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In this paper we consider functional equations of the form

�=
∑
α∈Zs

a(α)�(M · − α),

where � = (φ1, . . . , φr )
T is an r × 1 vector of functions on the s-dimensional

Euclidean space, a(α), α ∈ Z
s , is a finitely supported sequence of r × r complex

matrices, and M is an s×s isotropic integer matrix such that limn→∞M−n = 0. We
are interested in the question, for which sequences a will there exist a solution to the
functional equation with each function φj , j = 1, . . . , r , belonging to the Sobolev
space Wk

p(R
s )? Our approach will be to consider the convergence of the cascade

algorithm. The cascade operator Qa associated with the sequence a is defined by

QaF :=
∑
α∈Zs

a(α)F(M · − α), F ∈ (Wk
p(R

s))r .

Let �0 be a nontrivial r × 1 vector of compactly supported functions in Wk
p(R

s).
The iteration scheme �n =Qa�n−1, n = 1,2, . . . , is called a cascade algorithm,
or a subdivision scheme. Under natural assumptions on a, a feasible set of
initial vectors is identified from the conditions on an initial vector implied by
the convergence of the subdivision scheme. These conditions are determined by
the matrix A(0) = m−1 ∑

α∈Zs a(α), m = |detM|, and are related to polynomial
reproducibility and the classical Strang–Fix conditions.
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The formal definition of convergence in the Sobolev norm for the subdivision
scheme is that the scheme will converge for any choice of initial vector from the
feasible set (to the same solution �). We give a characterization for this concept
of convergence in terms of the p-norm joint spectral radius of a finite collection of
transition operators determined by the sequence a restricted to a certain invariant
subspace. The invariant subspace is intimately connected to the Strang–Fix type
conditions that determine the feasible set of initial vectors.  2002 Elsevier Science

Key Words: refinement equations; multiple refinable functions; vector subdivision
schemes; cascade algorithm; joint spectral radii; transition operators.

1. INTRODUCTION

We are concerned with functional equations of the form

�=
∑
α∈Zs

a(α)�(M· − α), (1.1)

where �= (φ1, . . . , φr )
T is an r × 1 vector of functions on the s-dimensional Euclidean

space Rs , each a(α) (α ∈ Zs ) is an r × r complex matrix, and M is an s× s integer matrix
such that limn→∞M−n = 0. The equation (1.1) is called a (vector) refinement equation,
M is called a dilation matrix and the sequence a is called a refinement mask. The transpose
of the matrix M is denoted by MT. Throughout this paper we assume that the mask a is
finitely supported, i.e., a(α)= 0 except for finitely many α.

For 1 ≤ p ≤∞, by Lp(R
s) we denote the Banach space of all complex-valued

measurable functions f on Rs such that ‖f ‖p <∞, where

‖f ‖p :=
(∫

Rs

|f (x)|p dx
)1/p

for 1 ≤ p <∞,

and ‖f ‖∞ is the essential supremum of |f | on Rs . The Fourier transform of a function
f ∈ L1(R

s) is defined by

f̂ (ω) :=
∫

Rs

f (x)e−ix·ω dx, ω ∈R
s ,

where x ·ω denotes the inner product of two vectors x and ω in Rs . The Fourier transform
is naturally extended to the space of all compactly supported distributions.

With the use of the Fourier transform, (1.1) can be rewritten as

�̂(MTω)=A(ω)�̂(ω), ω ∈ R
s, (1.2)

where

A(ω) := 1

|detM|
∑
α∈Zs

a(α)e−iα·ω, ω ∈ R
s .

Clearly, A is 2π -periodic. If �̂(0) = 0, then �̂(0) is an eigenvector of the matrix A(0)
corresponding to eigenvalue 1.
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We denote the set of all positive integers by N and let N0 := N∪{0}. A multi-index is an
s-tuple µ= (µ1, . . . ,µs) ∈ N

s
0. The length of µ is |µ| = µ1 + · · · + µs . Let σ1, . . . , σs be

the eigenvalues of the matrix M . For µ= (µ1, . . . ,µs) ∈ Zs , we write σµ for σµ1
1 · · ·σµs

s .
Throughout this paper, we assume that A(0) has 1 as its simple eigenvalue and has no
other eigenvalues of the form σµ, µ = (µ1, . . . ,µs) ∈ N

s
0. If this is the case, then there

exists a nontrivial r × 1 vector � of compactly supported distributions on R
s such that

� is a solution of the refinement equation (1.1) (see [10] and [20]). Moreover, if �1 and
�2 are two nontrivial solutions of the refinement equation (1.1), then �1 = c�2 for some
constant c.

The partial derivative of a differentiable function f with respect to the j th coordinate
is denoted by Djf , j = 1, . . . , s, and for µ = (µ1, . . . ,µs) ∈ N

s
0, Dµ is the differential

operator Dµ1
1 · · ·Dµs

s . For 1 ≤ p ≤∞ and an integer k ≥ 0, we use Wk
p(R

s ) to denote the
Sobolev space that consists of all distributions f such that Dµf ∈ Lp(R

s) for all multi-
indices µ, with |µ| ≤ k. Equipped with the norm defined by

‖f ‖Wk
p(R

s) :=
∑
|µ|≤k

‖Dµf ‖p,

Wk
p(R

s) becomes a Banach space. We denote by Ck(Rs ) the space of all functions on Rs

possessing continuous partial derivatives of order up to k. The norm in Ck(Rs) is given by

‖f ‖Ck(Rs) :=
∑
|µ|≤k

‖Dµf ‖∞.

For µ= (µ1, . . . ,µs) ∈N
s
0 and x = (x1, . . . , xs) ∈ Rs , define

xµ := x
µ1
1 · · ·xµs

s .

The function x �→ xµ (x ∈ Rs) is called a monomial, and its (total) degree is |µ|.
A polynomial is a linear combination of monomials. The degree of a polynomial q =∑

µ cµx
µ is defined to be degq := max{|µ| : cµ = 0}. By q(D) we denote the differential

operator
∑

µ cµD
µ. Let % denote the linear space of all polynomials, and let %k denote

the linear space of all polynomials of degree at most k. By convention, %−1 = {0}.
We use &(Zs) to denote the linear space of all (complex) sequences on Zs . A sequence

u on Z
s is called a polynomial sequence, if there is a polynomial q such that u(α)= q(α)

for all α ∈ Zs . The degree of u is the same as the degree of q . We use P(Zs ) to denote the
linear space of all polynomial sequences on Zs , and use Pk(Zs) to denote the linear space
of all polynomial sequences of degree at most k. For 1 ≤ p ≤∞, by &p(Z

s ) we denote the
Banach space of all complex sequences u on Zs such that ‖u‖p <∞, where

‖u‖p :=
(∑
α∈Zs

|u(α)|p
)1/p

for 1 ≤ p <∞,

and ‖u‖∞ is the supremum of {|u(α)| :α ∈ Zs}. The support of a sequence v on Zs is
defined to be suppv := {α ∈ Z

s :v(α) = 0}. If suppv is a finite set, then we say that v is
finitely supported. By &0(Z

s ) we denote the linear space of all finitely supported sequences
on Zs . Clearly, &0(Z

s ) is a subspace of &p(Zs ) for any p with 1 ≤ p ≤∞.
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For a given linear space H , we use Hr = Hr×1 to denote the linear space of all r × 1
vectors F = (f1, . . . , fr )

T, where f1, . . . , fr ∈ H . Similarly, we use H 1×r to denote the
linear space of all 1 × r vectors whose components are elements of H . If H is a normed
linear space, then Hr can be equipped with the norm given by

‖F‖Hr :=
r∑

j=1

‖fj‖H , F = (f1, . . . , fr )
T.

