
Chapter 5. Measurable Functions

§1. Measurable Functions

Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a
measurable space. A subset E of X is said to be measurable if E ∈ S.

In this chapter, we will consider functions from X to IR, where IR := IR∪{−∞}∪{+∞}
is the set of extended real numbers. For simplicity, we write ∞ for +∞. The set IR is
an ordered set:

−∞ < x < ∞ for x ∈ IR.

A function f from X to IR is called measurable if, for each a ∈ IR, {x ∈ X : f(x) > a}
is a measurable set.

Theorem 1.1. Let f be a function from a measurable space (X, S) to IR. Then the

following conditions are equivalent:

(1) f is measurable;

(2) for each a ∈ IR, f−1([a,∞]) is measurable;

(3) for each a ∈ IR, f−1([−∞, a)) is measurable;

(4) for each a ∈ IR, f−1([−∞, a]) is measurable;

(5) the sets f−1({−∞}) and f−1({∞}) are measurable, and for each pair of real numbers

a and b with a < b, f−1((a, b)) is measurable.

Proof. (1) ⇒ (2): f−1([a,∞]) = ∩∞n=1f
−1((a− 1/n,∞]).

(2) ⇒ (3): f−1([−∞, a)) = X \ f−1([a,∞]).
(3) ⇒ (4): f−1([−∞, a]) = ∩∞n=1f

−1([−∞, a + 1/n)).
(4) ⇒ (5): If (4) is true, then f−1([−∞, b)) = ∪∞n=1f

−1([−∞, b − 1/n]) is measur-
able. It follows that the set f−1((a, b)) = f−1([−∞, b)) \ f−1([−∞, a]) is measurable.
Moreover, f−1({−∞}) = ∩∞n=1f

−1([−∞,−n]) and f−1({∞}) = X \ ∪∞n=1f
−1([−∞, n])

are measurable.
(5) ⇒ (1): f−1((a,∞]) = f−1({∞}) ∪

(
∪∞n=1f

−1((a, a + n))
)
.

As a consequence of the above theorem, we see that a continuous function from IR to
IR is Lebesgue measurable.

For two functions f and g from a nonempty set X to IR, define

f ∨ g(x) := max{f(x), g(x)} and f ∧ g(x) := min{f(x), g(x)}, x ∈ X.

Furthermore, let f+ := f ∨ 0 and f− := (−f)∨ 0. We call f+ the positive part of f and
f− the negative part of f , respectively.
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Theorem 1.2. If f and g are measurable functions, then the three sets

{x ∈ X : f(x) > g(x)}, {x ∈ X : f(x) ≥ g(x)} and {x ∈ X : f(x) = g(x)}

are all measurable. Moreover, the functions f∨g, f∧g, f+, f−, and |f | are all measurable.

Proof. The set

{x ∈ X : f(x) > g(x)} = ∪r∈QQ

(
{x ∈ X : f(x) > r} ∩ {x ∈ X : g(x) < r}

)
is measurable, since it is a countable union of measurable sets. It follows that the set

{x ∈ X : f(x) ≥ g(x)} = X \ {x ∈ X : g(x) > f(x)}

is measurable. Consequently, the set

{x ∈ X : f(x) = g(x)} = {x ∈ X : f(x) ≥ g(x)} ∩ {x ∈ X : g(x) ≥ f(x)}

is measurable.
For a ∈ IR, we have

{x ∈ X : f ∨ g(x) > a} = {x ∈ X : f(x) > a} ∪ {x ∈ X : g(x) > a}

and

{x ∈ X : f ∧ g(x) > a} = {x ∈ X : f(x) > a} ∩ {x ∈ X : g(x) > a}.

Hence, f ∨ g and f ∧ g are measurable. In particular, f+ and f− are measurable. For
a ≤ 0, we have {x ∈ X : |f(x)| ≥ a} = X. For a > 0 we have

{x ∈ X : |f(x)| ≥ a} = {x ∈ X : f(x) ≥ a} ∪ {x ∈ X : f(x) ≤ −a}.

