Chapter 5. Integration

§1. The Riemann Integral

Let a and b be two real numbers with $a < b$. Then $[a, b]$ is a closed and bounded interval in \mathbb{R}. By a partition P of $[a, b]$ we mean a finite ordered set $\{t_0, t_1, \ldots, t_n\}$ such that

$$a = t_0 < t_1 < \cdots < t_n = b.$$

The norm of P is defined by $\|P\| := \max\{t_i - t_{i-1} : i = 1, 2, \ldots, n\}$.

Suppose f is a bounded real-valued function on $[a, b]$. Given a partition $\{t_0, t_1, \ldots, t_n\}$ of $[a, b]$, for each $i = 1, 2, \ldots, n$, let

$$m_i := \inf\{f(x) : t_{i-1} \leq x \leq t_i\} \quad \text{and} \quad M_i := \sup\{f(x) : t_{i-1} \leq x \leq t_i\}.$$

The upper sum $U(f, P)$ and the lower sum $L(f, P)$ for the function f and the partition P are defined by

$$U(f, P) := \sum_{i=1}^{n} M_i (t_i - t_{i-1}) \quad \text{and} \quad L(f, P) := \sum_{i=1}^{n} m_i (t_i - t_{i-1}).$$

The upper integral $U(f)$ of f over $[a, b]$ is defined by

$$U(f) := \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}$$

and the lower integral $L(f)$ of f over $[a, b]$ is defined by

$$L(f) := \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}.$$

A bounded function f on $[a, b]$ is said to be (Riemann) integrable if $L(f) = U(f)$. In this case, we write

$$\int_{a}^{b} f(x) \, dx = L(f) = U(f).$$

By convention we define

$$\int_{b}^{a} f(x) \, dx := -\int_{a}^{b} f(x) \, dx \quad \text{and} \quad \int_{a}^{a} f(x) \, dx := 0.$$

A constant function on $[a, b]$ is integrable. Indeed, if $f(x) = c$ for all $x \in [a, b]$, then $L(f, P) = c(b - a)$ and $U(f, P) = c(b - a)$ for any partition P of $[a, b]$. It follows that

$$\int_{a}^{b} c \, dx = c(b - a).$$
Let \(f \) be a bounded function from \([a, b]\) to \(\mathbb{R} \) such that \(|f(x)| \leq M \) for all \(x \in [a, b] \). Suppose that \(P = \{t_0, t_1, \ldots, t_n\} \) is a partition of \([a, b]\), and that \(P_1 \) is a partition obtained from \(P \) by adding one more point \(t^* \in (t_{i-1}, t_i) \) for some \(i \). The lower sums for \(P \) and \(P_1 \) are the same except for the terms involving \(t_{i-1} \) or \(t_i \). Let \(m_i := \inf \{f(x) : t_{i-1} \leq x \leq t_i\}, \quad m' := \inf \{f(x) : t_{i-1} \leq x \leq t^*\}, \quad \text{and} \quad m'' := \inf \{f(x) : t^* \leq x \leq t_i\} \). Then

\[
L(f, P_1) - L(f, P) = m'(t^* - t_{i-1}) + m''(t_i - t^*) - m_i(t_i - t_{i-1}).
\]

Since \(m' \geq m_i \) and \(m'' \geq m_i \), we have \(L(f, P) \leq L(f, P_1) \). Moreover, \(m' - m \leq 2M \) and \(m'' - m \leq 2M \). It follows that

\[
m'(t^* - t_{i-1}) + m''(t_i - t^*) - m_i(t_i - t_{i-1}) \leq 2M(t_i - t_{i-1}).
\]

Consequently,

\[
L(f, P_1) - 2M\|P\| \leq L(f, P) \leq L(f, P_1).
\]

Now suppose that \(P_N \) is a mesh obtained from \(P \) by adding \(N \) points. An induction argument shows that

\[
L(f, P_N) - 2MN\|P\| \leq L(f, P) \leq L(f, P_N).
\]

Similarly we have

\[
U(f, P_N) \leq U(f, P) \leq U(f, P_N) + 2MN\|P\|.
\]

By the definition of \(L(f) \) and \(U(f) \), for each \(n \in \mathbb{N} \) there exist partitions \(P \) and \(Q \) of \([a, b]\) such that

\[
L(f) - 1/n \leq L(f, P) \quad \text{and} \quad U(f) + 1/n \geq U(f, Q).
\]

Consider the partition \(P \cup Q \) of \([a, b]\). Since \(P \subseteq P \cup Q \) and \(Q \subseteq P \cup Q \), by (1) and (2) we get

\[
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q).
\]

It follows that \(L(f) - 1/n \leq U(f) + 1/n \) for all \(n \in \mathbb{N} \). Letting \(n \to \infty \) in the last inequality, we obtain \(L(f) \leq U(f) \).

We are in a position to establish the following criterion for a bounded function to be integrable.
Theorem 1.1. A bounded function f on $[a, b]$ is integrable if and only if for each $\varepsilon > 0$ there exists a partition P of $[a, b]$ such that

$$U(f, P) - L(f, P) < \varepsilon.$$

Proof. Suppose that f is integrable on $[a, b]$. For $\varepsilon > 0$, there exist partitions P_1 and P_2 such that

$$L(f, P_1) > L(f) - \frac{\varepsilon}{2} \quad \text{and} \quad U(f, P_2) < U(f) + \frac{\varepsilon}{2}.$$

For $P := P_1 \cup P_2$ we have

$$L(f) - \frac{\varepsilon}{2} < L(f, P_1) \leq U(f, P) \leq U(f, P_2) < U(f) + \frac{\varepsilon}{2}.$$

Since $L(f) = U(f)$, it follows that $U(f, P) - L(f, P) < \varepsilon$.

Conversely, suppose that for each $\varepsilon > 0$ there exists a partition P of $[a, b]$ such that $U(f, P) - L(f, P) < \varepsilon$. Then $U(f, P) < L(f, P) + \varepsilon$. It follows that

$$U(f) \leq U(f, P) < L(f, P) + \varepsilon \leq L(f) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we have $U(f) \leq L(f)$. But $L(f) \leq U(f)$. Therefore $U(f) = L(f)$; that is, f is integrable. \qed

Let f be a bounded real-valued function on $[a, b]$ and let $P = \{t_0, t_1, \ldots, t_n\}$ be a partition of $[a, b]$. For each $i = 1, 2, \ldots, n$, choose $\xi_i \in [x_{i-1}, x_i]$. The sum

$$\sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1})$$

is called a **Riemann sum** of f with respect to the partition P and points $\{\xi_1, \ldots, \xi_n\}$.

