Chapter 3. Absolutely Continuous Functions

§1. Absolutely Continuous Functions

A function \(f : [a, b] \to \mathbb{R} \) is said to be **absolutely continuous** on \([a, b]\) if, given \(\varepsilon > 0 \), there exists some \(\delta > 0 \) such that

\[
\sum_{i=1}^{n} |f(y_i) - f(x_i)| < \varepsilon,
\]

whenever \(\{[x_i, y_i] : i = 1, \ldots, n\} \) is a finite collection of mutually disjoint subintervals of \([a, b]\) with \(\sum_{i=1}^{n} |y_i - x_i| < \delta \).

Clearly, an absolutely continuous function on \([a, b]\) is uniformly continuous. Moreover, a Lipschitz continuous function on \([a, b]\) is absolutely continuous. Let \(f \) and \(g \) be two absolutely continuous functions on \([a, b]\). Then \(f + g, f - g, \) and \(fg \) are absolutely continuous on \([a, b]\). If, in addition, there exists a constant \(C > 0 \) such that \(|g(x)| \geq C \) for all \(x \in [a, b] \), then \(f/g \) is absolutely continuous on \([a, b]\).

If \(f \) is integrable on \([a, b]\), then the function \(F \) defined by

\[
F(x) := \int_{a}^{x} f(t) \, dt, \quad a \leq x \leq b,
\]

is absolutely continuous on \([a, b]\).

Theorem 1.1. Let \(f \) be an absolutely continuous function on \([a, b]\). Then \(f \) is of bounded variation on \([a, b]\). Consequently, \(f'(x) \) exists for almost every \(x \in [a, b] \).

Proof. Since \(f \) is absolutely continuous on \([a, b]\), there exists some \(\delta > 0 \) such that \(\sum_{i=1}^{n} |f(y_i) - f(x_i)| < 1 \) whenever \(\{[x_i, y_i] : i = 1, \ldots, n\} \) is a finite collection of mutually disjoint subintervals of \([a, b]\) with \(\sum_{i=1}^{n} |y_i - x_i| < \delta \). Let \(N \) be the least integer such that \(N > (b - a)/\delta \), and let \(a_j := a + j(b - a)/N \) for \(j = 0, 1, \ldots, N \). Then \(a_j - a_{j-1} = (b - a)/N < \delta \). Hence, \(\bigvee_{a_{j-1}}^{a_j} f < 1 \) for \(j = 0, 1, \ldots, N \). It follows that

\[
\bigvee_{a}^{b} f = \sum_{j=1}^{N} \bigvee_{a_{j-1}}^{a_j} f < N.
\]

This shows that \(f \) is of bounded variation on \([a, b]\). Consequently, \(f'(x) \) exists for almost every \(x \in [a, b] \).
Theorem 1.2. If f is absolutely continuous on $[a, b]$ and $f'(x) = 0$ for almost every $x \in [a, b]$, then f is constant.

Proof. We wish to show $f(a) = f(c)$ for every $c \in [a, b]$. Let $E := \{x \in [a, c]: f'(x) = 0\}$. For given $\varepsilon > 0$, there exists some $\delta > 0$ such that $\sum_{i=1}^{n} |f(y_i) - f(x_i)| < \varepsilon$ whenever $\{[x_i, y_i] : i = 1, \ldots, n\}$ is a finite collection of mutually disjoint subintervals of $[a, b]$ with $\sum_{i=1}^{n} |y_i - x_i| < \delta$. For each $x \in E$, we have $f'(x) = 0$; hence there exists an arbitrary small interval $[a_x, c_x]$ such that $x \in [a_x, c_x] \subseteq [a, c]$ and

$$|f(c_x) - f(a_x)| < \varepsilon(c_x - a_x).$$

By the Vitali covering theorem we can find a finite collection $\{[x_k, y_k] : k = 1, \ldots, n\}$ of mutually disjoint intervals of this sort such that

$$\lambda(E \setminus \bigcup_{k=1}^{n} [x_k, y_k]) < \delta.$$

Since $\lambda([a, c] \setminus E) = 0$, we have

$$\lambda([a, c] \setminus \bigcup_{k=1}^{n} [x_k, y_k]) = \lambda(E \setminus \bigcup_{k=1}^{n} [x_k, y_k]) < \delta.$$

