
Chapter 3. Metric Spaces

§1. Metric Spaces

A metric space is a set X endowed with a metric ρ : X ×X → [0,∞) that satisfies
the following properties for all x, y, and z in X:

1. ρ(x, y) = 0 if and only if x = y,
2. ρ(x, y) = ρ(y, x), and
3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The third property is called the triangle inequality.
We will write (X, ρ) to denote the metric space X endowed with a metric ρ. If Y is a

subset of X, then the metric space (Y, ρ|Y×Y ) is called a subspace of (X, ρ).
Example 1. Let ρ(x, y) := |x− y| for x, y ∈ IR. Then (IR, ρ) is a metric space. The set
IR equipped with this metric is called the real line.
Example 2. Let IR2 := IR× IR. For x = (x1, x2) ∈ IR2 and y = (y1, y2) ∈ IR2, define

ρ(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2.

Then ρ is a metric on IR2. The set IR2 equipped with this metric is called the Euclidean

plane. More generally, for k ∈ IN, the Euclidean k space IRk is the Cartesian product of
k copies of IR equipped with the metric ρ given by

ρ(x, y) :=
( k∑

j=1

(xj − yj)2
)1/2

, x = (x1, . . . , xk) and y = (y1, . . . , yk) ∈ IRk.

Example 3. Let X be a nonempty set. For x, y ∈ X, define

ρ(x, y) :=
{

1 if x 6= y,
0 if x = y.

In this case, ρ is called the discrete metric on X.
Let (X, ρ) be a metric space. For x ∈ X and r > 0, the open ball centered at x ∈ X

with radius r is defined as

Br(x) := {y ∈ X : ρ(x, y) < r}.

A subset A of X is called an open set if for every x ∈ A, there exists some r > 0
such that Br(x) ⊆ A.

1



Theorem 1.1. For a metric space (X, ρ) the following statements are true.

1. X and ∅ are open sets.

2. Arbitrary unions of open sets are open sets.

3. Finite intersections of open sets are open sets.

Proof. The first statement is obviously true.
For the second statement, we let (Ai)i∈I be a family of open subsets of X and wish

to prove that ∪i∈IAi is an open set. Suppose x ∈ ∪i∈IAi. Then x ∈ Ai0 for some i0 ∈ I.
Since Ai0 is an open set, there exists some r > 0 such that Br(x) ⊆ Ai0 . Consequently,
Br(x) ⊆ ∪i∈IAi. This shows that ∪i∈IAi is an open set.

For the second statement, we let {A1, . . . , An} be a finite collection of open subsets
of X and wish to prove that ∩n

i=1Ai is an open set. Suppose x ∈ ∩n
i=1Ai. Then x ∈ Ai for

every i ∈ {1, . . . , n}. For each i ∈ {1, . . . , n}, there exists ri > 0 such that Bri
(x) ⊆ Ai.

Set r := min{r1, . . . , rn}. Then r > 0 and Br(x) ⊆ ∩n
i=1Ai. This shows that ∩n

i=1Ai is an
open set.

Let (X, ρ) be a metric space. A subset B of X is called an closed set if its complement
Bc := X \B is an open set.

The following theorem is an immediate consequence of Theorem 1.1.

Theorem 1.2. For a metric space (X, ρ) the following statements are true.

1. X and ∅ are closed sets.

2. Arbitrary intersections of closed sets are closed sets.

3. Finite unions of closed sets are closed sets.

Let (X, ρ) be a metric space. Given a subset A of X and a point x in X, there are
three possibilities:

1. There exists some r > 0 such that Br(x) ⊆ A. In this case, x is called an interior

point of A.
2. For any r > 0, Br(x) intersects both A and Ac. In this case, x is called a boundary

point of A.
3. There exists some r > 0 such that Br(x) ⊆ Ac. In this case, x is called an exterior

point of A.
For example, if A is a subset of the real line IR bounded above, then supA is a

boundary point of A. Also, if A is bounded below, then inf A is a boundary point of A.
A point x is called a closure point of A if x is either an interior point or a boundary

point of A. We denote by A the set of closure points of A. Then A ⊆ A. The set A is
called the closure of A.
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Theorem 1.3. If A is a subset of a metric space, then A is the smallest closed set that

includes A.