Theorem 1.2. Let f be a bounded real-valued function on $[a, b]$. Then f is integrable on $[a, b]$ if and only if there exists a real number I with the following property: For any $\varepsilon > 0$ there exists some $\delta > 0$ such that

$$\left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - I \right| \leq \varepsilon \quad (3)$$

whenever $P = \{t_0, t_1, \ldots, t_n\}$ is a partition of $[a, b]$ with $\left\| P \right\| < \delta$ and $\xi_i \in [t_{i-1}, t_i]$ for $i = 1, 2, \ldots, n$. If this is the case, then

$$\int_{a}^{b} f(x) \, dx = I.$$
Proof. Let ε be an arbitrary positive number. Suppose that (3) is true for some partition $P = \{t_0, t_1, \ldots, t_n\}$ of $[a, b]$ and points $\xi_i \in [t_{i-1}, t_i]$, $i = 1, 2, \ldots, n$. Then

$$L(f, P) = \inf \left\{ \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) : \xi_i \in [x_{i-1}, x_i] \text{ for } i = 1, 2, \ldots, n \right\} \geq I - \varepsilon$$

and

$$U(f, P) = \sup \left\{ \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) : \xi_i \in [x_{i-1}, x_i] \text{ for } i = 1, 2, \ldots, n \right\} \leq I + \varepsilon.$$

It follows that $U(f, P) - L(f, P) \leq 2\varepsilon$. By Theorem 1.1 we conclude that f is integrable on $[a, b]$. Moreover, $L(f) = U(f) = I$.

Conversely, suppose that f is integrable on $[a, b]$. Let $M := \sup\{|f(x)| : x \in [a, b]\}$ and $I := L(f) = U(f)$. Given an arbitrary $\varepsilon > 0$, there exists a partition Q of $[a, b]$ such that $L(f, Q) > I - \varepsilon/2$ and $U(f, Q) < I + \varepsilon/2$. Suppose that Q has N points. Let $P = \{t_0, t_1, \ldots, t_n\}$ be a partition of $[a, b]$ with $\|P\| < \delta$. Consider the partition $P \cup Q$ of $[a, b]$. By (1) and (2) we have

$$L(f, P) \geq L(f, P \cup Q) - 2MN\delta \quad \text{and} \quad U(f, P) \leq U(f, P \cup Q) + 2MN\delta.$$

But $L(f, P \cup Q) \geq L(f, Q) > I - \varepsilon/2$ and $U(f, P \cup Q) \leq U(f, Q) < I + \varepsilon/2$. Choose $\delta := \varepsilon/(4MN)$. Since $\|P\| < \delta$, we deduce from the foregoing inequalities that

$$I - \varepsilon < L(f, P) \leq U(f, P) < I + \varepsilon.$$

Thus, with $\xi_i \in [t_{i-1}, t_i]$ for $i = 1, 2, \ldots, n$ we obtain

$$I - \varepsilon < L(f, P) \leq \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) \leq U(f, P) < I + \varepsilon.$$

This completes the proof. \qed

Theorem 1.3. Let f be a bounded function from a bounded closed interval $[a, b]$ to \mathbb{R}. If the set of discontinuities of f is finite, then f is integrable on $[a, b]$.

Proof. Let D be the set of discontinuities of f. By our assumption, D is finite. So the set $D \cup \{a, b\}$ can be expressed as $\{d_0, d_1, \ldots, d_N\}$ with $a = d_0 < d_1 < \cdots < d_N = b$. Let $M := \sup\{|f(x)| : x \in [a, b]\}$. For an arbitrary positive number ε, we choose $\eta > 0$ such
that $\eta < \varepsilon/(8MN)$ and $\eta < (d_j - d_{j-1})/3$ for all $j = 1, \ldots, N$. For $j = 0, 1, \ldots, N$, let $x_j := d_j - \eta$ and $y_j := d_j + \eta$. Then we have

$$a = d_0 < y_0 < x_1 < d_1 < y_1 \cdots < x_N < d_N = b.$$

Let E be the union of the intervals $[d_0, y_0]$, $[x_1, d_1]$, $[d_1, y_1]$, \ldots, $[x_{N-1}, d_{N-1}]$, $[d_{N-1}, y_{N-1}]$, and $[x_N, d_N]$. There are $2N$ intervals in total. For $j = 1, \ldots, N$, let $F_j := [y_{j-1}, x_j]$. Further, let $F := \bigcup_{j=1}^N F_j$. The function f is continuous on F, which is a finite union of bounded closed intervals. Hence f is uniformly continuous on F. There exists some $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon/(2(b-a))$ whenever $x, y \in F$ satisfying $|x - y| < \delta$. For each $j \in \{1, \ldots, N\}$, let P_j be a partition of F_j such that $\|P_j\| < \delta$. Let

$$P := \{a, b\} \cup D \cup \left(\bigcup_{j=1}^N P_j\right).$$

The set P can be arranged as $\{t_0, t_1, \ldots, t_n\}$ with $a = t_0 < t_1 < \cdots < t_n = b$. Consider

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (M_i - m_i)(t_i - t_{i-1}),$$

where $M_i := \sup\{f(x) : t_{i-1} \leq x \leq t_i\}$ and $m_i := \inf\{f(x) : t_{i-1} \leq x \leq t_i\}$. Each interval $[t_{i-1}, t_i]$ is either contained in E or in F, but not in both. Hence

$$\sum_{i=1}^{n} (M_i - m_i)(t_i - t_{i-1}) = \sum_{[t_{i-1}, t_i] \subseteq E} (M_i - m_i)(t_i - t_{i-1}) + \sum_{[t_{i-1}, t_i] \subseteq F} (M_i - m_i)(t_i - t_{i-1}).$$

There are $2N$ intervals $[t_{i-1}, t_i]$ contained in E. Each interval has length $\eta < \varepsilon/(8MN)$. Noting that $M_i - m_i \leq 2M$, we obtain

$$\sum_{[t_{i-1}, t_i] \subseteq E} (M_i - m_i)(t_i - t_{i-1}) \leq 2N(2M)\eta < \frac{\varepsilon}{2}.$$

If $[t_{i-1}, t_i] \subseteq F$, then $t_i - t_{i-1} < \delta$; hence $M_i - m_i < \varepsilon/(2(b-a))$. Therefore,

$$\sum_{[t_{i-1}, t_i] \subseteq F} (M_i - m_i)(t_i - t_{i-1}) \leq \frac{\varepsilon}{2(b-a)} \sum_{[t_{i-1}, t_i] \subseteq F} (t_i - t_{i-1}) < \frac{\varepsilon}{2(b-a)}(b-a) = \frac{\varepsilon}{2}.$$

From the above estimates we conclude that $U(f, P) - L(f, P) < \varepsilon$. By Theorem 1.1, the function f is integrable on $[a, b]$.