Hence, |f | is measurable.

The arithmetical operations on IR can be partially extended to IR. For x ∈ IR, define

x + (±∞) = (±∞) + x = ±∞ and x− (±∞) = (∓∞)− x = ∓∞.

Moreover, we define

(+∞) + (+∞) = (+∞)− (−∞) = +∞ and (−∞) + (−∞) = (−∞)− (+∞) = −∞.
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But
(+∞) + (−∞), (+∞)− (+∞), and (−∞)− (−∞)

are not defined. Thus, for x, y ∈ IR, x+y is well defined if and only if {x, y} 6= {−∞,+∞}.
Multiplication on IR is defined as follows:

(±∞)(±∞) = +∞, (±∞)(∓∞) = −∞,

and for x ∈ IR,

x(±∞) = (±∞)x =

{±∞, for x > 0,
0, for x = 0,
∓∞, for x < 0.

Let f and g be two functions from a nonempty set X to IR. The product fg is defined
to be the function that maps x ∈ X to f(x)g(x) ∈ IR. If {f(x), g(x)} 6= {−∞,+∞}
for every x ∈ X, then the sum f + g is defined to be the function that maps x ∈ X to
f(x) + g(x) ∈ IR. The difference f − g is defined to be f + (−g). It is well defined if
{f(x),−g(x)} 6= {−∞,+∞} for every x ∈ X. For example, for a function f : X → IR,
f+(x) = ∞ implies f−(x) = 0, and f−(x) = ∞ implies f+(x) = 0. Hence, f+ + f− and
f+ − f− are well defined. In fact, |f | = f+ + f− and f = f+ − f−.

Theorem 1.3. Let f and g be two measurable functions from a measurable space (X, S)
to IR. Then f + g is a measurable function, provided {f(x), g(x)} 6= {−∞,+∞} for every

x ∈ X. Moreover, fg is also a measurable function.

Proof. For a ∈ IR, the function a− g is measurable. Moreover, we have

{x ∈ X : f(x) + g(x) > a} = {x ∈ X : f(x) > a− g(x)}.

By Theorem 1.2. the set {x ∈ X : f(x) > a−g(x)} is measurable. Hence, for every a ∈ IR,
{x ∈ X : f(x) + g(x) > a} is measurable. This shows that f + g is measurable.

Suppose that f ≥ 0 and g ≥ 0. Let QQ+ := {r ∈ QQ : r > 0}. For a < 0, we have
{x ∈ X : f(x)g(x) > a} = X. For a ≥ 0, we have

{x ∈ X : f(x)g(x) > a} = ∪r∈QQ+

(
{x ∈ X : f(x) > r} ∩ {x ∈ X : g(x) > a/r}

)
.

As a countable union of measurable sets, the set {x ∈ X : f(x)g(x) > a} is measurable.
This shows that fg is measurable whenever f ≥ 0 and g ≥ 0.

Now let us consider the general case. Write f = f+−f− and g = g+−g−. By Theorem
1.2, f+, f−, g+, and g− are all measurable. It can be easily verifies that, for every x ∈ X,
f(x)g(x) = h1(x)− h2(x), where h1 := f+g+ + f−g− and h2 := f+g− + f−g+. By what
has been proved, h1 and h2 are measurable. Consequently, fg = h1− h2 is measurable.
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§2. Limits of Measurable Functions

Let A be a nonempty subset of IR. Then supA and inf A exist as elements of IR. For
a sequence (xn)n=1,2,... of elements in IR, define

sk := sup{xn : n ≥ k} and tk := inf{xn : n ≥ k}, k ∈ IN.

Furthermore, define

lim sup
n→∞

xn := inf{sk : k ∈ IN} and lim inf
n→∞

xn := sup{sk : k ∈ IN}.

If lim supn→∞ xn = lim infn→∞ xn = x, then we write limn→∞ xn = x. Let (xn)n=1,2,...

and (yn)n=1,2,... be two sequences of real numbers such that limn→∞ xn = x ∈ IR and
limn→∞ yn = y ∈ IR. If x + y is well defined, then limn→∞(xn + yn) = x + y.

