Z_{1}+Z_{2}$ and $p_{2}=Z_{1}\left(Z_{1}+Z_{2}\right)-1$. Then $\operatorname{codim}(I)=0$, $\operatorname{but} \operatorname{codim}\left(I^{w}\right)=1$ for any $w=\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}$ with $w_{1} \neq 0$.

Now let us consider the case in which I is generated by homogeneous polynomials p_{1}, \ldots, p_{m}, where m is not necessarily equal to s. It was proved by de Boor and Ron in [5] that

$$
\operatorname{codim}(I) \geq \operatorname{codim}(J)
$$

for every lower-order perturbation J of I. They conjectured that every homogeneous ideal of polynomials has a perfect lower-order perturbation. The following example supports their conjecture.

Example 3.4. Let I be an ideal generated by monomials $Z^{\alpha}, \alpha \in A$, where A is a finite subset of \mathbb{N}_{0}^{s}. For each $j=1, \ldots, s$, let $\left(c_{j n}\right)_{n=0,1, \ldots}$ be a sequence of distinct complex numbers. Define

$$
q_{\alpha}:=\prod_{j=1}^{s} \prod_{k=0}^{\alpha_{j}-1}\left(Z_{j}-c_{j k}\right) \quad \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in A .
$$

Then q_{α} is a lower-order perturbation of Z^{α} for every $\alpha \in A$. Let J be the ideal generated by $\left\{q_{\alpha}: \alpha \in A\right\}$. It can be easily proved that J is a perfect perturbation of I. In other words, every ideal of finite codimension generated by monomials has a perfect perturbation.

4. THE ALTERNATIVE THEOREM

In this section we return to the study of the ideal $I(X)$ as described in Section 1. Recall that X is a nonempty set. A ssociated to each element $x \in X$ is a polynomial $p_{x} \in \mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$. Moreover, $\mathscr{B}=\mathscr{B}(X)$ is a collection of subsets of X, each of which has exactly s elements, and $\mathscr{A}=\mathscr{A}(X, \mathscr{B}(X))$ is defined as in (1.2). The ideal $I(X)$ is generated by the polynomials $p_{A}, A \in \mathscr{A}$, where each p_{A} is defined as in (1.1). We assume that

$$
\operatorname{codim}(I(B))<\infty \quad \text { for every } B \in \mathscr{B}(X)
$$

The set X can be labeled so that $X=\{1, \ldots, n\}$. Given $w=\left(w_{1}, \ldots, w_{n}\right)$ $\in \mathbb{C}^{n}$, let p_{k}^{w} be the polynomial $p_{k}-w_{k}(k=1, \ldots, n)$. For $A \subseteq X$, define

$$
p_{A}^{w}:=\prod_{k \in A} p_{k}^{w} .
$$

Let $I^{w}(X)=I^{w}(X, \mathscr{B}(X))$ be the ideal generated by $\left\{p_{A}^{w}: A \in \mathscr{A}\right\}$. Correspondingly, for each $B \in \mathscr{B}(X)$, the ideal generated by $\left\{p_{k}^{w}: k \in B\right\}$ is denoted by $I^{w}(B)$. The main purpose of this section is to establish the following result.

Theorem 4.1. There exists a nontrivial polynomial $q \in \mathbb{C}\left[Z_{1}, \ldots, Z_{n}\right]$ such that for every $w \in \mathbb{C}^{n}$ with $q(w) \neq 0$ the following two conditions are satisfied:
(i) $I^{w}(B)$ is simple for every $B \in \mathscr{B}$;
(ii) $\mathscr{V}\left(I^{w}(B)\right)$ and $\mathscr{V}\left(I^{w}\left(B^{\prime}\right)\right)$ are disjoint for $B, B^{\prime} \in \mathscr{B}$ with $B \neq B^{\prime}$.

If q is a nontrivial polynomial in $\mathbb{C}\left[Z_{1}, \ldots, Z_{n}\right]$, then

$$
\mathscr{V}(q):=\left\{z \in \mathbb{C}^{n}: q(z)=0\right\}
$$

is called a hypersurface. Note that a finite union of hypersurfaces is also a hypersurface.

The proof of Theorem 4.1 is based on the so-called alternative theorem stated as follows.

Theorem 4.2. Let p_{1}, \ldots, p_{r} be polynomials in $m+n$ variables with complex coefficients, and let W be the set of those points $w=\left(w_{1}, \ldots, w_{n}\right) \in$ \mathbb{C}^{n} for which the polynomials $p_{1}(z, w), \ldots, p_{r}(z, w)$ have a common zero $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$. Then either W itself or its complement in \mathbb{C}^{n} is contained in some hypersurface in \mathbb{C}^{n}.

The proof of Theorem 4.2 is postponed. A ssuming that Theorem 4.2 is valid, we prove Theorem 4.1 first.

Proof of Theorem 4.1. Let $B \in \mathscr{B}(X)$. Without loss of generality, we may assume that $B=\{1, \ldots, s\}$. Consider the system of equations in the unknown $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s}$:

$$
\begin{gathered}
p_{1}(z)-w_{1}=0 \\
\vdots \\
p_{s}(z)-w_{s}=0 \\
J(z)=0,
\end{gathered}
$$

where $J(z)$ denotes the J acobian determinant of p_{1}, \ldots, p_{s} at z. Let W be the set of those points $w=\left(w_{1}, \ldots, w_{s}\right) \in \mathbb{C}^{s}$ for which the above system of equations has a solution for z. Then, for each $w \notin W, J(z) \neq 0$ for any $z \in \mathscr{V}\left(I^{w}(B)\right)$; hence the zeros of $I^{w}(B)$ are all simple. By the alternative theorem, W itself or its complement is contained in a hypersurface in \mathbb{C}^{s}. But the second alternative cannot happen. To see this, let ϕ be the mapping $z \mapsto\left(p_{1}(z), \ldots, p_{s}(z)\right), z \in \mathbb{C}^{s}$. Note that $J(z)=0$ if and only if z is a critical point of ϕ. Thus, $w \in W$ if and only if w is a critical value of ϕ. By the well-known Sard theorem (see, e.g., [17, p. 40]), W has measure zero. Therefore, only the first alternative can happen, i.e., W is contained in a hypersurface in \mathbb{C}^{s}.

Let E be a subset of X of cardinality $s+1$. Without loss of generality, we may assume that $E=\{1, \ldots, s+1\}$. Consider the system of equations in the unknown $z \in \mathbb{C}^{s}$:

$$
p_{k}(z)-w_{k}=0, \quad k=1, \ldots, s+1 .
$$

Let ψ be the mapping $z \mapsto\left(p_{1}(z), \ldots, p_{s+1}(z)\right), z \in \mathbb{C}^{s}$. By the mini-Sard theorem (see [17, p. 205]), the image of ψ has measure zero in the space \mathbb{C}^{s+1}. Let W be the set of those points $w=\left(w_{1}, \ldots, w_{s+1}\right) \in \mathbb{C}^{s+1}$ for which the above system of equations has a solution for z. By the same reasoning as before, we see that W is contained in a hypersurface in \mathbb{C}^{s+1}.