Example 1. Let $[a, b]$ be a closed interval with $a < b$, and let f be the function on $[a, b]$ given by $f(x) = x$. By Theorem 1.3, f is integrable on $[a, b]$. Let $P = \{t_0, t_1, \ldots, t_n\}$ be a partition of $[a, b]$ and choose $\xi_i := (t_{i-1} + t_i)/2 \in [t_{i-1}, t_i]$ for $i = 1, 2, \ldots, n$. Then

$$\sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) = \frac{1}{2} \sum_{i=1}^{n} (t_i + t_{i-1})(t_i - t_{i-1}) = \frac{1}{2} \sum_{i=1}^{n} (t_i^2 - t_{i-1}^2) = \frac{1}{2}(t_n^2 - t_0^2) = \frac{1}{2}(b^2 - a^2).$$
By Theorem 1.2 we have
\[\int_a^b x \, dx = \frac{1}{2} (b^2 - a^2). \]
More generally, for a positive integer \(k \), let \(f_k \) be the function given by \(f_k(x) = x^k \) for \(x \in [a, b] \). Choose
\[\xi_i := \left(\frac{t_{i-1}^k + k t_{i-1}^{k-1} t_i + \cdots + t_i^k}{k+1} \right)^{1/k}, \quad i = 1, 2, \ldots, n. \]
We have \(t_{i-1} \leq \xi_i \leq t_i \) for \(i = 1, 2, \ldots, n \). Moreover,
\[\sum_{i=1}^n f_k(\xi_i)(t_i - t_{i-1}) = \frac{1}{k+1} \sum_{i=1}^n (t_{i+1}^k - t_{i-1}^k) = \frac{1}{k+1} (t_{n+1}^k - t_0^k) = \frac{1}{k+1} (b^{k+1} - a^{k+1}). \]
By Theorem 1.2 we conclude that
\[\int_a^b x^k \, dx = \frac{1}{k+1} (b^{k+1} - a^{k+1}). \]

Example 2. Let \(g \) be the function on \([0, 1]\) defined by \(g(x) := \cos(1/x) \) for \(0 < x \leq 1 \) and \(g(0) := 0 \). The only discontinuity point of \(g \) is 0. By Theorem 1.3, \(g \) is integrable on \([0, 1]\). Note that \(g \) is not uniformly continuous on \((0, 1)\). Indeed, let \(x_n := 1/(2n\pi) \) and \(y_n := 1/(2n\pi + \pi/2) \) for \(n \in \mathbb{N} \). Then \(\lim_{n \to \infty} (x_n - y_n) = 0 \). But
\[|f(x_n) - f(y_n)| = |\cos(2n\pi) - \cos(2n\pi + \pi/2)| = 1 \quad \forall n \in \mathbb{N}. \]
Hence \(g \) is not uniformly continuous on \((0, 1)\). On the other hand, the function \(u \) given by \(u(x) := 1/x \) for \(0 < x \leq 1 \) and \(u(0) := 0 \) is not integrable on \([0, 1]\), even though \(u \) is continuous on \((0, 1)\). Theorem 1.3 is not applicable to \(u \), because \(u \) is unbounded.

Example 3. Let \(h \) be the function on \([0, 1]\) defined by \(h(x) := 1 \) if \(x \) is a rational number in \([0, 1]\) and \(h(x) := 0 \) if \(x \) is an irrational number in \([0, 1]\). Let \(P = \{t_0, t_1, \ldots, t_n\} \) be a partition of \([0, 1]\). For \(i = 1, \ldots, n \) we have
\[m_i := \inf\{h(x) : x \in [t_{i-1}, t_i]\} = 0 \quad \text{and} \quad M_i := \sup\{h(x) : x \in [t_{i-1}, t_i]\} = 1. \]
Hence \(L(h, P) = 0 \) and \(U(h, P) = 1 \) for every partition \(P \) of \([0, 1]\). Consequently, \(L(h) = 0 \) and \(U(h) = 1 \). This shows that \(h \) is not Riemann integrable on \([0, 1]\).
§2. Properties of the Riemann Integral

In this section we establish some basic properties of the Riemann integral.

Theorem 2.1. Let \(f \) and \(g \) be integrable functions from a bounded closed interval \([a, b]\) to \(\mathbb{R} \). Then

1. For any real number \(c \), \(cf \) is integrable on \([a, b]\) and \(\int_a^b (cf)(x) \, dx = c \int_a^b f(x) \, dx \);
2. \(f + g \) is integrable on \([a, b]\) and \(\int_a^b (f + g)(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \).

Proof. Suppose that \(f \) and \(g \) are integrable functions on \([a, b]\). Write \(I(f) := \int_a^b f(x) \, dx \) and \(I(g) := \int_a^b g(x) \, dx \). Let \(\varepsilon \) be an arbitrary positive number. By Theorem 1.2, there exists some \(\delta > 0 \) such that

\[
\left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - I(f) \right| \leq \varepsilon \quad \text{and} \quad \left| \sum_{i=1}^{n} g(\xi_i)(t_i - t_{i-1}) - I(g) \right| \leq \varepsilon
\]

whenever \(P = \{t_0, t_1, \ldots, t_n\} \) is a partition of \([a, b]\) with \(\|P\| < \delta \) and \(\xi_i \in [t_{i-1}, t_i] \) for \(i = 1, 2, \ldots, n \). It follows that

\[
\left| \sum_{i=1}^{n} (cf)(\xi_i)(t_i - t_{i-1}) - cI(f) \right| = |c| \left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - I(f) \right| \leq |c|\varepsilon.
\]

Hence \(cf \) is integrable on \([a, b]\) and \(\int_a^b (cf)(x) \, dx = c \int_a^b f(x) \, dx \). Moreover,

\[
\left| \sum_{i=1}^{n} (f + g)(\xi_i)(t_i - t_{i-1}) - [I(f) + I(g)] \right|
\leq \left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - I(f) \right| + \left| \sum_{i=1}^{n} g(\xi_i)(t_i - t_{i-1}) - I(g) \right| \leq 2\varepsilon.
\]

Therefore \(f + g \) is integrable on \([a, b]\) and \(\int_a^b (f + g)(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \).

Theorem 2.2. Let \(f \) and \(g \) be integrable functions on \([a, b]\). Then \(fg \) is an integrable function on \([a, b]\).

Proof. Let us first show that \(f^2 \) is integrable on \([a, b]\). Since \(f \) is bounded, there exists some \(M > 0 \) such that \(|f(x)| \leq M \) for all \(x \in [a, b] \). It follows that

\[
\left| [f(x)]^2 - [f(y)]^2 \right| = |f(x) + f(y)||f(x) - f(y)| \leq 2M|f(x) - f(y)| \quad \text{for all} \quad x, y \in [a, b].
\]

We deduce from the above inequality that \(U(f^2, P) - L(f^2, P) \leq 2M [U(f, P) - L(f, P)] \) for any partition \(P \) of \([a, b]\). Let \(\varepsilon > 0 \). Since \(f \) is integrable on \([a, b]\), by Theorem 1.1
there exists a partition P of $[a, b]$ such that $U(f, P) - L(f, P) < \varepsilon/(2M)$. Consequently, $U(f^2, P) - L(f^2, P) < \varepsilon$. By Theorem 1.1 we conclude that f^2 is integrable on $[a, b]$.

Note that $fg = [(f + g)^2 - (f - g)^2]/4$. By Theorem 2.1, $f + g$ and $f - g$ are integrable on $[a, b]$. By what has been proved, both $(f + g)^2$ and $(f - g)^2$ are integrable on $[a, b]$. Using Theorem 2.1 again, we conclude that fg is integrable on $[a, b]$. \qed

Theorem 2.3. Let a, b, c, d be real numbers such that $a \leq c < d \leq b$. If a real-valued function f is integrable on $[a, b]$, then $f|_{[c,d]}$ is integrable on $[c, d]$.