Theorem 2.1. Let (fn)n=1,2,... be a sequence of measurable functions from a measurable

space (X, S) to IR. For x ∈ X, define

g1(x) := sup{fn(x) : n ∈ IN}, g2(x) := inf{fn(x) : n ∈ IN},

g3(x) := lim sup
n→∞

fn(x), g4(x) := lim inf
n→∞

fn(x).

Then the functions g1, g2, g3, and g4 are all measurable. Moreover, if f(x) = limn→∞ fn(x)
exists for every x ∈ X, then f is measurable.

Proof. For each a ∈ IR, the sets

g−1
1 ((a,∞]) = ∪∞n=1f

−1
n ((a,∞]) and g−1

2 ([−∞, a)) = ∪∞n=1f
−1
n ([−∞, a))

are measurable, so g1 and g2 are measurable.
Furthermore, for k ∈ IN and x ∈ X, let

uk(x) := sup{fn(x) : n ≥ k} and vk(x) := inf{fn(x) : n ≥ k}.

Then g3(x) = inf{uk(x) : k ∈ IN} and g4(x) = sup{uk(x) : k ∈ IN} for x ∈ X. By what
has been proved, uk and vk are measurable for every k ∈ IN. Consequently, both g3 and
g4 are measurable.

Finally, if f(x) = limn→∞ fn(x) exists for every x ∈ X, then f = g3 = g4, so f is
measurable.

Let (fn)n=1,2,... be a sequence of functions from a nonempty set X to IR. We say that
the sequence converges uniformly to a function f : X → IR if, for any ε > 0, there
exists a positive integer N such that

|fn(x)− f(x)| < ε whenever n ≥ N and x ∈ X.
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Let X be a nonempty set. The characteristic function of a subset E of X is the
function given by

χE(x) :=
{ 1 if x ∈ E,

0 if x ∈ Ec.

A function f from X to IR is said to be simple if its range f(X) is a finite set.
Suppose f(X) = {a1, . . . , ak}. Then f can be represented as

f =
k∑

j=1

ajχAj
,

where Aj := f−1({aj}), j = 1, . . . , k.

Theorem 2.2. Let f be a function from a nonempty set X to IR. Then the following

statements are true.

(1) There exists a sequence (fn)n=1,2,... of simple functions from the set X to IR such that

limn→∞ fn(x) = f(x) for every x ∈ X.

(2) If f is nonnegative, the sequence can be so chosen that 0 ≤ fn ≤ fn+1 ≤ f for all

n ∈ IN.

(3) If f is bounded, the sequence can be so chosen that it converges uniformly to f on X.

(4) If (X, S) is a measurable space and f is measurable on (X, S), then each fn (n ∈ IN)

can be chosen to be measurable.

Proof. For n ∈ IN, let In := [n,∞] and

In,k :=
[k − 1

2n
,

k

2n

)
, k = 1, 2, . . . , n2n.

Then [0,∞] is the union (∪n2n

k=1In,k) ∪ In of mutually disjoint sets.

Assume first that f ≥ 0. For n ∈ IN, let An := f−1(In) and An,k := f−1(In,k) for
1 ≤ k ≤ n2n. Then X is the union (∪n2n

k=1An,k) ∪An of mutually disjoint sets. We define

fn :=
n2n∑
k=1

k − 1
2n

χAn,k
+ nχAn

.

Then fn is a simple function from X to IR. If f is measurable, then the sets An and An,k

are measurable. Hence, fn is measurable for each n ∈ IN.

