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Abstract

Given a ®nitely supported sequence a on Zs and an s� s dilation matrix M, the

transition operator Ta is the linear operator de®ned by Tav�a� :�Pb2Zs a�Maÿ b�v�b�,
where a 2 Zs and v lies in `0�Zs�, the linear space of all ®nitely supported sequences on

Zs. In this paper we investigate the spectral properties of the transition operator Ta and

apply these properties to the study of the approximation and smoothness properties of
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1. Introduction

The purpose of this paper is to investigate the spectral properties of the
transition operator associated to a multivariate re®nement equation and their
applications to the study of the approximation and smoothness properties of
the corresponding re®nable function.
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A re®nement equation is a functional equation of the form

/ �
X
a2Zs

a�a�/�M � ÿa�; �1:1�

where a is a ®nitely supported sequence on Zs, and M is an s� s integer matrix
such that limn!1Mÿn � 0. The matrix M is called a dilation matrix, and the
sequence a is called the re®nement mask. Any function satisfying a re®nement
equation is called a re®nable function.

If a satis®esX
a2Zs

a�a� � m :� jdet M j; �1:2�

then it is well known that there exists a unique compactly supported distri-
bution / satisfying the re®nement equation (1.1) subject to the condition
/̂�0� � 1. This distribution is said to be the normalized solution to the re®ne-
ment equation with mask a. Throughout this paper we assume that the con-
dition (1.2) is satis®ed.

In this paper, the Fourier transform of an integrable function f on Rs is
de®ned by

f̂ �n� �
Z

Rs
f �x�eÿix�n dx; n 2 Rs;

where x � n denotes the inner product of two vectors x and n in Rs. The domain
of the Fourier transform can be naturally extended to include compactly
supported distributions.

A multi-index is an s-tuple l � �l1; . . . ; ls� with its components being
nonnegative integers. De®ne

xl :� xl1

1 � � � xls
s for x � �x1; . . . ; xs� 2 Rs:

We may regard xl1

1 � � � xls
s as a monomial of total degree jlj :� l1 � � � � � ls. For

a nonnegative integer k, let Pk denote the set of all polynomials of (total) degree
at most k. A sequence u on Zs is called a polynomial sequence if there exists a
polynomial p such that u�a� � p�a� for all a 2 Zs. The degree of u is the same as
the degree of p. For j � 1; . . . ; s, we use Djf to denote the partial derivative of f
with respect to the jth coordinate. For a multi-index l � �l1; . . . ; ls�, Dl stands
for the di�erential operator Dl1

1 � � �Dls
s . If p �Pl clxl is a polynomial, then we

use p�D� to denote the di�erential operator
P

l clDl.
We denote by `�Zs� the linear space of all sequences on Zs, and by `0�Zs� the

linear space of all ®nitely supported sequences on Zs. For c 2 Zs, we denote by
dc the element in `0�Zs� given by dc�c� � 1 and dc�a� � 0 for all a 2 Zs n fcg. In
particular, we write d for d0. For j � 1; . . . ; s, let ej be the jth coordinate unit
vector. The di�erence operator rj on `�Zs� is de®ned by rju :� uÿ u�� ÿ ej�,
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u 2 `�Zs�. For a multi-index l � �l1; . . . ; ls�, rl is the di�erence operator
rl1

1 � � � rls
s .

Let a be an element in `0�Zs�. The transition operator Ta is the linear operator
on `0�Zs� de®ned by

Tav�a� :�
X
b2Zs

a�Maÿ b�v�b�; a 2 Zs; �1:3�

where v 2 `0�Zs�. The subdivision operator Sa is the linear operator on `�Zs�
de®ned by

Sau�a� :�
X
b2Zs

a�aÿMb�u�b�; a 2 Zs; �1:4�

where u 2 `�Zs�. We introduce a bilinear form on the pair of the linear spaces
`0�Zs� and `�Zs� as follows:

hu; vi :�
X
a2Zs

u�ÿa�v�a�; u 2 `�Zs�; v 2 `0�Zs�: �1:5�

Then `�Zs� is the dual space of `0�Zs� with respect to this bilinear form. It is
easily seen that

hSau; vi � hu; Tavi 8u 2 `�Zs�; v 2 `0�Zs�:
Hence, Sa is the algebraic adjoint of Ta with respect to the bilinear form given in
(1.5).

When the space dimension s � 1, Deslauriers and Dubuc [6] discussed the
spectral properties of the transition operator and applied those properties to
their study of interpolatory subdivision schemes. For the multivariate case
(s > 1), the subdivision operator was introduced by Cavaretta et al. [3] in their
investigation of stationary subdivision schemes. In [9], Goodman et al. estab-
lished spectral radius formulas for subdivision operators.

In [10], Han and Jia showed that the transition operator Ta has only ®nitely
many nonzero eigenvalues. The following is an outline of the proof. For a
bounded subset H of Rs, the set

P1
n�1 MÿnH is de®ned asX1

n�1

Mÿnhn : hn 2 H for n � 1; 2; . . .

( )
:

If H is a compact set, then
P1

n�1 MÿnH is also compact. By suppa we denote
the set fa 2 Zs : a�a� 6� 0g. Let

X :�
X1
n�1

Mÿn�suppa�
 !

\ Zs: �1:6�
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We use `�X� to denote the linear space of all sequences supported in X. It is
easily seen that `�X� is invariant under Ta. Moreover, if v is an eigenvector of
Ta corresponding to a nonzero eigenvalue of Ta, then v must lie in `�X�.
Consequently, any nonzero eigenvalue of Ta must be an eigenvalue of the
matrix

a�Maÿ b�� �a;b2X:

In particular, Ta has only ®nitely many nonzero eigenvalues. The spectral ra-
dius of Ta, denoted by q�Ta�, is de®ned as the spectral radius of the matrix
�a�Maÿ b��a;b2X.

In [16], using the subdivision and transition operators, Jia investigated the
approximation properties of a re®nable function in terms of its re®nement
mask. Let us review some basic results about approximation with shift-in-
variant spaces.

For a compactly supported distribution / on Rs and a sequence c 2 `�Zs�,
the semi-convolution of / with c is de®ned by

/ �0 c :�
X
a2Zs

/�� ÿ a�c�a�:

Let S�/� denote the linear space f/ �0 c : c 2 `�Zs�g. We call S�/� the shift-
invariant space generated by /.