Proof. Suppose that f is integrable on $[a, b]$. Let ε be an arbitrary positive number. By Theorem 1.1, there exists a partition P of $[a, b]$ such that $U(f, P) - L(f, P) < \varepsilon$. It follows that $U(f, P \cup \{c, d\}) - L(f, P \cup \{c, d\}) < \varepsilon$. Let $Q := (P \cup \{c, d\}) \cap [c, d]$. Then Q is a partition of $[c, d]$. We have

$$U(f|_{[c,d]}, Q) - L(f|_{[c,d]}, Q) \leq U(f, P \cup \{c, d\}) - L(f, P \cup \{c, d\}) < \varepsilon.$$

Hence $f|_{[c,d]}$ is integrable on $[c, d]$. \qed

Theorem 2.4. Let f be a bounded real-valued function on $[a, b]$. If $a < c < b$, and if f is integrable on $[a, c]$ and $[c, b]$, then f is integrable on $[a, b]$ and

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$$

Proof. Suppose that f is integrable on $[a, c]$ and $[c, b]$. We write $I_1 := \int_a^c f(x) \, dx$ and $I_2 := \int_c^b f(x) \, dx$. Let $\varepsilon > 0$. By Theorem 1.1, there exist a partition $P_1 = \{s_0, s_1, \ldots, s_m\}$ of $[a, c]$ and a partition $P_2 = \{t_0, t_1, \ldots, t_n\}$ of $[c, b]$ such that

$$U(f, P_1) - L(f, P_1) < \frac{\varepsilon}{2} \quad \text{and} \quad U(f, P_2) - L(f, P_2) < \frac{\varepsilon}{2}.$$

Let $P := P_1 \cup P_2 = \{s_0, \ldots, s_{m-1}, t_0, \ldots, t_n\}$. Then P is a partition of $[a, b]$. We have

$$L(f) \geq L(f, P) = L(f, P_1) + L(f, P_2) > U(f, P_1) + U(f, P_2) - \varepsilon \geq I_1 + I_2 - \varepsilon$$

and

$$U(f) \leq U(f, P) = U(f, P_1) + U(f, P_2) < L(f, P_1) + L(f, P_2) + \varepsilon \leq I_1 + I_2 + \varepsilon.$$

It follows that

$$\int_a^c f(x) \, dx + \int_c^b f(x) \, dx - \varepsilon < L(f) \leq U(f) < \int_a^c f(x) \, dx + \int_c^b f(x) \, dx + \varepsilon.$$
Since the above inequalities are valid for all \(\varepsilon > 0 \), we conclude that \(f \) is integrable on \([a, b]\) and \(\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx. \)

Let \(a, b, c \) be real numbers in any order, and let \(J \) be a bounded closed interval containing \(a, b, \) and \(c \). If \(f \) is integrable on \(J \), then by Theorems 2.3 and 2.4 we have

\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.
\]

Theorem 2.5. Let \(f \) and \(g \) be integrable functions on \([a, b]\). If \(f(x) \leq g(x) \) for all \(x \in [a, b] \), then \(\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx. \)

Proof. By Theorem 2.1, \(h := g - f \) is integrable on \([a, b]\). Since \(h(x) \geq 0 \) for all \(x \in [a, b] \), it is clear that \(L(h, P) \geq 0 \) for any partition \(P \) of \([a, b]\). Hence, \(\int_a^b h(x) \, dx = L(h) \geq 0. \) Applying Theorem 2.1 again, we see that

\[
\int_a^b g(x) \, dx - \int_a^b f(x) \, dx = \int_a^b h(x) \, dx \geq 0. \qed
\]

Theorem 2.6. If \(f \) is an integrable function on \([a, b]\), then \(\lvert f \rvert \) is integrable on \([a, b]\) and

\[
\int_a^b \lvert f(x) \rvert \, dx \leq \int_a^b \lvert f(x) \rvert \, dx.
\]

Proof. Let \(P = \{t_0, t_1, \ldots, t_n\} \) be a partition of \([a, b]\). For each \(i \in \{1, \ldots, n\} \), let \(M_i \) and \(m_i \) denote the supremum and infimum respectively of \(f \) on \([t_{i-1}, t_i]\), and let \(M_i^* \) and \(m_i^* \) denote the supremum and infimum respectively of \(\lvert f \rvert \) on \([t_{i-1}, t_i]\). Then

\[
M_i - m_i = \sup \{f(x) - f(y) : x, y \in [t_{i-1}, t_i]\}
\]

and

\[
M_i^* - m_i^* = \sup \{|f(x)| - |f(y)| : x, y \in [t_{i-1}, t_i]\}.
\]

By the triangle inequality, \(\lvert f(x) \rvert - |f(y)| \leq |f(x) - f(y)| \). Hence \(M_i^* - m_i^* \leq M_i - m_i \) and

\[
\sum_{i=1}^n (M_i^* - m_i^*)(t_i - t_{i-1}) \leq \sum_{i=1}^n (M_i - m_i)(t_i - t_{i-1}).
\]

It follows that \(U(|f|, P) - L(|f|, P) \leq U(f, P) - L(f, P) \). Let \(\varepsilon \) be an arbitrary positive number. By our assumption, \(f \) is integrable on \([a, b]\). By Theorem 1.1, there exists a partition \(P \) such that \(U(f, P) - L(f, P) < \varepsilon \). Hence \(U(|f|, P) - L(|f|, P) < \varepsilon \). By using Theorem 1.1 again we conclude that \(\lvert f \rvert \) is integrable on \([a, b]\). Furthermore, since \(f(x) \leq |f(x)| \) and \(-f(x) \leq |f(x)| \) for all \(x \in [a, b] \), by Theorem 2.5 we have

\[
\int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx \quad \text{and} \quad -\int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx.
\]

Therefore \(\int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx. \) \qed
§3. Fundamental Theorem of Calculus

In this section we give two versions of the Fundamental Theorem of Calculus and their applications.

Let f be a real-valued function on an interval I. A function F on I is called an antiderivative of f on I if $F'(x) = f(x)$ for all $x \in I$. If F is an antiderivative of f, then so is $F + C$ for any constant C. Conversely, if F and G are antiderivatives of f on I, then $G'(x) - F'(x) = 0$ for all $x \in I$. Thus, there exists a constant C such that $G(x) - F(x) = C$ for all $x \in I$. Consequently, $G = F + C$.

The following is the first version of the Fundamental Theorem of Calculus.