If x ∈ X and f(x) = ∞, then x ∈ An for all n ∈ IN. Hence, fn(x) = n for all n ∈ IN.
It follows that limn→∞ fn(x) = ∞ = f(x). Suppose f(x) < ∞. If n ∈ IN and f(x) ≥ n,
then x ∈ An and fn(x) = n ≤ f(x). If f(x) < n, then x ∈ Ac

n and hence x ∈ An,k for some
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k ∈ {1, . . . , n2n}. It is easily seen that fn(x) = (k − 1)/2n and (k − 1)/2n ≤ f(x) < k/2n.
Therefore,

0 ≤ f(x)− fn(x) <
1
2n

.

The above inequalities are valid for all n > f(x). Consequently, limn→∞ fn(x) = f(x) for
each x ∈ X. Moreover, if f is bounded, then there exists some n0 ∈ IN such that f(x) < n0

for all x ∈ X. Thus, the above argument shows that the sequence (fn)n=1,2,... converges
uniformly to f on X.

For f ≥ 0, we have proved 0 ≤ fn ≤ f for all n ∈ IN. Let us show fn ≤ fn+1 for
all n ∈ IN. Suppose x ∈ X. If f(x) ≥ n, then fn+1(x) ≥ n ≥ fn(x). If f(x) < n,
then x ∈ An,k for some k ∈ {1, . . . , n2n}. Since In,k = In+1,2k−1 ∪ In+1,2k, we have
An,k = An+1,2k−1 ∪An+1,2k. Thus, x ∈ An+1,2k−1 ∪An+1,2k, and hence

fn+1(x) ≥ 2k − 1− 1
2n+1

=
k − 1
2n

= fn(x).

This completes the proof for the case f ≥ 0.

For the general case, we write f = f+ +f−, where f+ = f ∨0 and f− = (−f)∨0. By
what has been proved, we can find two sequences (gn)n=1,2,... and (hn)n=1,2,... of simple
functions from X to IR such that limn→∞ gn(x) = f+(x) and limn→∞ hn(x) = f−(x) for
each x ∈ X. Let fn(x) := gn(x) − hn(x) for x ∈ X. Since f+(x) − f−(x) is well defined
for each x ∈ X, we have limn→∞ fn(x) = f+(x) − f−(x) = f(x). If f is bounded, then
f+ and f− are bounded. Hence, (gn)n=1,2,... can be so chosen that it converges to f+

uniformly on X, and (hn)n=1,2,... can be so chosen that it converges to f− uniformly on X.
Consequently, (fn)n=1,2,... converges to f uniformly on X. Finally, if f is measurable, then
f+ and f− are measurable. Hence, for n ∈ IN, gn and hn can be chosen to be measurable.
Thus, fn is measurable for every n ∈ IN. This completes the proof of the theorem.

§3. Modes of Convergence

Let (X, S, µ) be a measure space. A measurable set N is called a µ-null set if µ(N) = 0.
A property is said to hold µ-almost everywhere if there is a null set N such that it holds
for all x ∈ X \ N . If the measure µ is clear from the context, the reference to µ will be
omitted.

A measure space (X, S, µ) is called complete if every subset of a µ-null set is mea-
surable. If this is the case, then the measure µ is said to be complete. For example, the
Lebesgue measure on the real line is complete.
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Theorem 3.1. Let (X, S, µ) be a complete measure space. Then the following statements

are true.

(1) For two functions f and g from X to IR, if f is measurable and g = f almost every-

where, then g is measurable.

(2) If (fn)n=1,2,... is a sequence of measurable functions from X to IR, and if f is a function

from X to IR such that f(x) = limn→∞ fn(x) holds for almost every x ∈ X, then f is

measurable.

Proof. (1) Let E := {x ∈ X : f(x) = g(x)}. Then Ec is a null set. For a ∈ IR, we have

{x ∈ X : g(x) > a} = {x ∈ E : g(x) > a} ∪ {x ∈ Ec : g(x) > a}.

Moreover,

{x ∈ E : g(x) > a} = {x ∈ E : f(x) > a} = {x ∈ X : f(x) > a} \ {x ∈ Ec : f(x) > a}.

