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Abstract

In this paper we investigate compactly supported wavelet bases for Sobolev spaces. Starting with a
compactly supported refinable functionsφ andφ̃ in L2(R) satisfying a very mild condition, we provide a gene
principle for constructing a waveletψ such that the waveletsψjk := 2j/2ψ(2j · − k) (j, k ∈ Z) form a Riesz basis
for L2(R). If, in addition,φ lies in the Sobolev spaceHm(R), then the derivatives 2j/2ψ(m)(2j · − k) (j, k ∈ Z)
also form a Riesz basis forL2(R). Consequently,{ψjk: j, k ∈ Z} is a stable wavelet basis for the Sobolev sp
Hm(R). The pair ofφ andφ̃ are not required to be biorthogonal or semi-orthogonal. In particular,φ andφ̃ can be
a pair of B-splines. The added flexibility onφ andφ̃ allows us to construct wavelets with relatively small suppo
 2003 Published by Elsevier Inc.
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1. Introduction

The purpose of this paper is to investigate compactly supported wavelet bases for Sobolev spa
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As usual, byL2(R) we denote the linear space of all (complex-valued) square integrable fun
on R. The spaceL2(R) is a Hilbert space with the inner product given by

〈f,g〉 :=
∫
R

f (x) g(x)dx, f, g ∈ L2(R).

The norm of a functionf in L2(R) is given by‖f ‖2 := √〈f,f 〉.
The Fourier transform of an integrable functionf is defined by

f̂ (ξ ) :=
∫
R

f (x)e−ixξ dx, ξ ∈ R.

The Fourier transform can be naturally extended to functions inL2(R). Forµ> 0, we denote byHµ(R)

the Sobolev space of all functionsf ∈ L2(R) such that∫
R

∣∣f̂ (ξ )∣∣2(1+ |ξ |2µ)dξ <∞.

The spaceHµ(R) is a Hilbert space with the inner product given by

〈f,g〉Hµ(R) := 1

2π

∫
R

f̂ (ξ ) ĝ(ξ)
(
1+ |ξ |2µ)dξ, f, g ∈Hµ(R).

We are interested in wavelet bases for the Sobolev spaceHm(R), wherem is a positive integer. In thi
case, we have

〈f,g〉Hm(R) = 〈f,g〉 + 〈
f (m), g(m)

〉
,

wheref (m) denotes themth derivative off .
LetH be a Hilbert space equipped with the norm‖ · ‖. A sequence(fn)n=1,2,..., in H is called aRiesz

sequenceif there exist two positive constantsA andB such that

A

( ∞∑
n=1

|cn|2
)1/2

�
∥∥∥∥∥

∞∑
n=1

cnfn

∥∥∥∥∥�B

( ∞∑
n=1

|cn|2
)1/2

for every sequence(cn)n=1,2,..., with only finitely many nonzero terms. A Riesz sequence(fn)n=1,2,..., is
called aRiesz basisif additionally the linear span of{fn: n= 1,2, . . .} is dense inH .

Smooth orthogonal wavelets with compact support were constructed by Daubechies (see [8])ψ

be an orthogonal wavelet inL2(R), and let

ψjk(x) := 2j/2ψ
(
2j x − k

)
, x ∈ R. (1.1)

Then{ψjk: j, k ∈ Z} is a Riesz basis forL2(R).
Supposeψ is a function in the Sobolev spaceHm(R), wherem is a positive integer. Forj, k ∈ Z, let

ψjk be given as in (1.1). Then we have

‖ψjk‖Hm(R) �
∥∥ψ(m)

jk

∥∥
L2(R)

= 2jm
∥∥ψ(m)

∥∥
L2(R)

.

Since limj→∞ 2jm = ∞, {ψjk: j, k ∈ Z} will not be a Riesz basis forHm(R). It is possible to construc
Riesz bases forHm(R) only if ψjk are given by 2j/2ψj(2j · −k) for j, k ∈ Z, where the waveletsψj are
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different for differentj . See the work of Bastin and Boigelot [1], and Micchelli [17] for research in
direction.

The preceding discussion tells us that there isno function ψ in Hm(R) such that{ψjk: j, k ∈ Z}
forms a Riesz basis forHm(R). However, the Sobolev spaceHm(R) can be characterized by means
orthogonal wavelets inL2(R). Let ψ be an orthogonal wavelet inL2(R). It was shown in [8,15] that a
functionf lies inHm(R) if and only if∑

j,k∈Z

∣∣〈f,ψjk〉∣∣2(1+ 22mj
)
<∞.

Moreover, there exist two positive constantsA andB such that the inequalities

A
∑
j,k∈Z

(
1+ 22mj

)|bjk|2 �
∥∥∥∥∑
j,k∈Z

bjkψjk

∥∥∥∥2

Hm(R)

�B
∑
j,k∈Z

(
1+ 22mj

)|bjk|2 (1.2)

hold for every sequence(bjk)j,k∈Z with
∑

j,k∈Z
(1+ 22mj )|bjk|2<∞.

If ψ is a function inHm(R) satisfying (1.2), then{ψjk: j, k ∈ Z} is said to be astable wavelet basi
for Hm(R). Although stable wavelet bases are not Riesz bases forHm(R), they still play a vital role in
the study of function spaces as well as in many applications. In light of the preceding discussion
that orthogonality is no longer a significant issue for wavelet bases of Sobolev spaces. Instead,
of the support of a wavelet turns out to be an important criterion for its performance. From a num
point of view, a wavelet with smaller support usually generates more efficient algorithms for w
transforms than that with a larger support.

In this paper we aim to provide a general principle for the construction of stable wavelet ba
Sobolev spaces and, by applying the principle to concrete problems, to construct stable wavel
with relatively small supports.

As usual, we begin our construction with refinable functions. Letφ be a compactly supported functio
in L2(R) such thatφ̂(0)= 1. Suppose thatφ is refinable

φ(x)=
∑
j∈Z

a(j)φ(2x − j), x ∈ R, (1.3)

where the maska is finitely supported and
∑

j∈Z
a(j) = 2. Similarly, let φ̃ be a compactly supporte

function inL2(R) such thatˆ̃φ(0)= 1. Suppose that̃φ is refinable

φ̃(x)=
∑
j∈Z

ã(j)φ̃(2x − j), x ∈ R, (1.4)

where the mask̃a is finitely supported and
∑

j∈Z
ã(j)= 2.

Let us recall the concept of bracket products from [2,14]. Thebracket productof two compactly
supported functionsf andg in L2(R) is given by

[f,g](ξ) :=
∑
j∈Z

〈
f,g(· − j)

〉
e−ijξ =

∑
k∈Z

f̂ (ξ + 2kπ)ĝ(ξ + 2kπ), ξ ∈ R.