Theorem 3.1. Let f be an integrable function on $[a, b]$. If F is a continuous function on $[a, b]$ and if F is an antiderivative of f on (a, b), then

$$
\int_a^b f(x) \, dx = F(x) \bigg|_a^b := F(b) - F(a).
$$

Proof. Let $\varepsilon > 0$. By Theorem 1.1, there exists a partition $P = \{t_0, t_1, \ldots, t_n\}$ of $[a, b]$ such that $U(f, P) - L(f, P) < \varepsilon$. Since $t_0 = a$ and $t_n = b$ we have

$$
F(b) - F(a) = \sum_{i=1}^n [F(t_i) - F(t_{i-1})].
$$

By the Mean Value Theorem, for each $i \in \{1, \ldots, n\}$ there exists $x_i \in (t_{i-1}, t_i)$ such that

$$
F(t_i) - F(t_{i-1}) = F'(x_i)(t_i - t_{i-1}) = f(x_i)(t_i - t_{i-1}).
$$

Consequently,

$$
L(f, P) \leq F(b) - F(a) = \sum_{i=1}^n f(x_i)(t_i - t_{i-1}) \leq U(f, P).
$$

On the other hand,

$$
L(f, P) \leq \int_a^b f(x) \, dx \leq U(f, P).
$$

Thus both $F(b) - F(a)$ and $\int_a^b f(x) \, dx$ lie in $[L(f, P), U(f, P)]$ with $U(f, P) - L(f, P) < \varepsilon$. Hence

$$
\left| [F(b) - F(a)] - \int_a^b f(x) \, dx \right| < \varepsilon.
$$

Since the above inequality is valid for all $\varepsilon > 0$, we obtain $\int_a^b f(x) \, dx = F(b) - F(a)$. \qed
Example 1. Let \(k \) be a positive integer. Find \(\int_a^b x^k \, dx \).

Solution. We know that the function \(g_k : x \mapsto x^{k+1}/(k + 1) \) is an antiderivative of the function \(f_k : x \mapsto x^k \). By the Fundamental Theorem of Calculus we obtain

\[
\int_a^b x^k \, dx = \frac{x^{k+1}}{k + 1} \bigg|_a^b = \frac{b^{k+1} - a^{k+1}}{k + 1}.
\]

Example 2. Find the integral \(\int_1^2 1/x \, dx \).

Solution. On the interval \((0, \infty)\), the function \(x \mapsto \ln x \) is an antiderivative the function \(x \mapsto 1/x \). By the Fundamental Theorem of Calculus we obtain

\[
\int_1^2 1/x \, dx = \ln x \bigg|_1^2 = \ln 2 - \ln 1 = \ln 2.
\]

This integral can be used to find the limit

\[
\lim_{n \to \infty} \left(\frac{1}{n + 1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n} \right).
\]

Indeed, let \(f(x) := 1/x \) for \(x = [1, 2] \), and let \(t_i = 1 + i/n \) for \(i = 0, 1, \ldots, n \). Then \(P := \{t_0, t_1, \ldots, t_n\} \) is a partition of \([1, 2]\) and

\[
\frac{1}{n + 1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n} = \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1})
\]

is a Riemann sum of \(f \) with respect to \(P \) and points \(\{t_1, \ldots, t_n\} \). By Theorem 1.2 we get

\[
\lim_{n \to \infty} \left(\frac{1}{n + 1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1}) = \int_1^2 1/x \, dx = \ln 2.
\]

Example 3. A curve in plane is represented by a continuous mapping \(u = (u_1, u_2) \) from \([a, b]\) to \(\mathbb{R}^2 \). We use \(L(u) \) to denote the length of the curve. Suppose that \(u_1' \) and \(u_2' \) are continuous on \([a, b]\). Then \(u \) is rectifiable. For \(t \in [a, b] \), let \(s(t) \) denote the length of the curve \(u|_{[a, t]} \). It was proved in Theorem 7.1 of Chapter 4 that

\[
s'(t) = \sqrt{[u'_1(t)]^2 + [u'_2(t)]^2}, \quad t \in [a, b].
\]

By Theorem 3.1 (the Fundamental Theorem of Calculus), we obtain

\[
L(u) = s(b) - s(a) = \int_a^b s'(t) \, dt = \int_a^b \sqrt{[u'_1(t)]^2 + [u'_2(t)]^2} \, dt.
\]

The following is the second version of the Fundamental Theorem of Calculus.
Theorem 3.2. Let f be an integrable function on $[a, b]$. Define

$$F(x) := \int_a^x f(t) \, dt, \quad x \in [a, b].$$

Then F is a continuous function on $[a, b]$. Furthermore, if f is continuous at a point $c \in [a, b]$, then F is differentiable at c and

$$F'(c) = f(c).$$

Proof. Since f is bounded on $[a, b]$, there exists a constant $M > 0$ such that $|f(x)| \leq M$ for all $x \in [a, b]$. If $x, y \in [a, b]$ and $x < y$, then

$$F(y) - F(x) = \int_a^y f(t) \, dt - \int_a^x f(t) \, dt = \int_x^y f(t) \, dt.$$

Since $-M \leq f(t) \leq M$ for $x \leq t \leq y$, by Theorem 2.5 we have

$$-M(y - x) \leq \int_x^y f(t) \, dt \leq M(y - x).$$

It follows that $|F(y) - F(x)| \leq M|y - x|$. For given $\varepsilon > 0$, choose $\delta = \varepsilon/M$. Then $|y - x| < \delta$ implies $|F(y) - F(x)| \leq M|y - x| < \varepsilon$. This shows that F is continuous on $[a, b]$.

Now suppose that f is continuous at $c \in [a, b)$. Let $h > 0$. By Theorem 2.4 we have

$$\frac{F(c + h) - F(c)}{h} - f(c) = \frac{1}{h} \int_c^{c+h} f(t) \, dt - f(c) = \frac{1}{h} \int_c^{c+h} [f(t) - f(c)] \, dt.$$

Let $\varepsilon > 0$ be given. Since f is continuous at c, there exists some $\delta > 0$ such that $|f(t) - f(c)| \leq \varepsilon$ whenever $c \leq t \leq c + \delta$. Therefore, if $0 < h < \delta$, then

$$\left| \frac{F(c + h) - F(c)}{h} - f(c) \right| = \left| \frac{1}{h} \int_c^{c+h} [f(t) - f(c)] \, dt \right| \leq \frac{1}{h} \int_c^{c+h} |f(t) - f(c)| \, dt \leq \varepsilon.$$

Consequently,

$$\lim_{h \to 0^+} \frac{F(c + h) - F(c)}{h} = f(c).$$

Similarly, if f is continuous at $c \in (a, b]$, then

$$\lim_{h \to 0^-} \frac{F(c + h) - F(c)}{h} = f(c).$$

This completes the proof of the theorem.
Example 4. Let f be a continuous function on $[a, b]$, and let $F(x) := \int_x^b f(t) \, dt$ for each $x \in [a, b]$. Then we have

$$F(x) = \int_x^b f(t) \, dt = -\int_b^x f(t) \, dt.$$

By Theorem 3.2, F is differentiable on $[a, b]$ and $F'(x) = -f(x)$ for $a \leq x \leq b$.

Example 5. Let $F(x) := \int_{-x}^x \sqrt{4 + t^2} \, dt$, $x \in \mathbb{R}$. Find $F'(x)$ for $x \in \mathbb{R}$.

Solution. We have

$$F(x) = \int_{-x}^0 \sqrt{4 + t^2} \, dt + \int_0^x \sqrt{4 + t^2} \, dt = -\int_0^{-x} \sqrt{4 + t^2} \, dt + \int_0^x \sqrt{4 + t^2} \, dt.$$

By using the chain rule and Theorem 3.2 we obtain

$$F'(x) = \sqrt{4 + x^2} + 2x\sqrt{4 + x^4}.$$

Example 6. Let $G(x) := \int_2^x x \cos(t^3) \, dt$, $x \in \mathbb{R}$. Find $G''(x)$ for $x \in \mathbb{R}$.