Let F = (f1, . . . , fr )
T be an r × 1 vector of compactly supported functions in Lp(R

s)

(1 ≤ P ≤ ∞). We say that the shifts of f1, . . . , fr are stable if there are two positive
constants C1 and C2 such that

C1‖u‖(&p(Zs ))r ≤
∥∥∥∥

∑
α∈Zs

u(α)F (· − α)

∥∥∥∥
Lp(Rs)

≤ C2‖u‖(&p(Zs ))r .

It was proved in [16] and [14] that the shifts of f1, . . . , fr are stable if and only if, for every
ω ∈ Rs ,

span{F̂ (ω+ 2πβ) :β ∈ Z
s} = C

r .

The cascade operator Qa associated with the refinement mask a is defined by

QaF :=
∑
α∈Zs

a(α)F (M· − α), F ∈ (Wk
p(R

s))r .

Let �0 be a nontrivial r × 1 vector of compactly supported functions in Wk
p(R

s).
The iteration scheme �n = Qa�n−1, n = 1,2, . . . , is called a cascade algorithm, or a
subdivision scheme. Suppose the subdivision scheme converges in Wk

p(R
s), that is, there

exists some � ∈ (Wk
p(R

s))r such that

lim
n→∞‖�n −�‖(Wk

p(R
s))r = 0.

Then � is a solution of the refinement equation (1.1).
For the sequence (�n)n=1,2,... to converge in the Sobolev space, the initial vector �0

of functions must satisfy certain conditions. In Section 2 we clarify those conditions and
give a formal definition for the convergence of subdivision schemes in Sobolev spaces.
This study is related to polynomial reproducibility of �. In Section 3 we introduce the
subdivision and transition operators associated with the refinement equation in (1.1) and
consider invariant subspaces of the transition operators. Finally, in Section 4, we give a
characterization for the convergence of the subdivision scheme in the Sobolev space in
terms of the p-norm joint spectral radius of a finite collection of the transition operators
restricted to a certain invariant subspace.

A comprehensive study of stationary subdivision schemes was given in [3]. In [11]
and [9], the p-norm joint spectral radius was employed to give a characterization of the LP

convergence of subdivision schemes. Vector subdivision schemes were investigated in [18]
and [22]. The present paper is closely related to [8, 15, 23], in which (scalar) subdivision
schemes in Sobolev spaces were discussed.
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2. POLYNOMIAL REPRODUCIBILITY

The purpose of this section is to find appropriate conditions on �0 such that the
subdivision scheme �n = Qn

a�0 (n = 1,2, . . .) converges in Wk
p(R

s ). This problem is
related to polynomial reproducibility of �.

We assume that the dilation matrix M is isotropic, that is, there exists an invertible s× s

matrix , such that

,M,−1 = diag(σ1, . . . , σs),

where σ1, . . . , σs are complex numbers and

|σ1| = · · · = |σs | = ρ,

where ρ is the spectral radius of M . For any given vector norm ‖ · ‖ on Rs , there exist two
positive constants C1 and C2 such that the inequalities

C1ρ
n‖v‖ ≤ ‖Mnv‖ ≤ C2ρ

n‖v‖ (2.1)

hold for every positive integer n and every vector v ∈ Rs .
Let f be a smooth function on Rs . By using the chain rule for differentiation, we have



D1

D2
...

Ds


 (f ◦MT)(x)=M



D1

D2
...

Ds


f (MTx), x ∈R

s .

It follows that

,



D1

D2
...

Ds


 (f ◦MT)(x)=,M,−1,



D1

D2
...

Ds


f (MTx), x ∈ R

s .

To a multi-index µ we associate the polynomial qµ given by

qµ(x) := (,x)µ, x ∈ R
s .

Since ,M,−1 = diag (σ1, . . . , σs), from the above discussion we obtain the following
identity:

qµ(D)(f ◦MT)(x)= σµqµ(D)f (MTx), x ∈ R
s . (2.2)

The factorial of a multi-index µ= (µ1, . . . ,µs) ∈ N
s
0 is defined to be µ! := µ1! · · ·µs !.

Let µ = (µ1, . . . ,µs) and ν = (ν1, . . . , νs) be two multi-indices. Then ν ≤ µ means
νj ≤ µj for j = 1, . . . , s. By ν < µ we mean ν ≤ µ and ν = µ. For ν ≤ µ, define

(
µ

ν

)
:= µ!

ν!(µ− ν)! .
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Then we have the following Leibniz rule for differentiation:

qµ(D)(fg)=
∑
ν≤µ

(
µ

ν

)
[qµ−ν(D)f ][qν(D)g]. (2.3)

Suppose φ1, . . . , φr are compactly supported functions in L1(R
s ) such that the r × 1

vector � := (φ1, . . . , φr )
T is a solution of the refinement equation (1.1). It was proved in

[5] and [18] that A(0) has 1 as its simple eigenvalue, and its other eigenvalues are less than
1 in modulus, provided �̂(0) = 0 and span {�̂(2βπ) :β ∈ Zs} = Cr . The following lemma
extends this result.

LEMMA 2.1. Let φ1, . . . , φr be compactly supported functions in Wk
p(R

s ) such that the
r × 1 vector � := (φ1, . . . , φr )

T is a solution of the refinement equation

�=
∑
α∈Zs

a(α)�(M· − α).

If, in addition, �̂(0) = 0 and span {�̂(2βπ) :β ∈ Zs} = Cr , then 1 is a simple eigenvalue of
A(0) and its other eigenvalues are less than ρ−k in modulus, where ρ denotes the spectral
radius of the dilation matrix M .