A compactly supported distribution / on Rs is said to have accuracy k if
S�/� contains Pkÿ1 (see [11]). If / has accuracy k and /̂�0� 6� 0, then for
any polynomial sequence u of degree at most k ÿ 1, the semi-convolution
/ �0 u is a polynomial of the same degree. Conversely, for any p 2 Pkÿ1,
there exists a unique polynomial sequence u such that p � / �0 u. See
[1, Proposition 1.1] and [15, Lemma 8.2] for these results. Suppose 16 p61
and / is a compactly supported function in Lp�Rs� such that /̂�0� 6� 0. It
was proved in [14] that S�/� provides approximation order k if and only if
/ has accuracy k.

Let / be the normalized solution of the re®nement equation (1.1) with mask
a and dilation matrix M. We say that a satis®es the sum rules of order k ifX

b2Zs

a�c�Mb�p�c�Mb� �
X
b2Zs

a�Mb�p�Mb� 8p 2 Pkÿ1 and c 2 Zs:

It was proved in [16] that / has accuracy k provided that a satis®es the sum
rules of order k. Let

Vk :� v 2 `0�Zs� :
X
a2Zs

p�a�v�a� � 0 8p 2 Pk

( )
:

Then a satis®es the sum rules of order k if and only if Vkÿ1 is invariant under the
transition operator Ta.
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In [17], Jia analyzed the smoothness of re®nable functions in terms of their
masks. For m > 0, we denote by W m

2 �Rs� the Sobolev space of all functions f 2
L2�Rs� for whichZ

Rs
jf̂ �n�j2�1� jnjm�2 dn <1:

The smoothness order m�f � of a function f 2 L2�Rs� is de®ned by

m�f � :� supfm : f 2 W m
2 �Rs�g:

Let / be the normalized solution of the re®nement equation (1.1) with mask a
and dilation matrix M. We assume that M is isotropic, i.e., M is similar to a
diagonal matrix diagfr1; . . . ; rsg with jr1j � � � � � jrsj. Let b be the sequence
given by

b�a� :�
X
b2Zs

a�a� b�a�b�=m; a 2 Zs; �1:7�

where m � jdet M j and a denotes the complex conjugate of a. Suppose a sat-
is®es the sum rules of order k. Then b satis®es the sum rules of order 2k. Hence
V2kÿ1 is invariant under Tb, the transition operator associated to b. Let qk de-
note the spectral radius of TbjV2kÿ1

. Suppose / lies in L2�Rs�. It was proved in
[17] that

m�/�P ÿ �logm qk�s=2: �1:8�
If, in addition, k > ÿ�logm qk�s=2 and the shifts of / are stable, then equality
holds in (1.8). Note that the shifts of / are stable if and only if, for any n 2 Rs,
there exists an element b 2 Zs such that /̂�n� 2bp� 6� 0. Moreover, if the shifts
of / are linearly independent, that is,X

a2Zs

c�a�/�� ÿ a� � 0 ) c�a� � 0 8a 2 Zs;

then the shifts of / are stable. See [18] for these facts.
The following is an outline of the paper.
Section 2 is devoted to a study of the spectrum of the transition operator.

Suppose the dilation matrix M has eigenvalues r1; . . . ; rs. Write r for the s-
tuple �r1; . . . ; rs�. By convention, for a multi-index l � �l1; . . . ; ls� we have

rl :� rl1

1 � � � rls
s and rÿl :� rÿl1

1 � � � rÿls
s :

We shall show that the spectrum of the transition operator Ta contains
frÿl : jlj < kg, provided / has accuracy k. This gives an upper bound for the
accuracy of / in terms of the re®nement mask a.
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In Section 3 we shall investigate invariant subspaces of the subdivision and
transition operators. We give a necessary and su�cient condition for a sub-
space of polynomial sequences to be invariant under the subdivision operator.
Furthermore, we clarify the relationship among the spectra of the transition
operator restricted to di�erent invariant subspaces. In particular, we establish
the following formula

spec Taj`�X�
� �

� spec Taj`�X�\Vkÿ1

� �
[ frÿl : jlj < kg;

where X is given by (1.6). Thus, the spectral radius of TajVkÿ1
can be found from

the spectrum of Taj`�X�. This result is signi®cant for calculating the smoothness
order of a re®nable function in terms of its mask.

Section 4 is devoted to a study of the smoothness order of re®nable func-
tions which are convolutions of box splines with re®nable distributions. Box
splines are natural extensions of cardinal B-splines to multidimensional spaces.
In the univariate case, a factorization technique can be used to compute the
smoothness order of a re®nable function by ®nding the dominant eigenvalue of
a certain matrix. In the mutltivariate case, if a re®nable function is the con-
volution of a box spline with a re®nable distribution, we will give a method to
compute its smoothness order by ®nding the dominant eigenvalues of certain
transition matrices.

2. The spectrum of the transition operator

The spectrum of a square matrix A is denoted by spec�A�, and it is under-
stood to be the multiset of its eigenvalues. In other words, multiplicities of
eigenvalues are counted in the spectrum of a square matrix. The transpose of a
matrix A is denoted by AT.

Suppose T is a linear mapping on a ®nite dimensional vector space V over C.
Let fv1; . . . ; vng be an ordered basis of V. If

T �vi� � b1iv1 � � � � � bnivn; i � 1; . . . ; n;

then �bij�16 i;j6 n is called the matrix representation of T with respect to
fv1; . . . ; vng. The spectrum of T is the same as the spectrum of the matrix
�bij�16 i;j6 n.

Suppose / is the normalized solution of the re®nement equation (1.1) with
mask a and dilation matrix M. Let supp/ denote the support of /. From (1.1) we
observe that /�x� 6� 0 implies /�Mxÿ a� 6� 0 for some a 2 suppa. It follows that

x 2 Mÿ1�suppa� �Mÿ1�supp/�:
Hence we have
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supp/ � Mÿ1�suppa� �Mÿ1�supp/�:
A repeated use of the above relation yields

supp/ �
Xn

j�1

Mÿj�supp a� �Mÿn�supp/�; n � 1; 2; . . . :

Consequently, we obtain

supp/ �
X1
n�1

Mÿn�suppa�: �2:1�

It follows that Zs \ supp/ � X, where X is the set given in (1.6).
Let Ta and Sa be the transition operator and the subdivision operator given

in (1.3) and (1.4), respectively. It was pointed out that Sa is the algebraic adjoint
of Ta with respect to the bilinear form given in (1.5). Let X be a nonempty ®nite
subset of Zs. Suppose `�X� is invariant under Ta. By ÿX we denote the set
fÿa : a 2 Xg. Clearly, `�ÿX� is the dual space of `�X� with respect to the
bilinear form

hu; viX :�
X
a2X

u�ÿa�v�a�; u 2 `�ÿX�; v 2 `�X�: �2:2�

Let Q :� QX be the linear mapping from `�Zs� to `�ÿX� given by

QXu�a� � u�ÿa� for a 2 ÿX;