Proof. Let A be a subset of a metric space. We first show that A is closed. Suppose x /∈ A.
Then x is an exterior point of A; hence there exists some r > 0 such that Br(x) ⊆ Ac.
If y ∈ Br(x), then there exists δ > 0 such that Bδ(y) ⊆ Br(x) ⊆ Ac. This shows y /∈ A.
Consequently, Br(x) ⊆ A

c
. Therefore, A

c
is open. In other words, A is closed.

Now assume that B is a closed subset of X such that A ⊆ B. Let x ∈ Bc. Then there
exists r > 0 such that Br(x) ⊆ Bc ⊆ Ac. This shows x ∈ A

c
. Hence, Bc ⊆ A

c
. It follows

that A ⊆ B. Therefore, A is the smallest closed set that includes A.

A subset A of a metric space (X, ρ) is said to be dense in X if A = X. A metric
space (X, ρ) is called separable if it has a countable dense subset.

§2. Completeness

Let (xn)n=1,2,... be a sequence of elements in a metric space (X, ρ). We say that
(xn)n=1,2,... converges to x in X and write limn→∞ xn = x, if

lim
n→∞

ρ(xn, x) = 0.

From the triangle inequality it follows that a sequence in a metric space has at most
one limit.

Theorem 2.1. Let A be a subset of a metric space (X, ρ). Then a point x ∈ X belongs

to A if and only if there exists a sequence (xn)n=1,2,... in A such that limn→∞ xn = x.

Proof. If x ∈ A, then B1/n(x) ∩ A 6= ∅ for every n ∈ IN. Choose xn ∈ B1/n(x) ∩ A for
each n ∈ IN. Then ρ(xn, x) < 1/n, and hence limn→∞ xn = x.

Suppose x /∈ A. Then there exists some r > 0 such that Br(x)∩A = ∅. Consequently,
for any sequence (xn)n=1,2,... in A, we have ρ(xn, x) ≥ r for all n ∈ IN. Thus, there is no
sequence of elements in A that converges to x.

A sequence (xn)n=1,2,... in a metric space (X, ρ) is said to be a Cauchy sequence if
for every ε > 0 there exists a positive integer N such that

ρ(xm, xn) < ε whenever m,n > N.

Clearly, every convergent sequence is a Cauchy sequence.
If a metric space has the property that every Cauchy sequence converges, then the

metric space is said to be complete. For example, the real line is a complete metric space.
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The diameter of a set A is defined by

d(A) := sup{ρ(x, y) : x, y ∈ A}.

If d(A) < ∞, then A is called a bounded set.

Theorem 2.2. Let (X, ρ) be a complete metric space. Suppose that (An)n=1,2,... is a

sequence of closed and nonempty subsets of X such that An+1 ⊆ An for every n ∈ IN and

limn→∞ d(An) = 0. Then ∩∞n=1An consists of precisely one element.

Proof. If x, y ∈ ∩∞n=1An, then x, y ∈ An for every n ∈ IN. Hence, ρ(x, y) ≤ ρ(An) for all
n ∈ IN. Since limn→∞ ρ(An) = 0, it follows that ρ(x, y) = 0, i.e., x = y.

To show ∩∞n=1An 6= ∅, we proceed as follows. Choose xn ∈ An for each n ∈ IN. Since
Am ⊆ An for m ≥ n, we have ρ(xm, xn) ≤ d(An) for m ≥ n. This in connection with
the assumption limn→∞ d(An) = 0 shows that (xn)n=1,2,... is a Cauchy sequence. Since
(X, ρ) is complete, there exists x ∈ X such that limn→∞ xn = x. We have xm ∈ An for all
m ≥ n. Hence, x ∈ An = An. This is true for all n ∈ IN. Therefore, x ∈ ∩∞n=1An.

§3. Compactness

Let (X, ρ) be a metric space. A subset A of X is said to be sequentially compact

if every sequence in A has a subsequence that converges to a point in A.
For example, a finite subset of a metric space is sequentially compact. The real line

IR is not sequentially compact.
A subset A of a metric space is called totally bounded if, for every r > 0, A can be

covered by finitely many open balls of radius r.
For example, a bounded subset of the real line is totally bounded. On the other hand,

if ρ is the discrete metric on an infinite set X, then X is bounded but not totally bounded.

Theorem 3.1. Let A be a subset of a metric space (X, ρ). Then A is sequentially compact

if and only if A is complete and totally bounded.