Clearly,[f,g] is a 2π -periodic function onR. Our main assumption aboutφ andφ̃ is

[φ, φ̃](ξ) �= 0 ∀ξ ∈ R. (1.5)
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Section 2 will be devoted to multiresolution analysis related to the refinable functionsφ and φ̃
satisfying the above condition.

In Sections 3 and 4, using the refinable functionsφ and φ̃, we will give an explicit construction o
wavelet bases forL2(R). That is, we will prove the following. Let

ψ :=
∑
j∈Z

(−1)jµ(1− j)φ(2 · −j) with µ(j) := 〈
φ̃, φ(2 · −j)〉, j ∈ Z.

Then{2j/2ψ(2j · −k): j, k ∈ Z} is a Riesz basis forL2(R).
In Section 5 we will show that, forφ ∈ Hm(R), {2j/2ψ(m)(2j · −k): j, k ∈ Z} is a Riesz basis fo

L2(R). Consequently,{ψjk: j, k ∈ Z} forms a stable wavelet bases forHm(R).
Two important classes of wavelets satisfy the condition in (1.5). In the study of biorthogonal wa

by Cohen, Daubechies, and Feauveau (see [6,7]), the shifts ofφ and φ̃ are biorthogonal. Hence
[φ, φ̃](ξ) = 1 for all ξ ∈ R. In the investigation of semi-orthogonal wavelets by Chui and Wang
[4,5]), φ̃ = φ and [φ,φ](ξ) > 0 for all ξ ∈ R. By relaxing conditions onφ andφ̃ we gain flexibility to
construct desirable stable wavelet bases for Sobolev spaces.

Finally, in Section 6, we shall apply the above theory toB-splines. For a positive integerm, let Mm

denote theB-spline of orderm, which is the convolution ofm copies ofχ[0,1], the characteristic functio
of the interval[0,1].

SupposeN is an odd number. Choosingφ =MN andφ̃ =M1, we obtain

ψN =
N∑
j=0

(−1)j

2

[
MN+1(j)+MN+1(j + 1)

]
MN(2 · −j).

The waveletψN is supported on[0,N] and is antisymmetric aboutN/2. Moreover, forr = 0,1, . . . ,
N − 1, the set{2j/2ψ(r)

N (2
j · −k): j, k ∈ Z} is a Riesz basis forL2(R).

For an even integerN , with φ =MN andφ̃ =M2(· + 1) we get

ψN =
N+2∑
j=0

(−1)j

4

[
MN+2(j − 1)+ 2MN+2(j)+MN+2(j + 1)

]
MN(2 · −j).

The waveletψN is supported on[0,N + 1] and is symmetric about(N + 1)/2. Moreover, forr =
0,1, . . . ,N − 1, the set{2j/2ψ(r)

N (2
j · −k): j, k ∈ Z} is a Riesz basis forL2(R).

By comparison, the support of the semi-orthogonalCN spline wavelet constructed in [4] has length
least 2N , and theCN biorthogonal wavelet constructed in [7] has length greater than 4N .

2. Multiresolution analysis

In this section we provide a self-contained treatment for the multiresolution analysis induced by
of compactly supported refinable functions inL2(R).

LetH be a Hilbert space. The inner product of two elementsf andg in H is denoted by〈f,g〉. The
norm of an elementf in H is given by‖f ‖ := √〈f,f 〉. For an elementf ∈H and a subsetE of H , the
distance fromf toE is defined as

dist(f,E) := inf
{‖f − g‖: g ∈E}.
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A linear mappingP :H → H is called aprojection, if P 2 = P , i.e., P(Ph) = Ph for all h ∈ H .
SupposeH is the direct sum of two closed linear subspacesV andU . Then there exists a uniqu
continuous projectionP such that the range ofP is V and the null space ofP is U . Let I denote
the identity operator onH . Then each elementh ∈H can be decomposed ash= Ph+ (I −P)h, where
Ph ∈ V and(I −P)h ∈U .

Let (Vn)n∈Z be a family of closed linear subspaces of a Hilbert spaceH . We say that(Vn)n∈Z forms a
multiresolutionof H if it satisfies the following conditions:

(a) (Vn)n∈Z is nested, i.e.,Vn ⊆ Vn+1 for everyn ∈ Z;
(b)

⋃
n∈Z

Vn is dense inH ;
(c)

⋂
n∈Z

Vn = {0}.

See [15] for the concept of multiresolution analysis. The above definition of multiresolution is ad
from [3].

Suppose(Vn)n∈Z and(Ṽn)n∈Z are two families of closed linear subspaces ofH . Each of them forms a
multiresolution ofH . Furthermore, we assume thatH is the direct sum ofVn andṼ ⊥

n for eachn ∈ Z:

H = Vn + Ṽ ⊥
n and Vn ∩ Ṽ ⊥

n = {0}. (2.1)

LetWn := Vn+1 ∩ Ṽ ⊥
n . ThenVn+1 is the direct sum ofVn andWn.

Lemma 2.1. Let Pn be the continuous projection with rangeVn and null spacẽV ⊥
n . If there exists a

positive constantA such that‖Pn‖ �A for all n ∈ Z, then for eachf ∈H ,

lim
n→∞‖Pnf − f ‖ = 0 and lim

n→−∞ ‖Pnf ‖ = 0. (2.2)

Moreover,
∑

n∈Z
Wn is dense inH .

Proof. Let f ∈ H . Since
⋃
n∈Z

Vn is dense inH , for given ε > 0 there exists an integerN such that
dist(f,VN) < ε. But VN ⊆ Vn for all n� N . Hence, dist(f,Vn) < ε for n � N . Thus, forn� N , there
exists somevn ∈ Vn such that‖f − vn‖< ε. It follows from Pnvn = vn that:

‖Pnf − f ‖ = ∥∥Pn(f − vn)− (f − vn)
∥∥�

∥∥Pn(f − vn)
∥∥+ ‖f − vn‖.

By our assumption,‖Pn‖ �A for all n ∈ Z. Therefore,

‖Pnf − f ‖ � (A+ 1)‖f − vn‖< (A+ 1)ε for n�N.

In other words, limn→∞ ‖Pnf − f ‖ = 0.
In order to prove limn→−∞ ‖Pnf ‖ = 0, we argue as follows. LetUn := Ṽ ⊥

n andŨn := V ⊥
n for n ∈ Z.