Proof. A repeated use of (1.2) gives

�̂
(
(MT)nω

)=A
(
(MT)n−1ω

) · · ·A(MTω)A(ω)�̂(ω)

for n= 1,2, . . . and ω ∈ Rs . Setting ω = 2βπ for β ∈ Zs in the above equation, we obtain

�̂
(
(MT)n2βπ

)=A(0)n�̂(2βπ). (2.4)

Since � lies in (Wk
1 (R

s ))r , Dµ� is in (L1(R
s))r for |µ| = k. The Fourier transform of

Dµ� is (Dµ�)ˆ(ω)= (iω)µ�̂(ω), ω ∈ Rs . By the Riemann–Lebesgue lemma we obtain

lim
n→∞

(
(MT)n2βπ

)µ
�̂
(
(MT)n2βπ

)= 0 ∀β ∈ Z
s\{0} and |µ| = k. (2.5)

Note that MT is an isotropic matrix with a spectral radius of ρ. Thus, (2.5) together with
(2.1) gives

lim
n→∞ρnk�̂

(
(MT)n2βπ

)= 0 ∀β ∈ Z
s\{0}.

This in connection with (2.4) yields

lim
n→∞

(
ρkA(0)

)n
�̂(2βπ)= 0 ∀β ∈ Z

s\{0}. (2.6)

Let V be the linear subspace of Cr spanned by �̂(2βπ), β ∈ Zs\{0}. By our assumption,
span {�̂(2βπ) :β ∈ Z

s} = C
r ; hence, either V = C

r or dimV = r − 1. If V = C
r , then

we would have �̂(0) ∈ V and limn→∞(ρkA(0))n�̂(0) = 0, which is impossible since
A(0)�̂(0) = �̂(0). Therefore, dimV = r − 1 and V is an invariant subspace of A(0).
We deduce from (2.6) that the spectral radius of ρkA(0)|V is less than 1 in modulus. This
completes the proof of the lemma.
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From Lemma 2.1, we make the following assumption on the matrix A(0):

Eigenvalue Condition. The matrix A(0) has 1 as a simple eigenvalue and the other
eigenvalues are of modulus less than ρ−k , where ρ denotes the spectral radius of the
dilation matrix M .

Let A(0) satisfy the eigenvalue condition, and choose B0 to be a left 1 × r eigenvector
of the matrix A(0) corresponding to eigenvalue 1. Let Bµ(|µ| ≤ k) be the 1 × r vectors
given by the recursive relation

Bµ =
∑
ν≤µ

(
µ

ν

)
σµ−νBµ−νqν(−iD)A(0). (2.7)

This equation can be rewritten as

Bµ

(
Ir − σµA(0)

)= ∑
0 =ν≤µ

(
µ

ν

)
σµ−νBµ−νqν(−iD)A(0),

where Ir denotes the r × r identity matrix. By Lemma 2.1, the matrix Ir − σµA(0) is
invertible for any multi-index µ with 0 < |µ| ≤ k. Therefore, the vectors Bµ (0 < |µ| ≤ k)
are uniquely determined by (2.7).

For |µ| ≤ k and F ∈ (Wk
1 (R

s))r , define

Jµ,F (ω) :=
∑
ν≤µ

(
µ

ν

)
Bµ−νqν(−iD)F̂ (ω), ω ∈R

s .

Note that qν(−iD)F̂ is the Fourier transform of qνF .

LEMMA 2.2. The following identity holds for |µ| ≤ k:

σµJµ,QaF (M
T2πβ)= Jµ,F (2πβ) ∀β ∈ Z

s .

Proof. Let G := QaF . Then Ĝ(ω) = A((MT)−1ω)F̂ ((MT)−1ω), ω ∈ Rs . By using
(2.2) and (2.3) we obtain

qν(−iD)Ĝ(ω)=
∑
λ≤ν

(
ν

λ

)[
σ−(ν−λ)qν−λ(−iD)A((MT)−1ω)

]
× [σ−λqλ(−iD)F̂ ((MT)−1ω)

]
.

It follows that

Jµ,G(ω)=
∑
ν≤µ

∑
λ≤ν

(
µ

ν

)
Bµ−ν

(
ν

λ

)
σ−(ν−λ)qν−λ(−iD)A(ξ)σ−λqλ(−iD)F̂ (ξ),

where ξ := (MT)−1ω. Using new indices γ = µ− λ and τ = ν − λ in the above double
sum gives

Jµ,G(ω)=
∑
γ≤µ

(
µ

γ

)
σ−µ

[∑
τ≤γ

(
γ

τ

)
Bγ−τ σ γ−τ qτ (−iD)A(ξ)

]
qµ−γ (−iD)F̂ (ξ).
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Note that A is 2π -periodic. For ω=MT2πβ , β ∈ Zs , by (2.7) we have

∑
τ≤γ

(
γ

τ

)
Bγ−τ σ γ−τ qτ (−iD)A(2πβ)= Bγ .

Consequently,

Jµ,G(M
T2πβ)= σ−µ ∑

γ≤µ

(
µ

γ

)
Bγ qµ−γ (−iD)F̂ (2πβ).

This completes the proof of the lemma.

Let �n :=Qn
a�0, n= 0,1,2, . . . . A repeated application of Lemma 2.2 gives

σµnJµ,�n((M
T)n2πβ)= Jµ,�0(2πβ) ∀β ∈ Z

s . (2.8)

LEMMA 2.3. Let φ1, . . . , φr be compactly supported functions in Wk
1 (R

s ) such that the
r × 1 vector � := (φ1, . . . , φr )

T is a solution of the refinement equation (1.1). Suppose
A(0) satisfies the eigenvalue condition, B0�̂(0) = 1, and Bµ (|µ| ≤ k) are the 1 × r

vectors determined by (2.7). Then Jµ,�(0) = 0 for all 0 < |µ| ≤ k and Jµ,�(2βπ) = 0
for all β ∈ Z

s\{0} and all |µ| ≤ k.

Proof. Since Qa�=�, by Lemma 2.2 we have σµJµ,�(0)= Jµ,�(0). But |σµ|> 1
for 0 < |µ| ≤ k. Hence, Jµ,�(0)= 0 for 0 < |µ| ≤ k. Moreover, by (2.8) we have

Jµ,�(2βπ)= σµnJµ,�
(
(MT)n2βπ

) ∀n ∈ N, β ∈ Z
s .

Since � is compactly supported and lies in (Wk
1 (R

s))r , each qν� is also, |ν| ≤ k, and by
the Riemann–Lebesgue lemma we obtain

lim
n→∞

(
(MT)n2βπ

)µ
Jµ,�

(
(MT)n2βπ

)= 0 ∀β ∈ Z
s\{0}.

Thus, by (2.1),

lim
n→∞σµnJµ,�

(
(MT)n2βπ

)= 0 ∀β ∈ Z
s\{0}. (2.9)

This shows Jµ,�(2βπ)= 0 for all β ∈ Zs\{0}. The proof of the lemma is complete.

