Chapter 3. Metric Spaces

§1. Metric Spaces

A **metric space** is a set X endowed with a metric $\rho: X \times X \to [0, \infty)$ that satisfies the following properties for all x, y, and z in X:

- 1. $\rho(x,y)=0$ if and only if x=y,
- 2. $\rho(x, y) = \rho(y, x)$, and
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.

The third property is called the **triangle inequality**.

We will write (X, ρ) to denote the metric space X endowed with a metric ρ . If Y is a subset of X, then the metric space $(Y, \rho|_{Y \times Y})$ is called a **subspace** of (X, ρ) .

Example 1. Let $\rho(x,y) := |x-y|$ for $x,y \in \mathbb{R}$. Then (\mathbb{R},ρ) is a metric space. The set \mathbb{R} equipped with this metric is called the **real line**.

Example 2. Let $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$. For $x = (x_1, x_2) \in \mathbb{R}^2$ and $y = (y_1, y_2) \in \mathbb{R}^2$, define

$$\rho(x,y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Then ρ is a metric on \mathbb{R}^2 . The set \mathbb{R}^2 equipped with this metric is called the **Euclidean plane**. More generally, for $k \in \mathbb{N}$, the Euclidean k space \mathbb{R}^k is the Cartesian product of k copies of \mathbb{R} equipped with the metric ρ given by

$$\rho(x,y) := \left(\sum_{j=1}^k (x_j - y_j)^2\right)^{1/2}, \quad x = (x_1, \dots, x_k) \text{ and } y = (y_1, \dots, y_k) \in \mathbb{R}^k.$$

Example 3. Let X be a nonempty set. For $x, y \in X$, define

$$\rho(x,y) := \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

In this case, ρ is called the **discrete metric** on X.

Let (X, ρ) be a metric space. For $x \in X$ and r > 0, the **open ball** centered at $x \in X$ with radius r is defined as

$$B_r(x) := \{ y \in X : \rho(x, y) < r \}.$$

A subset A of X is called an **open set** if for every $x \in A$, there exists some r > 0 such that $B_r(x) \subseteq A$.

Theorem 1.1. For a metric space (X, ρ) the following statements are true.

- 1. X and \emptyset are open sets.
- 2. Arbitrary unions of open sets are open sets.
- 3. Finite intersections of open sets are open sets.

Proof. The first statement is obviously true.

For the second statement, we let $(A_i)_{i\in I}$ be a family of open subsets of X and wish to prove that $\bigcup_{i\in I}A_i$ is an open set. Suppose $x\in \bigcup_{i\in I}A_i$. Then $x\in A_{i_0}$ for some $i_0\in I$. Since A_{i_0} is an open set, there exists some r>0 such that $B_r(x)\subseteq A_{i_0}$. Consequently, $B_r(x)\subseteq \bigcup_{i\in I}A_i$. This shows that $\bigcup_{i\in I}A_i$ is an open set.

For the second statement, we let $\{A_1, \ldots, A_n\}$ be a finite collection of open subsets of X and wish to prove that $\bigcap_{i=1}^n A_i$ is an open set. Suppose $x \in \bigcap_{i=1}^n A_i$. Then $x \in A_i$ for every $i \in \{1, \ldots, n\}$. For each $i \in \{1, \ldots, n\}$, there exists $r_i > 0$ such that $B_{r_i}(x) \subseteq A_i$. Set $r := \min\{r_1, \ldots, r_n\}$. Then r > 0 and $B_r(x) \subseteq \bigcap_{i=1}^n A_i$. This shows that $\bigcap_{i=1}^n A_i$ is an open set.

Let (X, ρ) be a metric space. A subset B of X is called an **closed set** if its complement $B^c := X \setminus B$ is an open set.

The following theorem is an immediate consequence of Theorem 1.1.

Theorem 1.2. For a metric space (X, ρ) the following statements are true.

- 1. X and \emptyset are closed sets.
- 2. Arbitrary intersections of closed sets are closed sets.
- 3. Finite unions of closed sets are closed sets.