Then Un+1 ⊆ Un for every n ∈ Z. Also,
⋃
n∈Z

Un is dense inH , since
⋂
n∈Z

Ṽn = {0}. Moreover,⋂
n∈Z

Un = {0}, because
⋃
n∈Z

Ṽn is dense inH . Thus,(U−n)n∈Z forms a multiresolution ofH . Similarly,

(Ũ−n)n∈Z forms a multiresolution ofH . It follows from (2.1) that

H =Un + Ũ⊥
n and Un ∩ Ũ⊥

n = {0}.
LetQn := I −Pn, n ∈ Z. ThenQn is the continuous projection with rangeUn and null spacẽU⊥

n . Clearly,
‖Qn‖ � ‖Pn‖ + 1�A+ 1 for all n ∈ Z. By what has been proved before we have

lim ‖Qnf − f ‖ = lim ‖Q−nf − f ‖ = 0.

n→−∞ n→∞
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This shows that limn→−∞ ‖Pnf ‖ = 0.
It follows from (2.2) that:

lim
n→∞

∥∥(Pnf − P−nf )− f
∥∥= 0

for eachf ∈H . We havePnf −P−nf =∑n−1
k=−n(Pk+1f − Pkf ). But

Pk+1f −Pkf = (I −Pk)(Pk+1f ) ∈ Vk+1 ∩ Ṽ ⊥
k =Wk.

Hence,Pnf −P−nf ∈∑n−1
k=−nWk . This shows that

∑
n∈Z

Wn is dense inH . ✷
Now let us turn to multiresolution analysis for the Hilbert spaceH = L2(R). Letφ andφ̃ be compactly

supported functions inL2(R) satisfying the refinement equations (1.3) and (1.4), respectively. In add

we assume that̂φ(0)= ˆ̃
φ(0)= 1. Forn ∈ Z, letVn be the closure of the linear span of{φ(2n ·−j): j ∈ Z}

in L2(R). Then(Vn)n∈Z forms a multiresolution ofL2(R) (see [14, Theorem 2.2]). Similarly, let̃Vn be
the closure of the linear span of{φ̃(2n ·−j): j ∈ Z} in L2(R). Then(Ṽn)n∈Z also forms a multiresolution
of L2(R). The following lemma asserts that(Vn)n∈Z and(Ṽn)n∈Z satisfy the conditions of Lemma 2.
provided[φ, φ̃](ξ) �= 0 for all ξ ∈ [0,2π ].

Lemma 2.2. If [φ, φ̃](ξ) �= 0 for all ξ ∈ [0,2π ], thenL2(R) is the direct sum ofVn and Ṽ ⊥
n for every

n ∈ Z

L2(R)= Vn + Ṽ ⊥
n and Vn ∩ Ṽ ⊥

n = {0}.
LetPn be the continuous projection with rangeVn and null spacẽV ⊥

n . Then there exists a positive numb
B such that‖Pn‖ �B for all n ∈ Z.

In order to prove this lemma we need to review some basic properties of shift-invariant spac
φ ∈ L2(R), we denote byS(φ) the closure of the linear span of{φ(· − j): j ∈ Z} in L2(R). ThenS(φ) is
shift-invariant, that is,

f ∈ S(φ) ⇒ f (· − k) ∈ S(φ) ∀k ∈ Z.

We callS(φ) the shift-invariant space generated byφ. The shifts ofφ are said to bestableif {φ(·−j): j ∈
Z} is a Riesz sequence inL2(R). For a compactly supported functionφ in L2(R), the shifts ofφ are stable
if and only if, for eachξ ∈ R, there exists somek ∈ Z such thatφ̂(ξ + 2kπ) �= 0 (see, e.g., [14]).

We denote by+(Z) the linear space of complex-valued sequences onZ, and by+0(Z) the linear space
of all finitely supported sequences onZ. Givenb ∈ +(Z), we define

‖b‖p :=
(∑
j∈Z

∣∣b(j)∣∣p)1/p

for 1 � p <∞, and define‖b‖∞ to be the supremum of{|b(j)|: j ∈ Z}. For 1� p � ∞ we denote
by +p(Z) the Banach space of all sequencesb on Z such that‖b‖p <∞. Givenb ∈ +1(Z), we useb̂ to
denote the corresponding Fourier series:

b̂(ξ ) :=
∑

b(j)e−ijξ , ξ ∈ R.
j∈Z
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Fora, b ∈ +(Z), we define theconvolutionof a andb by

a ∗ b(j) :=
∑
k∈Z

a(j − k)b(k), j ∈ Z,

whenever the above series is absolutely convergent. For example, if we useδ to denote the sequenc
given byδ(0)= 1 andδ(j)= 0 for j ∈ Z \ {0}, thena ∗ δ = a for all a ∈ +(Z). If a ∈ +p(Z), 1� p� ∞,
andb ∈ +1(Z), thena ∗ b is well defined and‖a ∗ b‖p � ‖a‖p‖b‖1. In particular, if botha andb lie in
+1(Z), thena ∗ b ∈ +1(Z) and(a ∗ b)ˆ(ξ)= â(ξ )b̂(ξ), ξ ∈ R.

The proof of Lemma 2.2 requires some knowledge about discrete convolution equations (see [1
a be an element in+0(Z) such that̂a(ξ) �= 0 for all ξ ∈ R. For givenv ∈ +p(Z), the discrete convolution
equation

a ∗ u= v (2.3)

has a unique solution foru ∈ +p(Z). To see this, let

c(j) := 1

2π

2π∫
0

1

â(ξ )
eijξ dξ, j ∈ Z.

Then the sequencec decays exponentially fast, and̂c(ξ)â(ξ) = 1 for all ξ ∈ Z. Hencec ∗ a = δ. If
a ∗ u= v, then it follows that:

u= δ ∗ u= (c ∗ a) ∗ u= c ∗ (a ∗ u)= c ∗ v.
This shows thatu = c ∗ v is the unique solution of the discrete convolution equation (2.3). S
the sequencec decays exponentially fast,c lies in +1(Z). Consequently,u lies in +p(Z) and ‖u‖p �
‖c‖1‖v‖p. Note that‖c‖1 is independent ofv.

Proof of Lemma 2.2. For j ∈ Z, let λ(j) := 〈φ, φ̃(· − j). Then we have

λ̂(ξ )= [φ, φ̃](ξ)=
∑
k∈Z

φ̂(ξ + 2kπ) ˆ̃φ(ξ + 2kπ) �= 0 ∀ ξ ∈ R.

Consequently, for eachξ ∈ [0,2π ], there exists somek ∈ Z such thatφ̂(ξ + 2kπ) �= 0. This shows tha
the shifts ofφ are stable. In other words,{φ(· − j): j ∈ Z} is a Riesz sequence inL2(R).