Since µ is a complete measure and Ec is a null set, both sets {x ∈ Ec : g(x) > a} and
{x ∈ Ec : f(x) > a} are measurable. Furthermore, the set {x ∈ X : f(x) > a} is
measurable, because f is measurable. This shows that {x ∈ X : g(x) > a} is measurable
for every a ∈ IR. Therefore, g is a measurable function.

(2) There exists a null set N such that limn→∞ fn(x) = f(x) for all x ∈ X \N . Let
E := X \ N , g := fχE , and gn := fnχE for each n ∈ IN. Since each fn (n ∈ IN) is
a measurable function and E is a measurable set, each gn (n ∈ IN) is measurable. But
g(x) = limn→∞ gn(x) for all x ∈ X. Hence, by Theorem 2.1, g is measurable. Furthermore,
f = g for x ∈ E = X \N . By part (1), f is a measurable function.

Let (fn)n=1,2,... be a sequence of functions from a nonempty set X to IR, and let
f be a function from X to IR. We say that (fn)n=1,2,... converges to f pointwise

if limn→∞ fn(x) = f(x) for every x ∈ X. We say that (fn)n=1,2,... converges to f

uniformly if, for any ε > 0, there exists a positive integer N such that

|fn(x)− f(x)| < ε whenever n ≥ N and x ∈ X.

Let (X, S, µ) be a measure space. Suppose that (fn)n=1,2,... is a sequence of functions
from X to IR and f is a function from X to IR. We say that (fn)n=1,2,... converges to

f almost everywhere if there is a null set N such that limn→∞ fn(x) = f(x) for every
x ∈ X \ N . Suppose in addition that fn (n ∈ IN) and f are measurable. We say that
(fn)n=1,2,... converges to f in measure if for every ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)− f(x)| ≥ ε}

)
= 0.
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Clearly, pointwise convergence implies almost everywhere convergence. Moreover,
uniform convergence implies both pointwise convergence and convergence in measure.

In the following examples, all the functions are from IR to IR. The measure on IR is
understood to be the Lebesgue measure.
Example 1. For n ∈ IN, let fn := χ(0,n)/n. The sequence (fn)n=1,2,... converges to 0
uniformly.
Example 2. For n ∈ IN, let gn := χ(n,n+1). The sequence (gn)n=1,2,... converges to 0
pointwise, but not uniformly. Also, the sequence does not converge to 0 in measure.
Example 3. For n ∈ IN, let un := nχ[0,1/n]. The sequence (un)n=1,2,... converges to 0
almost everywhere, but not pointwise. Also, the sequence converges to 0 in measure.
Example 4. Each n ∈ IN can be uniquely written as u = 2k + j, where k ∈ IN0 and
0 ≤ j < 2k. Let vn be the characteristic function of the interval [j/2k, (j + 1)/2k]. Then
(vn)n=1,2,... converges to 0 in measure. But, for any x ∈ [0, 1], the sequence (vn(x))n=1,2,...

does not converges to 0.

Theorem 3.2. Let (X, S, µ) be a measure space with µ(X) < ∞. Suppose that f and fn

(n ∈ IN) are measurable functions from X to IR. If the sequence (fn)n=1,2... converges to

f almost everywhere, then for every ε > 0 there exists a subset E of X such that µ(E) < ε

and (fn)n=1,2,... converge to f uniformly on Ec.

Proof. Without loss of any generality, we may assume that (fn)n=1,2... converges to f

pointwise. For k, n ∈ IN, let

En(k) := ∪∞m=n{x ∈ X : |fm(x)− f(x)| ≥ 1/k}.

For fixed k, we have limn→∞ µ(En(k)) = 0, since µ(X) < ∞. Given ε > 0 and k ∈ IN,
choose nk so large that µ(Enk

(k)) < ε/2k. Let E := ∪∞k=1Enk
(k). Then µ(E) < ε.

Moreover, |fn(x)−f(x)| < 1/k whenever n > nk and x ∈ Ec. This shows that (fn)n=1,2,...

converges to f uniformly on Ec.

The type of convergence involved in the conclusion of the above theorem is called
almost uniform convergence.
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