Suppose $a \leq x_1 < y_1 \leq x_2 < \cdots < y_n \leq c$. Let $y_0 := a$ and $x_{n+1} := c$. Then

$$\sum_{k=0}^{n} (x_{k+1} - y_k) = \lambda([a, c] \setminus \bigcup_{k=1}^{n} [x_k, y_k]) < \delta.$$

Consequently,

$$\sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| < \varepsilon.$$

Furthermore,

$$\sum_{k=1}^{n} |f(y_k) - f(x_k)| < \sum_{k=1}^{n} \varepsilon(y_k - x_k) \leq \varepsilon(c - a).$$

It follows from the above inequalities that

$$|f(c) - f(a)| \leq \sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| + \sum_{k=1}^{n} |f(y_k) - f(x_k)| < \varepsilon(c - a + 1).$$

This shows that $|f(c) - f(a)| \leq \varepsilon(c - a + 1)$ for all $\varepsilon > 0$. Therefore, $f(c) = f(a)$.

§2. The Fundamental Theorem of Calculus

In this section we show that absolutely continuous functions are precisely those functions for which the fundamental theorem of calculus is valid.

Theorem 2.1. If \(f \) is integrable on \([a, b]\) and \[
\int_a^x f(t) \, dt = 0 \quad \forall \, x \in [a, b],
\]
then \(f(t) = 0 \) for almost every \(t \in [a, b] \).

Proof. By our assumption,
\[
\int_c^d f(t) \, dt = 0
\]
for all \(c, d \) with \(a \leq c < d \leq b \). If \(O \) is an open subset of \([a, b]\), then \(O \) is a countable union of mutually disjoint open intervals \((c_n, d_n) \) \((n = 1, 2, \ldots) \); hence,
\[
\int_O f(t) \, dt = \sum_{n=1}^{\infty} \int_{c_n}^{d_n} f(t) \, dt = 0.
\]
It follows that for any closed subset \(K \) of \([a, b]\),
\[
\int_K f(t) \, dt = \int_{[a,b]} f(t) \, dt - \int_{[a,b]\setminus K} f(t) \, dt = 0.
\]
Let \(E_+ := \{x \in [a, b] : f(x) > 0\} \) and \(E_- := \{x \in [a, b] : f(x) < 0\} \). We wish to show that \(\lambda(E_+) = 0 \) and \(\lambda(E_-) = 0 \). If \(\lambda(E_+) > 0 \), then there exists some closed set \(K \subseteq E_+ \) such that \(\lambda(K) > 0 \). But \(\int_K f(t) \, dt = 0 \). It follows that \(f = 0 \) almost everywhere on \(K \). This contradiction shows that \(\lambda(E_+) = 0 \). Similarly, \(\lambda(E_-) = 0 \). Therefore, \(f(t) = 0 \) for almost every \(t \in [a, b] \).

Theorem 2.2. If \(f \) is integrable on \([a, b]\), and if \(F \) is defined by
\[
F(x) := \int_a^x f(t) \, dt, \quad a \leq x \leq b,
\]
then \(F'(x) = f(x) \) for almost every \(x \) in \([a, b]\).

Proof. First, we assume that \(f \) is bounded and measurable on \([a, b]\). For \(n = 1, 2, \ldots \), let
\[
g_n(x) := \frac{F(x + 1/n) - F(x)}{1/n}, \quad x \in [a, b].
\]
It follows that
\[g_n(x) = n \int_x^{x + 1/n} f(t) \, dt, \quad x \in [a, b]. \]

Suppose \(|f(x)| \leq K\) for all \(x \in [a, b]\). Then \(|g_n(x)| \leq K\) for all \(x \in [a, b]\) and \(n \in \mathbb{N}\). Since \(\lim_{n \rightarrow \infty} g_n(x) = F'(x)\) for almost every \(x \in [a, b]\), by the Lebesgue dominated convergence theorem, we see that for each \(c \in [a, b]\),
\[
\int_a^c F'(x) \, dx = \lim_{n \rightarrow \infty} \int_a^c g_n(x) \, dx.
\]