Givenf ∈L2(R), we wish to findvn ∈ Vn such thatf −vn is orthogonal tõVn. Since{φ(·−j): j ∈ Z}
is a Riesz sequence, an elementvn in Vn can be uniquely represented as

vn =
∑
j∈Z

bn(j)2
n/2φ

(
2n · −j), (2.4)

where bn ∈ +2(Z). Moreover, there exist positive constantsA1 and B1 independent ofn such that
A1‖bn‖2 � ‖vn‖2 � B1‖bn‖2. Note that(f − vn)⊥ Ṽn if and only if〈

vn,2
n/2φ̃

(
2n · −k)〉= 〈

f,2n/2φ̃
(
2n · −k)〉 ∀k ∈ Z. (2.5)

It follows from (2.4) that:
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〈
vn,2

n/2φ̃
(
2n · −k)〉=∑

j∈Z

bn(j)2
n
〈
φ
(
2n · −j), φ̃(2n · −k)〉

=
∑
j∈Z

bn(j)
〈
φ(· − j), φ̃(· − k)

〉
.

Hence, (2.5) is equivalent to the discrete convolution equationbn ∗ λ= cn, where

cn(k) :=
〈
f,2n/2φ̃

(
2n · −k)〉= 〈

2−n/2f
(
2−n·), φ̃(· − k)

〉
, k ∈ Z.

Applying [14, Theorem 3.1] to the sequencecn, we obtain

‖cn‖2 �B2

∥∥2−n/2f
(
2−n·)∥∥2 = B2‖f ‖2,

where

B2 :=
∥∥∥∥∑
k∈Z

∣∣φ̃(· − k)
∣∣∥∥∥∥
L2([0,1))

<∞.

By our assumption,̂λ(ξ) �= 0 for all ξ ∈ R. Therefore, the discrete convolution equationbn ∗ λ= cn
has a unique solution forbn and‖bn‖2 � B3‖cn‖2 for some constantB3 independent ofn. Consequently
there exists a unique elementvn in Vn such that(f −vn)⊥ Ṽn. Letun := f −vn. Thenf can be uniquely
decomposed as the sum ofvn andun with vn ∈ Vn andun ∈ Ṽ ⊥

n . This shows thatL2(R) is the direct sum
of Vn andṼ ⊥

n .
Let Pn be the continuous projection with rangeVn and null spacẽV ⊥

n . ThenPnf = vn for f ∈L2(R),
wherevn is the element inVn such thatf − vn is orthogonal tõVn. Hence,‖Pnf ‖2 = ‖vn‖2 � B1‖bn‖2.
Combining the above estimates together, we obtain‖Pnf ‖2 � B1B2B3‖f ‖2. Therefore, withB :=
B1B2B3, ‖Pn‖ � B for all n ∈ Z. ✷

3. Riesz sequences

In this section we investigate Riesz sequences generated by a pair of compactly supported f
in L2(R).

A sequence(gn)n=1,2,..., in a Hilbert spaceH is called aBessel sequence if there exists a positive
constantB such that

∞∑
n=1

∣∣〈f,gn〉∣∣2 �B‖f ‖2 ∀f ∈H. (3.1)

Letψ andψ̃ be two compactly supported functions inHµ(R) for someµ> 0. Suppose∫
R

ψ(x)dx = 0 and
∫
R

ψ̃(x)dx = 0.

For j, k ∈ Z, let

ψjk(x) := 2j/2ψ
(
2j x − k

)
and ψ̃jk(x) := 2j/2ψ̃

(
2jx − k

)
, x ∈ R.

Then (ψjk)j,k∈Z is a Bessel sequence inL2(R), and so is(ψ̃jk)j,k∈Z. This result was established b
Villemoes [19]. Also, see [12, Section 2] for a discussion related to this problem.
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Theorem 3.1. Suppose thatψ and ψ̃ are compactly supported functions inHµ(R) for someµ> 0 and

ψ̂(0)= ˆ̃
ψ(0)= 0. Then the sequences(ψjk)j,k∈Z and(ψ̃jk)j,k∈Z are Riesz sequences inL2(R), provided

the following two conditions are satisfied:

(a) 〈ψjk, ψ̃j ′k′ 〉 = 0 for j �= j ′;
(b) [ψ, ψ̃](ξ) �= 0 for all ξ ∈ [0,2π ].

Proof. Since(ψjk)j,k∈Z and(ψ̃jk)j,k∈Z are Bessel sequences inL2(R), there exist two positive constan
A andB such that∑

j,k∈Z

∣∣〈f,ψjk〉∣∣2 �A‖f ‖2
2 and

∑
j,k∈Z

∣∣〈f, ψ̃jk〉∣∣2 � B‖f ‖2
2 ∀f ∈L2(R). (3.2)

Let (cjk)j,k∈Z be a sequence such that
∑

j,k∈Z
|cjk|2 < ∞. Thenf := ∑

j,k∈Z
cjkψjk is an element in

L2(R) and

‖f ‖2
2 �A

∑
j,k∈Z

|cjk|2. (3.3)

By condition (a),〈ψjk, ψ̃j ′k′ 〉 = 0 for j �= j ′. Consequently,

〈f, ψ̃jk′ 〉 =
∑
k∈Z

cjk〈ψjk, ψ̃jk′ 〉 =
∑
k∈Z

τ(k′ − k)cjk, (3.4)

whereτ(k) := 〈ψ, ψ̃(· − k)〉, k ∈ Z. Indeed, we have

〈ψjk, ψ̃jk′ 〉 = 〈
2j/2ψ

(
2j · −k),2j/2ψ̃(2j · −k′)〉= 〈

ψ(· − k), ψ̃(· − k′)
〉= τ(k′ − k).

By condition (b),

τ̂ (ξ )=
∑
k∈Z

τ(k)e−ikξ = [ψ, ψ̃](ξ) �= 0 ∀ξ ∈ [0,2π ].

Fix j ∈ Z for the time being. We may view (3.4) as a discrete convolution equation for(cjk)k∈Z. By the
discussion on discrete convolution equations in Section 2 we see that there exists a positive conK

independent ofj such that∑
k∈Z

|cjk|2 �K
∑
k′∈Z

∣∣〈f, ψ̃jk′ 〉∣∣2.
Therefore, with the help of (3.2), we obtain∑

j,k∈Z

|cjk|2 �K
∑
j,k′∈Z

∣∣〈f, ψ̃jk′ 〉∣∣2 �KB‖f ‖2
2.