0 for a 62 ÿX:

�
�2:3�

Then QSa maps `�ÿX� to `�ÿX�. We claim that �QSa�j`�ÿX� is the algebraic
adjoint of Taj`�X�. Indeed, for u 2 `�ÿX� and v 2 `�X� we have

hQSau; viX � hQSau; vi � hSau; vi � hu; Tavi � hu; TaviX:
This justi®es our claim. Consequently, the spectra of �QSa�j`�ÿX� and Taj`�X� are
the same. Moreover, for u 2 `�Zs� and v 2 `�X� we have

hQSa�Quÿ u�; vi � hQuÿ u; Tavi � 0;

since Tav 2 `�X� and Quÿ u vanishes on `�ÿX�. Thus, QSa�Quÿ u��a� � 0 for
all a 2 ÿX. But, by the de®nition of Q, we have QSa�Quÿ u��a� � 0 for all
a 2 Zs n �ÿX�. This shows QSa�Quÿ u� � 0. In other words,

QSaQ � QSa: �2:4�
For u 2 `�Zs�, we haveX

a2Zs

u�a�/�� ÿ a� �
X
a2Zs

Sau�a�/�M � ÿa�: �2:5�
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Indeed, since / satis®es the re®nement equation (1.1), we obtainX
a2Zs

u�a�/�� ÿ a� �
X
a2Zs

u�a�
X
b2Zs

a�b�/�M � ÿMaÿ b�

�
X
c2Zs

w�c�/�M � ÿc�;

where

w�c� �
X
a2Zs

a�cÿMa�u�a�; c 2 Zs:

Hence w � Sau. This veri®es (2.5).
By K�/� we denote the linear space given by

K�/� :� u 2 `�Zs� : / �0 u � 0f g:
It follows from (2.5) that K�/� is invariant under the subdivision operator Sa.

Lemma 2.1. Let Q :� QX be the linear mapping from `�Zs� to `�ÿX� given by
(2.3), where X � Zs \P1

n�1 MÿnH for some compact set H � suppa. If u is a
sequence on Zs such that p :� / �0 u is a nonzero polynomial, then Qu 62 Q�K�/��.

Proof. Set

Gr :� f�x1; . . . ; xs� 2 Rs : jx1j � � � � � jxsj < rg; r > 0:

By (2.1), the compact set supp/ is disjoint from the closed set Zs n X; hence
there exists some r > 0 such that

supp/� Gr� � \ �Zs n X� � ;:
Suppose x 2 Gr and a 2 Zs. Then /�x� a� 6� 0 implies x� a 2 supp/. It fol-
lows that a 2 supp/� Gr. Consequently,

a 2 Zs \ supp/� Gr� � � X:

In other words, x 2 Gr and a 62 X imply /�x� a� � 0. Therefore,

p�x� �
X
a2Zs

u�a�/�xÿ a�

�
X
a2Zs

u�ÿa�/�x� a�

�
X
a2X

u�ÿa�/�x� a�; x 2 Gr:

If Qu 2 Q�K�/��, then there would exist some w 2 K�/� such that Qu � Qw. It
follows that u�ÿa� � w�ÿa� for all a 2 X. Thus, for all x 2 Gr,
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p�x� �
X
a2X

u�ÿa�/�x� a� �
X
a2X

w�ÿa�/�x� a�

�
X
a2Zs

w�ÿa�/�x� a� � 0;

which is impossible, because p is a nonzero polynomial. This veri®es
Qu 62 Q�K�/��. �

We are in a position to establish the main result of this section.

Theorem 2.2. Let / be the normalized solution of the re®nement equation with
mask a and dilation matrix M. If / has accuracy k, then the spectrum of the
transition operator Ta contains frÿl : jlj < kg, where r � �r1; . . . ; rs� is the s-
tuple of the eigenvalues of M and rÿl :� rÿl1

1 � � � rÿls
s for a multi-index

l � �l1; . . . ; ls�.

Proof. Let X be the set given in (1.6), and let Q :� QX be the linear mapping
from `�Zs� to `�ÿX� as de®ned in (2.3). Since the spectra of �QSa�j`�ÿX� and
Taj`�X� are the same, it su�ces to show that the spectrum of �QSa�j`�ÿX� contains
frÿl : jlj < kg. For this purpose, we introduce the set

W :� u 2 `�Zs� : / �0 u 2 Pkÿ1f g:
By (2.5), W is invariant under Sa. Clearly, Q�W � is a subspace of `�ÿX�. The
theorem will be proved by ®nding the matrix representation of QSa with respect
to a suitable basis of Q�W �.

There exists an invertible matrix H � �hij�16 i;j6 s such that HMHÿ1 is a tri-
angular matrix:

HMHÿ1 �
r11

..

. . .
.

rs1 � � � rss

2664
3775:

For i � 1; . . . ; s and x � �x1; . . . ; xs� 2 Rs, let li�x� :� hi1x1 � � � � � hisxs. Then
Hx can be represented as �l1�x�; . . . ; ls�x��T. It follows that

l1�Mx�
..
.

ls�Mx�

2664
3775 � HMx �

r11

..

. . .
.

rs1 � � � rss

2664
3775Hx �

r11

..

. . .
.

rs1 � � � rss

2664
3775

l1�x�
..
.

ls�x�

2664
3775:
�2:6�

For simplicity, we write rj for rjj, j � 1; . . . ; s. Thus, r1; . . . ; rs are the eigen-
values of the matrix M. For two multi-indices l � �l1; . . . ; ls� and
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m � �m1; . . . ; ms�, we write l � m if there exists some j, 16 j6 s, such that lj < mj,
and lj�1 � mj�1; . . . ; ls � ms.

For a multi-index l � �l1; . . . ;ls�, let pl be the polynomial given by

pl :� ll1

1 � � � lls
s :

Clearly, pl (jlj < k) are linearly independent. With the help of (2.6) we obtain

pl�Mx� � �l1�Mx��l1 � � � �ls�Mx��ls � rlpl�x� � ql�x�; x 2 Rs;

where ql is a linear combination of pm with jmj � jlj and m � l. It follows that

pl�x� � rÿlpl�Mx� ÿ rÿlql�x�:
A repeated use of the above relation yields

pl�x� � rÿlpl�Mx� � rl�Mx�; �2:7�
where rl is a linear combination of pm with jmj � jlj and m � l.