Let ψµ := Bµ�/µ!, |µ| ≤ k. It follows from Lemma 2.3 that ψ̂0(0)= 1, ψ̂0(2βπ)= 0
for β ∈ Zs\{0}, and

∑
ν≤µ

qν(−iD)

ν! ψ̂µ−ν(2βπ)= 0 ∀1 ≤ |µ| ≤ k, β ∈ Z
s .

These conditions are called the Strang–Fix conditions of order k+1 (see [25, Theorem II]).
By using the Poisson summation formula one can easily prove that the above conditions
are equivalent to the following conditions:

∑
α∈Zs

∑
ν≤µ

(
µ

ν

)
(,α)νBµ−ν�(x − α)= (,x)µ for all |µ| ≤ k and a.e. x ∈Rs . (2.10)
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Thus, � reproduces all polynomials in %k . Note that � might reproduce polynomials of
higher order. For a detailed discussion on polynomial reproducibility of a refinable vector
of functions, the reader is referred to [1, 2, 19].

THEOREM 2.4. Under the assumptions of Lemma 2.3 if �0 is an r × 1 vector of
compactly supported functions in Wk

p(R
s ) such that

lim
n→∞‖Qn

a�0 −�‖(Wk
p(R

s))r = 0, (2.11)

then B0�̂0(0)= 1 and

∑
ν≤µ

(
µ

ν

)
Bµ−νqν(−iD)�̂0(2πβ)= 0 ∀|µ| ≤ k and β ∈ Z

s\{0}.

Proof. For n = 1,2, . . . , let �n := Qn
a�0. Given multi-indices ν and µ, the Fourier

transform of Dµ(qν�n − qν�) is (iω)µqν(−iD)(�̂n(ω)− �̂(ω)), ω ∈ Rs . From (2.11)
and the compactness of the union of all of the supports of �,�0,�1, . . . , it follows that

lim
n→∞‖Dµ(qν�n − qν�)‖(L1(R

s ))r = 0 ∀|µ| ≤ k.

Hence, for all |µ| ≤ k we have

lim
n→∞|ωµ| ∣∣qν(−iD)(�̂n(ω)− �̂(ω))

∣∣= 0,

uniformly in ω. Using this for ω= (MT)n2βπ , β ∈ Z
s\{0}, from (2.1) we have

lim
n→∞ρ|µ|n

∣∣qν(−iD)
(
�̂n((M

T)n2βπ)− �̂((MT)n2βπ)
)∣∣= 0 ∀β ∈ Z

s\{0},

where ρ is the spectral radius of the dilation matrix M . Consequently,

lim
n→∞

∣∣σµnJµ,�n

(
(MT)n2βπ

)− σµnJµ,�
(
(MT)n2βπ

)∣∣= 0 ∀β ∈ Z
s\{0}.

Thus, by (2.9) and Lemma 2.2 for all β ∈ Zs\{0}, we have

Jµ,�0(2βπ)= lim
n→∞σµnJµ,�n

(
(MT)n2βπ

)= lim
n→∞σµnJµ,�

(
(MT)n2βπ

)= 0.

Let Yk denote the class of all r × 1 vectors F of compactly supported functions in
Wk

p(R
s) such that

B0F̂ (0)= 1 (2.12)

and

∑
ν≤µ

(
µ

ν

)
Bµ−νqν(−iD)F̂ (2βπ)= 0 ∀|µ| ≤ k and β ∈ Z

s\{0}. (2.13)
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By Theorem 2.4 we conclude that �0 ∈ Yk is a necessary condition for (Qn
a�0)n=1,2,... to

converge in Wk
p(R

s). Moreover, (2.12) and (2.13) imply that for each µ (|µ| ≤ k) there
exists some gµ ∈%|µ|−1 such that

∑
α∈Zs

∑
ν≤µ

(
µ

ν

)
(,α)νBµ−νF (x − α)= (,x)µ + gµ(x), x ∈ R

s . (2.14)

This fact can be established by using the Poisson summation formula.
We are in a position to give a formal definition of the convergence of subdivision

schemes in Sobolev spaces. We say that the subdivision scheme associated with mask
a converges in the Sobolev space Wk

p(R
s) if there exists a compactly supported � ∈

(Wk
p(R

s))r so that, for any �0 ∈ Yk ,

lim
n→∞‖Qn

a�0 −�‖(Wk
p(R

s ))r = 0.

Clearly, if 1 ≤ q ≤ p ≤∞ and if the subdivision scheme associated with mask a converges
in the Sobolev space Wk

p(R
s ), then it also converges in Wk

q (R
s ).

When p =∞, we often discuss convergence in the space Ck(Rs). Let Yk be the class of
all r×1 vectors F of compactly supported functions in Ck(Rs) such that (2.12) and (2.13)
hold. We say that the subdivision scheme associated with mask a converges in Ck(Rs) if,
for any �0 ∈ Yk ,

lim
n→∞‖Qn

a�0 −�‖(Ck(Rs ))r = 0.

3. THE SUBDIVISION AND TRANSITION OPERATORS

The subdivision operator Sa is the linear operator on (&(Zs))1×r defined by

Sau(α)=
∑
β∈Zs

u(β)a(α−Mβ), α ∈ Z
s , u ∈ (&(Zs ))1×r .

The transition operator Ta is the linear operator on (&0(Z
s ))r×1 defined by

Tav(α)=
∑
β∈Zs

a(Mα− β)v(β), α ∈ Z
s , v ∈ (&0(Z

s ))r×1.

The subdivision and transition operators were used in [4, 12, 17] to study refinement
equations.

For u ∈ (&(Zs))1×r and v ∈ (&0(Z
s ))r×1, we define the bilinear form 〈u,v〉 as follows:

〈u,v〉 :=
∑
α∈Zs

u(−α)v(α).

Clearly, Sa is the algebraic adjoint of Ta with respect to the bilinear form given above.
Indeed,

〈Sau, v〉 =
∑
α∈Zs

∑
β∈Zs

u(β)a(α−Mβ)v(−α)= 〈u,Tav〉.
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LEMMA 3.1. Let U be a finite dimensional subspace of (&(Zs ))1×r , and let

V := {v ∈ (&0(Z
s ))r×1 : 〈u,v〉 = 0 ∀u ∈ U

}
.

Then U is invariant under the subdivision operator Sa if and only if V is invariant under
the transition operator Ta .

Proof. Suppose U is invariant under Sa . Let v ∈ V . Then for any u ∈ U , Sau lies in U .
Hence,

〈u,Tav〉 = 〈Sau, v〉 = 0.