This together with (3.3) shows that(ψjk)j,k∈Z is a Riesz sequence inL2(R). The same argument show
that(ψ̃jk)j,k∈Z is also a Riesz sequence inL2(R). ✷

4. Wavelet bases

In this section we give an explicit construction of wavelet bases forL2(R). Our construction is
motivated by the work of Micchelli in [16].



R.-Q. Jia et al. / Appl. Comput. Harmon. Anal. 15 (2003) 224–241 233

nd
.4), we
Let φ andφ̃ be compactly supported functions inL2(R) satisfying the refinement equations (1.3) a
(1.4), respectively. Taking Fourier transform of both sides of the refinement equations (1.3) and (1
obtain

φ̂(ξ )= 1

2
â(ξ/2)φ̂(ξ/2) and ˆ̃

φ(ξ)= 1

2
ˆ̃a(ξ/2) ˆ̃φ(ξ/2), ξ ∈ R. (4.1)

Throughout this section we assume that

[φ, φ̃](ξ) �= 0 ∀ξ ∈ R.

Note that[φ, φ̃](ξ)= λ̂(ξ ) for all ξ ∈ R, whereλ is the sequence given by

λ(j) := 〈
φ, φ̃(· − j)

〉
, j ∈ Z.

Lemma 4.1. Letµ andν be the sequences given by

µ(j) := 〈
φ̃, φ(2 · −j)〉 and ν(j) := 〈

φ, φ̃(2 · −j)〉, j ∈ Z,

and letψ andψ̃ be the functions given by

ψ :=
∑
j∈Z

(−1)jµ(1− j)φ(2 · −j) and ψ̃ :=
∑
j∈Z

(−1)jν(1− j) φ̃(2 · −j). (4.2)

Then the following statements are true:

(a) 〈ψ, φ̃(· − k)〉 = 0 for all k ∈ Z, andµ̂(ξ)= ˆ̃a(ξ) λ̂(ξ)/2 for all ξ ∈ R;
(b) 〈ψ̃, φ(· − k)〉 = 0 for all k ∈ Z, and ν̂(ξ )= â(ξ )λ̂(ξ)/2 for all ξ ∈ R.

Proof. We have〈
φ̃(· − k),ψ

〉=∑
j∈Z

(−1)jµ(1− j)
〈
φ̃(· − k),φ(2· − j)

〉=∑
j∈Z

(−1)jµ(1− j)µ(j − 2k)= 0.

Next, for ξ ∈ R we have

µ̂(ξ)=
∑
j∈Z

〈
φ̃, φ(2 · −j)〉e−ijξ =

∑
j∈Z

∑
k∈Z

ã(k)
〈
φ̃(2 · −k),φ(2 · −j)〉e−ijξ

= 1

2

∑
k∈Z

ã(k)e−ikξ∑
j∈Z

λ(k− j)e−i(k−j)ξ .

The proves part (a). The proof for part (b) is similar.✷
Lemma 4.2. Letψ andψ̃ be the functions given in(4.2). Then

[ψ, ψ̃](ξ)= 1

4
λ̂(ξ/2)λ̂(ξ/2+ π)λ̂(ξ) ∀ ξ ∈ R.

Proof. By the definition ofψ , for ξ ∈ R we have

ψ̂(ξ)= 1

2
φ̂(ξ/2)

∑
(−1)jµ(1− j)e−ijξ/2 = −1

2
φ̂(ξ/2)e−iξ/2∑µ(j)e−ij (ξ/2−π).
j∈Z j∈Z



234 R.-Q. Jia et al. / Appl. Comput. Harmon. Anal. 15 (2003) 224–241

g

It follows that:

ψ̂(ξ)= −1

2
φ̂(ξ/2)e−iξ/2µ̂(ξ/2− π), ξ ∈ R. (4.3)

Similarly,

ˆ̃
ψ(ξ)= −1

2
ˆ̃
φ(ξ/2)e−iξ/2ν̂(ξ/2− π), ξ ∈ R. (4.4)

By using the above expressions ofψ̂ and ˆ̃
ψ , for ξ ∈ R we have

[ψ, ψ̃](ξ)= 1

4

∑
k∈Z

µ̂(ξ/2+ kπ − π) ν̂(ξ/2+ kπ − π)φ̂(ξ/2+ kπ)
ˆ̃
φ(ξ/2+ kπ)

= 1

4

∑
k∈Z

µ̂(ξ/2+ 2kπ − π) ν̂(ξ/2+ 2kπ − π) φ̂(ξ/2+ 2kπ) ˆ̃
φ(ξ/2+ 2kπ)

+ 1

4

∑
k∈Z

µ̂(ξ/2+ 2kπ) ν̂(ξ/2+ 2kπ) φ̂(ξ/2+ 2kπ + π)
ˆ̃
φ(ξ/2+ 2kπ + π)

= 1

4

[
µ̂(ξ/2+ π) ν̂(ξ/2+ π) λ̂(ξ/2)+ µ̂(ξ/2) ν̂(ξ/2) λ̂(ξ/2+ π)

]
.

By Lemma 4.1 we havêµ(ξ)= ˆ̃a(ξ) λ̂(ξ)/2 andν̂(ξ )= â(ξ )λ̂(ξ)/2. Consequently,

[ψ, ψ̃](ξ)= 1

16
λ̂(ξ/2) λ̂(ξ/2+ π)

[
â(ξ/2+ π) ˆ̃a(ξ/2+ π)λ̂(ξ/2+ π)+ â(ξ/2) ˆ̃a(ξ/2)λ̂(ξ/2)].

But for ξ ∈ R we have

â(ξ/2) ˆ̃a(ξ/2) λ̂(ξ/2)+ â(ξ/2+ π) ˆ̃a(ξ/2+ π) λ̂(ξ/2+ π)

+
∑
k∈Z

â(ξ/2+ π) ˆ̃a(ξ/2+ π)φ̂(ξ/2+ π + 2kπ) ˆ̃
φ(ξ/2+ π + 2kπ)

= 4

(∑
k∈Z

φ̂(ξ + 4kπ) ˆ̃φ(ξ + 4kπ)+
∑
k∈Z

φ̂(ξ + 4kπ + 2π) ˆ̃
φ(ξ + 4kπ + 2π)

)
= 4λ̂(ξ ),

where (4.1) has been used to derive the second equality. This completes the proof of the lemma.✷
Letψ andψ̃ be as given in (4.2). By Lemma 4.1 we haveψ̂(0)= ˆ̃

ψ(0)= 0. Forj, k ∈ Z, let

ψjk := 2j/2ψ
(
2j · −k) and ψ̃jk := 2j/2ψ̃

(
2j · −k).

