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Abstract

Given a finitely supported sequence ¢ on Z* and an s x s dilation matrix M, the
transition operator 7, is the linear operator defined by T,v(x) := >, ;. a(Mo — B)o(),
where o € Z° and v lies in £y(Z*), the linear space of all finitely supported sequences on
Z°. In this paper we investigate the spectral properties of the transition operator 7, and
apply these properties to the study of the approximation and smoothness properties of
the normalized solution of the refinement equation ¢ =3 . a(a)p(M - —a). © 1999
Elsevier Science Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to investigate the spectral properties of the
transition operator associated to a multivariate refinement equation and their
applications to the study of the approximation and smoothness properties of
the corresponding refinable function.
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A refinement equation is a functional equation of the form

¢ =1 a(@)p(M - —a), (L.1)

oaeZ®

where « is a finitely supported sequence on Z°, and M is an s X s integer matrix
such that lim,_., M~ = 0. The matrix M is called a dilation matrix, and the
sequence a is called the refinement mask. Any function satisfying a refinement
equation is called a refinable function.

If a satisfies

> a(x) = m:=|det M|, (1.2)

oaeZ®

then it is well known that there exists a unique compactly supported distri-
bution ¢ satisfying the refinement equation (1.1) subject to the condition
¢(0) = 1. This distribution is said to be the normalized solution to the refine-
ment equation with mask a. Throughout this paper we assume that the con-
dition (1.2) is satisfied.

In this paper, the Fourier transform of an integrable function f on R’ is
defined by

70 = [ rweian cer,

where x - ¢ denotes the inner product of two vectors x and ¢ in R®. The domain
of the Fourier transform can be naturally extended to include compactly
supported distributions.

A multi-index is an s-tuple u= (p,,...,n,) with its components being
nonnegative integers. Define

o=ttt for x = (xq,...,x,) € R

We may regard x{" - - - x*s as a monomial of total degree |u| := p; + - - + p,. For
a nonnegative integer k, let I, denote the set of all polynomials of (total) degree
at most k. A sequence u on Z° is called a polynomial sequence if there exists a
polynomial p such that u(x) = p(«) for all o € Z°. The degree of u is the same as
the degree of p. For j =1, ...,s, we use D,/ to denote the partial derivative of f
with respect to the jth coordinate. For a multi-index y = (py, .. ., i), D* stands
for the differential operator D}" --- D . If p =3 . Cux" is a polynomial, then we
use p(D) to denote the differential operator ) c,D".

We denote by ¢(Z°) the linear space of all sequences on Z°, and by ¢,(Z*) the
linear space of all finitely supported sequences on Z°. For y € Z°, we denote by
0, the element in ¢,(Z°*) given by J,(y) = 1 and J,(x) =0 for all o € Z*\ {y}. In
particular, we write 6 for do. For j=1,...,s, let ¢; be the jth coordinate unit
vector. The difference operator V; on 4(Z°) is defined by V,u :=u —u(- —¢;),
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u € L(Z°). For a multi-index u= (y;,...,1,), V* is the difference operator
V’l‘l o b,

Let a be an element in 4(Z°). The transition operator T, is the linear operator
on {y(Z°*) defined by

To(a) == Za(Moc — Bv(p), P RSWAR (1.3)

pez’

where v € £y(Z°). The subdivision operator S, is the linear operator on ¢(Z°)
defined by

S.u(o) :== Za(oc —MPu(p), o€ 2, (1.4)

pez’

where u € £(Z°). We introduce a bilinear form on the pair of the linear spaces
0y(Z°) and ¢(Z°) as follows:

(u,v) := Zu(—oc)v(oc), u€el(Z%), vely(Z. (L.5)

oeZ’

Then £(Z°) is the dual space of £y(Z*) with respect to this bilinear form. It is
easily seen that

(Squ, vy = (u, T,v) Yu € U(Z°), v e (2.

Hence, S, is the algebraic adjoint of 7, with respect to the bilinear form given in
(1.5).

When the space dimension s = 1, Deslauriers and Dubuc [6] discussed the
spectral properties of the transition operator and applied those properties to
their study of interpolatory subdivision schemes. For the multivariate case
(s > 1), the subdivision operator was introduced by Cavaretta et al. [3] in their
investigation of stationary subdivision schemes. In [9], Goodman et al. estab-
lished spectral radius formulas for subdivision operators.

In [10], Han and Jia showed that the transition operator 7, has only finitely
many nonzero eigenvalues. The following is an outline of the proof. For a
bounded subset H of R, the set Y °, M "H is defined as

{ZM%; h, € H for n:1,2,...}.
n=1

If H is a compact set, then >~ M "H is also compact. By suppa we denote
the set {a € Z°: a(a) # 0}. Let

Q= ( Y M‘”(suppa)) nzZ. (1.6)

=1
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We use £(Q) to denote the linear space of all sequences supported in Q. It is
easily seen that ¢(Q) is invariant under 7,. Moreover, if v is an eigenvector of
T, corresponding to a nonzero eigenvalue of 7,, then v must lie in 4(Q).
Consequently, any nonzero eigenvalue of 7, must be an eigenvalue of the
matrix

(a(Mo — ﬁ))a,/}eQ'

In particular, 7, has only finitely many nonzero eigenvalues. The spectral ra-
dius of 7,, denoted by p(7,), is defined as the spectral radius of the matrix
(a(M2— B)), peor

In [16], using the subdivision and transition operators, Jia investigated the
approximation properties of a refinable function in terms of its refinement
mask. Let us review some basic results about approximation with shift-in-
variant spaces.

For a compactly supported distribution ¢ on R* and a sequence ¢ € ¢(Z),
the semi-convolution of ¢ with ¢ is defined by

o+ c:= Zq’)( —a)e(a).
acZ’
Let S(¢) denote the linear space {¢ «' ¢ : ¢ € £(Z°)}. We call S(¢) the shift-
invariant space generated by ¢.