By the assumption, / has accuracy k. Thus, for each l with jlj < k, the
polynomial pl lies in S�/�. Since /̂�0� 6� 0, there exists a unique polynomial
sequence ul 2 `�Zs� such that

pl �
X
a2Zs

ul�a�/�� ÿ a�: �2:8�

It follows from (2.7) and (2.8) that

pl�x� � rÿlpl�Mx� � rl�Mx� �
X
a2Zs

rÿlul�a� � vl�a�
� �

/�Mxÿ a�; �2:9�

where vl is a linear combination of um with jmj � jlj and m � l. On the other
hand, we deduce from (2.5) and (2.8) that

pl�x� �
X
a2Zs

Saul�a�/�Mxÿ a�:

Comparing this equation with (2.9), we obtain

Saul � rÿlul � vl � wl;

where wl 2 K�/�. By (2.4) it follows that

QSa�Qul� � rÿl�Qul� � Qvl � Qwl: �2:10�
Let U :� U0 � � � � � Ukÿ1, where each Uj (j � 0; 1; . . . ; k ÿ 1) is the linear span
of ul, jlj � j. Then W � U � K�/�. By Lemma 2.1, Q�U� \ Q�K�/�� � f0g.
Hence Q�W � is the direct sum of Q�U� and Q�K�/��. Moreover, Q�U� is the
direct sum of Q�U0�; . . . ;Q�Ukÿ1�. Choose a basis Y for Q�K�/��. For each j,
the set Yj :� fQul : jlj � jg is a basis for Q�Uj�. The order of this basis is

164 R.-Q. Jia, S. Zhang / Linear Algebra and its Applications 292 (1999) 155±178



arranged in such a way that Qum precedes Qul whenever m � l. Consequently,
Y [ Y0 [ � � � [ Ykÿ1 is a basis for Q�W �. With respect to this basis, (2.10) tells us
that QSa has the following matrix representation:

E F0 F1 � � � Fkÿ1

E0 0 � � � 0

E1 � � � 0

. .
. ..

.

Ekÿ1

266666664

377777775;

where each Ej (j � 0; . . . ; k ÿ 1) is a triangular matrix with rÿl (jlj � j) being
the entries in its main diagonal. We conclude that the spectrum of �QSa�jQ�W �
contains frÿl : jlj < kg, as desired. �

We emphasize that the conclusion of Theorem 2.2 is valid without any as-
sumption of stability of /.

Example 2.3. Let M be the matrix

1 ÿ1

1 1

� �
;

and let a be the sequence on Z2 such that a�a� � 0 for a 2 Z2 n �ÿ2; 2�2 and

�a�a1; a2��ÿ26 a1;a2 6 2 �
1

32

0 ÿ1 0 ÿ1 0

ÿ1 0 10 0 ÿ1

0 10 32 10 0

ÿ1 0 10 0 ÿ1

0 ÿ1 0 ÿ1 0

26666664

37777775:

Let / be the normalized solution of the re®nement equation (1.1) with mask a
and dilation matrix M given as above. Then / has accuracy 4 but does not have
accuracy 5.

It can be easily checked that a satis®es the sum rules of order 4. Hence / has
accuracy 4. Let us show that / does not have accuracy 5. The matrix M has
two eigenvalues r1 � 1� i and r2 � 1ÿ i, where i denotes the imaginary unit.
We have suppa � �ÿ2; 2�2 andX1

n�1

Mÿn��ÿ2; 2�2� � �x1; x2� 2 R2 : jx1j6 6; jx2j6 6; jx1 ÿ x2j6 8;
�

jx1 � x2j6 8
	
:
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The set X :� Z2 \ �P1
n�1 Mÿn��ÿ2; 2�2�� has exactly 129 points. Among the 129

eigenvalues of the matrix A :� �a�Maÿ b��a;b2X the following are of the form
rÿl1

1 rÿl2

2 for some double-index �l1; l2� with l1 � l26 4:

1; 0:5ÿ 0:5i; 0:5� 0:5i; ÿ0:5i; 0:5; 0:5i;

ÿ 0:25ÿ 0:25i; 0:25ÿ 0:25i; 0:25� 0:25i; ÿ0:25� 0:25i;

ÿ 0:25; 0:25i; ÿ0:25i:

Since / has accuracy 4, we expect that A has eigenvalues rÿl1

1 rÿl2

2 for all
double-indices �l1; l2� with l1 � l26 3. The above computation con®rms our
expectation. But A has only three eigenvalues of modulus 0:25. Therefore, by
Theorem 2.2, / does not have accuracy 5. �

3. Invariant subspaces of the transition operator

In this section we investigate invariant subspaces of the subdivision and
transition operators. We are particularly interested in invariant subspaces of
the subdivision operator which consist of polynomial sequences. The results
are then applied to smoothness analysis of re®nable functions in terms of their
masks.

Let P denote the linear space of all polynomials of s variables. For a
compactly supported distribution / on Rs, the intersection S�/� \P is not of
the form Pk in general. But S�/� \P is always shift-invariant, i.e., p 2 S�/� \
P implies p�� ÿ a� 2 S�/� \P for all a 2 Zs. It is easily seen that a shift-in-
variant subspace P of P is D-invariant, that is, p 2 P implies all its partial
derivatives belong to P .

Suppose / is a compactly supported distribution on Rs such that /̂�0� 6� 0.
Let P be a ®nite dimensional D-invariant subspace of P. Then P � S�/� if and
only if

p�ÿiD�/̂�2pb� � 0 8p 2 P and b 2 Zs n f0g:
Suppose P � S�/�. Then u 2 P jZs implies p :� / �0 u lies in P. Conversely, for
each p 2 P , there exists a unique polynomial sequence u 2 P jZs such that
p � / �0 u. See [1] for these results.

Now let / be the normalized solution of the re®nement equation with mask
a and dilation matrix M, where

P
a2Zs a�a� � m � j det M j. Let C be a complete

set of representatives of the distinct cosets of Zs=MZs, and let H be a complete
set of representatives of the distinct cosets of Zs=MT Zs. Recall that a satis®es
the sum rules of order k implies / has accuracy k. The converse of this
statement is valid under the additional condition that
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N�/� \ �2p�MT �ÿ1H� � ;; �3:1�
where

N�/� :� fn 2 Rs : /̂�n� 2pb� � 0 8b 2 Zsg:
These results can be extended to shift-invariant subspaces of P. Let P be a
®nite dimensional shift-invariant subspace of P. IfX

b2Zs

a�c�Mb�p�ÿcÿMb� �
X
b2Zs

a�Mb�p�ÿMb�

8p 2 P and c 2 C; �3:2�
then P � S�/�. Conversely, if P � S�/� and (3.1) is valid, then a satis®es the
conditions in (3.2). The proof is similar to the one given in [16].