Sinceφ and φ̃ are compactly supported refinable functions inL2(R), they belong toHµ(R) for some
µ> 0 (see [13,20]). Consequently,ψ andψ̃ lie in Hµ(R). We are in a position to establish the followin
result.

Lemma 4.3. (ψjk)j,k∈Z is a Riesz sequence inL2(R).
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Proof. This result will be established by showing that(ψjk)j,k∈Z and(ψ̃jk)j,k∈Z satisfy conditions (a
and (b) in Theorem 3.1.

Supposej, j ′, k, k′ ∈ Z. For j > j ′, ψ̃j ′k′ is a linear combination of̃φjr , r ∈ Z. By Lemma 4.1,
〈ψjk, φ̃jr〉 = 0 for all r ∈ Z. Hence,

〈ψjk, ψ̃j ′k′ 〉 = 0. (4.5)

Forj < j ′,ψjk is a linear combination ofφj ′s , s ∈ Z. But 〈φj ′s, ψ̃j ′k′ 〉 = 0. Hence, (4.5) is true forj �= j ′.
Sinceλ̂(ξ ) �= 0 for all ξ ∈ R, by Lemma 4.2 we have[ψ, ψ̃](ξ) �= 0 for all ξ ∈ R. Therefore,(ψjk)j,k∈Z

is a Riesz sequence inL2(R), by Theorem 3.1. ✷
Our goal is to demonstrate that{ψjk: j, k ∈ Z} is a Riesz basis forL2(R). For this purpose it remain

to show that the linear span of{ψjk: j, k ∈ Z} is dense inL2(R). For eachj ∈ Z, let Wj denotes the
closure of the linear span of{ψjk: k ∈ Z} in L2(R). The rest of this section is devoted to proving t∑

j∈Z
Wj is dense inL2(R).

Let V := S(φ), Ṽ := S(φ̃), andW := S(ψ). For n ∈ Z, by σn we denote the scaling operator giv
by σnf (x) := f (2nx) for x ∈ R and a functionf on R. ThenWn = σn(W). Let Vn := σn(V ) and
Ṽn := σn(Ṽ ). It was proved in Lemma 2.2 that(Vn)n∈Z and(Ṽn)n∈Z satisfy the conditions in Lemma 2.
Therefore, if we can showWn = Vn+1 ∩ Ṽ ⊥

n , then Lemma 2.1 tells us that
∑

n∈Z
Wn is dense inL2(R).

In order to proveWn = Vn+1 ∩ Ṽ ⊥
n , it suffices to show that this statement is true forn = 0, i.e.,

W = V1 ∩ Ṽ ⊥. By Lemma 4.1,〈ψ, φ̃(· − k)〉 = 0 for all k ∈ Z. Hence,W ⊆ V1 ∩ Ṽ ⊥. By Lemma 2.2,
L2(R) is the direct sum ofVn andṼ ⊥

n . It follows thatV1 is the direct sum ofV andV1 ∩ Ṽ ⊥. Thus, in
order to proveW = V1 ∩ Ṽ ⊥, it suffices to show thatV1 = V +W . For this purpose we need a result
characterization of shift-invariant subspaces ofL2(R).

For a finite subset5 of L2(R), we useS(5) to denote the closure of the linear span of{φ(· − j): φ ∈
5, j ∈ Z} in L2(R). It was proved in [9] that a functionf ∈L2(R) lies inS(5) if and only if there exist
2π -periodic functionsτφ (φ ∈5) such that

f̂ (ξ )=
∑
φ∈5

τφ(ξ)φ̂(ξ)

for almost everyξ ∈ R. Also, see [2,11] for some elementary proofs of this result.
Let f ∈ V1. Then f (·/2) ∈ V . Hence, there exists a 2π -periodic functionτ such thatf̂ (2ξ) =

τ(ξ)φ̂(ξ) for almost everyξ ∈ R. In other words,

f̂ (ξ )= τ(ξ/2)φ̂(ξ/2). (4.6)

In order to showf ∈ V +W , it suffices to find 2π -periodic functionsη1 andη2 such that

f̂ (ξ )= η1(ξ)φ̂(ξ)+ η2(ξ)ψ̂(ξ) (4.7)

for almost everyξ ∈ R. Recall from (4.1) and (4.3) that

φ̂(ξ )= 1

2
â(ξ/2)φ̂(ξ/2) and ψ̂(ξ)= −1

2
e−iξ/2µ̂(ξ/2+ π) φ̂(ξ/2), ξ ∈ R.

Comparing (4.7) with (4.6), we see that (4.7) is valid if[ 1
2 â(ξ/2) −1

2 e−iξ/2µ̂(ξ/2+ π)

1 1 −iξ/2

][
η1(ξ)

]
=
[

τ(ξ/2)
]
. (4.8)
2 â(ξ/2+ π) 2 e µ̂(ξ/2) η2(ξ) τ(ξ/2+ π)
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The determinant of the above 2× 2 matrix is

7(ξ)= 1

4
e−iξ/2[â(ξ/2) µ̂(ξ/2)+ â(ξ/2+ π) µ̂(ξ/2+ π)

]
.

Clearly, 7(ξ + 2π) = −7(ξ) for all ξ ∈ R. Moreover, we have7(0) = 1/2 �= 0, since â(0) = 2,
â(π) = 0, andµ̂(0) = 1. But there exists a Laurent polynomialp such that7(ξ) = p(e−iξ/2). Hence,
7(ξ) �= 0 for almost everyξ ∈ R. Thus, (4.8) will be true for almost everyξ ∈ R if η1 andη2 are given
by

η1(ξ)= 1

7(ξ)

∣∣∣∣ τ(ξ/2) −1
2 e−iξ/2µ̂(ξ/2+ π)

τ(ξ/2+ π) 1
2 e−iξ/2µ̂(ξ/2)

∣∣∣∣
and

η2(ξ)= 1

7(ξ)

∣∣∣∣ 1
2 â(ξ/2) τ (ξ/2)

1
2 â(ξ/2+ π) τ(ξ/2+ π)

∣∣∣∣ .
Since7(ξ + 2π) = −7(ξ) for all ξ ∈ R, the functionsη1 and η2 are 2π -periodic. Consequently
f ∈ V +W . This showsV1 = V +W .

The above discussions are summarized in the following theorem.

Theorem 4.4. The set{ψjk: j, k ∈ Z} is a Riesz basis forL2(R).