Solution. We have $G(x) = x \int_2^x \cos(t^3) \, dt$. By Theorem 3.2 and the product rule for differentiation, we obtain

$$G'(x) = \int_2^x \cos(t^3) \, dt + x \cos(x^3).$$

Taking derivative once more, we get

$$G''(x) = \cos(x^3) + \cos(x^3) + x[-\sin(x^3)](3x^2) = 2 \cos(x^3) - 3x^3 \sin(x^3).$$

§4. Indefinite Integrals

An antiderivative of a function f is also called an **indefinite integral** of f. It is customary to denote an indefinite integral of f by

$$\int f(x) \, dx.$$

For example, for $\mu \in \mathbb{R} \setminus \{-1\}$ we have

$$\int x^{\mu} \, dx = \frac{x^{\mu+1}}{\mu + 1} + C, \quad x \in (0, \infty).$$
If $\mu \in \mathbb{N}_0$, then the above formula is valid for all $x \in \mathbb{R}$. If $\mu \in \mathbb{Z}$ and $\mu \leq -2$, then the formula holds for $x \in (-\infty, 0) \cup (0, \infty)$. For $\mu = -1$ we have

$$\int \frac{1}{x} \, dx = \ln |x| + C, \quad x \in (-\infty, 0) \cup (0, \infty).$$

The following formulas for integration are easily derived from the corresponding formulas for differentiation:

$$\int e^x \, dx = e^x + C, \quad x \in (-\infty, \infty).$$

$$\int \cos x \, dx = \sin x + C, \quad x \in (-\infty, \infty),$$

$$\int \sin x \, dx = -\cos x + C, \quad x \in (-\infty, \infty),$$

$$\int \frac{1}{1 + x^2} \, dx = \arctan x + C \quad x \in (-\infty, \infty),$$

$$\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C \quad x \in (-1, 1).$$

If F_1 and F_2 are differentiable functions on an interval, and if $F'_1 = f_1$ and $F'_2 = f_2$, then for $c_1, c_2 \in \mathbb{R}$ we have

$$[c_1 F_1 + c_2 F_2]' = c_1 F'_1 + c_2 F'_2 = c_1 f_1 + c_2 f_2.$$

It follows that

$$\int [c_1 f_1(x) + c_2 f_2(x)] \, dx = c_1 \int f_1(x) \, dx + c_2 \int f_2(x) \, dx.$$

Now let u and v be differentiable functions on an interval. By the product rule for differentiation we have

$$(uv)' = u'v + uv'.$$

From this we deduce the following formula for integration by parts:

$$\int u(x)v'(x) \, dx = u(x)v(x) - \int u'(x)v(x) \, dx.$$

It can also be written as

$$\int u \, dv = uv - \int v \, du.$$
Example 1. Find $\int x^2 e^x \, dx$.

Solution. By integration by parts we have

$$\int x^2 e^x \, dx = \int x^2 d(e^x) = x^2 e^x - \int e^x d(x^2) = x^2 e^x - 2 \int xe^x \, dx.$$

By using integration by parts again we obtain

$$\int xe^x \, dx = \int xd(e^x) = xe^x - \int e^x dx = xe^x - e^x + C.$$

Therefore

$$\int x^2 e^x \, dx = x^2 e^x - 2xe^x + 2e^x + C.$$

In general, if p is a polynomial, then

$$\int p(x)e^x \, dx = \int p(x)d(e^x) = p(x)e^x - \int p'(x)e^x \, dx,$$

where the degree of p' is one less than that of p. Thus the integral $\int p(x)e^x$ can be computed by using integration by parts repeatedly. This method also applies to the integrals $\int p(x)\sin x \, dx$ and $\int p(x)\cos x \, dx$.

Example 2. Find $\int x \ln x \, dx$.

Solution. Integration by parts gives

$$\int x \ln x \, dx = \int \ln x \, d(x^2/2) = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \, d(ln x)$$

$$= \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{1}{x} \, dx = \frac{x^2}{2} \ln x - \frac{1}{4}x^2 + C.$$

In general, if p is a polynomial given by $p(x) = \sum_{k=0}^{n} a_kx^k$, then

$$\int p(x) \, dx = \sum_{k=0}^{n} a_k \frac{x^{k+1}}{k+1} + C.$$

Let $s(x) := \sum_{k=0}^{n} a_kx^{k+1}/(k+1)$. By using integration by parts we get

$$\int p(x) \ln x \, dx = \int \ln x d(s(x)) = s(x) \ln x - \int s(x) \, d(ln x) = s(x) \ln x - \int \frac{s(x)}{x} \, dx.$$

This method also applies to the integral $\int p(x) \arctan x \, dx$.

Let u be a differentiable function from an interval I to an interval J, and let F be a differentiable function from J to \mathbb{R}. Suppose $F' = f$. By the chain rule the composition $F \circ u$ is differentiable on I and

$$(F \circ u)'(x) = F'(u(x))u'(x) = f(u(x))u'(x), \quad x \in I.$$

Thus we have the following formula for change of variables in an integral:

$$\int f(u(x))u'(x) \, dx = F(u(x)) + C.$$

Example 3. Find $\int \sin^2 x \cos x \, dx$.

Solution. Let $u := \sin x$. Then $du = \cos x \, dx$. Hence

$$\int \sin^2 x \cos x \, dx = \int u^2 \, du = \frac{1}{3} u^3 + C = \frac{1}{3} \sin^3 x + C.$$

We can use this integral together with the identity $\sin^2 x + \cos^2 x = 1$ to find the integral $\int \cos^3 x \, dx$:

$$\int \cos^3 x \, dx = \int \cos^2 x \cos x \, dx = \int (1 - \sin^2 x) \cos x \, dx$$

$$= \int \cos x \, dx - \int \sin^2 x \cos x \, dx = \sin x - \frac{1}{3} \sin^3 x + C.$$

For integrals involving sine and cosine, the following double angle formulas will be useful:

$$\sin(2x) = 2 \sin x \cos x,$$

$$\cos(2x) = \cos^2 x - \sin^2 x.$$

The second formula together with the identity $\sin^2 x + \cos^2 x = 1$ gives

$$\sin^2 x = \frac{1 - \cos(2x)}{2} \quad \text{and} \quad \cos^2 x = \frac{1 + \cos(2x)}{2}.$$

Thus we have

$$\int \sin^2 x \, dx = \int \frac{1}{2} \, dx - \frac{1}{2} \int \cos(2x) \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x) + C.$$

In general, for nonnegative integers m and n, the integral

$$\int \sin^m x \cos^n x \, dx$$
can be calculated as follows: (1) If \(m \) is odd, use the substitution \(u = \cos x \) and the identity \(\sin^2 x = 1 - \cos^2 x \). (2) If \(n \) is odd, use the substitution \(u = \sin x \) and the identity \(\cos^2 x = 1 - \sin^2 x \). (3) If both \(m \) and \(n \) are even, use \(\sin^2 x = \frac{1 - \cos(2x)}{2} \) and \(\cos^2 x = \frac{1 + \cos(2x)}{2} \) to reduce the exponents of sine and cosine.