It was proved in [16] that a satis®es the sum rules of order k if and only if
Pkÿ1jZs is invariant under the subdivision operator Sa. In order to extend this
result to shift-invariant subspaces of P, additional work is needed.

Theorem 3.1. Let M be a dilation matrix, and let a be an element in `0�Zs� such
that

P
a2Zs a�a� � m � j det M j. Suppose P is a ®nite dimensional shift-invariant

subspace of P. Then P jZs is invariant under Sa if and only if a satis®es the con-
ditions in (3.2) and p 2 P implies p�Mÿ1�� 2 P .

Proof. Suppose U :� P jZs is invariant under Sa. Let us ®rst show that SajU is
one-to-one. For this purpose, choose an element u in U such that Sau � 0. ThenX

b2Zs

a�aÿMb�u�b� � 0 8a 2 Zs: �3:3�

Suppose u 6� 0. Since u is a polynomial sequence, there exists a multi-index l
and a complex number c 6� 0 such that rlu�b� � c for all b 2 Zs. It follows
from (3.3) thatX

b2Zs

a�aÿMb�rlu�b� � 0 8a 2 Zs:

Hence
P

b2Zs a�aÿMb� � 0 for all a 2 Zs. This contradicts the assumption
that

P
a2Zs a�a� � m 6� 0. Therefore, SajU is one-to-one. But U is ®nite dimen-

sional. Hence SajU is one-to-one and onto.
Next, we show that p 2 P implies p�M �� 2 P . Let p 2 P . Since SajU is onto,

there exists f 2 P such that pjZs � Sa�f jZs�, that is, p�a� �Pb2Zs a�aÿMb�f �b�
for all a 2 Zs. It follows that

p�Ma� �
X
b2Zs

a�MaÿMb�f �b� �
X
b2Zs

a�Mb�f �aÿ b� 8a 2 Zs:

R.-Q. Jia, S. Zhang / Linear Algebra and its Applications 292 (1999) 155±178 167



Let q�x� :�Pb2Zs a�Mb�f �xÿ b�, x 2 Rs. Since P is shift-invariant, q belongs
to P. Thus, q and p�M �� agree on the lattice Zs. Therefore, we have
p�M �� � q 2 P .

For p 2 P let

u�c� :�
X
b2Zs

a�Mb� c�p�ÿMbÿ c�; c 2 Zs:

We claim that u is a polynomial sequence. Indeed, by using Taylor's formula,
we obtain

p�ÿMbÿ c� �
X

l

tl�ÿMb��ÿc�l;

where tl :� Dlp=l!. Since P is D-invariant, tl 2 P for every multi-index l. For
x 2 Rs, set ql�x� :� tl�Mx�. By what has been proved, we have ql 2 P . Let
ul :� qljZs . Then for c 2 Zs,

u�c� �
X
b2Zs

a�Mb� c�p�ÿMbÿ c�

�
X
b2Zs

X
l

a�c�Mb�ul�ÿb��ÿc�l �
X

l

Saul�c� �ÿc�l:

Since U is invariant under Sa, Saul 2 U . Hence u is a polynomial sequence. By
the de®nition of u, we have u�c�Mg� � u�c� for all g 2 Zs and c 2 Zs. In other
words, u is a constant sequence on the lattice c�MZs for each c 2 Zs.
Therefore, u itself must be a constant sequence. This shows that a satis®es the
conditions in (3.2). Consequently, P � S�/�, where / is the normalized solu-
tion of the re®nement equation with mask a and dilation matrix M.

It remains to prove that p 2 P implies p�Mÿ1�� 2 P . Let p 2 P . Then there
exists a unique u 2 U such that p � / �0 u. From (2.5) we deduce that

p�Mÿ1x� �
X
a2Zs

u�a�/�Mÿ1xÿ a� �
X
a2Zs

Sau�a�/�xÿ a�:

Since U is invariant under Sa, we have Sau 2 U . This shows p�Mÿ1�� 2 P .
Now suppose a satis®es the conditions in (3.2) and p 2 P implies

p�Mÿ1�� 2 P . We wish to show that U � P jZs is invariant under Sa. Let p 2 P
and u � pjZs . We ®rst show that Sau is a polynomial sequence. Set
q�x� :� p�Mÿ1x�, x 2 Rs. By our assumption, q 2 P . An application of Taylor's
formula gives

q�Mb� � q�ÿa�Mb� a� �
X

l

ql�ÿa�Mb�al;

where ql � Dlp=l!. Since P is D-invariant, we have ql 2 P for all multi-indices
l. It follows that
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Sau�a� �
X
b2Zs

a�aÿMb�p�b� �
X
b2Zs

a�aÿMb�q�Mb�

�
X

l

X
b2Zs

a�aÿMb�ql�ÿa�Mb�
" #

al:

Since a satis®es the conditions in (3.2), cl :�Pb2Zs a�aÿMb�ql�aÿMb� is
independent of a. Therefore, Sau�a� �Pl clal for all a 2 Zs. This shows that
Sau is a polynomial sequence.

To ®nish the proof, we observe that

Sau�Mc� �
X
b2Zs

a M�cÿ b�� �u�b� �
X
b2Zs

a�Mb�p�cÿ b�; c 2 Zs:

Since P is shift-invariant, there exists f 2 P such thatX
b2Zs

a�Mb�p�cÿ b� � f �c� 8c 2 Zs:

Let g�x� :� f �Mÿ1x�, x 2 Rs. Then g 2 P and

Sau�Mc� � f �c� � g�Mc� 8c 2 Zs:

This shows that Sau and g agree on the lattice MZs. But both Sau and gjZs are
polynomial sequences. Therefore, Sau � gjZs 2 U . We conclude that U is in-
variant under Sa. �

The following theorem clari®es the relationship among the spectra of the
transition operator restricted to di�erent invariant subspaces.