Let (X, ρ) be a metric space. Given a subset A of X and a point x in X, there are three possibilities:

- 1. There exists some r > 0 such that $B_r(x) \subseteq A$. In this case, x is called an **interior** point of A.
- 2. For any r > 0, $B_r(x)$ intersects both A and A^c . In this case, x is called a **boundary** point of A.
- 3. There exists some r > 0 such that $B_r(x) \subseteq A^c$. In this case, x is called an **exterior** point of A.

For example, if A is a subset of the real line \mathbb{R} bounded above, then $\sup A$ is a boundary point of A. Also, if A is bounded below, then $\inf A$ is a boundary point of A.

A point x is called a **closure point** of A if x is either an interior point or a boundary point of A. We denote by \overline{A} the set of closure points of A. Then $A \subseteq \overline{A}$. The set \overline{A} is called the **closure** of A.

Theorem 1.3. If A is a subset of a metric space, then \overline{A} is the smallest closed set that includes A.

Proof. Let A be a subset of a metric space. We first show that \overline{A} is closed. Suppose $x \notin \overline{A}$. Then x is an exterior point of A; hence there exists some r > 0 such that $B_r(x) \subseteq A^c$. If $y \in B_r(x)$, then there exists $\delta > 0$ such that $B_\delta(y) \subseteq B_r(x) \subseteq A^c$. This shows $y \notin \overline{A}$. Consequently, $B_r(x) \subseteq \overline{A}^c$. Therefore, \overline{A}^c is open. In other words, \overline{A} is closed.

Now assume that B is a closed subset of X such that $A \subseteq B$. Let $x \in B^c$. Then there exists r > 0 such that $B_r(x) \subseteq B^c \subseteq A^c$. This shows $x \in \overline{A}^c$. Hence, $B^c \subseteq \overline{A}^c$. It follows that $\overline{A} \subseteq B$. Therefore, \overline{A} is the smallest closed set that includes A.

A subset A of a metric space (X, ρ) is said to be **dense** in X if $\overline{A} = X$. A metric space (X, ρ) is called **separable** if it has a countable dense subset.

§2. Completeness

Let $(x_n)_{n=1,2,...}$ be a sequence of elements in a metric space (X,ρ) . We say that $(x_n)_{n=1,2,...}$ converges to x in X and write $\lim_{n\to\infty} x_n = x$, if

$$\lim_{n \to \infty} \rho(x_n, x) = 0.$$

From the triangle inequality it follows that a sequence in a metric space has at most one limit.

Theorem 2.1. Let A be a subset of a metric space (X, ρ) . Then a point $x \in X$ belongs to \overline{A} if and only if there exists a sequence $(x_n)_{n=1,2,...}$ in A such that $\lim_{n\to\infty} x_n = x$.

Proof. If $x \in \overline{A}$, then $B_{1/n}(x) \cap A \neq \emptyset$ for every $n \in \mathbb{N}$. Choose $x_n \in B_{1/n}(x) \cap A$ for each $n \in \mathbb{N}$. Then $\rho(x_n, x) < 1/n$, and hence $\lim_{n \to \infty} x_n = x$.

Suppose $x \notin \overline{A}$. Then there exists some r > 0 such that $B_r(x) \cap A = \emptyset$. Consequently, for any sequence $(x_n)_{n=1,2,...}$ in A, we have $\rho(x_n,x) \geq r$ for all $n \in \mathbb{N}$. Thus, there is no sequence of elements in A that converges to x.

A sequence $(x_n)_{n=1,2,...}$ in a metric space (X,ρ) is said to be a **Cauchy sequence** if for every $\varepsilon > 0$ there exists a positive integer N such that

$$\rho(x_m, x_n) < \varepsilon$$
 whenever $m, n > N$.

Clearly, every convergent sequence is a Cauchy sequence.

If a metric space has the property that every Cauchy sequence converges, then the metric space is said to be **complete**. For example, the real line is a complete metric space.

The **diameter** of a set A is defined by

$$d(A) := \sup \{ \rho(x, y) : x, y \in A \}.$$

If $d(A) < \infty$, then A is called a **bounded set**.

Theorem 2.2. Let (X, ρ) be a complete metric space. Suppose that $(A_n)_{n=1,2,...}$ is a sequence of closed and nonempty subsets of X such that $A_{n+1} \subseteq A_n$ for every $n \in \mathbb{N}$ and $\lim_{n\to\infty} d(A_n) = 0$. Then $\bigcap_{n=1}^{\infty} A_n$ consists of precisely one element.