Example 4. Find the following integrals:

\[
\int \tan x \, dx, \quad \int \cot x \, dx, \quad \int \sec x \, dx, \quad \int \csc x \, dx.
\]

Solution. For the first integral we use the substitution \(u = \cos x \) and get

\[
\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = - \int \frac{1}{u} \, du = - \ln |u| + C = - \ln |\cos x| + C = \ln |\sec x| + C.
\]

Similarly,

\[
\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{d(\sin x)}{\sin x} = \ln |\sin x| + C.
\]

In order to find \(\int \sec x \, dx \), we observe that

\[
\frac{d}{dx}(\sec x + \tan x) = \sec x \tan x + \sec^2 x = \sec x(\tan x + \sec x).
\]

It follows that

\[
\int \sec x \, dx = \int \frac{d(\sec x + \tan x)}{\sec x + \tan x} = \ln |\sec x + \tan x| + C.
\]

Similarly,

\[
\int \csc x \, dx = - \int \frac{d(\csc x + \cot x)}{\csc x + \cot x} = - \ln |\csc x + \cot x| + C.
\]

Example 5. For \(a > 0 \), calculate the following integrals:

\[
\int \frac{1}{\sqrt{x^2 + a^2}} \, dx \quad \text{and} \quad \int \frac{1}{\sqrt{x^2 - a^2}} \, dx.
\]

Solution. For the first integral we let \(x = a \tan t \) for \(-\pi/2 < t < \pi/2\). Then \(\sec t > 0 \) and \(x^2 + a^2 = a^2(\tan^2 t + 1) = a^2 \sec^2 t \). Hence

\[
\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \int \frac{a \sec^2 t}{a \sec t} \, dt = \int \sec t \, dt = \ln(\tan t + \sec t).
\]

But \(\sec t = \sqrt{\tan^2 t + 1} \). Consequently,

\[
\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right) + C = \ln \left(x + \sqrt{x^2 + a^2}\right) + C_1,
\]

17
where $C_1 = C - \ln a$. Similarly,

$$
\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln|x + \sqrt{x^2 - a^2}| + C, \quad |x| > a.
$$

Let us consider $\int \sqrt{\alpha x^2 + \beta} \, dx$, where $\alpha, \beta \in \mathbb{R}$. Integrating by parts, we obtain

$$
\int \sqrt{\alpha x^2 + \beta} \, dx = x\sqrt{\alpha x^2 + \beta} - \int \frac{\alpha x^2}{\sqrt{\alpha x^2 + \beta}} \, dx.
$$

Note that

$$
\frac{\alpha x^2}{\sqrt{\alpha x^2 + \beta}} = \frac{\alpha x^2 + \beta - \beta}{\sqrt{\alpha x^2 + \beta}} = \sqrt{\alpha x^2 + \beta} - \frac{\beta}{\sqrt{\alpha x^2 + \beta}}.
$$

Hence

$$
\int \sqrt{\alpha x^2 + \beta} \, dx = x\sqrt{\alpha x^2 + \beta} - \int \sqrt{\alpha x^2 + \beta} \, dx + \int \frac{\beta}{\sqrt{\alpha x^2 + \beta}} \, dx.
$$

It follows that

$$
\int \sqrt{\alpha x^2 + \beta} \, dx = \frac{1}{2} x\sqrt{\alpha x^2 + \beta} + \frac{\beta}{2} \int \frac{1}{\sqrt{\alpha x^2 + \beta}} \, dx.
$$

In particular, we get

$$
\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} x\sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C
$$

and

$$
\int \sqrt{x^2 - a^2} \, dx = \frac{1}{2} x\sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C
$$

For $a > 0$, a simple substitution gives

$$
\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \quad -a < x < a.
$$

Therefore,

$$
\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} x\sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C, \quad -a < x < a.
$$

A rational function has the form $p(x)/s(x)$, where p and s are polynomials. There exist unique polynomials q and r such that $p(x) = q(x)s(x) + r(x)$, where the degree of r is less than the degree of s. It follows that

$$
\frac{p(x)}{s(x)} = q(x) + \frac{r(x)}{s(x)}.
$$
In order to find \(\int \frac{r(x)}{s(x)} \, dx \), we decompose \(\frac{r(x)}{s(x)} \) as the sum of terms of the following type:

\[
\frac{c_1}{x - \alpha} + \cdots + \frac{c_n}{(x - \alpha)^n} + \frac{d_1 + e_1 x}{(x - \beta)^2 + \gamma^2} + \cdots + \frac{d_m + e_m x}{[(x - \beta)^2 + \gamma^2]^m}.
\]

Example 6. For \(b, c, \lambda, \mu \in \mathbb{R} \), find the integral

\[
\int \frac{\lambda x + \mu}{x^2 + bx + c} \, dx.
\]

Solution. We may write

\[
\int \frac{\lambda x + \mu}{x^2 + bx + c} \, dx = \int \frac{\lambda}{2} \frac{2x + b}{x^2 + bx + c} \, dx + \int \frac{\mu - b\lambda/2}{x^2 + bx + c} \, dx.
\]

Clearly,

\[
\int \frac{\lambda}{2} \frac{2x + b}{x^2 + bx + c} \, dx = \frac{\lambda}{2} \ln |x^2 + bx + c| + C.
\]

So it remains to find the integral \(\int dx/(x^2 + bx + c) \). There are three possible cases:

- \(b^2 - 4c > 0 \), \(b^2 - 4c = 0 \), and \(b^2 - 4c < 0 \). If \(b^2 - 4c > 0 \), then \(x^2 + bx + c = (x - \alpha)(x - \beta) \), where \(\alpha \) and \(\beta \) are distinct real numbers. In this case,

\[
\int \frac{1}{(x - \alpha)(x - \beta)} \, dx = \int \frac{1}{\alpha - \beta} \left(\frac{1}{x - \alpha} - \frac{1}{x - \beta} \right) \, dx = \frac{1}{\alpha - \beta} \left[\ln |x - \alpha| - \ln |x - \beta| \right] + C.
\]

If \(b^2 - 4c = 0 \), then \(x^2 + bx + c = (x - \alpha)^2 \), where \(\alpha = -b/2 \). In this case,

\[
\int \frac{1}{(x - \alpha)^2} \, dx = -\frac{1}{x - \alpha} + C.
\]

Finally, if \(b^2 - 4c < 0 \), we have \(x^2 + bx + c = (x + b/2)^2 + \gamma^2 \), where \(\gamma = \sqrt{c - b^2}/4 \). Thus

\[
\int \frac{1}{x^2 + bx + c} \, dx = \int \frac{1}{(x + b/2)^2 + \gamma^2} = \frac{1}{\gamma} \arctan \frac{x + b/2}{\gamma} + C.
\]

§5. Definite Integrals

As an application of the Fundamental Theorem of Calculus, we establish the following formula of integration by parts.