To summarize, we have proved that to each $B \in \mathscr{B}(X)$ there corresponds a nontrivial polynomial q_{B} in s variables $\left\{w_{j}: j \in B\right\}$ such that the ideal $I^{w}(B)$ is simple for every w with $q_{B}(w) \neq 0$. M oreover, to each subset E of X of cardinality $s+1$ there coresponds a nontrivial polynomial q_{E} in $s+1$ variables $\left\{w_{k}: k \in E\right\}$ such that the polynomials p_{k}^{w} ($k \in E$) do not have any common zero, provided $q_{E}(w) \neq 0$. View q_{B} and q_{E} as polynomials in w_{1}, \ldots, w_{n}. Let

$$
q:=\prod_{\substack{E \subseteq X \\ \# E=s+1}} q_{E} \prod_{B \in \mathscr{B}(X)} q_{B} .
$$

Then q is a nontrivial polynomial in n variables. If $q(w) \neq 0$ then for every $B \in \mathscr{B}, q_{B}(w) \neq 0$, and, hence, $I^{w}(B)$ is simple. M oreover, if $q(w)$ $\neq 0$ and $B \neq B^{\prime}$, then $\mathscr{V}\left(I^{w}(B)\right)$ and $\mathscr{V}\left(I^{w}\left(B^{\prime}\right)\right)$ are disjoint, for otherwise $z \in \mathscr{V}\left(I^{w}(B)\right) \cap \mathscr{V}\left(I^{w}\left(B^{\prime}\right)\right)$ would imply $p_{k}(z)=0$ for all $k \in B \cup$ B^{\prime}, whence $\#\left(B \cup B^{\prime}\right) \geq s+1$.

In order to prove Theorem 4.2 we need some results from the theory of resultant systems (see [18, Chap. 4]).

Theorem 4.3. Let K be an algebraically closed field and u be an indeterminate over K. Given an r-tuple $\left(d_{1}, \ldots, d_{r}\right)$ of nonnegative integers, let $K\left[\ldots, v_{k j}, \ldots\right]$ denote the polynomial ring over K in the indeterminates $v_{k j}$ $\left(j=0, \ldots, d_{k} ; k=1, \ldots, r\right)$. Then there exist finitely many polynomials $R_{1}, \ldots, R_{t} \in K\left[\ldots, v_{k j}, \ldots\right]$ such that for polynomials f_{1}, \ldots, f_{r} in $K[u]$ given by

$$
f_{k}=\sum_{j=0}^{d_{k}} c_{k j} u^{d_{k}-j}, \quad k=1, \ldots, r
$$

the following statements are true:
(i) A necessary condition that f_{1}, \ldots, f_{r} have a common zero is $R_{l}\left(\ldots, c_{k j}, \ldots\right)=0$ for all $l=1, \ldots, t$, where $R_{l}\left(\ldots, c_{k j}, \ldots\right)$ denotes the result obtained by evaluating R_{l} at $v_{k j}=c_{k j}\left(j=0, \ldots, d_{k} ; k=1, \ldots, r\right)$.
(ii) If at least one of the leading coefficients $c_{10}, \ldots, c_{r 0}$ is not zero, then this condition is also sufficient.

Note that the polynomials R_{1}, \ldots, R_{t} are determined by the r-tuple $\left(d_{1}, \ldots, d_{r}\right)$. Thus, we may call the set $\left\{R_{1}, \ldots, R_{t}\right\}$ a resultant system for $\left(d_{1}, \ldots, d_{r}\right)$.

Proof of Theorem 4.2. The proof proceeds with induction on m. Consider the case $m=1$ first. Suppose for $k=1, \ldots, r$,

$$
p_{k}(z, w)=\sum_{j=0}^{d_{k}} c_{k j}(w) z^{d_{k}-j}, \quad z \in \mathbb{C}, w \in \mathbb{C}^{n}
$$

where each $c_{k j}$ is a polynomial in $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$ and, as a polynomial in $w, c_{k 0} \neq 0$ for every k. Let $\left\{R_{1}, \ldots, R_{t}\right\}$ be a resultant system for $\left(d_{1}, \ldots, d_{r}\right)$. For $l=1, \ldots, t$, let

$$
Q_{l}(w)=R_{l}\left(\ldots, c_{k j}(w), \ldots\right), \quad w \in \mathbb{C}^{n} .
$$

Then each Q_{l} is a polynomial of w. If $w \in W$, then $p_{1}(z, w), \ldots, p_{r}(z, w)$ have a common zero $z \in \mathbb{C}$; hence by Theorem 4.3 we have $Q_{l}(w)=0$ for all $l=1, \ldots, t$. If at least one of these polynomials, say Q_{1}, is nontrivial, then W is contained in the hypersurface $\left\{w \in \mathbb{C}^{n}: Q_{1}(w)=0\right\}$. Otherwise, all the polynomials Q_{1}, \ldots, Q_{t} are identically zero. In the latter case, Theorem 4.3 tells us that $c_{10}(w) \neq 0$ implies $w \in W$. Hence $\mathbb{C}^{n} \backslash W$ is contained in the hypersurface $\left\{w \in \mathbb{C}^{n}: c_{10}(w)=0\right\}$.

Next consider the case $m>1$ and assume that the theorem is valid for $m-1$. Suppose p_{1}, \ldots, p_{r} are polynomials in $(z, w) \in \mathbb{C}^{m} \times \mathbb{C}^{n}$ given by

$$
p_{k}=\sum_{|\alpha| \leq d_{k}} c_{k, \alpha}(w) z^{\alpha}, \quad k=1, \ldots, r,
$$

where d_{k} is the degree of p_{k} with respect to z. We observe that W is invariant under an invertible linear transform of $\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$. Let $\left(a_{\lambda \nu}\right)_{1 \leq \lambda, \nu \leq m}$ be an invertible complex matrix and consider the linear transform given by $z_{\lambda}=\sum_{\nu=1}^{m} a_{\lambda \nu} \tilde{z}_{\nu}, \lambda=1, \ldots, m$. A fter this transform we have

$$
p_{k}=\sum_{|\alpha| \leq d_{k}} \tilde{c}_{k, \alpha}(w) \tilde{z}^{\alpha}, \quad k=1, \ldots, r,
$$

where $\tilde{c}_{1, \alpha}(w)$ for $\alpha=\left(0, \ldots, 0, d_{1}\right) \in \mathbb{N}_{0}^{m}$ can be computed as

$$
\tilde{c}_{1,\left(0, \ldots, 0, d_{1}\right)}(w)=\sum_{|\beta|=d_{1}} a_{m}^{\beta_{1}} \cdots a_{m m}^{\beta_{m}} c_{1 \beta}(w) .
$$

There exist a point $w \in \mathbb{C}^{n}$ and a multi-index $\beta \in \mathbb{N}_{0}^{m}$ with $|\beta|=d_{1}$ such that $c_{1, \beta}(w) \neq 0$; hence $\tilde{c}_{1,\left(0, \ldots, 0, d_{1}\right)}(w) \neq 0$ for an appropriate choice of the matrix $\left(a_{\lambda \nu}\right)_{1 \leq \lambda, \nu \leq m}$. Thus, we may and we do assume from the beginning that $c_{1,\left(0, \ldots, 0, d_{1}\right)}(w) \neq 0$ for some $w \in \mathbb{C}^{n}$.

Now we write

$$
p_{k}=\sum_{j=0}^{d_{k}} b_{k j}\left(z^{\prime}, w\right) z_{m}^{d_{k}-j}, \quad k=1, \ldots, r
$$

where $z^{\prime}=\left(z_{1}, \ldots, z_{m-1}\right)$. N ote that $b_{1,0}\left(z^{\prime}, w\right)$ is independent of z^{\prime} and is a nontrivial polynomial in w; hence, we may write $b_{1,0}(w)$ instead of $b_{1,0}\left(z^{\prime}, w\right)$. Let R_{1}, \ldots, R_{t} be a resultant system for $\left\{d_{1}, \ldots, d_{r}\right\}$, and let

$$
Q_{l}\left(z^{\prime}, w\right):=R_{l}\left(\ldots, b_{k j}\left(z^{\prime}, w\right), \ldots\right), \quad l=1, \ldots, r .
$$

Let W_{1} be the set of those $w \in \mathbb{C}^{n}$ for which $Q_{1}\left(z^{\prime}, w\right), \ldots, Q_{t}\left(z^{\prime}, w\right)$ have a common zero $z^{\prime} \in \mathbb{C}^{m-1}$. By the induction hypothesis, either W_{1} or its complement is contained in a hypersurface in \mathbb{C}^{n}. By Theorem $4.3, w \in W$ implies $w \in W_{1}$. Thus, if W_{1} is contained in a hypersurface, so is W. Let V be the set $\left\{w \in \mathbb{C}^{n}: b_{1,0}(w)=0\right\}$. By our assumption about $b_{1,0}, V$ is a hypersurface in \mathbb{C}^{n}. By Theorem 4.3, $W_{1} \backslash V \subseteq W$. It follows that

$$
\mathbb{C}^{n} \backslash W \subseteq\left(\mathbb{C}^{n} \backslash W_{1}\right) \cup V
$$

Thus, if $\mathbb{C}^{n} \backslash W_{1}$ is contained in a hypersurface, so is $\mathbb{C}^{n} \backslash W$. This finishes the induction procedure.