A compactly supported distribution ¢ on R’ is said to have accuracy k if
S(¢) contains IT;_; (see [11]). If ¢ has accuracy k and ¢(0) # 0, then for
any polynomial sequence u of degree at most k£ — 1, the semi-convolution
¢ ' u is a polynomial of the same degree. Conversely, for any p € IT;_,,
there exists a wunique polynomial sequence u such that p= ¢« u. See
[1, Proposition 1.1] and [15, Lemma 8.2] for these results. Suppose 1 <p< oo
and ¢ is a compactly supported function in L,(R*) such that $(0) #£0. Tt
was proved in [14] that S(¢) provides approximation order k if and only if
¢ has accuracy k.

Let ¢ be the normalized solution of the refinement equation (1.1) with mask
a and dilation matrix M. We say that « satisfies the sum rules of order k if

> aly+MB)p(y +MB) = a(MB)p(MB) Vp €I,y and y € Z".
pez® pezs

It was proved in [16] that ¢ has accuracy k provided that « satisfies the sum
rules of order k. Let

Vi == {v € b(2°) : Zp(oc)v(oc) =0Vpe Hk}.

Then « satisfies the sum rules of order k if and only if ¥}_, is invariant under the
transition operator 7.
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In [17], Jia analyzed the smoothness of refinable functions in terms of their
masks. For v > 0, we denote by #7)'(R") the Sobolev space of all functions f €
Ly)(R*) for which
FEOFA+¢') dé < oo.
R
The smoothness order v(f) of a function f € L,(R®) is defined by
W) = supfv: f € I(R)}

Let ¢ be the normalized solution of the refinement equation (1.1) with mask a
and dilation matrix M. We assume that M is isotropic, i.e., M is similar to a

diagonal matrix diag{sy,...,0,} with |o|| = --- = |o,|. Let b be the sequence
given by
b(a) = a(a+ Ba(B)/m,  a€Z’, (1.7)
pez®

where m = |det M| and @ denotes the complex conjugate of a. Suppose a sat-
isfies the sum rules of order k. Then b satisfies the sum rules of order 2k. Hence
Vae_1 1s invariant under 7}, the transition operator associated to b. Let p, de-
note the spectral radius of 7;|,, . Suppose ¢ lies in Ly(R’). It was proved in
[17] that

v(¢) = — (log, py)s/2. (1.8)

If, in addition, £ > —(log,, p;)s/2 and the shifts of ¢ are stable, then equality
holds in (1.8). Note that the shifts of ¢ are stable if and only if, for any ¢ € R’,
there exists an element f§ € Z° such that ¢(& 4 2fin) # 0. Moreover, if the shifts
of ¢ are linearly independent, that is,

Zc(oc)d)(- —a)=0 = ¢(a) =0Va € Z°,

e’

then the shifts of ¢ are stable. See [18] for these facts.
The following is an outline of the paper.
Section 2 is devoted to a study of the spectrum of the transition operator.

Suppose the dilation matrix M has eigenvalues oy, ..., d,. Write ¢ for the s-
tuple (oy,...,0,). By convention, for a multi-index p = (y, ..., 1) we have
o :=q\"---0of and o M:=ag" g .

We shall show that the spectrum of the transition operator 7, contains
{o7*: |p| < k}, provided ¢ has accuracy k. This gives an upper bound for the
accuracy of ¢ in terms of the refinement mask a.
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In Section 3 we shall investigate invariant subspaces of the subdivision and
transition operators. We give a necessary and sufficient condition for a sub-
space of polynomial sequences to be invariant under the subdivision operator.
Furthermore, we clarify the relationship among the spectra of the transition
operator restricted to different invariant subspaces. In particular, we establish
the following formula

SpeC<Ta|/(Q)> = SpeC(Ta|/(Q)ka,l> U{a™: |ul <k},

where @ is given by (1.6). Thus, the spectral radius of 7,[,, , can be found from
the spectrum of 7| 1(o)- This result is significant for calculating the smoothness
order of a refinable function in terms of its mask.

Section 4 is devoted to a study of the smoothness order of refinable func-
tions which are convolutions of box splines with refinable distributions. Box
splines are natural extensions of cardinal B-splines to multidimensional spaces.
In the univariate case, a factorization technique can be used to compute the
smoothness order of a refinable function by finding the dominant eigenvalue of
a certain matrix. In the mutltivariate case, if a refinable function is the con-
volution of a box spline with a refinable distribution, we will give a method to
compute its smoothness order by finding the dominant eigenvalues of certain
transition matrices.

2. The spectrum of the transition operator

The spectrum of a square matrix A is denoted by spec(4), and it is under-
stood to be the multiset of its eigenvalues. In other words, multiplicities of
eigenvalues are counted in the spectrum of a square matrix. The transpose of a
matrix 4 is denoted by AT.

Suppose T 'is a linear mapping on a finite dimensional vector space V over C.
Let {v),...,v,} be an ordered basis of V. If

T(v))=buvy+ - +byv,, i=1,...,n,

then (b;),,;., is called the matrix representation of 7" with respect to
{vy,...,v,}. The spectrum of T is the same as the spectrum of the matrix
(bii)lgi.jgn'

Suppose ¢ is the normalized solution of the refinement equation (1.1) with
mask a and dilation matrix M. Let supp ¢ denote the support of ¢. From (1.1) we
observe that ¢(x) # 0 implies ¢p(Mx — a) # 0 for some o € suppa. It follows that

x € M~ (suppa) +M*1(supp¢).

Hence we have
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supp¢ C M~ (suppa) + M~ (supp ).

A repeated use of the above relation yields

supp ¢ C ZM*f(suppa) +M "(suppg), n=1.2,....