Theorem 3.2. Let U be a ®nite dimensional subspace of `�Zs�, and let

V :� v 2 `0�Zs� :
X
a2Zs

u�ÿa�v�a� � 0 8u 2 U

( )
: �3:4�

Then U is invariant under the subdivision operator Sa if and only if V is in-
variant under the transition operator Ta. Let X be a ®nite subset of Zs such that
`�X� is invariant under Ta, and let Q :� QX be the linear mapping from `�Zs� to
`�ÿX� as de®ned in (2.3). If U is invariant under Sa, and if QjU is one-to-one,
then

spec Taj`�X�
� �

� spec Taj`�X�\V

� �
[ spec SajU

ÿ �
: �3:5�

In particular, the above relation is valid when X � Zs \P1
n�1 MÿnH for some

compact set H � suppa and U � P jZs for some ®nite dimensional shift-invariant
subspace P of P .
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Proof. Let hu; vi be the bilinear form de®ned in (1.5). Then v 2 V if and only if
hu; vi � 0 for all u 2 U . Suppose U is invariant under Sa. Then for v 2 V we have

hu; Tavi � hSau; vi � 0 8u 2 U :

Hence v 2 V implies Tav 2 V . This shows that V is invariant under Ta.
Choose a basis fu1; . . . ; ung for U. Then there exist v1; . . . ; vn 2 `0�Zs� such

that huj; vki � djk for j; k � 1; . . . ; n, where djk stands for the Kronecker sign. It
is easily seen that `0�Zs� is the direct sum of V and the linear span of v1; . . . ; vn.
Suppose V is invariant under Ta. We wish to show that U is invariant under Sa.
Let u 2 U and w � Sau. Then

hw; vi � hSau; vi � hu; Tavi � 0 8v 2 V :

Moreover, with cj :� hw; vji, j � 1; . . . ; n, we have

hwÿ �c1u1 � � � � � cnun�; vji � 0 8 j � 1; . . . ; n:

It follows that hwÿ �c1u1 � � � � � cnun�; yi � 0 for all y 2 `0�Zs�. This shows
that w � c1u1 � � � � � cnun 2 U . In other words, U is invariant under Sa. This
proves the ®rst statement of the theorem.

Now suppose U is invariant under Sa. Choose a basis fu1; . . . ; urg for U.
Since QjU is one-to-one, fQu1; . . . ;Qurg is a basis for Q�U�. We supplement
elements ur�1; . . . ; un in `�ÿX� such that fQu1; . . . ;Qur; ur�1; . . . ; ung forms a
basis for `�ÿX�. Clearly, Quj � uj for j � r � 1; . . . ; n. Suppose

QSa�Quj� �
Xn

k�1

bjk�Quk�; j � 1; . . . ; n: �3:6�

Let B :� �bjk�16 j;k6 n. Then BT, the transpose of B, is the matrix of the linear
mapping �QSa�j`�ÿX� with respect to the basis fQu1; . . . ;Qung. Since U is in-
variant under Sa, Q�U� is invariant under QSa in light of (2.4). Therefore, bjk �
0 for j � 1; . . . ; r and k � r � 1; . . . ; n. In other words, B is a block triangular
matrix:

B � E 0

G F

� �
;

where E � �bjk�16 j;k6 r and F � �bjk�r�16 j;k6 n. Since `�X� is invariant under Ta,
by (2.4) we have QSaQ � QSa. By our assumption, QjU is one-to-one. Thus, it
follows from (3.6) that

Sauj �
Xr

k�1

bjkuk; j � 1; . . . ; r:

Therefore, ET is the matrix of SajU with respect to the basis fu1; . . . ; urg.
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Note that `�ÿX� is the dual space of `�X� with respect to the bilinear form
hu; viX de®ned in (2.2). Let fv1; . . . ; vng be the basis of `�X� dual to
fQu1; . . . ;Qung, that is,

hQuj; vki � djk for j; k � 1; . . . ; n:

Clearly, fvr�1; . . . ; vng is a basis for `�X� \ V . It was proved in Section 2 that
�QSa�j`�ÿX� is the adjoint of Taj`�X� with respect to the bilinear form hu; viX.
Consequently, by (3.6) we have

hQuj; TavkiX � hQSaQuj; vkiX � bjk; j; k � 1; . . . ; n:

This shows that B � �bjk�16 j;k6 n is the matrix of Taj`�X� with respect to the
basis fv1; . . . ; vng. But fvr�1; . . . ; vng is a basis for `�X� \ V . Hence F �
�bjk�r�16 j;k6 n is the matrix of Taj`�X�\V with respect to this basis. To summarize,
we obtain

spec�Taj`�X�� � spec�B� � spec�E� [ spec�F �
� spec SajU

ÿ � [ spec Taj`�X�\V

� �
:

This veri®es (3.5).
Finally, suppose U � P jZs for some shift-invariant subspace P of P and U is

invariant under Sa. Theorem 3.2 tells us that P � S�/�, where / is the nor-
malized solution of the re®nement equation (1.1) with mask a and dilation
matrix M. Suppose that X � Zs \P1

n�1 MÿnH for some compact set
H � suppa. Let u 2 U and p :� / �0 u. If u 6� 0, then p 6� 0; hence Qu 6� 0 by
Lemma 2.1. This shows that QjU is one-to-one. Therefore, (3.5) is valid for this
case. �

The case U � Pkÿ1jZs is of particular interest. Suppose a satis®es the sum
rules of order k. Then U is invariant under Sa, by Theorem 3.2. By Theorem 2.2
we have spec�SajU� � frÿl : jlj < kg. Thus, (3.5) reads as follows:

spec Taj`�X�
� �

� spec Taj`�X�\Vkÿ1

� �
[ frÿl : jlj < kg: �3:7�

For the univariate case (s � 1), this formula was established by Deslauriers and
Dubuc in [6, Theorem 8.2.]

Theorem 3.2 has useful applications to smoothness analysis of re®nable
functions in terms of their masks.

Let / be the normalized solution of the re®nement equation (1.1) with a
mask a and an isotropic dilation matrix M. Let b be the sequence given by
(1.7). Suppose a satis®es the sum rules of order k. Then b satis®es the sum rules
of order 2k. Hence V2kÿ1 is invariant under the transition operator Tb. Let qk

denote the spectral radius of TbjV2kÿ1
. It follows from (3.7) that
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spec Tbj`�X�\V1

� �
� spec Tbj`�X�\V2kÿ1

� �
[ frÿl : 26 jlj < 2kg;

where X :� Zs \P1
n�1 Mÿn�suppb�. If qk < 1, then the above relation tells us

that q1 < 1, which implies that the subdivision scheme associated to mask a
and dilation matrix M converges in the L2-norm (see [10]). In particular, qk < 1
implies / 2 L2�Rs�.

We can ®nd qk from spec�Tbj`�X�� by using the following formula:

spec Tbj`�X�
� �

� spec Tbj`�X�\V2kÿ1

� �
[ frÿl : jlj < 2kg:

The following example illustrates this technique.