In the rest of this section we discuss an interesting application of the alternative theorem to the study of algebraic functions, which will be needed later. Let us recall some elementary facts about algebraic functions from [1, pp. 283-306]. In the sequel, by a region we mean a connected open set. An analytic function f defined on a region $\Omega \subseteq \mathbb{C}$ constitutes a function element, denoted (f, Ω). Two function elements $\left(f_{1}, \Omega_{1}\right)$ and (f_{2}, Ω_{2}) are said to be equivalent if (f_{2}, Ω_{2}) is an analytic continuation of (f_{1}, Ω_{1}). The equivalence classes are called global analytic functions. The global analytic function determined by a function element (f, Ω) will be denoted by \mathbf{f}, and (f, Ω) is also referred to as a branch of f. A global analytic function \mathbf{f} is called an algebraic function if all its function elements (f, Ω) satisfy a relation $P(f(z), z)=0$ in Ω, where P is a nontrivial polynomial in two complex variables. Because of the permanence of functional relations (see [1, p. 288]), in order that \mathbf{f} be an algebraic function it is sufficient to assume that one of its branches satisfies the above relation.

Lemma 4.4. Let ϕ be a holomorphic mapping from \mathbb{C}^{s} to \mathbb{C}^{s}, and let ψ be a holomorphic mapping from a region Ω in \mathbb{C} to \mathbb{C}^{s}. If $\psi(\zeta)$ is a regular value of ϕ for every $\zeta \in \Omega$, and if Δ is a simply connected region contained in Ω, then for every choice of points $\zeta_{0} \in \Delta$ and $z_{0} \in \mathbb{C}^{s}$ with $\psi\left(\zeta_{0}\right)=\phi\left(z_{0}\right)$
there exists precisely one holomorphic mapping $\chi: \Delta \rightarrow \mathbb{C}^{s}$ such that $\psi=$ $\phi \circ \chi$ and $\chi\left(\zeta_{0}\right)=z_{0}$. If, in addition, ϕ and ψ are polynomial mappings, then in the representation

$$
\begin{equation*}
\chi(\zeta)=\left(f_{1}(\zeta), \ldots, f_{s}(\zeta)\right), \quad \zeta \in \Delta, \tag{4.1}
\end{equation*}
$$

each $\left(f_{j}, \Delta\right)(j=1, \ldots, s)$ is a branch of an algebraic function with no singularities in Ω.

Proof. The first statement follows from Theorem 4.17 of [14]. Let V be the set of all regular values of ϕ, and let $U=\phi^{-1}(V)$. Then both U and V are open sets. Moreover, the Jacobian determinant $J_{\phi}(z) \neq 0$ for any $z \in U$. By assumption we have $\psi(\Delta) \subseteq V$. It is easily seen that the mapping $\left.\phi\right|_{U}$ from U to V is a covering mapping. Suppose $\zeta_{0} \in \Delta$ and $z_{0} \in \mathbb{C}^{s}$ satisfy $\psi\left(\zeta_{0}\right)=\phi\left(z_{0}\right)$. Since Δ is a simply connected region in \mathbb{C}, Theorem 4.17 of [14] is applicable, so we conclude that there exists precisely one mapping $\chi: \Delta \rightarrow \mathbb{C}^{s}$ such that $\psi=\phi \circ \chi$ and $\chi\left(\zeta_{0}\right)=z_{0}$. The mapping χ must be holomorphic (cf. Theorem 4.9 of [14]). Furthermore, it follows from Theorem 4.14 of [14] that the covering mapping $\left.\phi\right|_{U}: U \rightarrow V$ has the curve lifting property. Since $\psi(\Omega) \subseteq V$, we conclude that (χ, Δ) can be analytically continued along any curve inside Ω.

Now suppose ϕ and ψ are polynomial mappings given by $\phi(z)=$ $\left(p_{1}(z), \ldots, p_{s}(z)\right), z \in \mathbb{C}^{s}$, and $\psi(\zeta)=\left(g_{1}(\zeta), \ldots, g_{s}(\zeta)\right), \zeta \in \mathbb{C}$. In order to prove the second statement, we consider the system of equations

$$
\begin{equation*}
p_{j}\left(z_{1}, z_{2}, \ldots, z_{s}\right)-g_{j}(\zeta)=0, \quad j=1, \ldots, s \tag{4.2}
\end{equation*}
$$

Let W denote the set of those pairs $\left(z_{1}, \zeta\right) \in \mathbb{C}^{2}$ for which the above system of equations have solutions for $\left(z_{2}, \ldots, z_{s}\right) \in \mathbb{C}^{s-1}$. By the alternative theorem, either W or its complement is contained in a hypersurface in \mathbb{C}^{2}, i.e., an algebraic curve in \mathbb{C}^{2}. We claim that the second alternative cannot happen. Indeed, there is an open ball O in \mathbb{C}^{s} containing $\psi\left(\zeta_{0}\right)$ such that $\phi^{-1}(O)=\bigcup_{j=1}^{m} U_{j}$, where U_{1}, \ldots, U_{m} are disjoint open sets, and $\left.\phi\right|_{U_{j}}$ is a homeomorphism from U_{j} to O for each j. Denote by σ_{j} the inverse mapping of $\left.\phi\right|_{U_{j}}(j=1, \ldots, m)$. There exists an open disk G in \mathbb{C} such that $\zeta_{0} \in G \subseteq \psi^{-1}(O)$. If $\zeta \in G$ and $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s}$ satisfy the system of equations in (4.2), then $z \in \phi^{-1}(\psi(G))$; hence, $z=\sigma_{j}(\psi(\zeta))$ for some $\zeta \in G$ and $j \in\{1, \ldots, m\}$. Suppose for $j=1, \ldots, m$,

$$
\sigma_{j}(\psi(\zeta))=\left(h_{j 1}(\zeta), \ldots, h_{j s}(\zeta)\right), \quad \zeta \in G .
$$

Then $h_{j k}(j=1, \ldots, m ; k=1, \ldots, s)$ are holomorphic functions on G. Thus, we have

$$
W \cap\left\{\left(z_{1}, \zeta\right): \zeta \in G\right\}=\bigcup_{j=1}^{m}\left\{h_{j 1}(\zeta): \zeta \in G\right\} .
$$

This shows that there is no algebraic curve in \mathbb{C}^{2} containing $\mathbb{C}^{2} \backslash W$. Therefore, W is contained in an algebraic curve in \mathbb{C}^{2}. In other words, there exists a nontrivial polynomial P in two complex variables such that $P\left(z_{1}, \zeta\right)=0$ for all $\left(z_{1}, \zeta\right) \in W$. Since $\phi \circ \chi=\psi$, the representation of χ given in (4.1) tells us that $\left(f_{1}(\zeta), \zeta\right) \in W$ for all $\zeta \in \Delta$; hence $P\left(f_{1}(\zeta), \zeta\right)$ $=0$ for $\zeta \in \Delta$. This shows that $\left(f_{1}, \Delta\right)$ is a branch of an algebraic function. The same reasoning shows that this is also the case for $\left(f_{j}, \Delta\right)(j=2, \ldots, s)$. Finally, it was proved before that each $\left(f_{j}, \Delta\right)$ can be analytically continued along any curve inside Ω, so the algebraic function determined by it has no singularities in Ω.