J=1

Consequently, we obtain
supp ¢ C ZM‘"(suppa). (2.1)
n=1

It follows that Z* Nsupp¢ C Q, where Q is the set given in (1.6).

Let 7, and S, be the transition operator and the subdivision operator given
in (1.3) and (1.4), respectively. It was pointed out that S, is the algebraic adjoint
of T, with respect to the bilinear form given in (1.5). Let Q be a nonempty finite
subset of Z°. Suppose ¢(Q) is invariant under 7,. By —Q we denote the set
{—a: o€ Q}. Clearly, £(—Q) is the dual space of ¢() with respect to the
bilinear form

(u,0)g =Y u(—a)o(x), u€l(-Q), ve Q). (2.2)

e

Let O := Qq be the linear mapping from ¢(Z*) to ¢(—Q) given by
Ounts) = {

u(—o) foroue —Q,

0 foroa & —Q. 23)

Then OS, maps £(—Q) to ¢(—<). We claim that (0OS,)|,_q is the algebraic
adjoint of T, Indeed, for u € {(—<) and v € £(Q) we have

(OS.u,v) g = (OS,u,v) = (S,u,v) = (u, T,v) = (u, T,v),.

This justifies our claim. Consequently, the spectra of (OS.)[,_q) and 7|, are
the same. Moreover, for u € £(Z°) and v € ¢(Q2) we have

<QSa(Qu - u),v> = <Qu — U, Tav> =0,

since T,v € ¢(Q) and Qu — u vanishes on ¢(—Q). Thus, 0S,(Qu — u)(a) = 0 for
all « € —Q. But, by the definition of Q, we have 0S,(Qu — u)(a) = 0 for all
o€ Z°\ (—Q). This shows OS,(Qu — u) = 0. In other words,

QSaQ = QSa~ (24)
For u € 4(Z°), we have
S u@p-— ) = 3 S (M - —a). (2.5)

oaeZ® oeZ®



162 R-Q. Jia, S. Zhang | Linear Algebra and its Applications 292 (1999) 155-178

Indeed, since ¢ satisfies the refinement equation (1.1), we obtain

Yo u@d(-—a) =Y u(@)y_a(f)(M - Mo~ p)

%ez* vz’ pez
= ST w()$M - ),
yez
where
w(y) = Z;a(“/ —Maju(w), 7€’
aeZ®

Hence w = S,u. This verifies (2.5).
By K(¢) we denote the linear space given by

K(¢):={uelZ’): ¢+ u=0}.

It follows from (2.5) that K(¢) is invariant under the subdivision operator S,.

Lemma 2.1. Let Q := Qq be the linear mapping from £(Z°) to {(—Q) given by
(2.3), where Q =7°NY. ", M "H for some compact set H D suppa. If u is a
sequence on Z° such that p := ¢ «" u is a nonzero polynomial, then Qu & Q(K(¢)).
Proof. Set

G,o={(x1,..,x) ER: || + -+ x| < 7}, r> 0.

By (2.1), the compact set supp ¢ is disjoint from the closed set Z°\ Q; hence
there exists some » > 0 such that

(suppd + G )N (Z°\ Q) = 0.

Suppose x € G, and « € Z°. Then ¢(x + o) # 0 implies x + o € supp ¢. It fol-
lows that o € supp ¢ + G,. Consequently,

a€Z°N(supp¢ + G,) C Q.

In other words, x € G, and o € Q imply ¢(x + o) = 0. Therefore,
p) = u(0)p(x —2)

=Y u(—a)p(x+ a), x € G,.

If Qu € O(K(¢)), then there would exist some w € K(¢) such that Qu = Ow. It
follows that u(—o) = w(—a) for all « € Q. Thus, for all x € G,,
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pl0) =D u(=0)d(x+o) =Y w(=o)d(x + )

=S ()l 4 ) =0,
acZ®

which is impossible, because p is a nonzero polynomial. This verifies

Qu ¢ Q(K(¢)). O

We are in a position to establish the main result of this section.

Theorem 2.2. Let ¢ be the normalized solution of the refinement equation with
mask a and dilation matrix M. If ¢ has accuracy k, then the spectrum of the
transition operator T, contains {o" : |u| < k}, where 0 = (0y,...,0;) is the s-
tuple of the eigenvalues of M and o " :=a," - -a,;% for a multi-index

n= (N17"'7/“ts)'

Proof. Let Q be the set given in (1.6), and let O := Qg be the linear mapping
from £(Z°) to ¢(—<) as defined in (2.3). Since the spectra of (0S,)[,_q, and
T.yq) are the same, it suffices to show that the spectrum of (0S,)|_o) contains
{o7#: |u| < k}. For this purpose, we introduce the set

W={ueclZ): ¢« uecll}.
By (2.5), W is invariant under S,. Clearly, Q(W) is a subspace of ¢(—Q). The
theorem will be proved by finding the matrix representation of OS, with respect
to a suitable basis of Q(W).

There exists an invertible matrix H = (h;), ., ;. such that HMH ' is a tri-
angular matrix:

o11
HMH™' =

051 c O

Fori=1,...,s and x = (x1,...,x,) € R’, let /;(x) := hyx; + - -+ + hix,. Then

Hx can be represented as [/,(x), ..., /,(x)]". It follows that
1 (Mx) a1 o1l 1 (x)
: =HMx = |: . Hx = :
I,(Mx) g1 - Og Oy -+ Og Ls(x)
(2.6)
For simplicity, we write o, for o;;, j =1,...,s. Thus, ay,...,0, are the eigen-

values of the matrix M. For two multi-indices u= (y,,...,x,) and
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v=(v1,...,v), we write u < v if there exists some j, 1 <j <s, such that u; < v,
and ;. = Vipr, e g = Ve
For a multi-index u = (yy,...,4,), let p, be the polynomial given by
P I

Clearly, p, (Ju| < k) are linearly independent. With the help of (2.6) we obtain
pu(Mx) = [H(Mx)]" - - [L(Mx)]" = 0"pu(x) + qu(x),  xE€R’,

where ¢, is a linear combination of p, with |v| = |u| and v < p. It follows that
pu(x) = 0~ "pu(Mx) — 7"q,(x).