This shows Tav ∈ V for v ∈ V . In other words, V is invariant under Ta .
Now suppose V is invariant under Ta . For u ∈ U , we have

〈Sau, v〉 = 〈u,Tav〉 = 0 ∀v ∈ V.

Since U is finite dimensional, U is spanned by finitely many elements, say, u1, . . . , um.
Thus, the null space of Sau contains the intersection of the null spaces of u1, . . . , um. By
the Theorem on Linear Dependence (see [21, p. 7]), Sau lies in U . This shows that U is
invariant under Sa .

For a given mask a for which A(0) satisfies the eigenvalue condition, we define
Uk ⊂ (P (Zs ))1×r to be the linear span of uµ, |µ| ≤ k, where each uµ is given by

uµ(α)=
∑
ν≤µ

(
µ

ν

)
(,α)νBµ−ν , α ∈ Z

s . (3.1)

In view of (2.10), for any solution � ∈ (Wk
p(R

s))r of the refinement equation (1.1) for a,
we have ∑

α∈Zs

u(α)�(· − α) ∈%k, ∀u ∈Uk. (3.2)

Suppose F ∈ Yk . From (2.14) we see that u ∈ Uk implies
∑

α∈Zs u(α)F (· − α) ∈ %k .
Conversely, for q ∈%k , there exists some u ∈ Uk such that

∑
α∈Zs u(α)F (· − α)= q .

Let

Vk :=
{
v ∈ (&0(Z

s ))r×1 : 〈u,v〉 = 0 ∀u ∈ Uk

}
. (3.3)

The main purpose of this section is to establish the following result.

THEOREM 3.2. If the subdivision scheme associated with mask a converges in Wk
p(R

s)

(1 ≤ p ≤∞), then Uk is invariant under the subdivision operator Sa and Vk is invariant
under the transition operator Ta .

The proof of this theorem requires two auxiliary lemmas.
Let ? be a complete set of representatives of the cosets of Zs/MTZs , and let E be a

complete set of representatives of the cosets of Zs/MZs . Clearly, #? = #E = |detM|.
Without loss of generality we assume 0 ∈E and 0 ∈ ?.

LEMMA 3.3. There exists some F in Yk such that for every γ ∈ ?,

span
{
F̂
(
(MT)−12πγ + 2πβ

)
:β ∈ Z

s
}= C

r . (3.4)
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Proof. Choose compactly supported functions h1, . . . , hr ∈ Ck(Rs) such that the shifts
of h1, . . . , hr are linearly independent. Let

g(ω) :=
∏

γ∈?\{0}

eiω·η − ei(M
T)−12πγ ·η

1− ei(M
T)−12πγ ·η , ω ∈R

s ,

where η ∈ Rs is chosen so that ei(M
T)−12πγ ·η = 1 for all γ ∈ ?\{0}. By our choice of g,

g(ω) is a trigonometric polynomial of ω. Moreover, g(0)= 1 and g((MT)−12πγ )= 0 for
all γ ∈ ?\{0}. Set

F̂ (ω) := [1 − (1− g(ω))k+1]�̂(ω)+ (1 − g(ω))k+1Ĥ (ω), ω ∈ R
s, (3.5)

where H = (h1, . . . , hr )
T. Since g(2πβ)= 1 for all β ∈ Zs , we have

Dµ[(1− g)k+1](2πβ)= 0 ∀|µ| ≤ k and β ∈ Zs .

Consequently, DµF̂ (2πβ)=Dµ�̂(2πβ) for all |µ| ≤ k and β ∈ Zs . Hence, F lies in Yk

and

span {F̂ (2πβ) :β ∈ Z
s} = span {�̂(2πβ) :β ∈ Z

s} = C
r .

This verifies (3.4) for γ = 0. Moreover, for γ ∈ ?\{0} and β ∈ Zs , it follows from (3.5)
that

F̂
(
(MT)−12πγ + 2πβ

)= Ĥ
(
(MT)−12πγ + 2πβ

)
.

Since the shifts of h1, . . . , hr are linearly independent, we have

span
{
Ĥ
(
(MT)−12πγ + 2πβ

)
:β ∈ Z

s
}= C

r .

Therefore, (3.4) is valid for every γ ∈ ?.

It would be interesting to know whether there always exists some F = (f1, . . . , fr )
T in

Yk such that the shifts of f1, . . . , fr are stable.

LEMMA 3.4. Let F = (f1, . . . , fr )
T be an r × 1 vector of compactly supported

functions in L1(R
s). Suppose w is an element in (&(Zs))1×r such that

∑
α∈Zs w(α)×

F(x − α)= 0 for a.e. x ∈ Rs . If w(α +Mη)=w(α) for all α,η ∈ Zs , and if

span
{
F̂
(
(MT)−12πγ + 2πβ

)
:β ∈ Z

s
}= C

r , (3.6)

then w= 0.

Proof. For β ∈ Zs and γ ∈ ?, let

cβγ :=
∫
M([0,1)s)

∑
α∈Zs

w(α)F (x − α)e−ix·(2πβ+(MT)−12πγ ) dx.

Then we have

cβγ =
∫
M([0,1)s)

∑
ε∈E

∑
α∈Zs

w(Mα + ε)F (x −Mα− ε)e−ix·(2πβ+(MT)−12πγ ) dx.
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By our assumption, w(Mα + ε)=w(ε) for all α ∈ Zs . Hence

cβγ =
∑
ε∈E

w(ε)

∫
Rs

F (x − ε)e−ix·(2πβ+(MT)−12πγ ) dx

=
∑
ε∈E

w(ε)e−iε·(MT)−12πγ F̂
(
(MT)−12πγ + 2πβ

)
.

Since
∑

α∈Zs w(α)F (· − α)= 0, it follows that cβγ = 0 i.e.,

(∑
ε∈E

w(ε)e−iε·(MT)−12πγ
)
F̂
(
(MT)−12πγ + 2πβ

)= 0 ∀β ∈ Z
s .

This in connection with (3.6) gives

∑
ε∈E

w(ε)e−iε·(MT)−12πγ = 0 ∀γ ∈ ?.

But the matrix (e−iε·(MT)−12πγ )ε∈E, γ∈? is invertible (see [12, Lemma 3.2]). Therefore, we
obtain w(ε)= 0 for all ε ∈E. This completes the proof.

Proof of Theorem 3.2. By Lemma 3.3, there exists an element F in Yk such that

span
{
F̂
(
(MT)−12πγ + 2πβ

)
:β ∈ Z

s
}= C

r ∀γ ∈ ?.