5. Wavelet bases for Sobolev spaces

Letφ (respectivelyφ̃) be the refinable function associated with the refinement maska (respectivelỹa),
as given in (1.3) and (1.4). Letψ andψ̃ be the wavelets constructed in Section 4. Assumingφ ∈Hm(R),
we will show that{2j/2ψ(m)(2j ·− k): j, k ∈ Z} is a Riesz basis forL2(R). Consequently,{ψjk: j, k ∈ Z}
forms a stable wavelet basis for the Sobolev spaceHm(R), that is,{ψjk: j, k ∈ Z} satisfies the inequalitie
in (1.2).

A lifting technique will be used in our arguments. Supposef is a function inL2(R) andf is supported
on the closed interval[a, b] (−∞< a < b <∞). If

∫
R
f (x)dx = 0, thenf can be lifted in the following

sense. Let

g(x) :=
x∫

−∞
f (t)dt, x ∈ R.

We haveg(x)= 0 for x < a andx > b. In other words,g is also supported on[a, b]. Moreover,g′ = f . It
follows thatf̂ (ξ )= (iξ)ĝ(ξ) for all ξ ∈ R. More generally, supposeDjf̂ (0)= 0 for j = 0,1, . . . , k− 1.
By using an induction argument we see that there existsh ∈Hk(R) such thath is supported on[a, b] and
Dkh= f . Consequently,f̂ (ξ )= (iξ)kĥ(ξ) for all ξ ∈ R.

Theorem 5.1. Supposeφ lies in the Sobolev spaceHm(R), wherem is a positive integer. If[φ, φ̃](ξ) �= 0
for all ξ ∈ R, then{

2j/2ψ(m)
(
2j · − k

)
: j, k ∈ Z

}
is a Riesz basis forL2(R).
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Proof. Sinceφ is a compactly supported refinable function inHm(R), there exists someµ> 0 such that
φ lies inHm+µ(R) (see [13,20]). Consequently,ψ lies inHm+µ(R).

By our assumption,[φ, φ̃](ξ) �= 0 for all ξ ∈ R; hence, the shifts ofφ are stable. This together wit
the factφ ∈Hm(R) tells us (see [20])

Drâ(π)= 0 for r = 0,1, . . . ,m.

Recall thatλ(j) = 〈φ, φ̃(· − j)〉 and ν(j) = 〈φ, φ̃(2· − j)〉, j ∈ Z. By Lemma 4.1, we havêν(ξ) =
â(ξ )λ̂(ξ)/2 for all ξ ∈ R. This in connection with (4.4) gives

ˆ̃
ψ(ξ)= −1

4
e−iξ/2 ˆ̃

φ(ξ/2)â(ξ/2+ π)λ̂(ξ/2+ π), ξ ∈ R.

Hence,Dr ˆ̃
ψ(0) = 0 for r = 0,1, . . . ,m. Therefore, there exists a compactly supported functionh ∈

Hm(R) such that

(−1)mDmh= ψ̃ .

Consequently,̂̃ψ(ξ)= (−iξ )mĥ(ξ), ξ ∈ R. ButDm ˆ̃
ψ(0)= 0; hence,̂h(0)= 0. Forj �= j ′ we obtain〈

ψ(m)
(
2j · −k), h(2j ′ · −k′)〉= 〈

ψ
(
2j · −k), (−1)m2j

′mh(m)
(
2j

′ · −k′)〉
= 2j

′m〈ψ(2j · −k), ψ̃(2j ′ · −k′)〉= 0.

Moreover, we have〈
ψ(m), h(· − k)

〉= 〈
ψ, (−1)mh(m)(· − k)

〉= 〈
ψ, ψ̃(· − k)

〉
, k ∈ Z.

It follows that:[
ψ(m), h

]
(ξ)=

∑
k∈Z

〈
ψ(m), h(· − k)

〉
e−ikξ =

∑
k∈Z

〈
ψ, ψ̃(· − k)

〉
e−ikξ = [ψ, ψ̃](ξ) �= 0,

by Lemma 4.2. Sinceψ ∈Hm+µ(R), we haveψ(m) ∈Hµ(R). Furthermore,h lies inHm(R). Therefore,
{2j/2ψ(m)(2j · − k): j, k ∈ Z} is a Riesz sequence inL2(R), by Theorem 3.1. It remains to prove that t
linear span of this set is dense inL2(R).

SinceDrâ(π)= 0 for r = 0,1, . . . ,m, we can find a finitely supported maskb such that

â(ξ )=
(

1+ e−iξ

2

)m
b̂(ξ), ξ ∈ R.

There exists a compactly supported functiong in L2(R) such thatĝ(0)= 1 and

g(x)=
∑
j∈Z

b(j)g(2x − j), x ∈ R.

If we use∇ to denote the difference operator given by∇g := g− g(· − 1), then∇mg =Dmφ (see [10]).
Hence,

φ̂(ξ )=
(

1− e−iξ

iξ

)m
ĝ(ξ), ξ ∈ R.

Let b̃ be the mask given by

ˆ̃
b(ξ)=

(
1+ e−iξ )m ˆ̃a(ξ), ξ ∈ R.
2
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There exists a compactly supported functiong̃ in L2(R) such thatˆ̃g(0)= 1 and

g̃(x)=
∑
j∈Z

b̃(j)g̃(2x − j), x ∈ R.

Again, g̃ ∈Hm(R) andDmg̃ = ∇mφ̃ (see [10]).
Let U := S(g) andŨ := S(g̃). Forn ∈ Z, letUn := σn(U) andŨn := σn(Ũ), whereσn is the scaling

operator given in Section 4. We claim that(Un)n∈Z and(Ũn)n∈Z satisfy the conditions of Lemma 2.1. T
justify our claim, by Lemma 2.2, it suffices to show[g, g̃](ξ) �= 0 for all ξ ∈ R. SinceDmg̃ = ∇mφ̃, we
have

ˆ̃g(ξ)=
(

1− e−iξ

iξ

)m ˆ̃
φ(ξ), ξ ∈ R.

It follows that:

ĝ(ξ ) ˆ̃g(ξ)= ĝ(ξ )

(
1− e−iξ

iξ

)m ˆ̃
φ(ξ)= φ̂(ξ )

ˆ̃
φ(ξ), ξ ∈ R.

Therefore,

[g, g̃](ξ)=
∑
k∈Z

ĝ(ξ + 2kπ) ˆ̃g(ξ + 2kπ)=
∑
k∈Z

φ̂(ξ + 2kπ) ˆ̃φ(ξ + 2kπ) �= 0 ∀ ξ ∈ R.

Let Dm denote the differential operator given byDmf := f (m), f ∈ Hm(R). Let Y := S(ψ(m)) and
Yn := σn(Y ), n ∈ Z. Clearly,U =Dm(V ) andY =Dm(W), whereV = S(φ) andW = S(ψ). We observe
that 〈

ψ(m), g̃(· − k)
〉= 〈

ψ, (−1)mg̃(m)(· − k)
〉= 〈

ψ, (−1)m∇mφ̃(· − k)
〉= 0 ∀k ∈ Z.