A repeated use of the above relation yields
pu(x) = 0 "p(Mx) + r,(Mx), (2.7)

where r, is a linear combination of p, with |v| = |u| and v < pu.

By the assumption, ¢ has accuracy k. Thus, for each u with [u| <k, the
polynomial p, lies in S(¢). Since ¢(0) # 0, there exists a unique polynomial
sequence u, € ¢(Z°) such that

=3 u(2)(- ). (2.8)

oaeZ*

It follows from (2.7) and (2.8) that

Pu(x) = 07 pu(Mx) + 1 (Mx) = [0 w, () + vu(@) | p(Mx — ), (2.9)

oeZ*

where v, is a linear combination of u, with |v| = |u| and v < u. On the other
hand, we deduce from (2.5) and (2.8) that

pulx) = ZS,,uAcx)qb(Mx —a).

oeZ®
Comparing this equation with (2.9), we obtain
Satty = 0 Muy + v, + wy,
where w, € K(¢). By (2.4) it follows that
0S,(Qu,) = 67" (Qu,) + Ov, + Ow,. (2.10)

Let U :=Uy+ -+ U1, where each U; (j =0,1,...,k — 1) is the linear span
of u,, |p| =j. Then W = U + K(¢). By Lemma 2.1, Q(U) N Q(K(¢)) = {0}.
Hence Q(W) is the direct sum of Q(U) and Q(K(¢)). Moreover, Q(U) is the
direct sum of Q(Uj),...,0(U,_1). Choose a basis Y for Q(K(¢)). For each j,
the set ¥; :={Qu, : |u| = j} is a basis for Q(U;). The order of this basis is
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arranged in such a way that Qu, precedes Qu, whenever v < u. Consequently,
YUY U---UY,_ is a basis for Q(W). With respect to this basis, (2.10) tells us
that OS, has the following matrix representation:

(E R F - F
E, 0 - 0
E; 0 7
i Ei_1 |

where each E; (j =0,...,k— 1) is a triangular matrix with ¢ * (Ju| = /) being
the entries in its main diagonal. We conclude that the spectrum of (OS.)|o()
contains {¢7# : |u| < k}, as desired. O

We emphasize that the conclusion of Theorem 2.2 is valid without any as-
sumption of stability of ¢.

Example 2.3. Let M be the matrix
I -1
I 1 ’
and let a be the sequence on Z> such that a(a) = 0 for o € 7>\ [-2,2]* and

0 -1 0 -1 0
-1 0 10 0 -1
(@(1,) 3mmes =35 |0 10 32 10 0
-1 0 10 0 -1
0 -1 0 -1 0

Let ¢ be the normalized solution of the refinement equation (1.1) with mask a
and dilation matrix M given as above. Then ¢ has accuracy 4 but does not have
accuracy 5.

It can be easily checked that « satisfies the sum rules of order 4. Hence ¢ has
accuracy 4. Let us show that ¢ does not have accuracy 5. The matrix M has
two eigenvalues 6; = 1 +1 and o, = 1 — i, where i1 denotes the imaginary unit.
We have suppa C [—2,2]” and

ZMﬁn([—2,2]2) = {(xl,xz) € Rz : \x1| <6, |.X'2| <6, |x1 —.X'z| <8,
n=1

|X1 +x2| < 8}
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The set Q := 72N (3%, M~"([-2,2])) has exactly 129 points. Among the 129
eigenvalues of the matrix 4 := (a(Mo — f)), 4., the following are of the form
a,"0," for some double-index (p;, p,) with p; + u, <4:

1, 05-0.51, 05405, —0.51i, 0.5 0.5

—0.25-0.251, 0.25-0.251, 0.25+40.25i, —0.25+ 0.25i,
—0.25, 0.251, —0.25i.

Since ¢ has accuracy 4, we expect that 4 has eigenvalues o,"'¢,"* for all
double-indices (u,, i,) with u; + u, < 3. The above computation confirms our
expectation. But 4 has only three eigenvalues of modulus 0.25. Therefore, by
Theorem 2.2, ¢ does not have accuracy 5. O

3. Invariant subspaces of the transition operator

In this section we investigate invariant subspaces of the subdivision and
transition operators. We are particularly interested in invariant subspaces of
the subdivision operator which consist of polynomial sequences. The results
are then applied to smoothness analysis of refinable functions in terms of their
masks.

Let IT denote the linear space of all polynomials of s variables. For a
compactly supported distribution ¢ on R’, the intersection S(¢) N IT is not of
the form I1; in general. But S(¢) N IT is always shift-invariant, i.e., p € S(¢p) N
IT implies p(- — o) € S(p) NII for all o € Z°. 1t is easily seen that a shift-in-
variant subspace P of I is D-invariant, that is, p € P implies all its partial
derivatives belong to P. R

Suppose ¢ is a compactly supported distribution on R* such that ¢(0) # 0.
Let P be a finite dimensional D-invariant subspace of IT. Then P C S(¢) if and
only if

p(—iD)¢p(2nf) =0 VpePand ff € 7°\ {0}.

Suppose P C S(¢). Then u € P|, implies p := ¢ ' u lies in P. Conversely, for
each p € P, there exists a unique polynomial sequence u € P|, such that
p = ¢« u. See [1] for these results.