But \(F\) is continuous; hence,\[
\lim_{n \rightarrow \infty} \int_a^c g_n(x) \, dx = \lim_{n \rightarrow \infty} n \left[\int_c^{c + 1/n} F(x) \, dx - \int_a^{a + 1/n} F(x) \, dx \right] = F(c) - F(a).
\]

Consequently,
\[
\int_a^c F'(x) \, dx = \lim_{n \rightarrow \infty} \int_a^c g_n(x) \, dx = F(c) - F(a) = \int_a^c f(x) \, dx.
\]

It follows that
\[
\int_a^c [F'(x) - f(x)] \, dx = 0
\]
for every \(c \in [a, b]\). By Theorem 2.1, \(F'(x) = f(x)\) for almost every \(x \in [a, b]\).

Now let us assume that \(f\) is integrable on \([a, b]\). Without loss of any generality, we may assume that \(f \geq 0\). For \(n = 1, 2, \ldots\), let \(f_n\) be the function defined by
\[
f_n(x) := \begin{cases} f(x) & \text{if } 0 \leq f(x) \leq n, \\ 0 & \text{if } f(x) > n. \end{cases}
\]

It is easily seen that \(F = F_n + G_n\), where
\[
F_n(x) := \int_a^x f_n(t) \, dt \quad \text{and} \quad G_n(x) := \int_a^x [f(t) - f_n(t)] \, dt, \quad a \leq x \leq b.
\]

Since \(f(t) - f_n(t) \geq 0\) for all \(t \in [a, b]\), \(G_n\) is an increasing function on \([a, b]\). Moreover, by what has been proved, \(F'_n(x) = f_n(x)\) for almost every \(x \in [a, b]\). Thus, we have
\[
F'(x) = F'_n(x) + G'_n(x) \geq F'_n(x) = f_n(x) \quad \text{for almost every } x \in [a, b].
\]

Letting \(n \rightarrow \infty\) in the above inequality, we obtain \(F'(x) \geq f(x)\) for almost every \(x \in [a, b]\). It follows that
\[
\int_a^b F'(x) \, dx \geq \int_a^b f(x) \, dx = F(b) - F(a).
\]
On the other hand,
\[\int_a^b F'(x) \, dx \leq F(b) - F(a). \]

Consequently,
\[\int_a^b [F'(x) - f(x)] \, dx = 0. \]

But \(F'(x) \geq f(x) \) for almost every \(x \in [a, b] \). Therefore, \(F'(x) = f(x) \) for almost every \(x \) in \([a, b]\).

Theorem 2.3. A function \(F \) on \([a, b]\) is absolutely continuous if and only if
\[F(x) = F(a) + \int_a^x f(t) \, dt \]
for some integrable function \(f \) on \([a, b]\).

Proof. The sufficiency part has been established. To prove the necessity part, let \(F \) be an absolutely continuous function on \([a, b]\). Then \(F \) is differentiable almost everywhere and \(F' \) is integrable on \([a, b]\). Let
\[G(x) := F(a) + \int_a^x F'(t) \, dt, \quad x \in [a, b]. \]

By Theorem 2.2, \(G'(x) = F'(x) \) for almost every \(x \in [a, b] \). It follows that \((F - G)'(x) = 0\) for almost every \(x \in [a, b] \). By Theorem 1.2, \(F - G \) is constant. But \(F(a) = G(a) \). Therefore, \(F(x) = G(x) \) for all \(x \in [a, b] \). \(\square \)

§3. Change of Variables for the Lebesgue Integral

Let \(f \) be an absolutely continuous function on \([c, d]\), and let \(u \) be an absolutely continuous function on \([a, b]\) such that \(u([a, b]) \subseteq [c, d] \). Then the composition \(f \circ u \) is not necessarily absolutely continuous. However, we have the following result.