Example 3.3. Let M be the matrix

1 ÿ1

1 1

� �
and let a be the mask given in Example 2.3. Let us determine the smoothness
order of the normalized solution / of the re®nement equation with mask a and
dilation matrix M.

Let b be the mask computed from a by using (1.7). Then suppb � �ÿ4; 4�2
and the set

P1
n�1 Mÿn��ÿ4; 4�2� is

f�x1; x2� 2 R2 : jx1j6 12; jx2j6 12; jx1 ÿ x2j6 16; jx1 � x2j6 16g:

The set X :� Z2 \ P1
n�1 Mÿn��ÿ4; 4�2�

� �
has exactly 481 points. We use

MATLAB to compute the eigenvalues of the matrix �b�Maÿ b��a;b2X. These
eigenvalues are arranged in the order of descending absolute values. The fol-
lowing is a list of the ®rst 22 eigenvalues.

1; 0:5� 0:5i; 0:5ÿ 0:5i; 0:5; 0:5i; ÿ0:5i;

ÿ 0:25� 0:25i; ÿ0:25ÿ 0:25i; 0:25� 0:25i; 0:25ÿ 0:25i;

ÿ 0:25; ÿ0:25; 0:25i; ÿ0:25i; 0:25;

0:1832744177; 0:125� 0:125i; 0:125ÿ 0:125i;

ÿ 0:125� 0:125i; ÿ0:125ÿ 0:125i; ÿ0:125� 0:125i;

ÿ 0:125ÿ 0:125i:

Note that the matrix M has two eigenvalues r1 � 1� i and r2 � 1ÿ i. In the
above list, 21 eigenvalues are of the form rÿl1

1 rÿl2

2 for double indices �l1; l2�
with l1 � l26 5. Therefore, q4 � 0:1832744177. By (1.8) we obtain
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m�/�P ÿ log2 0:1832744178 � 2:44792267:

From the results in [10] we know that the subdivision scheme associated to
mask a and dilation matrix M converges uniformly. Moreover, the mask a is
interpolatory, i.e., a�0� � 1 and a�Ma� � 0 for a 2 Zs n f0g. Consequently, / is
continuous, /�0� � 1, and /�a� � 0 for a 2 Zs n f0g. Hence, the shifts of / are
linearly independent. We conclude that m�/� � 2:44792267. �

4. Re®nable functions induced by box splines

In the univariate case, a factorization technique can be used to compute the
smoothness order (regularity) of a re®nable function by ®nding the dominant
eigenvalue of a certain matrix. In this regard, the reader is referred to the work
of Daubechies and Lagarias [5], Eirola [8], and Villemoes [20].

In the multivariate case, if a re®nable function is the convolution of a box
spline with a re®nable distribution, then it is still possible to compute its
smoothness order by ®nding the dominant eigenvalues of certain transition
matrices.

For an element a 2 `0�Zs� we use ~a�z� to denote its symbol:

~a�z� :�
X
a2Zs

a�a�za; z 2 �C n f0g�s:

The convolution of two sequences a and b in `0�Zs� is de®ned by

a � b�a� :�
X
b2Zs

a�aÿ b�b�b�; a 2 Zs:

If c � a � b, then

~c�z� � ~a�z�~b�z�; z 2 �C n f0g�s:
For r � 1; 2; . . ., let ar be the element in `0�Z� de®ned by its symbol:

~ar�z� � �1� z�r=2rÿ1:

The cardinal B-spline Br of order r can be viewed as the normalized solution of
the re®nement equation / �Pa2Z ar�a�/�2 � ÿa�.

Box splines are natural extensions of cardinal B-splines. The reader is re-
ferred to the monograph [2] by de Boor et al. for a comprehensive study of box
splines.

In this section we are particularly interested in box splines on the three-di-
rection mesh on R2. For r; s; t P 1, let ar;s;t be the element in `0�Z2� de®ned by
its symbol:

~ar;s;t�z1; z2� :� �1� z1�r�1� z2�s�1� z1z2�t=2r�s�tÿ2; �z1; z2� 2 C2:

R.-Q. Jia, S. Zhang / Linear Algebra and its Applications 292 (1999) 155±178 173



The box spline Br;s;t is de®ned as the normalized solution of the re®nement
equation

/ �
X
a2Z2

ar;s;t�a�/�2 � ÿa�:

In [7], Dyn et al. analyzed convergence of the so-called butter¯y scheme which
is induced by the box spline B1;1;1. More generally, using convolutions of box
splines with distributions, Riemenschneider and Shen [19] constructed a family
of bivariate interpolatory subdivision schemes with symmetry.

The following theorem provides a method to simplify the computation of
the smoothness order of re®nable functions which are convolutions of box
splines Br;r;r with re®nable distributions. In what follows we use T2 to denote
the torus

f�z1; z2� 2 C2 : jz1j � 1; jz2j � 1g:

Theorem 4.1. Let c be an element in `0�Z2� such that
P

a2Z2 c�a� � 4, and let a
be given by its symbol

~a�z� � 1� z1

2

� �r
1� z2

2

� �r
1� z1z2

2

� �r

~c�z�; z � �z1; z2� 2 T2;

where r is a positive integer. Let / be the normalized solution of the re®nement
equation / �Pa2Z2 a�a�/�2 � ÿa�. Write z3 for z1z2. Let aj (j � 1; 2; 3) be given
by

~aj�z� � 1� zj

2

� �r

~c�z�; z 2 T2;

and let bj (j � 1; 2; 3) be given by ~bj�z� � jaj�z�j2=4, z 2 T2. Let
q :� max16 j6 3fq�Tbj�g. If q > 1 and if the shifts of / are stable, then

m�/� � 2r ÿ log4 q: �4:1�
Proof. Let b 2 `0�Z2� be given by

~b�z� � j~a�z�j2=4; z 2 T2;

and let f be the normalized solution to the re®nement equation with mask b.
Then f̂ �n� � j/̂�n�j2 for all n 2 Rs. Thus, if the shifts of / are stable, then so are
the shifts of f.

