Linear Approximations

Let f be a function of two variables x and y defined in a neighborhood of (a, b). The linear function

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

is called the **linearization** of f at (a, b) and the approximation

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

is called the **linear approximation** of f at (a, b).

The function f is said to be **differentiable** if

$$\lim_{x \to a, y \to b} \frac{|f(x, y) - L(x, y)|}{\sqrt{(x - a)^2 + (y - b)^2}} = 0.$$

Theorem. If the partial derivatives f_x and f_y exist in a neighborhood of (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

1
Example. Show that $f(x, y) = xe^{xy}$ is differentiable at $(1, 0)$ and find its linearization there. Then use it to approximate $f(1.1, -0.1)$.

Solution. The partial derivatives are

$$f_x(x, y) = e^{xy} + xye^{xy}, \quad f_y(x, y) = x^2 e^{xy},$$

$$f_x(1, 0) = 1, \quad f_y(1, 0) = 1.$$

Both f_x and f_y are continuous, so f is differentiable everywhere. The linearization is

$$L(x, y) = f(1, 0) + f_x(1, 0)(x - 1) + f_y(1, 0)(y - 0)$$

$$= 1 + 1(x - 1) + 1 \cdot y = x + y.$$

The corresponding linear approximation is

$$xe^{xy} \approx x + y.$$

It follows that $f(1.1, -0.1) \approx 1.1 - 0.1 = 1$. In comparison, $f(1.1, -0.1) = 1.1e^{-0.11} \approx 0.98542$.

2
Let f be a continuous function on an open domain G. Suppose that $P(a, b)$ is a point in G. Let h and k be real numbers such that the line segment joining $P(a, b)$ and $Q(a + h, b + k)$ lies inside G. The line segment PQ is represented by the parametric equations

$$x = a + th, \ y = b + tk, \ 0 \leq t \leq 1.$$

Let F be the function defined by

$$F(t) = f(a + th, b + tk), \ 0 \leq t \leq 1.$$

Then F is a continuous function on $[0, 1]$.

Suppose that f has continuous partial derivatives up to order 2. Then F' and F'' are continuous on $[0, 1]$.

3
Taylor’s Formula for Functions of Two Variables

By Taylor’s theorem we have

\[F(1) = F(0) + F'(0)(1 - 0) + \frac{F''(c)}{2!}(1 - 0)^2 \]

for some \(c \in (0, 1) \).

Recall that \(x = a + th \) and \(y = b + tk \). By the chain rule we obtain

\[F'(t) = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} = hf_x + kf_y. \]

Consequently,

\[F''(t) = \frac{\partial}{\partial x} (hf_x + kf_y)h + \frac{\partial}{\partial y} (hf_x + kf_y)k \]
\[= h^2 f_{xx} + hkf_{yx} + khf_{xy} + k^2 f_{yy} \]
\[= h^2 f_{xx} + 2hk f_{yx} + k^2 f_{yy}. \]
Let \(x = a + h \) and \(y = b + k \). The first Taylor polynomial of \(f \) at \((a, b)\) is given by
\[
T_1(x, y) = F(0) + F'(0)(1 - 0)
= f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b).
\]
Thus, \(T_1(x, y) \) is just the linearization of \(f \) at \((a, b)\).

Let \(R_1(x, y) = f(x, y) - T_1(x, y) \) be the remainder.

With \(h = x - a \) and \(k = y - b \) we have
\[
R_1(x, y) = \frac{F''(c)}{2!}(1 - 0)^2
= \frac{1}{2} [h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy}] \big|_{(a+ch, b+ck)},
\]
where \(0 < c < 1 \).

The second Taylor polynomial of \(f \) at \((a, b)\) is given by
\[
T_2(x, y) = f(a, b) + f_x(a, b)h + f_y(a, b)k
+ \frac{1}{2} [f_{xx}(a, b)h^2 + 2f_{xy}(a, b)hk + f_{yy}(a, b)k^2].
\]
Example. Let $f(x, y) = e^x \sin(x - y), (x, y) \in \mathbb{R}^2$.

(a) Find the linearization of f at the point $(0, 0)$ and the corresponding remainder.

(b) Find the second Taylor polynomial of f at $(0, 0)$.

Solution. We have

\[
\begin{align*}
 f_x &= e^x \sin(x - y) + e^x \cos(x - y), \\
 f_y &= -e^x \cos(x - y), \\
 f_{xx} &= 2e^x \cos(x - y), \\
 f_{xy} &= -e^x \cos(x - y) + e^x \sin(x - y), \\
 f_{yy} &= -e^x \sin(x - y).
\end{align*}
\]

Hence, $f(0, 0) = 0$, $f_x(0, 0) = 1$, $f_y(0, 0) = -1$. The linearization of f at the point $(0, 0)$ is

\[
L(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y = x - y.
\]
The remainder is

\[R(x, y) = \frac{1}{2} \left[2e^{cx} \cos(cx - cy)x^2
\right.

\[+ 2(e^{cx} \sin(cx - cy) - e^{cx} \cos(cx - cy))xy
\]

\[- e^{cx} \sin(cx - cy)y^2 \], \]

where \(0 < c < 1\).

We have \(f_{xx}(0, 0) = 2\), \(f_{xy}(0, 0) = -1\), and \(f_{yy}(0, 0) = 0\). Consequently, the second Taylor polynomial of \(f\) at \((0, 0)\) is

\[T_2(x, y) = x - y + \frac{1}{2}(2x^2 - 2xy) = x - y + x^2 - xy. \]