5. LOWER BOUNDS FOR THE DIMENSION

In this section we prove the main result of this paper.
Theorem 5.1. Let X be a nonempty finite set and \mathscr{B} a collection of subsets of X, each of which has exactly s elements. Suppose there corresponds a polynomial $p_{x} \in \mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$ to each $x \in X$. Let $I(X)$ be the ideal generated by $\left\{p_{A}: A \in \mathscr{A}\right\}$, where

$$
\mathscr{A}:=\{A \subseteq X: A \cap B \neq \varnothing \quad \text { for all } B \in \mathscr{B}\},
$$

and $p_{A}:=\prod_{x \in A} p_{x}$. Then

$$
\begin{equation*}
\operatorname{codim}(I(X)) \geq \sum_{B \in \mathscr{B}} \operatorname{codim}(I(B)) \tag{5.1}
\end{equation*}
$$

where $I(B)$ denotes the ideal generated by $\left\{p_{x}: x \in B\right\}$.
If $\operatorname{codim}(I(X))=\infty$, then there is nothing to prove; we therefore assume that $\operatorname{codim}(I(X))<\infty$. It follows that $\operatorname{codim}(I(B))<\infty$ for all $B \in \mathscr{B}$. In order to prove (5.1), by Theorem 2.4, it suffices to show that for every $\theta \in \mathscr{V}(I(X))$,

$$
\begin{equation*}
\mu_{\theta}(I(X)) \geq \sum_{B \in \mathscr{B}} \mu_{\theta}(I(B)), \tag{5.2}
\end{equation*}
$$

where, as was in Section 2, $\mu_{\theta}(I)$ denotes the multiplicity of the ideal I at θ.

Label X so that $X=\{1, \ldots, n\}$. For $B=\left\{k_{1}, \ldots, k_{s}\right\} \in \mathscr{B}$ with $k_{1}<\cdots$ $<k_{s}$, let ϕ_{B} be the mapping given by

$$
\phi_{B}(z)=\left(p_{k_{1}}(z), \ldots, p_{k_{s}}(z)\right), \quad z \in \mathbb{C}^{s} .
$$

The proof of (5.2) is based on the following lemma.

Lemma 5.2. For every $\theta \in \mathscr{V}(I(X))$,

$$
\begin{equation*}
\mu_{\theta}(I(X)) \geq \sum_{B \in \mathscr{B}} \operatorname{ind}\left(\phi_{B}, \theta\right) \tag{5.3}
\end{equation*}
$$

Indeed, taking X to be B in (5.3) gives

$$
\mu_{\theta}\left(\phi_{B}\right)=\mu_{\theta}(I(B)) \geq \operatorname{ind}\left(\phi_{B}, \theta\right) \quad \text { for } \theta \in \mathscr{V}(I(B)) .
$$

This verifies (3.3). Hence, if Lemma 5.2 is true, then Theorem 3.1 is applicable. Consequently, $\mu_{\theta}(I(B))=\operatorname{ind}\left(\phi_{B}, \theta\right)$. This, together with (5.3), implies (5.2), and so Theorem 5.1 is true.

Proof of Lemma 5.2. Let $\theta \in \mathscr{V}(I(X))$, and let $m:=\sum_{B \in \mathscr{A}}$ ind $\left(\phi_{B}, \theta\right)$. We shall use the perturbation technique to prove $\mu_{\theta}(I(X)) \geq m$. If $m=1$, there is nothing to prove; we therefore assume that $m>1$.

Note that $\theta \in \mathscr{V}(I(X))$ implies $\theta \in \mathscr{V}(I(B))$ for some $B \in \mathscr{B}$. Since $\operatorname{codim}(I(B))<\infty, \theta$ is an isolated zero of ϕ_{B}. Choose and fix a neighborhood U of θ such that ϕ_{B} has no zeros in $\bar{U} \backslash\{\theta\}$ for any $B \in \mathscr{B}$. It follows that

$$
\begin{equation*}
\operatorname{ind}\left(\phi_{B}, \theta\right)=d\left(\phi_{B}, U, 0\right) \quad \text { for all } B \in \mathscr{B} \tag{5.4}
\end{equation*}
$$

For $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$, let $p_{k}^{w}=p_{k}-w_{k}(k=1, \ldots, n)$, and let $I^{w}(X)$ be the ideal generated by $\left\{p_{A}^{w}: A \in \mathscr{A}\right\}$, where $p_{A}^{w}=\prod_{k \in A} p_{k}^{w}$. For $B=\left\{k_{1}, \ldots, k_{s}\right\} \in \mathscr{B}$ with $k_{1}<\cdots<k_{s}$, let ϕ_{B}^{w} be the mapping given by

$$
\phi_{B}^{w}(z)=\left(p_{k_{1}}^{w}(z), \ldots, p_{k_{s}}^{w}(z)\right), \quad z \in \mathbb{C}^{s} .
$$

Since $0 \notin \phi_{B}(\partial U)$ for any $B \in \mathscr{B}$, we have

$$
\delta:=\min _{B \in \mathscr{B}} \min _{z \in \partial U}\left|\phi_{B}(z)\right|>0 .
$$

By the generalized R ouché theorem, if $|w|<\delta$ then

$$
\begin{equation*}
d\left(\phi_{B}^{w}, U, 0\right)=d\left(\phi_{B}, U, 0\right) \quad \text { for all } B \in \mathscr{B} . \tag{5.5}
\end{equation*}
$$

Let $q \in \mathbb{C}\left[Z_{1}, \ldots, Z_{n}\right]$ be a polynomial satisfying the conditions in Theorem 4.1. Fix a point $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$ such that $q(c) \neq 0$. Since $q(c) \neq 0$, there exists $\varepsilon>0$ such that $q(c \zeta) \neq 0$ for $0<|\zeta|<\varepsilon$. For simplicity, we write $I^{\zeta}(X)$ instead of $I^{c \zeta}(X)$. Correspondingly we write $I^{\zeta}(B)$ for $I^{c \zeta}(B)$, and ϕ_{B}^{ζ} for $\phi_{B}^{c \zeta}, B \in \mathscr{B}$. By reducing ε if necessary, we may assume that $|c \varepsilon|<\delta$. Since $I^{\zeta}(B)$ is simple, $d\left(\phi_{B}^{\zeta}, U, 0\right)$ is just the number of zeros of ϕ_{B}^{ζ} in U. Thus, it follows from (5.4) and (5.5) that

$$
\begin{equation*}
\operatorname{ind}\left(\phi_{B}, \theta\right)=\#\left(U \cap \mathscr{V}\left(I^{\zeta}(B)\right)\right), \quad 0<|\zeta|<\varepsilon \tag{5.6}
\end{equation*}
$$

From the above analysis, we see that if U^{\prime} is an arbitrary neighborhood of θ contained in U, then there is an $\varepsilon^{\prime}, 0<\varepsilon^{\prime}<\varepsilon$, such that

$$
\begin{aligned}
\#\left(U^{\prime} \cap \mathscr{V}\left(I^{\zeta}(B)\right)\right) & =\operatorname{ind}\left(\phi_{B}, \theta\right) \\
& =\#\left(U \cap \mathscr{V}\left(I^{\zeta}(B)\right)\right) \quad \text { for } 0<|\zeta|<\varepsilon^{\prime} .
\end{aligned}
$$

This shows that $U \cap \mathscr{V}\left(I^{\zeta}(B)\right) \subseteq U^{\prime}$ for $0<|\zeta|<\varepsilon^{\prime}$. To paraphrase this fact, we say that the family of the sets $U \cap \mathscr{V}\left(I^{\zeta}(B)\right)$ converges to θ as ζ tends to 0 .