Proof. If $x, y \in \bigcap_{n=1}^{\infty} A_n$, then $x, y \in A_n$ for every $n \in \mathbb{N}$. Hence, $\rho(x, y) \leq \rho(A_n)$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \rho(A_n) = 0$, it follows that $\rho(x, y) = 0$, i.e., x = y.

To show $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$, we proceed as follows. Choose $x_n \in A_n$ for each $n \in \mathbb{N}$. Since $A_m \subseteq A_n$ for $m \geq n$, we have $\rho(x_m, x_n) \leq d(A_n)$ for $m \geq n$. This in connection with the assumption $\lim_{n\to\infty} d(A_n) = 0$ shows that $(x_n)_{n=1,2,...}$ is a Cauchy sequence. Since (X, ρ) is complete, there exists $x \in X$ such that $\lim_{n\to\infty} x_n = x$. We have $x_m \in A_n$ for all $m \geq n$. Hence, $x \in \overline{A_n} = A_n$. This is true for all $n \in \mathbb{N}$. Therefore, $x \in \bigcap_{n=1}^{\infty} A_n$.

§3. Compactness

Let (X, ρ) be a metric space. A subset A of X is said to be **sequentially compact** if every sequence in A has a subsequence that converges to a point in A.

For example, a finite subset of a metric space is sequentially compact. The real line \mathbb{R} is *not* sequentially compact.

A subset A of a metric space is called **totally bounded** if, for every r > 0, A can be covered by finitely many open balls of radius r.

For example, a bounded subset of the real line is totally bounded. On the other hand, if ρ is the discrete metric on an infinite set X, then X is bounded but not totally bounded.

Theorem 3.1. Let A be a subset of a metric space (X, ρ) . Then A is sequentially compact if and only if A is complete and totally bounded.

Proof. Suppose that A is sequentially compact. We first show that A is complete. Let $(x_n)_{n=1,2,\dots}$ be a Cauchy sequence in A. Since A is sequentially compact, there exists a subsequence $(x_{n_k})_{k=1,2,\dots}$ that converges to a point x in A. For any $\varepsilon > 0$, there exists a positive integer N such that $\rho(x_m, x_n) < \varepsilon/2$ whenever m, n > N. Moreover, there exists some $k \in \mathbb{N}$ such that $n_k > N$ and $\rho(x_{n_k}, x) < \varepsilon/2$. Thus, for n > N we have $\rho(x_n, x) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x) < \varepsilon$. Hence, $\lim_{n \to \infty} x_n = x$. This shows that A is complete.

Next, if A is not totally bounded, then there exists some r > 0 such that A cannot be covered by finitely many open balls of radius r. Choose $x_1 \in A$. Suppose $x_1, \ldots, x_n \in A$ have been chosen. Let x_{n+1} be a point in the nonempty set $A \setminus \bigcup_{i=1}^n B_r(x_i)$. If $m, n \in \mathbb{N}$ and $m \neq n$, then $\rho(x_m, x_n) \geq r$. Therefore, the sequence $(x_n)_{n=1,2,\ldots}$ has no convergent subsequence. Thus, if A is sequentially compact, then A is totally bounded.

Conversely, suppose that A is complete and totally bounded. Let $(x_n)_{n=1,2,...}$ be a sequence of points in A. We shall construct a subsequence of $(x_n)_{n=1,2,...}$ that is a Cauchy sequence, so that the subsequence converges to a point in A, by the completeness of A. For this purpose, we construct open balls B_k of radius 1/k and corresponding infinite subsets I_k of \mathbb{N} for $k \in \mathbb{N}$ recursively. Since A is totally bounded, A can be covered by finitely many balls of radius 1. Hence, we can choose a ball B_1 of radius 1 such that the set $I_1 := \{n \in \mathbb{N} : x_n \in B_1\}$ is infinite. Suppose that a ball B_k of radius 1/k and an infinite subset I_k of \mathbb{N} have been constructed. Since A is totally bounded, A can be covered by finitely many balls of radius 1/(k+1). Hence, we can choose a ball B_{k+1} of radius 1/(k+1) such that the set $I_{k+1} := \{n \in I_k : x_n \in B_{k+1}\}$ is infinite.