Proof. Suppose that A is sequentially compact. We first show that A is complete. Let
(xn)n=1,2,... be a Cauchy sequence in A. Since A is sequentially compact, there exists a
subsequence (xnk

)k=1,2,... that converges to a point x in A. For any ε > 0, there exists
a positive integer N such that ρ(xm, xn) < ε/2 whenever m,n > N . Moreover, there
exists some k ∈ IN such that nk > N and ρ(xnk

, x) < ε/2. Thus, for n > N we have
ρ(xn, x) ≤ ρ(xn, xnk

) + ρ(xnk
, x) < ε. Hence, limn→∞ xn = x. This shows that A is

complete.
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Next, if A is not totally bounded, then there exists some r > 0 such that A cannot be
covered by finitely many open balls of radius r. Choose x1 ∈ A. Suppose x1, . . . , xn ∈ A

have been chosen. Let xn+1 be a point in the nonempty set A \ ∪n
i=1Br(xi). If m,n ∈ IN

and m 6= n, then ρ(xm, xn) ≥ r. Therefore, the sequence (xn)n=1,2,... has no convergent
subsequence. Thus, if A is sequentially compact, then A is totally bounded.

Conversely, suppose that A is complete and totally bounded. Let (xn)n=1,2,... be a
sequence of points in A. We shall construct a subsequence of (xn)n=1,2,... that is a Cauchy
sequence, so that the subsequence converges to a point in A, by the completeness of A. For
this purpose, we construct open balls Bk of radius 1/k and corresponding infinite subsets
Ik of IN for k ∈ IN recursively. Since A is totally bounded, A can be covered by finitely
many balls of radius 1. Hence, we can choose a ball B1 of radius 1 such that the set
I1 := {n ∈ IN : xn ∈ B1} is infinite. Suppose that a ball Bk of radius 1/k and an infinite
subset Ik of IN have been constructed. Since A is totally bounded, A can be covered by
finitely many balls of radius 1/(k+1). Hence, we can choose a ball Bk+1 of radius 1/(k+1)
such that the set Ik+1 := {n ∈ Ik : xn ∈ Bk+1} is infinite.

Choose n1 ∈ I1. Given nk, choose nk+1 ∈ Ik+1 such that nk+1 > nk. By our
construction, Ik+1 ⊆ Ik for all k ∈ IN. Therefore, for all i, j ≥ k, the points xni and
xnj are contained in the ball Bk of radius 1/k. It follows that (xnk

)k=1,2,... is a Cauchy
sequence, as desired.

Theorem 3.2. A subset of a Euclidean space is sequentially compact if and only if it is

closed and bounded.

Proof. Let A be a subset of IRk. If A is sequentially compact, then A is totally bounded
and complete. In particular, A is bounded. Moreover, as a complete subset of IRk, A is
closed.

Conversely, suppose A is bounded and closed in IRk. Since IRk is complete and A is
closed, A is complete. It is easily seen that a bounded subset of IRk is totally bounded.

Let (Ai)i∈I be a family of subsets of X. We say that (Ai)i∈I is a cover of a subset A

of X, if A ⊆ ∪i∈IAi. If a subfamily of (Ai)i∈I also covers A, then it is called a subcover.
If, in addition, (X, ρ) is a metric space and each Ai is an open set, then (Ai)i∈I is said to
be an open cover.

Let (Gi)i∈I be an open cover of A. A real number δ > 0 is called a Lebesgue number

for the cover (Gi)i∈I if, for each subset E of A having diameter less than δ, E ⊆ Gi for
some i ∈ I.
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Theorem 3.3. Let A be a subset of a metric space (X, ρ). If A is sequentially compact,

then there exists a Lebesgue number δ > 0 for any open cover of A.

Proof. Let (Gi)i∈I be an open cover of A. Suppose that there is no Lebesgue number for
the cover (Gi)i∈I . Then for each n ∈ IN there exists a subset En of A having diameter
less than 1/n such that En ∩Gc

i 6= ∅ for all i ∈ I. Choose xn ∈ En for n ∈ IN. Since A is
sequentially compact, there exists a subsequence (xnk

)k=1,2,... which converges to a point
x in A. Since (Gi)i∈I is a cover of A, x ∈ Gi for some i ∈ I. But Gi is an open set. Hence,
there exists some r > 0 such that Br(x) ⊆ Gi. We can find a positive integer k such that
1/nk < r/2 and ρ(xnk

, x) < r/2. Let y be a point in Enk
. Since xnk

also lies in the set
Enk

with diameter less than 1/nk, we have ρ(xnk
, y) < 1/nk. Consequently,

ρ(x, y) ≤ ρ(x, xnk
) + ρ(xnk

, y) <
r

2
+

1
nk

< r.