Let Pr;s;t :� P \ S�Br;s;t�. It is known (see, e.g., [2]) that

Pr;s;t � p 2 P : Dr
1Ds

2p � 0; Dr
1�D1 � D2�tp � 0; Ds

2�D1 � D2�tp � 0
� 	

:

In particular, Pr;s;t � Pr�s�tÿ2.
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For j � 1; 2; 3, we use Dj to denote the di�erence operator on `0�Z2� given by

Djv :� ÿv�� ÿ ej� � 2vÿ v�� � ej�; v 2 `0�Z2�;
where e1 � �1; 0�, e2 � �0; 1�, and e3 � �1; 1�. Let V be the linear span of
Dr

1D
r
2db, Dr

2D
r
3db, and Dr

1D
r
3db, b 2 Z2, and let

U :� u 2 `�Z2� : hu; vi � 0 8v 2 V
� 	

;

where hu; vi is the bilinear form given in (1.5). Then u belongs to U if and only
if u satis®es the following system of partial di�erence equations:

Dr
1D

r
2u � 0; Dr

1D
r
3u � 0; Dr

2D
r
3u � 0:

By [4, Proposition 2.1] we have U � P2r;2r;2rjZ2 . Also see [12, §5] for properties
of partial di�erence equations associated to box splines. Note that `�Z2� is the
dual space of `0�Z2� with respect to the bilinear form hu; vi. Suppose
w 2 `0�Z2� n V . Then there exists an element u 2 `�Z2� such that hu;wi � 1 and
hu; vi � 0 for all v 2 V . This shows

V � v 2 `0�Z2� : hu; vi � 0 8u 2 U
� 	

:

Since U is invariant under the subdivision operator Sb, V is invariant under the
transition operator Tb, by Theorem 3.2. Let Uk :� PkjZ2 . Then we have

Vk � v 2 `0�Z2� : hu; vi � 0 8u 2 Uk

� 	
:

Consequently, U4rÿ1 � U and V � V4rÿ1.
We observe that

P1
n�1 2ÿnsupp b is contained in the convex hull of supp b.

Let X be the intersection of Z2 with the convex hull of suppb. By Theorem 3.2
we have

spec Tbj`�X�
� �

� spec Tbj`�X�\V

� �
[ spec SbjU

ÿ � �4:2�

and

spec Tbj`�X�
� �

� spec Tbj`�X�\V4rÿ1

� �
[ spec SbjU4rÿ1

� �
: �4:3�

Let us ®nd the di�erence between spec�SbjU� and spec�SbjU4rÿ1
�.

For j � 0; 1; . . ., by Hj we denote the linear space of homogeneous polyno-
mials of degree j. Let

Ej :� fu 2 U : f �0 u 2 Hjg:
Then U is the direct sum of Ej, j � 0; 1; . . . ; 6r ÿ 2. Let u 2 Ej and
p :� f �0 u 2 Hj. Since f �Pa2Z2 b�a�f �2 � ÿa�, by (2.5) we obtain
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p�x� �
X
a2Z2

u�a�f �xÿ a� �
X
a2Z2

Sbu�a�f �2xÿ a�; x 2 R2:

On the other hand, since p is a homogeneous polynomial of degree j, we
have

p�x� � 2ÿjp�2x� �
X
a2Z2

2ÿju�a�f �2xÿ a�; x 2 R2:

But the shifts of f are stable. Thus, the above two equations yield Sbu � 2ÿju for
all u 2 Ej. In particular, Ej is invariant under Sb. Therefore,

spec SbjU
ÿ � � [6rÿ2

j�0 spec SbjEj

� �
� spec SbjU4rÿ1

� �
[ [6rÿ2

j�4r spec SbjEj

� �� �
: �4:4�

Note that each element in spec�SbjEj
� is equal to 2ÿj. Write qV for q�Tbj`�X�\V �.

Combining (4.2)±(4.4) together, we obtain

q2r � q Tbj`�X�\V4rÿ1

� �
� max qV ; 2

ÿ4r
� 	

: �4:5�

For convenience, we set Dj�3 :� Dj, j � 1; 2; 3. In order to ®nd qV , let Wj be the
minimal invariant subspace of Tb generated by the sequences Dr

j�1D
r
j�2db,

b 2 Z2. Then V � W1 � W2 � W3, so

qV � max
16 j6 3

q�TbjWj
�

n o
:

Let Sa denote the subdivision operator associated to a as de®ned in (1.4). It
follows from [10, Theorem 4.1] and [17, Theorem 3.2] that

lim
n!1

rr
1rr

2Sn
ad



 

1=n

2
�

����������������
q�TbjW3

�
q

:

Since ~a�z� � 2ÿ2r�1� z1�r�1� z2�r ~a3�z�, by [13, Theorem 3.2] we have

lim
n!1

rr
1rr

2Sn
ad



 

1=n

2
� 2ÿ2r lim

n!1
Sn

a3
d




 


1=n

2
:

But ~b3�z� � j~a3�z�j2=4, z 2 T2. Hence limn!1


Sn

a3
d


1=n

2
� �������������

q�Tb3
�p
. The pre-

ceding discussion tells us that q�TbjWj
� � 2ÿ4rq�Tbj� is true for j � 3. Clearly,

this relation is also valid for j � 1 or j � 2. It follows that

qV � max
16 j6 3

q�TbjWj
�

n o
� 2ÿ4r max

16 j6 3
q�Tbj�
� 	 � 2ÿ4rq:

By our assumption, q > 1. Hence, (4.5) tells us that q2r � maxfqV ; 2
ÿ4rg

� qV > 2ÿ4r. It follows that 2r > ÿ log4 q2r. If, in addition, the shifts of / are
stable, then
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m�/� � ÿ log4 q2r � ÿ log4 qV � 2r ÿ log4 q:

This veri®es (4.1). �

Example 4.2. For r � 1; 2; . . ., let hr be the mask on Z2 given by its symbol

~hr�z1; z2� � zÿr
1 zÿr

2 �1� z1�r�1� z2�r�1� z1z2�r=23rÿ2:

There exists a unique sequence cr supported in �1ÿ r; r ÿ 1�2 such that qr :�
hr � cr is an interpolatory mask. Let ur be the normalized solution of the re-
®nement equation associated with mask qr. The smoothness order m�ur� was
computed in [19] for r � 2; . . . ; 8. Theorem 4.1 enables us to simplify the
computation signi®cantly so that we obtain m�ur� for r � 9; . . . ; 16 as shown in
Table 1.

In [6] Deslauriers and Dubuc showed that, for each r � 1; 2; . . ., there exists
a unique interpolatory mask br supported on �1ÿ 2r; 2r ÿ 1� such that br is
symmetric about the origin and its symbol ~br�z� is divisible by �1� z�2r

. Let fr

be the normalized solution of the re®nement equation
/ �Pa2Z br�a�/�2 � ÿa�. The smoothness order m�fr� was computed in [8] for
r � 1; 2; . . . ; 20. For the purpose of comparison, we have listed the values of
m�fr� (r � 9; . . . ; 16) in Table 1. �
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