Choose $n_1 \in I_1$. Given n_k , choose $n_{k+1} \in I_{k+1}$ such that $n_{k+1} > n_k$. By our construction, $I_{k+1} \subseteq I_k$ for all $k \in \mathbb{N}$. Therefore, for all $i, j \geq k$, the points x_{n_i} and x_{n_j} are contained in the ball B_k of radius 1/k. It follows that $(x_{n_k})_{k=1,2,...}$ is a Cauchy sequence, as desired.

Theorem 3.2. A subset of a Euclidean space is sequentially compact if and only if it is closed and bounded.

Proof. Let A be a subset of \mathbb{R}^k . If A is sequentially compact, then A is totally bounded and complete. In particular, A is bounded. Moreover, as a complete subset of \mathbb{R}^k , A is closed.

Conversely, suppose A is bounded and closed in \mathbb{R}^k . Since \mathbb{R}^k is complete and A is closed, A is complete. It is easily seen that a bounded subset of \mathbb{R}^k is totally bounded. \square

Let $(A_i)_{i\in I}$ be a family of subsets of X. We say that $(A_i)_{i\in I}$ is a **cover** of a subset A of X, if $A\subseteq \cup_{i\in I}A_i$. If a subfamily of $(A_i)_{i\in I}$ also covers A, then it is called a **subcover**. If, in addition, (X,ρ) is a metric space and each A_i is an open set, then $(A_i)_{i\in I}$ is said to be an **open cover**.

Let $(G_i)_{i\in I}$ be an open cover of A. A real number $\delta > 0$ is called a **Lebesgue number** for the cover $(G_i)_{i\in I}$ if, for each subset E of A having diameter less than δ , $E \subseteq G_i$ for some $i \in I$.

Theorem 3.3. Let A be a subset of a metric space (X, ρ) . If A is sequentially compact, then there exists a Lebesgue number $\delta > 0$ for any open cover of A.

Proof. Let $(G_i)_{i\in I}$ be an open cover of A. Suppose that there is no Lebesgue number for the cover $(G_i)_{i\in I}$. Then for each $n\in\mathbb{N}$ there exists a subset E_n of A having diameter less than 1/n such that $E_n\cap G_i^c\neq\emptyset$ for all $i\in I$. Choose $x_n\in E_n$ for $n\in\mathbb{N}$. Since A is sequentially compact, there exists a subsequence $(x_{n_k})_{k=1,2,\ldots}$ which converges to a point x in A. Since $(G_i)_{i\in I}$ is a cover of A, $x\in G_i$ for some $i\in I$. But G_i is an open set. Hence, there exists some r>0 such that $B_r(x)\subseteq G_i$. We can find a positive integer k such that $1/n_k < r/2$ and $\rho(x_{n_k}, x) < r/2$. Let p be a point in p in p in p in the set p in p in

$$\rho(x,y) \le \rho(x,x_{n_k}) + \rho(x_{n_k},y) < \frac{r}{2} + \frac{1}{n_k} < r.$$

This shows $E_{n_k} \subseteq B_r(x) \subseteq G_i$. However, E_{n_k} was so chosen that $E_{n_k} \cap G_i^c \neq \emptyset$. This contradiction proves the existence of a Lebesgue number for the open cover $(G_i)_{i \in I}$.

A subset A of (X, ρ) is said to be **compact** if each open cover of A possesses a finite subcover of A. If X itself is compact, then (X, ρ) is called a **compact metric space**.

Theorem 3.4. Let A be a subset of a metric space (X, ρ) . Then A is compact if and only if it is sequentially compact.

Proof. If A is not sequentially compact, then A is an infinite set. Moreover, there exists a sequence $(x_n)_{n=1,2,...}$ in A having no convergent subsequence. Consequently, for each $x \in A$, there exists an open ball B_x centered at x such that $\{n \in \mathbb{N} : x_n \in B_x\}$ is a finite set. Then $(B_x)_{x\in A}$ is an open cover of A which does not possess a finite subcover of A. Thus, A is not compact.