Since (Qn
aF )n=1,2,... converges to � in Wk

p(R
s), (Qn

a(QaF))n=1,2,... also converges to �

in Wk
p(R

s ). By Theorem 2.4, QaF belongs to Yk .
Let us prove that Uk is invariant under the subdivision operator Sa . Pick an element u

from Uk . Since QaF ∈ Yk ,

p :=
∑
α∈Zs

u(α)QaF(· − α) (3.7)

is a polynomial in %k . Let q(x)= p(M−1x), x ∈ Rs . Then q also lies in %k . Hence,

q =
∑
α∈Zs

v(α)F (· − α)

for some v ∈Uk . Consequently,

p(x)= q(Mx)=
∑
α∈Zs

v(α)F (Mx − α), x ∈ R
s . (3.8)

On the other hand, it follows from (3.7) that

p(x)=
∑
α∈Zs

(Sau)(α)F (Mx − α), x ∈ R
s . (3.9)

Let w := Sau− v. Comparing (3.8) with (3.9) gives

∑
α∈Zs

w(α)F (x − α)= 0 for a.e. x ∈Rs . (3.10)
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Suppose w = (w1, . . . ,wr). Note that

Sau(ε+Mα)=
∑
β∈Zs

u(β)a(ε+Mα −Mβ)=
∑
β∈Zs

u(α − β)a(ε+Mβ), ε ∈E.

Hence, since u and v are polynomial sequences, for each j = 1, . . . , r and each ε ∈ E,
there exists a polynomial pj,ε ∈ %k such that wj (ε + Mβ) = pj,ε(β) for all β ∈ Zs .
We shall show w = 0. For this purpose we employ the difference operator ∇γ for each
γ ∈ Zs defined by ∇γ h = h − h(· − γ ) for h ∈ &(Zs). Let ej (j = 1, . . . , s) denote the
j th coordinate unit vector. If w = 0, then there exists a multi-index µ= (µ1, . . . ,µs) with
|µ| ≤ k such that ∇µ1

Me1
· · ·∇µs

Mes
w = 0 and for each j = 1, . . . , r and ε ∈E,

∇µ1
Me1

· · ·∇µs

Mes
wj (ε+Mβ)= cj,ε ∀β ∈ Z

s ,

where each cj,ε is a complex constant. It follows from (3.10) that

∑
α∈Zs

∇µ1
Me1

· · ·∇µs

Mes
w(α)F (x − α)= 0 for a.e. x ∈Rs .

By Lemma 3.4 we deduce that cj,ε = 0 for all j = 1, . . . , r and all ε ∈ E. This is a
contradiction. Therefore, Sau− v =w = 0. In other words, Sau= v lies in Uk . This shows
that Uk is invariant under Sa .

Finally, by Lemma 3.1, Vk is invariant under Ta .

4. CHARACTERIZATION OF CONVERGENCE

The uniform joint spectral radius was introduced in [24]. This concept was employed
in [6] to investigate the regularity of refinable functions. The joint spectral radius was
introduced in [26] for p = 1 and in [11] for 1 < p <∞, where it was applied to the Lp-
convergence of subdivision schemes.

Let us recall the definition of the p-norm joint spectral radius. Let V be a finite-dimen-
sional vector space equipped with a vector norm ‖·‖. For a linear operator A on V , define

‖A‖ := max
‖v‖=1

{‖Av‖}.
Let A be a finite multiset of linear operators on V . For a positive integer n we denote by

An the nth Cartesian power of A:

An = {(A1, . . . ,An) :A1, . . . ,An ∈A
}
.

For 1 ≤ p ≤∞, let

‖An‖p :=
( ∑
(A1,...,An)∈An

‖A1 · · ·An‖p
)1/p

,

and, for p =∞, define

‖An‖∞ := max
{‖A1 · · ·An‖ : (A1, . . . ,An) ∈An

}
.
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For 1 ≤ p ≤∞, the p-norm joint spectral radius of A is defined to be

ρp(A) := lim
n→∞‖An‖1/n

p .

It is easily seen that this limit indeed exists, and

lim
n→∞‖An‖1/n

p = inf
n≥1

‖An‖1/n
p .

Clearly, ρp(A) is independent of the choice of the vector norm on V .
Recall that E is a complete set of representatives of the cosets Zs/MZs . It is assumed

that 0 ∈E. For ε ∈E, let Aε be the linear operator on (&0(Z
s))r defined by

Aεv(α)=
∑
β∈Zs

a(ε+Mα − β)v(β), α ∈ Z
s , v ∈ (&0(Z

s ))r .

Let

K :=
∞∑
n=1

M−nG,

where G is the set given by

G := (suppa ∪ {0})−E + [−1,1]s.

Let &(K) denote the linear space of all sequences supported in K . It is easily seen that
(&(K))r is invariant under every Aε , ε ∈E.

Recall that Vk is the linear space defined in (3.3). Let

V := Vk ∩ (&(K))r .

Then V is a finite-dimensional vector space.
We are in a position to give a characterization of the convergence of a subdivision

scheme in Sobolev spaces.

THEOREM 4.1. The subdivision scheme associated with a mask a and a dilation matrix
M converges in the Sobolev space Wk

p(R
s ) (1 ≤ p <∞) if and only if the following two

conditions are satisfied:

(a) Vk is invariant under Aε for every ε ∈E;
(b) ρp({Aε|V : ε ∈E}) < m−k/s+1/p, where m := |detM|.

Furthermore, the subdivision scheme associated with mask a converges in Ck(Rs) if and
only if Vk is invariant under Aε for every ε ∈E and ρ∞({Aε|V : ε ∈E}) < m−k/s .

We shall establish the theorem for the case 1 ≤ p < ∞ only. The proof for the case
p =∞ is similar.

For v = (v1, . . . , vr )
T ∈ (&p(Z

s ))r we define

‖v‖p =
(

r∑
j=1

‖vj‖pp
)1/p

, 1 ≤ p <∞,
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and ‖v‖∞ = max1≤j≤r ‖vj‖∞. Let A := {Aε : ε ∈E}. We define, for 1 ≤ p <∞,

‖Anv‖p :=
( ∑
(ε1,...,εn)∈En

‖Aε1 · · ·Aεnv‖pp
)1/p

,

and for p =∞,

‖Anv‖∞ := max
{‖Aε1 · · ·Aεnv‖∞ : (ε1, . . . , εn) ∈En

}
.

LEMMA 4.2. Suppose Vk is invariant under Aε for every ε ∈E. Then, given a compact
K0 ⊂ Rs , η > 0, and 1 ≤ p ≤ ∞, there exist a constant C = C(K0) and an integer
N0 =N0(η) such that for any v ∈ Vk ∩ (&(K0))

r , we have

‖Anv‖p ≤ C(ρp({A|V })+ η)n‖v‖p, ∀n≥N0.