Hence,Y ⊆ Ũ⊥. SinceV1 = V +W , we haveU1 = U + Y . On the other hand,U1 is the direct sum
of U andU1 ∩ Ũ⊥. This showsY = U1 ∩ Ũ⊥. Consequently, for everyn ∈ Z, Yn = Un+1 ∩ Ũ⊥

n . By
Lemma 2.1,

∑
n∈Z

Yn is dense inL2(R). We conclude that{2j/2ψ(m)(2j · − k): j, k ∈ Z} is a Riesz basis
for L2(R). ✷

6. Examples

In this section we apply the general theory toB-splines and construct spline wavelets with n
properties.

Recall thatMm, the B-spline of orderm, is the convolution ofm copies ofχ[0,1]. The B-spline
Mm is supported on[0,m] and is symmetric aboutm/2; i.e.,Mm(m − x) = Mm(x) for all x ∈ R.
Moreover,Mm lies inHm−1(R). For positive integersm andn, we haveMm+n =Mm ∗Mn. It follows
thatM̂m+n(ξ)= M̂m(ξ)M̂n(ξ), ξ ∈ R. In particular,

M̂m(ξ)=
(
M̂1(ξ)

)m = [(
1− e−iξ )/(iξ)]m, ξ ∈ R.

Consequently,Mm satisfies the following refinement equation:

M̂m(ξ)=
(

1+ e−iξ/2)m
M̂m(ξ/2), ξ ∈ R.
2
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In what follows we need the following result of Schoenberg [18] on cardinal interpolation: ifm is an
even integer, then∑

j∈Z

Mm(j)e
−ijξ �= 0 ∀ξ ∈ R.

Example 6.1. SupposeN is an odd integer. Let

ψN :=
N∑
j=0

(−1)j

2

[
MN+1(j)+MN+1(j + 1)

]
MN(2· − j).

For r = 0,1, . . . ,N − 1, the set{
2j/2ψ(r)

N

(
2j · − k

)
: j, k ∈ Z

}
is a Riesz basis forL2(R). Moreover,ψN is supported on[0,N], andψN is antisymmetric aboutN/2.

To verify our assertions, we chooseφ =MN andφ̃ =M1. Forj ∈ Z we have〈
φ, φ̃(· − j)

〉= ∫
R

MN(x)M1(x − j)dx =
∫
R

MN(x)M1(1+ j − x)dx =MN+1(1+ j).

SinceN + 1 is an even integer, we have

[φ, φ̃](ξ)=
∑
j∈Z

MN+1(j + 1)e−ijξ �= 0 ∀ ξ ∈ R.

Recall thatµ(j)= 〈φ̃, φ(2· − j)〉, j ∈ Z. Hence,

µ(j)=
∫
R

M1(x)MN(2x − j)dx = 1

2

[
MN+1(1− j)+MN+1(2− j)

]
.

It follows that:

µ(1− j)= 1

2

[
MN+1(j)+MN+1(1+ j)

]
, j ∈ Z.

Therefore,

ψN =
∑
j∈Z

(−1)jµ(1− j)φ(2 · −j).

By Theorems 4.4 and 5.1, forr = 0,1, . . . ,N−1, {2j/2ψ(r)
N (2

j ·−k): j, k ∈ Z} is a Riesz basis forL2(R).
Clearly,ψN is supported on[0,N]. Furthermore,ψN is antisymmetric aboutN/2. Indeed, forx ∈ R we
have

ψN(N − x)=
N∑
j=0

(−1)j

2

[
MN+1(j)+MN+1(j + 1)

]
MN(2N − 2x − j)

=
N∑
j=0

(−1)N−j

2

[
MN+1(N − j)+MN+1(N − j + 1)

]
MN(2x − j)

= −ψN(x).
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For the special caseN = 3 we have

ψ3(x)= 1

6
M3(2x)− 5

6
M3(2x − 1)+ 5

6
M3(2x − 2)− 1

6
M3(2x − 3), x ∈ R.

For r = 0,1,2, {2j/2ψ(r)
3 (2j · − k): j, k ∈ Z} is a Riesz basis forL2(R).

Example 6.2. SupposeN is an even integer. Let

ψN :=
N+2∑
j=0

(−1)j

4

[
MN+2(j − 1)+ 2MN+2(j)+MN+2(j + 1)

]
MN(2· − j).

For r = 0,1, . . . ,N − 1, the set{
2j/2ψ(r)

N (2
j · − k): j, k ∈ Z

}
is a Riesz basis forL2(R). Moreover,ψN is supported on[0,N + 1], andψN is symmetric abou
(N + 1)/2.

To verify our assertions, we chooseφ =MN andφ̃ =M2(· + 1). Forj ∈ Z we have〈
φ, φ̃(· − j)

〉= ∫
R

MN(x)M2(x + 1− j)dx =
∫
R

MN(x)M2(1+ j − x)dx =MN+2(1+ j).

SinceN + 2 is an even integer, we obtain

[φ, φ̃](ξ)=
∑
j∈Z

MN+2(j + 1)e−ijξ �= 0 ∀ ξ ∈ R.

Recall thatµ(j)= 〈φ̃, φ(2· − j)〉, j ∈ Z. Hence,

µ(j)=
∫
R

M2(x + 1)MN(2x − j)dx

= 1

4

∫
R

[
M2(x + 2)+ 2M2(x + 1)+M2(x)

]
MN(x − j)dx

= 1

4

[
MN+2(−j)+ 2MN+2(1− j)+MN+2(2− j)

]
.

Therefore,

ψN =
∑
j∈Z

(−1)jµ(1− j)φ(2 · −j).

By Theorems 4.4 and 5.1, forr = 0,1, . . . ,N − 1, {2j/2ψ(r)
N (2

j · − k): j, k ∈ Z} is a Riesz basis fo
L2(R). Clearly,ψN is supported on[0,N + 1]. Furthermore,ψN is symmetric about(N + 1)/2.

For the special caseN = 4 we have

ψ4(x)= 1

120

[
M4(2x)− 28M4(2x − 1)+ 119M4(2x − 2)− 184M4(2x − 3)

+ 119M4(2x − 4)− 28M4(2x − 5)+M4(2x − 6)
]
, x ∈ R.

For r = 0,1,2,3, {2j/2ψ(r)
4 (2j · − k): j, k ∈ Z} is a Riesz basis forL2(R).
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