Theorem 5.1. If \(u \) and \(v \) are continuous functions on \([a, b]\) that are differentiable on \((a, b)\), and if \(u' \) and \(v' \) are integrable on \([a, b]\), then

\[
\int_a^b u(x)v'(x) \, dx + \int_a^b u'(x)v(x) \, dx = u(b)v(b) - u(a)v(a).
\]
Proof. Let $F := uv$. Then $F'(x) = u'(x)v(x) + u(x)v'(x)$ for $x \in (a, b)$. By Theorem 3.1 we have

$$\int_a^b F'(x) \, dx = F(b) - F(a) = u(b)v(b) - u(a)v(a).$$

\[\square\]

Example 1. Find $\int_0^1 x \ln x \, dx$.

Solution. For $k = 1, 2, \ldots$, let $f_k(x) := x^k \ln x$, $x > 0$. Then f_k is continuous on $(0, \infty)$. Moreover,

$$\lim_{x \to 0^+} x^k \ln x = \lim_{x \to 0^+} \frac{\ln x}{(1/x)^k} = \lim_{y \to +\infty} \frac{\ln(1/y)}{y^k} = \lim_{y \to +\infty} -\frac{\ln y}{y^k} = 0.$$

Thus, by defining $f_k(0) := 0$, f_k is extended to a continuous function on $[0, \infty)$. Integration by parts gives

$$\int_0^1 x \ln x \, dx = \frac{x^2}{2} \ln x \bigg|_0^1 - \int_0^1 \frac{x^2}{2} \, dx = -\frac{1}{4} x^2 \bigg|_0^1 = -\frac{1}{4}.$$

Now let us consider the integral $\int_0^1 \ln x \, dx$. The function $f_0 : x \mapsto \ln x$ is unbounded on $(0, 1)$. So this is an improper integral. We define

$$\int_0^1 \ln x \, dx := \lim_{a \to 0^+} \int_a^1 \ln x \, dx.$$

Integration by parts gives

$$\int_a^1 \ln x \, dx = x \ln x \bigg|_a^1 - \int_a^1 dx = -a \ln a - (1 - a).$$

Consequently,

$$\int_0^1 \ln x \, dx = \lim_{a \to 0^+} [-a \ln a - (1 - a)] = -1.$$

Example 2. For $n = 0, 1, 2, \ldots$, let

$$I_n := \int_0^1 (1 - x^2)^n \, dx.$$

Find I_n.

Solution. We have $I_0 = 1$. For $n \geq 1$, integrating by parts, we get

$$I_n = \int_0^1 (1 - x^2)^n \, dx = x(1 - x^2)^n \bigg|_0^1 - \int_0^1 x d((1 - x^2)^n) = 2n \int_0^1 x^2 (1 - x^2)^{n-1} \, dx.$$
We may write \[x^2(1 - x^2)^{n-1} = [1 - (1 - x^2)](1 - x^2)^{n-1} = (1 - x^2)^n - (1 - x^2)^n. \] Hence
\[
I_n = 2n \int_0^1 (1 - x^2)^{n-1} \, dx - 2n \int_0^1 (1 - x^2)^n \, dx = 2nI_{n-1} - 2nI_n.
\]
It follows that \((2n + 1)I_n = 2nI_{n-1}\). Thus \(I_1 = 2/3\). In general,
\[
I_n = \frac{2n}{2n+1} I_{n-1} = \frac{2n}{2n+1} \frac{2n-2}{2n-1} \ldots \frac{2}{3} = \prod_{k=1}^{n} \frac{2k}{2k+1}.
\]

As another application of the Fundamental Theorem of Calculus, we give the following formula for change of variables in a definite integral.

Theorem 5.2. Let \(u\) be a differentiable function on \([a, b]\) such that \(u'\) is integrable on \([a, b]\). If \(f\) is continuous on \(I := u([a, b])\), then
\[
\int_a^b f(u(t))u'(t) \, dt = \int_{u(a)}^{u(b)} f(x) \, dx.
\]

Proof. Since \(u\) is continuous, \(I = u([a, b])\) is a closed and bounded interval. Also, since \(f \circ u\) is continuous and \(u'\) is integrable on \([a, b]\), the function \((f \circ u)u'\) is integrable on \([a, b]\). If \(I = u([a, b])\) is a single point, then \(u\) is constant on \([a, b]\). In this case \(u'(t) = 0\) for all \(t \in [a, b]\) and both integrals above are zero. Otherwise, for \(x \in I\) define
\[
F(x) := \int_{u(a)}^{x} f(s) \, ds.
\]
Since \(f\) is continuous on \(I\), \(F'(x) = f(x)\) for all \(x \in I\), by Theorem 3.2. By the chain rule we have
\[
(F \circ u)'(t) = F'(u(t))u'(t) = f(u(t))u'(t), \quad t \in [a, b].
\]
Therefore by Theorem 3.1 we obtain
\[
\int_a^b f(u(t))u'(t) \, dt = (F \circ u)(b) - (F \circ u)(a) = F(u(b)) - F(u(a)) = \int_{u(a)}^{u(b)} f(x) \, dx.
\]
Example 3. For $a > 0$, find $\int_0^a \sqrt{a^2 - x^2} \, dx$.

Solution. Let $x = a \sin t$. When $t = 0$, $x = 0$. When $t = \pi/2$, $x = a$. By Theorem 5.2 we get

$$\int_0^a \sqrt{a^2 - x^2} \, dx = \int_0^{\pi/2} a^2 (1 - \sin^2 t) \cos t \, dt = \int_0^a a^2 \sqrt{\cos^2 t} \cos t \, dt.$$

Since $\cos t \geq 0$ for $0 \leq t \leq \pi/2$, we have $\sqrt{\cos^2 t} = \cos t$. Thus

$$\int_0^a \sqrt{a^2 - x^2} \, dx = a^2 \int_0^{\pi/2} \cos^2 t \, dt = a^2 \int_0^{\pi/2} \frac{1 + \cos(2t)}{2} \, dt = \frac{\pi a^2}{4}.$$

Example 4. Let $a > 0$. Suppose that f is a continuous function on $[-a, a]$. Prove the following statements.

(1) If f is an even function, i.e., $f(-x) = f(x)$ for all $x \in [0, a]$, then

$$\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx.$$

(2) If f is an odd function, i.e., $f(-x) = -f(x)$ for all $x \in [0, a]$, then $\int_{-a}^a f(x) \, dx = 0$.

Proof. We have

$$\int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_0^a f(x) \, dx.$$

In the integral $\int_{-a}^0 f(x) \, dx$ we make the change of variables: $x = -t$. When $t = a$, $x = -a$; when $t = 0$, $x = 0$. By Theorem 5.2 we get

$$\int_{-a}^0 f(x) \, dx = \int_a^0 f(-t) \, dt = -\int_a^0 f(-t) \, dt = \int_0^a f(-t) \, dt.$$

It follows that

$$\int_{-a}^a f(x) \, dx = \int_0^a f(-t) \, dt + \int_0^a f(t) \, dt = \int_0^a [f(-t) + f(t)] \, dt.$$

If f is an even function, then $f(-t) = f(t)$ for all $t \in [0, a]$; hence

$$\int_{-a}^a f(x) \, dx = 2 \int_0^a f(t) \, dt = 2 \int_0^a f(x) \, dx.$$

If f is an odd function, then $f(-t) = -f(t)$ for all $t \in [0, a]$; hence

$$\int_{-a}^a f(x) \, dx = 0.$$