Now suppose A is sequentially compact. Let $(G_i)_{i\in I}$ be an open cover of A. By Theorem 3.3, there exists a Lebesgue number $\delta > 0$ for the open cover $(G_i)_{i\in I}$. By Theorem 3.1, A is totally bounded. Hence, A is covered by a finite collection $\{B_1, \ldots, B_m\}$ of open balls with radius less than $\delta/2$. For each $k \in \{1, \ldots, m\}$, the diameter of B_k is less than δ . Hence, $B_k \subseteq G_{i_k}$ for some $i_k \in I$. Thus, $\{G_{i_k} : k = 1, \ldots, m\}$ is a finite subcover of A. This shows that A is compact.

§4. Continuous Functions

Let (X, ρ) and (Y, τ) be two metric spaces. A function f from X to Y is said to be **continuous** at a point $a \in X$ if for every $\varepsilon > 0$ there exists $\delta > 0$ (depending on ε) such that $\tau(f(x), f(a)) < \varepsilon$ whenever $\rho(x, a) < \delta$.

The function f is said to be **continuous** on X if f is continuous at every point of X.

Theorem 4.1. For a function f from a metric space (X, ρ) to a metric space (Y, τ) , the following statements are equivalent:

- 1. f is continuous on X.
- 2. $f^{-1}(G)$ is an open subset of X whenever G is an open subset of Y.
- 3. If $\lim_{n\to\infty} x_n = x$ holds in X, then $\lim_{n\to\infty} f(x_n) = f(x)$ holds in Y.
- 4. $f(\overline{A}) \subseteq \overline{f(A)}$ holds for every subset A of X.
- 5. $f^{-1}(F)$ is a closed subset of X whenever F is a closed subset of Y.
- **Proof.** $1 \Rightarrow 2$: Let G be an open subset of Y and $a \in f^{-1}(G)$. Since $f(a) \in G$ and G is open, there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(f(a)) \subseteq G$. By the continuity of f, there exists some $\delta > 0$ such that $\tau(f(x), f(a)) < \varepsilon$ whenever $\rho(x, a) < \delta$. This shows $B_{\delta}(a) \subseteq f^{-1}(G)$. Therefore, $f^{-1}(G)$ is an open set.
- $2 \Rightarrow 3$: Assume $\lim_{n\to\infty} x_n = x$ in X. For $\varepsilon > 0$, let $V := B_{\varepsilon}(f(x))$. In light of statement 2, $f^{-1}(V)$ is an open subset of X. Since $x \in f^{-1}(V)$, there exists some $\delta > 0$ such that $B_{\delta}(x) \subseteq f^{-1}(V)$. Then there exists a positive integer N such that $x_n \in B_{\delta}(x)$ for all n > N. It follows that $f(x_n) \in V = B_{\varepsilon}(f(x))$ for all n > N. Consequently, $\lim_{n\to\infty} f(x_n) = f(x)$.
- $3 \Rightarrow 4$: Let A be a subset of X. If $y \in f(\overline{A})$, then there exists $x \in \overline{A}$ such that y = f(x). Since $x \in \overline{A}$, there exists a sequence $(x_n)_{n=1,2,\dots}$ of A such that $\lim_{n\to\infty} x_n = x$. By statement 3 we have $\lim_{n\to\infty} f(x_n) = f(x)$. It follows that $y = f(x) \in \overline{f(A)}$. This shows $f(\overline{A}) \subseteq \overline{f(A)}$.
- $4 \Rightarrow 5$: Let F be a closed subset of Y, and let $A := f^{-1}(F)$. By statement 4 we have $f(\overline{A}) \subseteq \overline{f(A)} = \overline{F} = F$. It follows that $\overline{A} \subseteq f^{-1}(F) = A$. Hence, A is a closed subset of X.
- $5 \Rightarrow 1$: Let $a \in X$ and $\varepsilon > 0$. Consider the closed set $F := Y \setminus B_{\varepsilon}(f(a))$. By statement 5, $f^{-1}(F)$ is a closed subset of X. Since $a \notin f^{-1}(F)$, there exists some $\delta > 0$ such that $B_{\delta}(a) \subseteq X \setminus f^{-1}(F)$. Consequently, $\rho(x,a) < \delta$ implies $\tau(f(x), f(a)) < \varepsilon$. So f is continuous at a. This is true for every point a in X. Hence, f is continuous on X. \square

As an application of Theorem 4.1, we prove the Intermediate Value Theorem for continuous functions.