This shows Enk
⊆ Br(x) ⊆ Gi. However, Enk

was so chosen that Enk
∩ Gc

i 6= ∅. This
contradiction proves the existence of a Lebesgue number for the open cover (Gi)i∈I .

A subset A of (X, ρ) is said to be compact if each open cover of A possesses a finite
subcover of A. If X itself is compact, then (X, ρ) is called a compact metric space.

Theorem 3.4. Let A be a subset of a metric space (X, ρ). Then A is compact if and only

if it is sequentially compact.

Proof. If A is not sequentially compact, then A is an infinite set. Moreover, there exists
a sequence (xn)n=1,2,... in A having no convergent subsequence. Consequently, for each
x ∈ A, there exists an open ball Bx centered at x such that {n ∈ IN : xn ∈ Bx} is a finite
set. Then (Bx)x∈A is an open cover of A which does not possess a finite subcover of A.
Thus, A is not compact.

Now suppose A is sequentially compact. Let (Gi)i∈I be an open cover of A. By
Theorem 3.3, there exists a Lebesgue number δ > 0 for the open cover (Gi)i∈I . By Theorem
3.1, A is totally bounded. Hence, A is covered by a finite collection {B1, . . . , Bm} of open
balls with radius less than δ/2. For each k ∈ {1, . . . ,m}, the diameter of Bk is less than δ.
Hence, Bk ⊆ Gik

for some ik ∈ I. Thus, {Gik
: k = 1, . . . ,m} is a finite subcover of A.

This shows that A is compact.

§4. Continuous Functions

Let (X, ρ) and (Y, τ) be two metric spaces. A function f from X to Y is said to be
continuous at a point a ∈ X if for every ε > 0 there exists δ > 0 (depending on ε) such
that τ(f(x), f(a)) < ε whenever ρ(x, a) < δ.
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The function f is said to be continuous on X if f is continuous at every point of X.

Theorem 4.1. For a function f from a metric space (X, ρ) to a metric space (Y, τ), the

following statements are equivalent:

1. f is continuous on X.

2. f−1(G) is an open subset of X whenever G is an open subset of Y .

3. If limn→∞ xn = x holds in X, then limn→∞ f(xn) = f(x) holds in Y .

4. f(A) ⊆ f(A) holds for every subset A of X.

5. f−1(F ) is a closed subset of X whenever F is a closed subset of Y .

Proof. 1 ⇒ 2: Let G be an open subset of Y and a ∈ f−1(G). Since f(a) ∈ G and G is
open, there exists some ε > 0 such that Bε(f(a)) ⊆ G. By the continuity of f , there exists
some δ > 0 such that τ(f(x), f(a)) < ε whenever ρ(x, a) < δ. This shows Bδ(a) ⊆ f−1(G).
Therefore, f−1(G) is an open set.

2 ⇒ 3: Assume limn→∞ xn = x in X. For ε > 0, let V := Bε(f(x)). In light of
statement 2, f−1(V ) is an open subset of X. Since x ∈ f−1(V ), there exists some δ > 0
such that Bδ(x) ⊆ f−1(V ). Then there exists a positive integer N such that xn ∈ Bδ(x)
for all n > N . It follows that f(xn) ∈ V = Bε(f(x)) for all n > N . Consequently,
limn→∞ f(xn) = f(x).

3 ⇒ 4: Let A be a subset of X. If y ∈ f(A), then there exists x ∈ A such that
y = f(x). Since x ∈ A, there exists a sequence (xn)n=1,2,... of A such that limn→∞ xn = x.
By statement 3 we have limn→∞ f(xn) = f(x). It follows that y = f(x) ∈ f(A). This
shows f(A) ⊆ f(A).

4 ⇒ 5: Let F be a closed subset of Y , and let A := f−1(F ). By statement 4 we have
f(A) ⊆ f(A) = F = F . It follows that A ⊆ f−1(F ) = A. Hence, A is a closed subset
of X.