For $B=\left\{k_{1}, \ldots, k_{s}\right\} \in \mathscr{B}$ with $k_{1}<\cdots<k_{s}$, consider the mapping ψ_{B} given by

$$
\psi_{B}(\zeta)=\left(c_{k_{1}} \zeta, \ldots, c_{k_{s}} \zeta\right), \quad 0<|\zeta|<\varepsilon .
$$

Since the ideal $I^{\zeta}(B)$ is simple for $0<|\zeta|<\varepsilon, \psi_{B}(\zeta)$ is a regular value of ϕ_{B} for $0<|\zeta|<\varepsilon$. Let ζ_{0} be a fixed point in the simply connected region

$$
\Delta_{\varepsilon}:=\left\{\rho e^{i \eta}: 0<\rho<\varepsilon,-\pi<\eta<\pi\right\} .
$$

We deduce from Lemma 4.4 that for a given $t \in \mathscr{V}\left(I^{\xi_{0}}(B)\right)$, there is precisely one holomorphic mapping ω^{t} from Δ_{ε} to \mathbb{C}^{s} such that $\phi_{B} \circ \omega^{t}=$ ψ_{B} and $\omega^{t}\left(\zeta_{0}\right)=t$. It follows from $\phi_{B} \circ \omega^{t}=\psi_{B}$ that

$$
\omega^{t}(\zeta) \in \mathscr{V}\left(I^{\zeta}(B)\right) \subseteq \mathscr{V}\left(I^{\zeta}(X)\right) \quad \text { for } \zeta \in \Delta_{\varepsilon}
$$

M oreover, in the representation

$$
\omega^{t}(\zeta)=\left(f_{1}^{t}(\zeta), \ldots, f_{s}^{t}(\zeta)\right) \quad \text { for } \zeta \in \Delta_{\varepsilon}
$$

each $\left(f_{j}^{t}, \Delta_{\varepsilon}\right)(j=1, \ldots, s)$ is a branch of an algebraic function with no singularities in the punctuated disk $\{\zeta: 0<|\zeta|<\varepsilon\}$. Furthermore, since $U \cap \mathscr{V}\left(I^{\zeta}(B)\right)$ converges to θ as ζ tends to 0 , we have $\lim _{\zeta \rightarrow 0} \omega^{t}(\zeta)=\theta$.

Recall that $\mathscr{V}\left(I^{\zeta}(B)\right)$ and $\mathscr{V}\left(I^{\zeta}\left(B^{\prime}\right)\right)$ are disjoint for $B \neq B^{\prime}$ and $0<|\zeta|<\varepsilon$. This fact, together with (5.6), tells us that $m=$ $\sum_{B \in \mathscr{B}}$ ind $\left(\phi_{B}, \theta\right)$ is just the number of points in $U \cap\left(\cup_{B \in \mathscr{B}} \mathscr{V}\left(I^{\xi_{0}}(B)\right)\right)$. Let t_{1}, \ldots, t_{m} be these points. We denote by ω_{k} the holomorphic mapping $\omega^{t_{k}}, k=1, \ldots, m$.

On the other hand, (2.6) says that

$$
\mu_{\theta}(I(X))=\operatorname{dim}\left(M_{I(X), \theta}\right),
$$

where $M_{I(X), \theta}$ is the multiplicity space of $I(X)$ at θ as given in (2.5). For simplicity, we write M, instead of $M_{I(X), \theta}$. Without loss of any generality, we may assume that $\theta=0$ in what follows. For two polynomials h and p
in $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$, it is easily seen that $h(D) p(0)=0$ if and only if $p(D) h(0)$ $=0$. Hence,

$$
M=\left\{h \in \mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]: p(D) h(0)=0 \text { for all } p \in I(X)\right\} .
$$

Lemma 5.2 will be established, if we can find m linearly independent elements h_{1}, \ldots, h_{m} in M.

For each $\zeta \in \Delta_{\varepsilon}$, we denote by M^{ζ} the linear space spanned by the exponential functions $e_{\omega_{1}(\zeta)}, \ldots, e_{\omega_{m}(\zeta)}$. Since $\omega_{k}(\zeta) \in \mathscr{V}\left(I^{\zeta}(X)\right)$ for $k=$ $1, \ldots, m$, we have

$$
p_{A}^{\zeta}(D) e_{\omega_{k}(\zeta)}=0 \quad \text { for all } A \in \mathscr{A},
$$

where $p_{A}^{\zeta}:=p_{A}^{c \zeta}$. It follows that

$$
\begin{equation*}
p_{A}^{\zeta}(D) h=0 \quad \text { for all } h \in M^{\zeta}, A \in \mathscr{A} . \tag{5.7}
\end{equation*}
$$

Our goal is to find m functions $h_{1}^{\zeta}, \ldots, h_{m}^{\zeta} \in M^{\zeta}$ for each $\zeta \in \Delta_{\varepsilon}$ so that $\lim _{\zeta \rightarrow 0} h_{j}^{\zeta}$ exists and equals a polynomial h_{j} in $M(j=1, \ldots, m)$ and, in addition, h_{1}, \ldots, h_{m} are linearly independent. The desired functions $h_{1}^{\zeta}, \ldots, h_{m}^{\zeta}$ are chosen by the equation

$$
\left[\begin{array}{c}
h_{1}^{\zeta} \tag{5.8}\\
\vdots \\
h_{m}^{\zeta}
\end{array}\right]=\left[\begin{array}{ccc}
\omega_{1}(\zeta)^{\beta_{1}} / \beta_{1}! & \cdots & \omega_{1}(\zeta)^{\beta_{m}} / \beta_{m}! \\
\vdots & \ddots & \vdots \\
\omega_{m}(\zeta)^{\beta_{1}} / \beta_{1}! & \cdots & \omega_{m}(\zeta)^{\beta_{m}} / \beta_{m}!
\end{array}\right]\left[\begin{array}{c}
e_{\omega_{1}(\zeta)} \\
\vdots \\
e_{\omega_{m}(\zeta)}
\end{array}\right]
$$

where $\left(\beta_{1}, \ldots, \beta_{m}\right) \in\left(\mathbb{N}_{0}^{s}\right)^{m}$ is to be determined. E ach function h_{j}^{ζ} lies in M^{ζ}, so it can be expanded as a power series:

$$
h_{j}^{\zeta}(z)=\sum_{\alpha \in \mathbb{N}_{0}^{N}} a_{j, \alpha}^{\zeta} z^{\alpha}, \quad z \in \mathbb{C}^{s} .
$$

Since $e_{\omega}(z)=\sum_{\alpha \in \mathbb{N}_{0}}\left(\omega^{\alpha} / \alpha!\right) z^{\alpha}$, it follows from (5.8) that

$$
\left[\begin{array}{ccc}
\omega_{1}(\zeta)^{\beta_{1}} / \beta_{1}! & \cdots & \omega_{1}(\zeta)^{\beta_{m}} / \beta_{m}! \\
\vdots & \ddots & \vdots \\
\omega_{m}(\zeta)^{\beta_{1}} / \beta_{1}! & \cdots & \omega_{m}(\zeta)^{\beta_{m}} / \beta_{m}!
\end{array}\right]\left[\begin{array}{c}
a_{1, \alpha}^{\zeta} \\
\vdots \\
a_{m, \alpha}^{\zeta}
\end{array}\right]=\left[\begin{array}{c}
\omega_{1}(\zeta)^{\alpha} / \alpha! \\
\vdots \\
\omega_{m}(\zeta)^{\alpha} / \alpha!
\end{array}\right] .
$$