Now let ¢ be the normalized solution of the refinement equation with mask
a and dilation matrix M, where ) _,, a(x) = m = |det M|. Let I" be a complete
set of representatives of the distinct cosets of Z°/MZ°, and let © be a complete
set of representatives of the distinct cosets of Z°/M77*. Recall that a satisfies
the sum rules of order k implies ¢ has accuracy k. The converse of this
statement is valid under the additional condition that
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N(¢)n 2r(M")™ @) =1, (3.1)

where

N(p):={EeR: $(E+21p) =0VpeZ}.

These results can be extended to shift-invariant subspaces of I1. Let P be a
finite dimensional shift-invariant subspace of I1. If

> a(y+MB)p(—y — MB) =Y a(MB)p(—Mp)

pezs pez’
VpeP and yeT, (3.2)

then P C S(¢). Conversely, if P C S(¢) and (3.1) is valid, then « satisfies the
conditions in (3.2). The proof is similar to the one given in [16].

It was proved in [16] that «a satisfies the sum rules of order k if and only if
II;_|, is invariant under the subdivision operator S,. In order to extend this
result to shift-invariant subspaces of II, additional work is needed.

Theorem 3.1. Let M be a dilation matrix, and let a be an element in £y(Z") such
that ), a(o) = m = |det M|. Suppose P is a finite dimensional shift-invariant
subspace of I1. Then P|, is invariant under S, if and only if a satisfies the con-
ditions in (3.2) and p € P implies p(M~'-) € P.

Proof. Suppose U := P|, is invariant under S,. Let us first show that S,|,, is
one-to-one. For this purpose, choose an element « in U such that S,u = 0. Then

> a(a—MBu(p) =0 Voe 2 (3.3)

pez’

Suppose u # 0. Since u is a polynomial sequence, there exists a multi-index u
and a complex number ¢ # 0 such that V*u(f) = ¢ for all § € Z°. It follows
from (3.3) that

Za(oc —MB)V*u(p) =0 VYaeZ'.

pez®

Hence >, a(e— Mp) =0 for all « € Z°. This contradicts the assumption
that } . a(x) = m # 0. Therefore, S,|,, is one-to-one. But U is finite dimen-
sional. Hence S,|,, is one-to-one and onto.

Next, we show that p € P implies p(M-) € P. Let p € P. Since S,|, is onto,
there exists /* € P such that p|,, = S,(f];), thatis, p(a) = >, ;. a(e — MB)f(B)
for all o € Z°. It follows that

pMa) =S a(Ma— MBS (B) = S aMp)f(a—p)  VaeZ

Bez* Bez*
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Let q(x) := > gz a(MB)f(x — f), x € R". Since P is shift-invariant, ¢ belongs
to P. Thus, ¢ and p(M:) agree on the lattice Z°. Therefore, we have
p(M:)=q€P.

For p € P let

u(y) =Y aMB+y)p(~-MB—7y), y€Z.

pez’

We claim that u is a polynomial sequence. Indeed, by using Taylor’s formula,

we obtain
—7) =Y tu(—MP)(—

where #, := D"p/pu!. Since P is D-invariant, t, € P for every multi-index . For
x € R, set g,(x) :==t,(Mx). By what has been proved, we have ¢, € P. Let

u, = ¢q,|,. Then for y € Z°,
u(y) =Y _a(MB+y)p(—~Mp — )
pez*
—ZZ (y +MPpB)u,(— ZSu,, (—)"
pez® pu

Since U is invariant under S,, S,u, € U. Hence u is a polynomial sequence. By
the definition of u, we have u(y + Mn) = u(y) for ally € Z° and y € Z°. In other
words, u is a constant sequence on the lattice y+ MZ° for each y € Z°.
Therefore, u itself must be a constant sequence. This shows that a satisfies the
conditions in (3.2). Consequently, P C S(¢), where ¢ is the normalized solu-
tion of the refinement equation with mask « and dilation matrix M.

It remains to prove that p € P implies p(M~!-) € P. Let p € P. Then there
exists a unique u € U such that p = ¢ ' u. From (2.5) we deduce that

p(M’lx):Z () p(M'x — o) ZSu d(x — o).

aeZ® ez’

Since U is invariant under S,, we have S,u € U. This shows p(M~!.) € P.

Now suppose « satisfies the conditions in (3.2) and p € P implies
p(M~'.) € P. We wish to show that U = P|,, is invariant under S,. Let p € P
and u = p|,. We first show that S,u is a polynomial sequence. Set
q(x) :== p(M~'x), x € R*. By our assumption, ¢ € P. An application of Taylor’s
formula gives

q(MB) = g(—o+MB+a) = gu(—x+Mp)a*

where ¢, = D"p/ul. Since P is D-invariant, we have ¢, € P for all multi-indices
w. It follows that
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Sau(@) =Y alx—MB)p(B) = > alox — MB)g(Mp)

pez® pez’
=> 1 ale— MB)g,(—o+ MB) | o,
u pert

Since «a satisfies the conditions in (3.2), ¢, := > 5, a(e — MB)q, (o — MP) is
independent of o. Therefore, S,u(x) =, c,o" for all o € Z°. This shows that
S,u 1s a polynomial sequence.

To finish the proof, we observe that

Sa(My) = a(M(y = B))u(B) =Y _a(MB)p(y — ), 7€'

pez* pez*
Since P is shift-invariant, there exists / € P such that

> aMBply— B =f(y)  VreZ.

pez*
Let g(x) := f(M~'x), x € R*. Then g € P and
SauMy) = f(7) =gMy) Wy el

This shows that S,u and g agree on the lattice MZ°. But both S,z and g|, are
polynomial sequences. Therefore, S,u = g|,- € U. We conclude that U is in-
variant under S,. 0O

The following theorem clarifies the relationship among the spectra of the
transition operator restricted to different invariant subspaces.