Consequently,

lim
n→∞‖Anv‖1/n

p ≤ ρp({A|V }).
Proof. For ε ∈E we have

supp (Aεv)⊆M−1(suppa −E)+M−1(K0).

Hence, for ε1, . . . , εN ∈E,

supp (AεN · · ·Aε1v)⊆
N∑
j=1

M−j (suppa −E)+M−N(K0).

There exists a positive integer N such that

N∑
j=1

M−j (suppa −E)+M−N(K0)⊆
N∑
j=1

M−jG⊆K.

Therefore,

AεN · · ·Aε1v ∈ (&(K))r ∩ Vk = V.

Suppose 1 ≤ p <∞. For n≥N we have

‖Anv‖pp =
∑

ε1,...,εn∈E
‖Aεn · · ·Aε1v‖pp

=
∑

εn,...,εN+1∈E

∑
εN ,...,ε1∈E

‖(Aεn · · ·AεN+1)(AεN · · ·Aε1v)‖pp

≤ ‖An−N |V ‖pp(CN‖v‖p)p,
where

C := max
ε∈E {‖Aε‖p}.
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The first result now follows by choosing N0 sufficiently large. The second result also
follows by taking the nth root of the last inequality to obtain

‖Anv‖1/n
p ≤ ‖An−N |V ‖1/n

p (CN‖v‖p)1/n.

Therefore,

lim
n→∞‖Anv‖1/n

p ≤ ρp({A|V }).
The proof for the case p =∞ is analogous.

For n= 1,2, . . . , let a1 := a and

an(α)=
∑
β∈Zs

an−1(β)a(α−Mβ), α ∈ Z
s .

For v ∈ (&0(Z
s ))r , we define an ∗ v to be the element in (&0(Z

s))r given by

an ∗ v(α) :=
∑
β∈Zs

an(α− β)v(β), α ∈ Z
s .

Suppose α = ε1 +Mε2 + · · · +Mn−1εn +Mnγ , where ε1, . . . , εn ∈E and γ ∈ Zs . Then

an ∗ v(α)=Aεn · · ·Aε1v(γ ).

See [9] for its proof.
We claim that

‖an ∗ v‖p = ‖Anv‖p, v ∈ (&0(Z
s))r , 1 ≤ p ≤∞. (4.1)

Indeed, for 1 ≤ p <∞, we have

‖an ∗ v‖pp =
∑
α∈Zs

‖(an ∗ v)(α)‖pp =
∑

ε1,...,εn∈E

∑
γ∈Zs

‖Aεn · · ·Aε1v(γ )‖pp = ‖Anv‖pp.

Similarly, for p =∞, we have

‖an ∗ v‖∞ = sup
ε1,...,εn∈E

sup
γ∈Zs

{|Aεn · · ·Aε1v(γ )|
}= ‖Anv‖∞

Recall that the matrix , given in Section 2 satisfies ,M,−1 = diag (σ1, . . . , σs). Taking
the transpose of both sides of this equality, we obtain

(,T)−1MT,T = diag (σ1, . . . , σs).

For a multi-index µ, let q̃µ be the polynomial given by

q̃µ(x) := ((,T)−1x)µ, x ∈ R
s .
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Suppose f and g are smooth functions on Rs . The following two identities are similar to
(2.2) and (2.3):

q̃µ(D)(f ◦M)(x)= σµq̃µ(D)f (Mx), x ∈R
s ,

q̃µ(D)(fg)=
∑
ν≤µ

(
µ

ν

)
[q̃µ−ν(D)f ][q̃ν(D)g].

LEMMA 4.3. If the subdivision scheme associated with a mask a and a dilation
matrix M converges in the Sobolev space Wk

p(R
s ) (1 ≤ p <∞), then for any v ∈ Vk ,

lim
n→∞mn(k/s−1/p)‖an ∗ v‖p = 0,

where m := |detM|.
Proof. Pick a nontrivial function f in Ck(Rs ) such that f is supported on the unit cube

[0,1]s . For v ∈ Vk , let

G :=
∑
α∈Zs

v(α)f (· − α).

Since v is finitely supported, G is compactly supported. The Fourier transform of G is

Ĝ(ω)=
∑
α∈Zs

v(α)e−iα·ωf̂ (ω), ω ∈ R
s .

Hence, for |µ| ≤ k we have

Jµ,G(ω) :=
∑
ν≤µ

(
µ

ν

)
Bµ−νqν(−iD)Ĝ(ω)

=
∑
ν≤µ

(
µ

ν

)
Bµ−νqν(−iD)(v̂(ω)f̂ (ω))

=
∑
ν≤µ

(
µ

ν

)
Bµ−ν

∑
λ≤ν

(
ν

λ

)
qν−λ(−iD)v̂(ω)qλ(−iD)f̂ (ω)

=
∑
γ≤µ

(
µ

γ

)[∑
τ≤γ

(
γ

τ

)
Bγ−τ qτ (−iD)v̂(ω)

]
qµ−γ (−iD)f̂ (ω),

where the last equation resulted from the change of indices γ = µ − λ and τ = ν − λ.
Setting ω= 2βπ for β ∈ Zs , we obtain

Jµ,G(2βπ) :=
∑
γ≤µ

(
µ

γ

)[∑
α∈Zs

∑
τ≤γ

(
γ

τ

)
Bγ−τ (−,α)τ v(α)

]
qµ−γ (−iD)f̂ (2βπ)

=
∑
γ≤µ

(
µ

γ

)
〈uγ , v〉qµ−γ (−iD)f̂ (2βπ),

where uγ is the element in Uk given in (3.1). Since 〈uµ, v〉 = 0, we obtain Jµ,G(2βπ)= 0
for all |µ| ≤ k and all β ∈ Zs . Recall that F ∈ (Wk

p(R
s ))r lies in Yk if and only if F

satisfies (2.12) and (2.13). Let �0 be an element in Yk . Then the preceding discussion tells
us that �0 +G is also an element in Yk . Hence, there exists � ∈ (Wk

p(R
s))r such that

lim
n→∞‖Qn

a�0 −�‖(Wk
p(R

s ))r = 0 and lim
n→∞‖Qn

a(�0 +G)−�‖(Wk
p(R

s ))r = 0.
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It follows that

lim
n→∞‖Qn

aG‖(Wk
p(R

s ))r = 0. (4.2)

We have

Qn
aG =

∑
α∈Zs

(an ∗ v)(α)f (Mn· − α).

For |µ| = k, applying the differential operator q̃µ(D) to both sides of the above equation,
we obtain

q̃µ(D)(Qn
aG)=

∑
α∈Zs

(an ∗ v)(α)σµnq̃µ(D)f (Mn· − α).