By Cramer's rule, we have

$$
\begin{equation*}
a_{j, \alpha}^{\zeta}=\frac{g_{\left(\beta_{1}, \ldots, \beta_{j-1}, \alpha, \beta_{j+1}, \ldots, \beta_{m}\right)}(\zeta)}{g_{\left(\beta_{1}, \ldots, \beta_{m}\right)}(\zeta)}, \quad \zeta \in \Delta_{\varepsilon} \tag{5.9}
\end{equation*}
$$

where $g_{\left(\beta_{1}, \ldots, \beta_{m}\right)}(\zeta)$ denotes the determinant of the matrix $\left(\omega_{j}(\zeta)^{\beta_{k}} /\right.$ $\left.\beta_{k}!\right)_{1 \leq j, k \leq m}$. Note that $\omega_{j}\left(\zeta_{0}\right)=t_{j}$ for $j=1, \ldots, m$. There exists $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in\left(\mathbb{N}_{0}^{s}\right)^{m}$ such that $g_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}$ does not vanish at ζ_{0}, for otherwise $e_{t_{1}}, \ldots, e_{t_{m}}$ would be linearly dependent, which contradicts the fact that t_{1}, \ldots, t_{m} are pairwise distinct. Fix a choice of such $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$.

In order to make an appropriate choice for $\left(\beta_{1}, \ldots, \beta_{m}\right)$, we need the Puiseux expansion of algebraic functions (see [1, p. 304; 14, p. 58]). If $\left(g, \Delta_{\varepsilon}\right)$ is a branch of some nontrivial algebraic function with no singularities in the punctuated disk $\{\zeta: 0<|\zeta|<\varepsilon\}$, and if $\lim _{\zeta \rightarrow 0} g(\zeta)=0$, then g has the Puiseux expansion

$$
g\left(\rho e^{i \eta}\right)=\sum_{n=\kappa}^{\infty} C_{n}\left(\rho e^{i \eta}\right)^{n / \iota}, \quad 0<\rho<\varepsilon,-\pi<\eta<\pi,
$$

where κ, ι are positive integers, $C_{\kappa} \neq 0$. Denote by $\tau(g)$ the number κ / ι. When $g=0$, we set $\tau(g)$ to be ∞. If h is another function of the same kind, then $\tau(g h)=\tau(g)+\tau(h)$. M oreover, $\lim _{\zeta \rightarrow 0} h(\zeta) / g(\zeta)$ exists, provided $\tau(g) \leq \tau(h)$. This limit is 0 if and only if $\tau(g)<\tau(h)$.

E ach $\omega_{j}(j=1, \ldots, m)$ has the representation

$$
\omega_{j}(\zeta)=\left(f_{1}^{t_{j}}(\zeta), \ldots, f_{s}^{t_{j}}(\zeta)\right), \quad \zeta \in \Delta_{\varepsilon}
$$

where the function elements $\left(f_{k^{\prime}}^{t_{j}}, \Delta_{\varepsilon}\right)(k=1, \ldots, s)$ are branches of algebraic functions that have no singularities in the punctuated disk $\{\zeta: 0<|\zeta|<\varepsilon\}$. Let

$$
\tau_{j}:=\min \left\{\tau\left(f_{1}^{t_{j}}\right), \ldots, \tau\left(f_{s}^{t_{j}}\right)\right\} ;
$$

each $\tau_{j}(j=1, \ldots, m)$ is positive or ∞. Using the Laplace expansion of determinants, we see that $g_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}$ also has a Puiseux expansion in Δ_{ε} for each $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in\left(\mathbb{N}_{0}^{s}\right)^{n}$. We claim that $\lim _{\zeta \rightarrow 0} g_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}(\zeta)=0$. Indeed, this is true if $\alpha_{j} \neq 0$ for at least one j. Otherwise, all $\alpha_{j}=0$ $(j=1, \ldots, m)$ implies that $g_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}$ is identically zero, because $m>1$. Thus, $\tau\left(g_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}\right)$ is well defined and is a positive number or ∞. We write $\tau\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ for $\tau\left(g_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}\right)$. Recall that $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in\left(\mathbb{N}_{0}^{s}\right)^{m}$ was so chosen that $g_{\left(\gamma_{1}, \ldots, \gamma_{m}\right)}$ does not vanish at ζ_{0}. Hence $0<\tau\left(\gamma_{1}, \ldots, \gamma_{m}\right)<\infty$. Now choose a sufficiently large integer N such that $N \geq \max \left\{\left|\gamma_{1}\right|, \ldots,\left|\gamma_{m}\right|\right\}$ and

$$
\begin{equation*}
N \min \left\{\tau_{1}, \ldots, \tau_{m}\right\}>\tau\left(\gamma_{1}, \ldots, \gamma_{m}\right) \tag{5.10}
\end{equation*}
$$

Let $\tau_{\text {min }}$ denote the minimum of $\tau\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, where $\alpha_{1}, \ldots, \alpha_{m}$ run over all possible s-indices of length $\leq N$. Then

$$
\begin{equation*}
\tau\left(\gamma_{1}, \ldots, \gamma_{m}\right) \geq \tau_{\min }>0 \tag{5.11}
\end{equation*}
$$

Choose $\left(\beta_{1}, \ldots, \beta_{m}\right) \in\left(\mathbb{N}_{0}^{s}\right)^{m}$ such that

$$
\max \left\{\left|\beta_{1}\right|, \ldots,\left|\beta_{m}\right|\right\} \leq N, \quad \tau\left(\beta_{1}, \ldots, \beta_{m}\right)=\tau_{\min } .
$$

We claim that with this choice of $\left(\beta_{1}, \ldots, \beta_{m}\right)$ the functions $h_{1}^{\zeta}, \ldots, h_{m}^{\zeta}$ obtained from (5.8) possess the desired properties. To verify our claim, we observe that

$$
\tau\left(\beta_{1}, \ldots, \beta_{j-1}, \alpha, \beta_{j+1}, \ldots, \beta_{m}\right) \geq \tau_{\text {min }} \quad \text { for }|\alpha| \leq N
$$

M oreover, if $\alpha=(\alpha(1), \ldots, \alpha(s)) \in \mathbb{N}_{0}^{s}$, then $\omega_{j}^{\alpha}=\left(f_{1}^{t_{i}}\right)^{\alpha(1)} \cdots\left(f_{s}^{t_{j}}\right)^{\alpha(s)}$; hence,

$$
\tau\left(\omega_{j}^{\alpha}\right)=\sum_{k=1}^{s} \alpha(k) \tau\left(f_{k}^{t_{j}}\right) \geq|\alpha| \tau_{j} .
$$

This, together with (5.10) and (5.11), implies that for $|\alpha| \geq N$

$$
\tau\left(\beta_{1}, \ldots, \beta_{j-1}, \alpha, \beta_{j+1}, \ldots, \beta_{m}\right) \geq N \min \left\{\tau_{1}, \ldots, \tau_{m}\right\}>\tau_{\min } .
$$

Noting that $\tau_{\text {min }}=\tau\left(\beta_{1}, \ldots, \beta_{m}\right)$, we conclude from (5.9) that $\lim _{\zeta \rightarrow 0} \alpha_{j, \alpha}^{\zeta}$ exists for every $\alpha \in \mathbb{N}_{0}^{s}$, and this limit is 0 if $|\alpha|>N$. Let $a_{j, \alpha}:=$ $\lim _{\zeta \rightarrow 0} a_{j, \alpha}^{\zeta}$, and let h_{j} be the polynomial given by

$$
h_{j}(z)=\sum_{\alpha \in \mathbb{N}_{0}^{S}} a_{j, \alpha} z^{\alpha}, \quad z \in \mathbb{C}^{s} .
$$