5 ⇒ 1: Let a ∈ X and ε > 0. Consider the closed set F := Y \ Bε(f(a)). By
statement 5, f−1(F ) is a closed subset of X. Since a /∈ f−1(F ), there exists some δ > 0
such that Bδ(a) ⊆ X \ f−1(F ). Consequently, ρ(x, a) < δ implies τ(f(x), f(a)) < ε. So f

is continuous at a. This is true for every point a in X. Hence, f is continuous on X.

As an application of Theorem 4.1, we prove the Intermediate Value Theorem for
continuous functions.

Theorem 4.2. Suppose that a, b ∈ IR and a < b. If f is a continuous function from [a, b]
to IR, then f has the intermediate value property, that is, for any real number d between

f(a) and f(b), there exists c ∈ [a, b] such that f(c) = d.
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Proof. Without loss of any generality, we may assume that f(a) < d < f(b). Since the
interval (−∞, d] is a closed set, the set F := f−1((−∞, d]) = {x ∈ [a, b] : f(x) ≤ d} is
closed, by Theorem 4.1. Let c := supF . Then c lies in F and hence f(c) ≤ d. It follows
that a ≤ c < b. We claim f(c) = d. Indeed, if f(c) < d, then by the continuity of f we
could find r > 0 such that c < c + r < b and f(c + r) < d. Thus, we would have c + r ∈ F

and c + r > supF . This contradiction shows f(c) = d.

The following theorem shows that a continuous function maps compact sets to compact
sets.

Theorem 4.3. Let f be a continuous function from a metric space (X, ρ) to a metric

space (Y, τ). If A is a compact subset of X, then f(A) is compact.

Proof. Suppose that (Gi)i∈I is an open cover of f(A). Since f is continuous, f−1(Gi) is
open for every i ∈ I, by Theorem 4.1. Hence, (f−1(Gi))i∈I is an open cover of A. By the
compactness of A, there exists a finite subset {i1, . . . , im} of I such that A ⊆ ∪m

k=1f
−1(Gik

).
Consequently, f(A) ⊆ ∪m

k=1Gik
. This shows that f(A) is compact.

Theorem 4.4. Let A be a nonempty compact subset of a metric space (X, ρ). If f is a

continuous function from A to the real line IR, then f is bounded and assumes its maximum

and minimum.

Proof. By Theorem 4.3, f(A) is a compact set, and so it is bounded and closed. Let
t := inf f(A). Then t ∈ f(A) = f(A). Hence, t = min f(A) and t = f(a) for some a ∈ A.
Similarly, Let s := sup f(A). Then s ∈ f(A) = f(A). Hence, s = max f(A) and s = f(b)
for some b ∈ A.

A function f from a metric space (X, ρ) to a metric space (Y, τ) is said to be uni-

formly continuous on X if for every ε > 0 there exists δ > 0 (depending on ε) such
that τ(f(x), f(y)) < ε whenever ρ(x, y) < δ. Clearly, a uniformly continuous function is
continuous.

A function from (X, ρ) to (Y, τ) is said to be a Lipschitz function if there exists
a constant Cf such that τ(f(x), f(y)) ≤ Cfρ(x, y) for all x, y ∈ X. Clearly, a Lipschitz
function is uniformly continuous.

Example. Let f and g be the functions from the interval (0, 1] to the real line IR given
by f(x) = x2 and g(x) = 1/x, x ∈ (0, 1], respectively. Then f is uniformly continuous,
while g is continuous but not uniformly continuous.
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Theorem 4.5. Let f be a continuous function from a metric space (X, ρ) to a metric

space (Y, τ). If X is compact, then f is uniformly continuous on X.

Proof. Let ε > 0 be given. Since f is continuous, for each x ∈ X there exists rx > 0 such
that τ(f(x), f(y)) < ε/2 for all y ∈ Brx

(x). Then (Brx
(x))x∈X is an open cover of X.

Since X is compact, Theorem 3.3 tells us that there exists a Lebesgue number δ > 0 for
this open cover. Suppose y, z ∈ X and ρ(y, z) < δ. Then {y, z} ⊆ Brx

(x) for some x ∈ X.
Consequently,

τ(f(y), f(z)) ≤ τ(f(y), f(x)) + τ(f(x), f(z)) < ε/2 + ε/2 = ε.

This shows that f is uniformly continuous on X.
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