Theorem 3.1. Let \(f \) be a Lipschitz continuous function on \([c, d]\), and let \(u \) be an absolutely continuous function on \([a, b]\) such that \(u([a, b]) \subseteq [c, d] \). Then \(f \circ u \) is absolutely continuous. Moreover,
\[(f \circ u)'(t) = f'(u(t))u'(t) \quad \text{for almost every } t \in [a, b], \]
where \(f'(u(t))u'(t) \) is interpreted to be zero whenever \(u'(t) = 0 \) (even if \(f \) is not differentiable at \(u(t) \)).

Proof. Since \(f \) is a Lipschitz continuous function on \([c, d]\), there exists some \(M > 0 \) such that \(|f(x) - f(y)| \leq M|x - y| \) whenever \(x, y \in [c, d] \). Let \(\varepsilon > 0 \) be given. Since \(u \) is absolutely
continuous on \([a, b]\), there exists some \(\delta > 0\) such that \(\sum_{i=1}^{n} |u(t_i) - u(s_i)| < \varepsilon/M\), whenever
\([s_i, t_i] : i = 1, \ldots, n\) is a finite collection of mutually disjoint subintervals of \([a, b]\) with
\(\sum_{i=1}^{n} (t_i - s_i) < \delta\). Consequently,

\[
\sum_{i=1}^{n} |(f \circ u)(t_i) - (f \circ u)(s_i)| = \sum_{i=1}^{n} |f(u(t_i)) - f(u(s_i))| \leq \sum_{i=1}^{n} M|u(t_i) - u(s_i)| < \varepsilon.
\]

This shows that \(f \circ u\) is absolutely continuous on \([a, b]\).

Since both \(u\) and \(f \circ u\) are absolutely continuous on \([a, b]\), there exists a measurable subset \(E\) of \([a, b]\) such that \(\lambda(E) = 0\) and both \(u'(t)\) and \((f \circ u)'(t)\) exist for all \(t \in [a, b] \setminus E\).

Suppose \(t_0 \in [a, b] \setminus E\). If \((f \circ u)'(t_0) = 0\), then for given \(\varepsilon > 0\), there exists some \(h > 0\) such that
\(|u(t) - u(t_0)| \leq \varepsilon |t - t_0|\) whenever \(t \in (t_0 - h, t_0 + h) \cap [a, b]\). It follows that

\[
|f \circ u(t) - f \circ u(t_0)| \leq M|u(t) - u(t_0)| \leq M\varepsilon|t - t_0|
\]

for all \(t \in (t_0 - h, t_0 + h) \cap [a, b]\). This shows that

\[
(f \circ u)'(t_0) = 0 = f'(u(t_0))u'(t_0).
\]

Now suppose \(t_0 \in [a, b] \setminus E\) and \((f \circ u)'(t_0) \neq 0\). Suppose \(u(t) \neq u(t_0)\). Then we have

\[
\frac{(f \circ u)(t) - (f \circ u)(t_0)}{t - t_0} = \frac{f(u(t)) - f(u(t_0))}{u(t) - u(t_0)} \frac{u(t) - u(t_0)}{t - t_0}.
\]

Since \(u'(t_0)\) and \((f \circ u)'(t_0)\) exist, we obtain

\[
\lim_{t \to t_0} \frac{(f \circ u)(t) - (f \circ u)(t_0)}{t - t_0} = (f \circ u)'(t_0) \quad \text{and} \quad \lim_{t \to t_0} \frac{u(t) - u(t_0)}{t - t_0} = u'(t_0) \neq 0.
\]

Consequently,

\[
\lim_{t \to t_0} \frac{f(u(t)) - f(u(t_0))}{u(t) - u(t_0)} = \frac{(f \circ u)'(t_0)}{u'(t_0)}.
\]

Let \(r := (f \circ u)'(t_0)/u'(t_0)\). For given \(\varepsilon > 0\), there exists some \(\delta > 0\) such that

\[
r - \varepsilon < \frac{f(u(t)) - f(u(t_0))}{u(t) - u(t_0)} < r + \varepsilon \quad \forall \ t \in (t_0 - \delta, t_0 + \delta) \cap [a, b].
\]