Theorem 3.2. Let U be a finite dimensional subspace of £(Z°), and let

V= {v € Ly(2°) - Zu(—a)v(oc) =0Vue U}. (3.4)

1<V

Then U is invariant under the subdivision operator S, if and only if V is in-
variant under the transition operator T,. Let Q be a finite subset of 7° such that
0(Q) is invariant under T,, and let Q := Qq be the linear mapping from £(Z°) to
U(—Q) as defined in (2.3). If U is invariant under S,, and if Q|,, is one-to-one,
then

spec(Ta\m)) = spec(Ta|[(Q)m,,> U spec(Saly)- (3.5)

In particular, the above relation is valid when Q =7°NY .. M™"H for some
compact set H D suppa and U = P|, for some finite dimensional shift-invariant
subspace P of 11 .
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Proof. Let (u,v) be the bilinear form defined in (1.5). Then v € V if and only if
(u,v) = 0forallu € U. Suppose U is invariant under S,. Then for v € ¥ we have

(u, T,v) = (Su, vy =0 YueU.

Hence v € V implies T,v € V. This shows that V is invariant under 7.

Choose a basis {u,...,u,} for U. Then there exist vy,...,v, € £y(Z°) such
that (u;, vx) = oy for j,k =1,...,n, where J; stands for the Kronecker sign. It
is easily seen that ¢5(Z*) is the direct sum of }" and the linear span of v, ..., v,.

Suppose V'is invariant under 7,. We wish to show that U is invariant under S,,.
Let u € U and w = S,u. Then

(w,v) = (S,u,v) = (u, T,v) =0 YvelV.
Moreover, with ¢; := (w,v;), j=1,...,n, we have
(w—(crug + -+ 4+ cyity),v;) =0 Vi=1,...,n

It follows that (w— (cju; + -+ + c,u,),y) = 0 for all y € ¢,(Z°). This shows
that w = ciu; + - - - + c,u, € U. In other words, U is invariant under S,. This
proves the first statement of the theorem.

Now suppose U is invariant under S,. Choose a basis {u,...,u.} for U.
Since Q|,, is one-to-one, {Qu,...,Qu,} is a basis for Q(U). We supplement
elements u,,y,...,u, in £(—Q) such that {Qu,...,Qu,, u.y,...,u,} forms a

basis for ¢(—Q). Clearly, Qu; = u; for j=r+1,...,n. Suppose
0S.(Qu) = bu(Qu),  j=1,....n. (3.6)
=1

Let B := (bj), < ;;<,- Then B', the transpose of B, is the matrix of the linear
mapping (0S.)|,_o, with respect to the basis {Qui,...,Qu,}. Since U is in-
variant under S,, Q(U) is invariant under OS, in light of (2.4). Therefore, b, =
Oforj=1,...,rand k =r+1,...,n In other words, B is a block triangular
matrix:

{E 0 }

B = ,

G F

where £ = (b)), ;4 <, and F = (bj),, 1 <5<, Since £(Q) is invariant under 7,

by (2.4) we have 0S,0 = 0S,. By our assumption, Q| is one-to-one. Thus, it
follows from (3.6) that

Sy = by, j=1,...,r.
k=1

Therefore, ET is the matrix of S,|,, with respect to the basis {ui,...,u,}.
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Note that £(—Q) is the dual space of ¢(Q) with respect to the bilinear form
(u,v), defined in (2.2). Let {v,...,v,} be the basis of ¢(Q) dual to

{Quy,...,Qu,}, that is,
(Quj, ve) = O for jk=1,...,n.

Clearly, {v,41,...,v,} is a basis for £(Q) N V. It was proved in Section 2 that
(OS4)ly_q 1s the adjoint of T,|,q with respect to the bilinear form (u,v),.
Consequently, by (3.6) we have

<Quj7 Evk>9 = <QSaQuja Uk>Q = bjka J>k = 17 cee, N

This shows that B = (bu), ., is the matrix of 7,|,, with respect to the
basis {vi,...,0,}. But {v,41,...,0,} is a basis for ¢(Q)NV. Hence F =
(Bjk), 11 < jx<n 18 the matrix of Ty, ), with respect to this basis. To summarize,
we obtain

spec(Tulyq)) = spec(B) = spec(E) U spec(F)
= spec(S,|,) U spec(Ta\[,(Q)m,)

This verifies (3.5).

Finally, suppose U = P|,, for some shift-invariant subspace P of IT and U is
invariant under S,. Theorem 3.2 tells us that P C S(¢), where ¢ is the nor-
malized solution of the refinement equation (1.1) with mask « and dilation
matrix M. Suppose that Q=27'N)° M "H for some compact set
H D suppa. Let u € U and p := ¢ " u. If u # 0, then p # 0; hence Qu # 0 by
Lemma 2.1. This shows that Q|,; is one-to-one. Therefore, (3.5) is valid for this
case. [

The case U = II;_;|, is of particular interest. Suppose a satisfies the sum
rules of order k. Then U is invariant under S,, by Theorem 3.2. By Theorem 2.2
we have spec(S,|,) = {o7" : |u| < k}. Thus, (3.5) reads as follows:

spec(Ta\((m) = spec(Ta|Z(Q)kail) U{a™: |ul <k} (3.7

For the univariate case (s = 1), this formula was established by Deslauriers and
Dubuc in [6, Theorem 8.2.]

Theorem 3.2 has useful applications to smoothness analysis of refinable
functions in terms of their masks.

Let ¢ be the normalized solution of the refinement equation (1.1) with a
mask a and an isotropic dilation matrix M. Let b be the sequence given by
(1.7). Suppose a satisfies the sum rules of order k. Then b satisfies the sum rules
of order 2k. Hence V5, is invariant under the transition operator 7. Let p,
denote the spectral radius of 7|, . It follows from (3.7) that
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SpeC(Tb|((Q)r‘|Vl) = SpeC(Tb|£(Q)mV2k,]) U{e™ : 2<|u| < 2k},

where Q:=27°NY_°, M "(suppb). If p, < 1, then the above relation tells us
that p; < 1, which implies that the subdivision scheme associated to mask a
and dilation matrix M converges in the L,-norm (see [10]). In particular, p, < 1
implies ¢ € L,(R*).