Since f is supported on [0,1]s , there exists a positive constant C independent of n such
that

mkn/sm−n/p‖an ∗ v‖p ≤ C‖q̃µ(D)(Qn
aG)‖p. (4.3)

Combining (4.2) and (4.3), we obtain

lim
n→∞mn(k/s−1/p)‖an ∗ v‖p = 0 ∀v ∈ Vk,

as desired.

Proof of Theorem 4.1. We first establish the necessity part of the theorem. Suppose the
subdivision scheme associated with mask a converges to � in the Sobolev space Wk

p(R
s).

It was proved in Theorem 3.2 that Vk is invariant under the transition operator Ta = A0.
Let ε ∈E and v ∈ Vk . We have

Aεv(α)=
∑
β∈Zs

a(ε+Mα − β)v(β)=
∑
β∈Zs

a(Mα− β)v(β + ε)= Ta
(
v(ε + ·)).

Since Vk is shift-invariant, we have v(ε+·) ∈ Vk . Hence, Aεv = Ta(v(ε+·)) is in Vk . This
shows that Vk is invariant under Aε for each ε ∈E.

We write A for {Aε : ε ∈E}. Suppose X is a basis for the vector space V . There exists a
positive constant C independent of n such that

‖An|V ‖p ≤ Cmax
v∈X ‖Anv‖p.

By Lemma 4.3 we have

lim
n→∞mn(k/s−1/p)‖an ∗ v‖p = 0 ∀v ∈ V.

But ‖Anv‖p = ‖an ∗ v‖p , by (4.1). Therefore,

lim
n→∞

(
mk/s−1/p‖An|V ‖1/n

p

)n = 0. (4.4)

Note that

ρp
({A|V }

)= lim
n→∞‖An|V ‖1/n

p = inf
n≥1

‖An|V ‖1/n
p .
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Thus, for (4.4) to hold we must have

mk/s−1/pρp
({A|V }

)
< 1.

In other words, ρp({A|V }) < m−k/s+1/p. This finishes the proof for the necessity part.
Next, we establish the sufficiency part of the theorem. Suppose Vk is invariant under

Aε for each ε ∈ E and ρp({A|V }) < m−k/s+1/p. Let �0 be an element in Yk . Then
Qn+1

a �0 −Qn
a�0 =Qn

aG0, where G0 :=Qa�0 −�0. We have

Qn
aG0 =

∑
α∈Zs

an(α)G0(M
n· − α).

For |µ| = k, applying the differential operator q̃µ(D) to both sides of the above equation,
we obtain

q̃µ(D)(Qn
aG0)=

∑
α∈Zs

an(α)σ
µnq̃µ(D)G0(M

n· − α). (4.5)

We observe that

‖q̃µ(D)(Qn
aG0)‖pp =

∫
Rs

|q̃µ(D)(Qn
aG0)(y)|p dy

=
∑
β∈Zs

∫
M−n([0,1)s+β)

|q̃µ(D)(Qn
aG0)(y)|p dy.

By making the substitution y = M−n(x + β) in the above integral and using (4.5), we
obtain

‖q̃µ(D)(Qn
aG0)‖pp =mpn(k/s−1/p)

∫
[0,1)s

∑
β∈Zs

∣∣∣∣
∑
α∈Zs

an(α)fµ(x + β − α)

∣∣∣∣
p

dx, (4.6)

where fµ := q̃µ(D)G0 lies in Lp(R
s ). Let vx(α) := fµ(x + α) for α ∈ Zs and x ∈ [0,1)s .

Since fµ ∈ Lp(R
s ), we have vx ∈ &p(Z

s ) for almost every x ∈ [0,1)s and

∫
[0,1)s

‖vx‖pp dx =
∫
[0,1)s

∑
α∈Zs

|fµ(x + α)|p dx =
∫

Rs

|fµ(x)|p dx = ‖fµ‖pp. (4.7)

Thus, (4.6) can be rewritten as

‖q̃µ(D)(Qn
aG0)‖pp =mpn(k/s−1/p)

∫
[0,1)s

‖an ∗ vx‖pp dx. (4.8)

We claim that vx lies in Vk for almost every x ∈ [0,1)s . Since both �0 and Qa�0 belong
to Yk , in light of (2.10) and (2.14) we have

∑
α∈Zs

uµ(α)G0(· − α)=
∑
α∈Zs

uµ(α)(Qa�0 −�0)(· − α) ∈%|µ|−1.

By definition Uk is spanned by uµ, |µ| ≤ k. Therefore,

∑
α∈Zs

u(α)G0(· − α) ∈%k−1 ∀u ∈ Uk.
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Consequently, for |µ| = k and u ∈ Uk we have

∑
α∈Zs

u(α)fµ(x − α)= q̃µ(D)

(∑
α∈Zs

u(α)G0(x − α)

)
= 0.

In other words, for almost every x ∈ [0,1)s ,

〈u,vx〉 =
∑
α∈Zs

u(α)vx(−α)=
∑
α∈Zs

u(α)fµ(x − α)= 0 ∀u ∈Uk.

This shows vx ∈ Vk for almost every x ∈ [0,1)s .
Write ρ for ρp(A|V ). Each vx is supported in the compact set K0 := suppfµ − [0,1]s .

Therefore, by Lemma 4.2, for ε > 0 and all sufficiently large n, we have

‖an ∗ vx‖p = ‖Anvx‖p ≤ C(ρ + ε)n‖vx‖p,

where C is a constant independent of n and x . This, together with (4.7) and (4.8), gives

‖q̃µ(D)(Qn
aG0)‖pp ≤ Cpmpn(k/s−1/p)(ρ + ε)np‖fµ‖pp.

It follows that

‖q̃µ(D)(Qn
aG0)‖p ≤ Ctn‖fµ‖p,

where t :=mk/s−1/p(ρ + ε). Since ρ < m−k/s+1/p, for sufficiently small ε > 0, we have
t < 1. Therefore, for |µ| = k, the sequence (q̃µ(D)Qn

aG0)n=1,2,... converges in Lp(R
s).

We observe that there exists a compact subset of Rs such that Qn
aG0 are supported in it

for all n. Thus, for |ν| ≤ k, by Poincare’s inequality (see, e.g., [7, p. 276]), there exists a
constant C > 0 such that

‖q̃ν(D)(Qn
aG0)‖p ≤ C max|µ|=k ‖q̃µ(D)(Qn

aG0)‖p

holds for all n. This shows that the sequence (q̃ν(D)(Qn
aG0))n=1,2,... converges in

Lp(R
s ). Let gν be the corresponding limit function. In particular, �= g0. It follows that

q̃ν(D)�= gν in the distributional sense. Hence, � ∈ (Wk
p(R

s ))r . Moreover,

lim
n→∞‖Qn

aG0 −�‖(Wk
p(R

s))r = 0.

The proof of the theorem is complete.
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