It remains to prove that h_{1}, \ldots, h_{m} are linearly independent elements in M. In order to prove $h_{j} \in M$, we use the truncation method. For a positive integer r, define $h_{j, r}^{\zeta}(z):=\sum_{|\alpha| \leq r} a_{j, \alpha}^{\zeta} z^{\alpha}, z \in \mathbb{C}^{s}$. Let $p \in I(X)$. Then p can be written as $p=\sum_{A \in \mathscr{A}} u_{A} p_{A}$, where $u_{A} \in \mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$ for each $A \in \mathscr{A}$. Choose r sufficiently large such that $r>N$ and $r \geq \operatorname{deg}\left(u_{A} p_{A}\right)$ for all $A \in \mathscr{A}$. Then we deduce from (5.7) that

$$
p_{A}^{\zeta}(D) h_{j, r}^{\zeta}(0)=p_{A}^{\zeta}(D) h_{j}^{\zeta}(0)=0 .
$$

It follows that

$$
\begin{aligned}
p(D) h_{j}(0) & =\sum_{A \in \mathscr{A}} u_{A}(D) p_{A}(D) h_{j}(0) \\
& =\lim _{\zeta \rightarrow 0} \sum_{A \in \mathscr{A}} u_{A}(D) p_{A}^{\zeta}(D) h_{j, r}^{\zeta}(0)=0 .
\end{aligned}
$$

This shows that $h_{j} \in M(j=1, \ldots, m)$. Finally, (5.9) yields

$$
a_{j, \beta_{k}}^{\zeta}=\delta_{k j}, \quad k, j=1, \ldots, m
$$

where $\delta_{k j}$ is the Kronecker sign. Thus we have $a_{j, \beta_{k}}=\lim _{\zeta \rightarrow 0} a_{j, \beta_{k}}^{\zeta}=\delta_{k j}$, thereby showing that h_{1}, \ldots, h_{m} are linearly independent. The proof of Lemma 5.2 is complete.

To conclude this section we mention the following result on simple polynomial ideals.

Theorem 5.3. If $I(X)$ is simple, then equality holds in (5.1). Moreover, the ideal $I(X)$ is simple if and only if it satisfies the following two conditions:
(i) $I(B)$ is simple for each $B \in \mathscr{B}$;
(ii) $\mathscr{V}(I(B)) \cap \mathscr{V}\left(I\left(B^{\prime}\right)\right)=\varnothing$ for $B, B^{\prime} \in \mathscr{B}$ with $B \neq B^{\prime}$.

Proof. It is easily seen that

$$
\mathscr{V}(I(X)) \subseteq \bigcup_{B \in \mathscr{B}} \mathscr{V}(I(B))
$$

If $I(X)$ is simple, then

$$
\begin{equation*}
\operatorname{codim}(I(X))=\# \mathscr{V}(I(X)) \leq \sum_{B \in \mathscr{B}} \# \mathscr{V}(I(B)) \leq \sum_{B \in \mathscr{F}} \operatorname{codim}(I(B)) \tag{5.12}
\end{equation*}
$$

This in connection with (5.1) tells us that all the inequalities in (5.12) are actually equalities. This shows that equality holds in (5.1) and the two conditions (i) and (ii) are satisfied.

Conversely, suppose the two conditions (i) and (ii) are satisfied. We wish to show that $I(X)$ is simple. If $I(X)$ is not simple, then there is some $\theta \in \mathscr{V}(I(X))$ such that the multiplicity space $M_{I(X), \theta}$ has dimension >1. Since $M_{I(X), \theta}$ is D-invariant, one can find a polynomial Q in $\mathbb{C}\left[Z_{1}, \ldots, Z_{s}\right]$ of degree 1 such that $Q(D) p_{A}(\theta)=0$ for all $A \in \mathscr{A}$. The point θ belongs to $\mathscr{V}\left(I\left(B_{0}\right)\right)$ for some $B_{0} \in \mathscr{B}$. By condition (ii), $\theta \notin \mathscr{V}(I(B))$ for any $B \in \mathscr{B} \backslash\left\{B_{0}\right\}$; hence, there exists some $y_{B} \in B$ such that $p_{y_{B}}(\theta) \neq 0$. Let $Y:=\left\{y_{B}: B \in \mathscr{B}\right.$ and $\left.B \neq B_{0}\right\}$. Then $Y \cup\{x\} \in \mathscr{A}$ for every $x \in B_{0}$. Thus, we see from our choice of Q that $Q(D)\left(p_{Y} p_{x}\right)(\theta)=0$ for every $x \in B_{0}$. But $p_{x}(\theta)=0$, so we have $p_{Y}(\theta) Q(D) p_{x}(\theta)=0$. Since $p_{Y}(\theta) \neq 0$, it follows that $Q(D) p_{x}(\theta)=0$ for all $x \in B_{0}$. This implies that $I\left(B_{0}\right)$ is not simple, violating condition (i).

6. UPPER BOUNDS FOR THE DIMENSION

H aving established the lower bound for the codimension of $I(X)$, we would like to find a sharp upper bound for it. In the case when $I(X)$ is not simple, de Boor and Ron indicated in Example 6.5 of [5] that equality might not hold in (5.1). H owever, when (X, \mathscr{B}) is a matroid, a sharp upper bound for codim $(I(X))$ is available. This kind of study was initiated by Dahmen and M icchelli in [11].

Let us recall from [26, p. 8] that (X, \mathscr{B}) is a matroid if and only if the following base-change property is satisfied: For $B_{1}, B_{2} \in \mathscr{B}$ and $y \in B_{1} \backslash$ B_{2}, there exists $x \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash y\right) \cup x \in \mathscr{B}$. A subset E of X is called a spanning set if E includes some $B \in \mathscr{B}$; otherwise, E is called a nonspanning set. F or $Y \subseteq X$, let $\mathscr{B}(Y)$ be defined as in (1.3). By $\mathscr{H}(Y)$ we denote the collection of all maximally nonspanning subsets of Y.
The dimension problem studied in [11] can be described as follows. Given a linear space S (over some field), we denote by $L(S)$ the set of all linear mappings from S to itself. Associate to each $x \in X$ a linear mapping $l_{x} \in L(S)$. The linear mappings $l_{x}(x \in X)$ are assumed to commute with each other:

$$
l_{x} l_{y}=l_{y} l_{x}, \quad x, y \in X .
$$

Thus, the product

$$
l_{A}:=\prod_{x \in A} l_{x}, \quad A \subseteq X,
$$

is well defined. Let $\mathscr{A}=\mathscr{A}(X, \mathscr{B}(X))$ be defined as in (1.2). We are interested in the dimension of the joint kernel

$$
K(X):=\bigcap_{A \in \mathscr{A}} \operatorname{ker} l_{A} .
$$

For any subset Y of $X, K(Y)$ is defined accordingly. In particular, for each $B \in \mathscr{B}$ the kernel space $K(B)$ is just $\cap_{x \in B}$ ker l_{x}. The kernel space $I(X)_{\perp}$ discussed in Section 1 is a special but important example of this general situation. In that case, S is the linear space of all formal power series in s indeterminates, and each l_{x} is a differential operator $p_{x}(D)$ induced by a polynomial p_{x} in s variables. Dahmen and Micchelli in Theorem 3.3 of [11] established the following theorem on the dimension of $K(X)$.

Theorem 6.1. If (X, \mathscr{B}) is a matroid, then

$$
\begin{equation*}
\operatorname{dim} K(X) \leq \sum_{B \in \mathscr{B}} \operatorname{dim} K(B) . \tag{6.1}
\end{equation*}
$$

By taking a closer look into their proof, I found that Theorem 6.1 could be extended as follows.