We can find p, from spec(7}|,,) by using the following formula:

spec(Tilig) ) = spee(Toluars, , ) U{o™ ¢ |ul < 24}
The following example illustrates this technique.

Example 3.3. Let M be the matrix

1 -1

11
and let a be the mask given in Example 2.3. Let us determine the smoothness
order of the normalized solution ¢ of the refinement equation with mask « and
dilation matrix M.

Let b be the mask computed from a by using (1.7). Then suppb C [4, 4]’
and the set 300, M"([—4,4]) is

{(x1,x0) € R |xy| <12, o] <12, |x; — x2| < 16, |x; 4 x| < 16},

The set Q:=27>N (3%, M"(]—4,4]°)) has exactly 481 points. We use
MATLAB to compute the eigenvalues Of the matrix (b(Mo — f8)), 5. These
eigenvalues are arranged in the order of descending absolute values. The fol-
lowing is a list of the first 22 eigenvalues.

1, 0.5+0.5i, 0.5-05i, 0.5, 05, -0.5i
—0.25+0.25, —0.25-0.25, 0.25+0.25, 0.25—0.25i,
~025 —0.25 025, -0.25i, 025,

0.1832744177, 0.125+40.125i, 0.125 — 0.125i,

—0.125+0.1251, —0.125-0.1251, —0.125+ 0.125i,
—0.125 — 0.1251.

Note that the matrix M has two eigenvalues 6, = 1 +i and g, =1 —i. In the
above list, 21 eigenvalues are of the form o, ¢, for double indices (u,, u,)

with u; + 1, <5. Therefore, p, ~ 0.1832744177. By (1.8) we obtain
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v(¢) = —log,0.1832744178 = 2.44792267.

From the results in [10] we know that the subdivision scheme associated to
mask a and dilation matrix M converges uniformly. Moreover, the mask « is
interpolatory, i.e., a(0) = 1 and a(Ma) = 0 for o € Z*\ {0}. Consequently, ¢ is
continuous, ¢(0) =1, and ¢(«) = 0 for o € Z°\ {0}. Hence, the shifts of ¢ are
linearly independent. We conclude that v(¢) = 2.44792267. O

4. Refinable functions induced by box splines

In the univariate case, a factorization technique can be used to compute the
smoothness order (regularity) of a refinable function by finding the dominant
eigenvalue of a certain matrix. In this regard, the reader is referred to the work
of Daubechies and Lagarias [5], Eirola [8], and Villemoes [20].

In the multivariate case, if a refinable function is the convolution of a box
spline with a refinable distribution, then it is still possible to compute its
smoothness order by finding the dominant eigenvalues of certain transition
matrices.

For an element a € ¢,(Z*) we use a(z) to denote its symbol:

a(z) == Za(oc)z“, ze (C\{0})".

acZ’®

The convolution of two sequences @ and b in ¢,(Z°) is defined by
axb(a) := Za(u — B)b(p), weZ'.
pez®
If c = ax*b, then

i(z) =a(z)b(z), ze€(C\{0})"
For r=1,2,..., let a, be the element in ¢y(Z) defined by its symbol:
a(z) = (1+2z)" /2"

The cardinal B-spline B, of order r can be viewed as the normalized solution of
the refinement equation ¢ = >, a.(x)p(2 - —a).

Box splines are natural extensions of cardinal B-splines. The reader is re-
ferred to the monograph [2] by de Boor et al. for a comprehensive study of box
splines.

In this section we are particularly interested in box splines on the three-di-
rection mesh on R?. For r,s,t > 1, let a,, be the element in EO(ZZ) defined by
its symbol:

ars5.(z1,22) = (1+21)" (1 +2)°(1 + 212y 202 (z1,22) € 2.
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The box spline B,, is defined as the normalized solution of the refinement
equation

(,b = Z ans,t(a)qb(z : —OC)

wez?

In [7], Dyn et al. analyzed convergence of the so-called butterfly scheme which
is induced by the box spline B;; ;. More generally, using convolutions of box
splines with distributions, Riemenschneider and Shen [19] constructed a family
of bivariate interpolatory subdivision schemes with symmetry.

The following theorem provides a method to simplify the computation of
the smoothness order of refinable functions which are convolutions of box
splines B, ,, with refinable distributions. In what follows we use T? to denote
the torus

{(z1,2) €C : |z1| = 1, |z = 1}

Theorem 4.1. Let ¢ be an element in £y(Z*) such that ", ,» c(x) = 4, and let a
be given by its symbol

i) = (1 *221)’(1 *222>r(1 +22122>r5(z), 2= (z,2) € T,

where r is a positive integer. Let ¢ be the normalized solution of the refinement
equation ¢ =", a(a)p(2 - —a). Write z3 for z1z,. Let a; (j = 1,2, 3) be given
by

a;(z) = (%)ré(z), ze T,
and let b; (j=1,2,3) be given by biz)=|a,z)|’/4, zeT>. Let
p:=maxi<;<3{p(Ty,)}. If p > 1 and if the shifts of ¢ are stable, then

v(¢) = 2r — log, p. 4.1
Proof. Let b € £y(Z*) be given by

b(z) = la(z)[’/4, zeT?

and let f be the normalized solution to the refinement equation with mask b.
Then £ (&) = |$(&)|* for all ¢ € R*. Thus, if the shifts of ¢ are stable, then so are
the shifts of f.

Let P,,, := I NS(B,,,). It is known (see, e.g., [2]) that

P, ={p€l: D;Dip=0,D[(Dy+D,)'p=0,D5D +D,)'p=0}.