Since \((f \circ u)'(t_0) \neq 0\), there exists some \(\eta > 0\) such that any \(x \in (u(t_0) - \eta, u(t_0) + \eta) \cap [c, d]\) can be expressed as \(x = u(t)\) for some \(t \in (t_0 - \delta, t_0 + \delta) \cap [a, b]\). Therefore,

\[
r - \varepsilon < \frac{f(x) - f(u(t_0))}{x - u(t_0)} < r + \varepsilon \quad \forall \ x \in (u(t_0) - \eta, u(t_0) + \eta) \cap [c, d].
\]

This shows that \(f'(u(t_0))\) exists and \(f'(u(t_0)) = r = (f \circ u)'(t_0)/u'(t_0)\), as desired. □
Theorem 3.2. Let g be a bounded and measurable function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq [c, d]$. Then $(g \circ u)u'$ is integrable on $[a, b]$. Moreover, for any $\alpha, \beta \in [a, b],
\int_{u(\alpha)}^{u(\beta)} g(x) \, dx = \int_{\alpha}^{\beta} g(u(t))u'(t) \, dt.

Proof. Let

$$F(x) := \int_{c}^{x} g(t) \, dt, \quad x \in [c, d].$$

Since g is bounded, F is Lipschitz continuous. Moreover, $F'(x) = g(x)$ for almost every $x \in [a, b]$. By Theorem 3.1, $F \circ u$ is absolutely continuous on $[a, b]$ and, for almost every $t \in [a, b]$, $(F \circ u)'(t) = g(u(t))u'(t)$. Suppose $\alpha, \beta \in [a, b]$ and $\alpha < \beta$. By Theorem 2.3, we have

$$(F \circ u)(\beta) - (F \circ u)(\alpha) = F(u(\beta)) - F(u(\alpha)) = \int_{u(\alpha)}^{u(\beta)} F'(x) \, dx = \int_{u(\alpha)}^{u(\beta)} g(x) \, dx.$$

On the other hand,

$$(F \circ u)(\beta) - (F \circ u)(\alpha) = \int_{\alpha}^{\beta} (F \circ u)'(t) \, dt = \int_{\alpha}^{\beta} g(u(t))u'(t) \, dt.$$

This proves the desired formula for change of variables. \qed

Theorem 3.3. Let g be an integrable function on $[c, d]$, and let u be an absolutely continuous function on $[a, b]$ such that $u([a, b]) \subseteq [c, d]$. If $(g \circ u)u'$ is integrable on $[a, b]$, then

$$\int_{u(\alpha)}^{u(\beta)} g(x) \, dx = \int_{\alpha}^{\beta} g(u(t))u'(t) \, dt, \quad \alpha, \beta \in [a, b].$$

Moreover, $(g \circ u)u'$ is integrable if, in addition, u is monotone.

Proof. Suppose that g is integrable on $[a, b]$. Without loss of any generality, we may assume $g \geq 0$. For $n = 1, 2, \ldots$, let g_n be the function defined by

$$g_n(x) := \begin{cases}
 g(x) & \text{if } 0 \leq g(x) \leq n, \\
 0 & \text{if } g(x) > n.
\end{cases}$$

Then $g_n \leq g_{n+1}$ for all $n \in \mathbb{N}$. Suppose $\alpha, \beta \in [a, b]$ and $\alpha < \beta$. By Theorem 3.2 we have

$$\int_{u(\alpha)}^{u(\beta)} g_n(x) \, dx = \int_{\alpha}^{\beta} g_n(u(t))u'(t) \, dt.$$
If u is monotone, then $u'(t) \geq 0$ for almost every $t \in [a, b]$. Letting $n \to \infty$ in the above equation, by the monotone convergence theorem we obtain

$$
\int_{u(\alpha)}^{u(\beta)} g(x) \, dx = \int_{\alpha}^{\beta} g(u(t))u'(t) \, dt.
$$

Since g is integrable on $[c, d]$, it follows from the above equation that $(g \circ u)u'$ is integrable on $[a, b]$. More generally, we assume that $(g \circ u)u'$ is integrable on $[a, b]$ but u is not necessarily monotone. Then $|g_n(u(t))u'(t)| \leq g(u(t))|u'(t)|$ for all $n \in \mathbb{N}$ and almost every $t \in [a, b]$. Thus, an application of the Lebesgue dominated convergence theorem gives the desired formula for change of variables. \qed

8