Theorem 6.2. The inequality (6.1) is valid, provided that for any subset Y of X with $\# \mathscr{B}(Y)>1$ there exists a $y \in Y$ such that
(i) $Y \backslash y$ is a spanning set, and
(ii) for any $H_{1}, H_{2} \in \mathscr{H}(Y \backslash y)$ with $H_{1} \neq H_{2},\left(H_{1} \cap H_{2}\right) \cup y$ is a nonspanning set.

Proof. The proof proceeds with induction on $\# X$. If $\# \mathscr{B}(X) \leq 1$, then (6.1) holds trivially. In particular, this is true when $\# X \leq s$. N ow assume that $\# X>s$ and $\# \mathscr{B}(X)>1$. Pick $y \in X$ such that the above conditions (i) and (ii) are satisfied for $Y=X$. Consider the linear mapping T from $K(X)$ to $\Pi_{H \in \mathscr{H}(X \backslash y)} K(H \cup y)$ given by

$$
T: f \mapsto\left(L_{X \backslash y \backslash H} f\right)_{H \in \mathscr{H}(X \backslash y)} .
$$

The kernel of T is $K(X \backslash y)$. Hence we have

$$
\operatorname{dim} K(X) \leq \operatorname{dim} K(X \backslash y)+\sum_{H \in \mathscr{H}(X \backslash y)} \operatorname{dim} K(H \cup y) .
$$

Thus, by the induction hypothesis, it follows that

$$
\begin{equation*}
\operatorname{dim} K(X) \leq \sum_{B \in \mathscr{B}(X \backslash y)} K(B)+\sum_{H \in \mathscr{H}(X \backslash y)} \sum_{B \in \mathscr{B}(H \cup y)} \operatorname{dim} K(B) \tag{6.2}
\end{equation*}
$$

If H_{1} and H_{2} are two different elements of $\mathscr{H}(X \backslash y)$, then by (ii) the set $\left(H_{1} \cup y\right) \cap\left(H_{2} \cup y\right)=\left(H_{1} \cap H_{2}\right) \cup y$ is a nonspanning one; hence,

$$
\mathscr{B}\left(H_{1} \cup y\right) \cap \mathscr{B}\left(H_{2} \cup y\right)=\varnothing .
$$

This shows that

$$
\mathscr{B}=\mathscr{B}(X \backslash y) \cup \bigcup_{H \in \mathscr{C}(X \backslash y)} \mathscr{B}(H \cup y)
$$

is a disjoint union. Therefore, the right-hand side of (6.2) equals $\Sigma_{B \in \mathscr{B}} K(B)$, and the proof of the theorem is complete.

Theorem 6.2 and Theorem 5.1 together yield the following.
Theorem 6.3. Under the conditions of Theorem 6.2,

$$
\operatorname{codim}(I(X))=\sum_{B \in \mathscr{B}} \operatorname{codim}(I(B)) .
$$

Theorems 6.2 and 6.3 were reported in [19]. It was also pointed out in [19] that Theorem 6.2 is a true generalization of Theorem 6.1.

Condition (ii) in Theorem 6.2 is called the intersection condition. In [6], de Boor, Ron, and Shen proved that the intersection condition is equivalent to having y replaceable in \mathscr{B} (see [6] for the definition of replaceability). If (X, \mathscr{B}) satisfies all the conditions in Theorem 6.2 , then (X, \mathscr{B}) is called fair by them.

Finally, we remark that Theorem 8.10 of [6] gives a better result than Theorem 6.3 of this paper. Also, using the Ext functor from homological algebra, Dahmen, Dress, and Micchelli in [7] studied the dimension problem comprehensively. In both [6, 7], however, some conditions involving \mathscr{B} must be imposed. In contrast to their work, the lower bound for codim(I) established in Theorem 5.1 of this paper is valid for an arbitrary \mathscr{B} (as long as each $B \in \mathscr{B}$ has s elements).

REFERENCES

1. L. V. A hlfors, "Complex A nalysis," 3rd ed., M cG raw-H ill, New Y ork, 1979.
2. V. I. A rnold, S. M. Gusein-Zade, and A. N. Varchenko, "Singularities of Differential M aps I," Birkhäuser, B oston, 1985.
3. A. Ben-A rtzi and A. R on, Translates of exponential box splines and their related spaces, Trans. Amer. Math. Soc. 309 (1988), 683-710.
4. C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99-115.
5. C. de Boor and A. R on, On polynomial ideals of finite codimension with applications to box spline theory, J. Math. Anal. Appl. 158 (1991), 168-193.
6. C. de Boor, A. R on, and Z. W. Shen, On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators, Adv. in Appl. Math., 17 (1996), 209-250.
7. W. Dahmen, A. Dress, and C. A . M icchelli, On M ultivariate Splines, M atroids, and the Ext-Functor, Adv. in Appl. Math., 17 (1996), 251-307.
8. W. Dahmen, R. Q. Jia, and C. A. M icchelli, On linear dependence relations for integer translates of compactly supported distributions, Math. Nachr. 151 (1991), 303-310.
9. W. Dahmen and C. A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), 243-262.
10. W. Dahmen and C. A. M icchelli, On the solution of certain systems of partial difference equations and linear independence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), 305-320.
11. W. Dahmen and C. A. Micchelli, On multivariate E-splines, Adv. in Math. 76 (1989), 33-93.
12. W. Dahmen and C. A. Micchelli, Local dimension of piecewise polynomial spaces, syzygies, and solutions of systems of partial differential equations, Math. Nachr. 148 (1990), 117-136.
13. N. Dyn and A. Ron, Local approximation by certain spaces of multivariate exponential polynomials, approximation order of exponential box splines and related interpolation problems, Trans. Amer. Math. Soc. 319 (1990), 381-404.
14. O. Forster, "Lectures on R iemann Surfaces," Springer-V erlag, New Y ork, 1981.
15. W. Fulton, "A Igebraic Curves," A ddison-W esley, New Y ork, 1989.
16. W. G röbner, "A Igebraische Geometrie II," Bibliograph. Inst., M annheim, 1970.
17. V. Guillemin and A. Pollack, "Differential Topology," Prentice-H all, Englewood Cliffs, NJ, 1974.
18. W. V. D. Hodge and D. Pedoe, "M ethods of Algebraic Geometry," V ol. I, Cambridge U niv. Press, Cambridge, 1947.
19. R. Q. Jia, Perturbation of polynomial ideals and its applications to multivariate approximation theory, "A Igebraic and Combinatorial Problems in M ultivariate A pproximation Theory, Oberwolfach Institute of M athematics, Germany, O ctober 21-27, 1990," organized by W. Dahmen and A. Dress.
20. R. Q. Jia, S. D. Riemenschneider, and Z. W. Shen, Dimension of kernels of linear operators, Amer. J. Math. 114 (1992), 157-184.
21. J. J. Lei and R. Q. Jia, A pproximation by piecewise exponentials, SIAM J. Math. Anal. 22 (1991), 1776-1789.
22. N. G. Lloyd, "D egree Theory," Cambridge U niv. Press, Cambridge, 1978.
23. V. P. Palamodov, M ultiplicity of holomorphic mappings, Funct. Anal. Appl. 1 (1967), 218-226.
24. I. R. Shafarevich, "Basic A Igebraic Geometry," Springer-V erlag, Berlin, 1974.
25. Z. W. Shen, Dimension of certain kernel spaces of linear operators, Proc. Amer. Math. Soc. 112 (1991), 381-390.
26. D. J. A. W elsh, "M atroid Theory," A cademic Press, London, 1976.

[^0]: * Supported in part by NSE R C Canada under Grant OGP 121336.