In particular, P, s, C Il si2.
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For j = 1,2,3, we use 4, to denote the difference operator on 4y(Z*) given by
A;v:=—v(- —e;) + 20 —v(- +¢;), v € £y (77,

where e; = (1,0), e; = (0,1), and e; = (1,1). Let V' be the linear span of
A5 A554, A5 A58, and A5 A3, B € 77, and let

Ui={uelZ: (uv)=0 YoeV},

where (u, v) is the bilinear form given in (1.5). Then u belongs to U if and only
if u satisfies the following system of partial difference equations:

M Au=0, ANAu=0, AAu=0.

By [4, Proposition 2.1] we have U = P, 5,5,|,2. Also see [12, §5] for properties
of partial difference equations associated to box splines. Note that £(Z?) is the
dual space of /y(Z*) with respect to the bilinear form (u,v). Suppose
w € £y(Z*) \ V. Then there exists an element u € £(Z?) such that (u, w) = 1 and
(u,v) = 0 for all v € V. This shows

V={vet(Z®): (uv)=0VueU}.

Since U is invariant under the subdivision operator Sy, V is invariant under the
transition operator 7}, by Theorem 3.2. Let U, := I;|,». Then we have

Vi ={v€ (2’ : (u,v)=0Vue U}

Consequently, Uy, C U and V C V4.

We observe that >~ 2 "suppb is contained in the convex hull of suppb.
Let Q be the intersection of Z* with the convex hull of suppb. By Theorem 3.2
we have

spec(Tb\[(Q)) = spec(Tb|€(Q)N,) U spec(Si|y) (4.2)

and

spec(T},\[@) = spec (T,,|Z(Q)m,4r4) U spec (Sb|U4,,| ) (4.3)

Let us find the difference between spec(Ss|,,) and spec(Sy|, )-
For j=0,1,..., by H; we denote the linear space of homogeneous polyno-
mials of degree j. Let

E:={uecU: f+uecH}.

Then U is the direct sum of E; j=0,1,...,6r—2. Let uc€E; and
p:=f+*ueH; Since f =), ,b(a)f(2-—a), by (2.5) we obtain
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p(x)zZu (x —a) ZSbu —a), x € R
we?? ac??

On the other hand, since p is a homogeneous polynomial of degree j, we
have

px) =27p(2x) = Z2’ju(ot)f(2x —a), x € R

aeZ?

But the shifts of fare stable. Thus, the above two equations yield Syu = 2~/u for
all u € E;. In particular, E; is invariant under S,. Therefore,

spec(Sy|,) = Ujﬁ-g)zspec (Sb|5,)
= spec (Sh|U4,4,]> U ( U, spec (S;,|E )) (4.4)

Note that each element in spec(Sy|g, ) is equal to 277, Write py for p(Ty|yg)nr)-
Combining (4.2)—(4.4) together, we obtain

P = p(Tb|Z(Q)mV4,,1) =max {p;, 27"} (4.5)
For convenience, we set 4,,3 := 4;, j = 1,2,3. In order to find p,, let ; be the
minimal invariant subspace of 7, generated by the sequences 47,,47,,3p,

B € 7> Then V = W, + W + Wi, so

py = max {p(Til,) }-

1</<3

Let S, denote the subdivision operator associated to a as defined in (1.4). It
follows from [10, Theorem 4.1] and [17, Theorem 3.2] that

: 7" Qn 1/"
,}Ln; HVIVZS 5” p(Tb|W3)'
Since a(z) =27 (1 +z)"(1 + z)"a3(z), by [13, Theorem 3.2] we have

lim ||V} V58,0

1/n T, TR
2/ :22’11m‘
n—o0

1/n
S” 5H
az B

But bs(z) = |as(z)[* /4, z € T>. Hence lim,_., |Sx 5Hl/" p(Tp,). The pre-
ceding discussion tells us that p(7,[y,) =2~ 4 (T,,) is true for j = 3. Clearly,
this relation is also valid for j = 1 or j = 2. It follows that

_ __n—4r __n—4r
py = max, {p(TbIW,.)} =27" max {p(T,)} =2""p.
By our assumption, p > 1. Hence, (4.5) tells us that p, = max{p,,27*}
= py > 27%. 1t follows that 2r > —log, p,,. If, in addition, the shifts of ¢ are
stable, then
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Table 1

r v(e,) V()

9 5.89529419 6.33524331
10 6.42640635 6.81143594
11 6.17848062 7.28259907
12 6.68092993 7.74953085
13 6.41506309 8.21284369
14 6.89718935 8.67302201
15 6.61823707 9.13045707
16 7.08520104 9.58546997

v(¢) = —log, p,, = —log, py = 2r — log, p.
This verifies (4.1). O

Example 4.2. For r = 1,2, ..., let h, be the mask on Z* given by its symbol
h(z1,2) = 272, (1 +21) (1 + 2) (1 + 2125) /22,

There exists a unique sequence ¢, supported in [l —r,r — 1]2 such that ¢, :=
h, % ¢, is an interpolatory mask. Let ¢, be the normalized solution of the re-
finement equation associated with mask ¢,. The smoothness order v(¢p,) was
computed in [19] for r=2,...,8. Theorem 4.1 enables us to simplify the
computation significantly so that we obtain v(¢,) for »r =9,...,16 as shown in
Table 1.

In [6] Deslauriers and Dubuc showed that, for each » = 1,2, .. ., there exists
a unique interpolatory mask b, supported on [1 — 2r,2r — 1] such that b, is
symmetric about the origin and its symbol Z;,.(z) is divisible by (1 + 2)2’. Let f,
be the normalized solution of  the refinement  equation
¢ =2 ,7b(2)p(2-—a). The smoothness order v(f,) was computed in [8] for
r=1,2,...,20. For the purpose of comparison, we have listed the values of
v(f,) r=9,...,16) in Table 1. O
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