Theorem 4.2. Suppose that $a, b \in \mathbb{R}$ and a < b. If f is a continuous function from [a, b] to \mathbb{R} , then f has the intermediate value property, that is, for any real number d between f(a) and f(b), there exists $c \in [a, b]$ such that f(c) = d.

Proof. Without loss of any generality, we may assume that f(a) < d < f(b). Since the interval $(-\infty, d]$ is a closed set, the set $F := f^{-1}((-\infty, d]) = \{x \in [a, b] : f(x) \le d\}$ is closed, by Theorem 4.1. Let $c := \sup F$. Then c lies in F and hence $f(c) \le d$. It follows that $a \le c < b$. We claim f(c) = d. Indeed, if f(c) < d, then by the continuity of f we could find f(c) = d such that f(c) = d and f(c) = d. Thus, we would have f(c) = d and f(c) = d.

The following theorem shows that a continuous function maps compact sets to compact sets.

Theorem 4.3. Let f be a continuous function from a metric space (X, ρ) to a metric space (Y, τ) . If A is a compact subset of X, then f(A) is compact.

Proof. Suppose that $(G_i)_{i\in I}$ is an open cover of f(A). Since f is continuous, $f^{-1}(G_i)$ is open for every $i\in I$, by Theorem 4.1. Hence, $(f^{-1}(G_i))_{i\in I}$ is an open cover of A. By the compactness of A, there exists a finite subset $\{i_1,\ldots,i_m\}$ of I such that $A\subseteq \bigcup_{k=1}^m f^{-1}(G_{i_k})$. Consequently, $f(A)\subseteq \bigcup_{k=1}^m G_{i_k}$. This shows that f(A) is compact.

Theorem 4.4. Let A be a nonempty compact subset of a metric space (X, ρ) . If f is a continuous function from A to the real line \mathbb{R} , then f is bounded and assumes its maximum and minimum.

Proof. By Theorem 4.3, f(A) is a compact set, and so it is bounded and closed. Let $t := \inf f(A)$. Then $t \in \overline{f(A)} = f(A)$. Hence, $t = \min f(A)$ and t = f(a) for some $a \in A$. Similarly, Let $s := \sup f(A)$. Then $s \in \overline{f(A)} = f(A)$. Hence, $s = \max f(A)$ and s = f(b) for some $b \in A$.

A function f from a metric space (X, ρ) to a metric space (Y, τ) is said to be **uniformly continuous** on X if for every $\varepsilon > 0$ there exists $\delta > 0$ (depending on ε) such that $\tau(f(x), f(y)) < \varepsilon$ whenever $\rho(x, y) < \delta$. Clearly, a uniformly continuous function is continuous.

A function from (X, ρ) to (Y, τ) is said to be a **Lipschitz function** if there exists a constant C_f such that $\tau(f(x), f(y)) \leq C_f \rho(x, y)$ for all $x, y \in X$. Clearly, a Lipschitz function is uniformly continuous.

Example. Let f and g be the functions from the interval (0,1] to the real line \mathbb{R} given by $f(x) = x^2$ and g(x) = 1/x, $x \in (0,1]$, respectively. Then f is uniformly continuous, while g is continuous but not uniformly continuous.

Theorem 4.5. Let f be a continuous function from a metric space (X, ρ) to a metric space (Y, τ) . If X is compact, then f is uniformly continuous on X.

Proof. Let $\varepsilon > 0$ be given. Since f is continuous, for each $x \in X$ there exists $r_x > 0$ such that $\tau(f(x), f(y)) < \varepsilon/2$ for all $y \in B_{r_x}(x)$. Then $(B_{r_x}(x))_{x \in X}$ is an open cover of X. Since X is compact, Theorem 3.3 tells us that there exists a Lebesgue number $\delta > 0$ for this open cover. Suppose $y, z \in X$ and $\rho(y, z) < \delta$. Then $\{y, z\} \subseteq B_{r_x}(x)$ for some $x \in X$. Consequently,

$$\tau(f(y), f(z)) \le \tau(f(y), f(x)) + \tau(f(x), f(z)) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

This shows that f is uniformly continuous on X.