Taylor's Formula with Remainder

Let f be a function that is $(n + 1)$ times differentiable in an interval I that contains a. Then for each x in I there is a number c strictly between x and a such that

$$
f(x) = T_n(x) + R_n(x),
$$

where

$$
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots
$$

$$
+ \frac{f^{(n)}(a)}{n!}(x - a)^n
$$

and

$$
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.
$$

Remarks

1. For the special case $n = 0$, we have

$$
f(x) = f(a) + f'(c)(x - a).
$$

This is just the Mean Value Theorem.

2. T_n is called the **Taylor polynomial** of order n or the nth Taylor polynomial of f at a . It is uniquely determined by the conditions

$$
T_n(a) = f(a), T'_n(a) = f'(a), \dots, T_n^{(n)}(a) = f^{(n)}(a).
$$

3. R_n is called the **Remainder** of order *n*. This term is similar to the $(n + 1)$ th term in the Taylor series except that $f^{(n+1)}$ is evaluated at c with c between a and x .

Example. Write Taylor's formula for the case where

$$
f(x) = \ln x, \, a = 1, \, n = 3.
$$

Solution. We have $f(x) = \ln x,$ $f(1) = 0;$ f' $(x) = \frac{1}{x}$ \overline{x} $=x^{-1}$, $f'(1) = 1$; $f''(x) = (-1)x^{-2},$ $f''(1) = -1;$ $f'''(x) = (-1)(-2)x^{-3}, \qquad f'''(1) = 2;$ $f^{(4)}(x) = (-1)(-2)(-3)x^{-4}, \quad f^{(4)}(c) = -$ 6 $\frac{6}{c^4}$. Therefore,

$$
f(x) = T_3(x) + R_3(x),
$$

where

$$
T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3
$$

and, with c between 1 and x ,

$$
R_3(x) = \frac{1}{4!} \left(-\frac{6}{c^4} \right) (x-1)^4 = -\frac{1}{4c^4} (x-1)^4.
$$

Example. Use the Taylor polynomial above to find an approximate value for ln 1.2 and give an estimate for the error involved in approximation.

Solution. We have $f(x) = T_3(x) + R_3(x)$, where

$$
T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3
$$

and, with c between 1 and x, $R_3(x) = -\frac{1}{4c}$ $\frac{1}{4c^4}(x-1)^4.$ It follows that

$$
T_3(1.2) = 0.2 - \frac{1}{2} \times 0.2^2 + \frac{1}{3} \times 0.2^3 \approx 0.1826
$$

and

$$
R_3(1.2) = -\frac{1}{4c^4} \times 0.2^4, \quad 1 < c < 1.2.
$$

Since $c > 1$, we have $c^4 > 1$ and hence $\frac{1}{c^4} < 1$. Consequently,

$$
|R_3(1.2)| = \frac{1}{4c^4} \times 0.0016 < 0.0004.
$$

Taylor Polynomials

as Partial Sums of Taylor Series

Theorem. If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th-degree Taylor polynomial of f at a and

$$
\lim_{n \to \infty} R_n(x) = 0
$$

for $|x - a| < R$, then f is equal to the sum of its Taylor series on the interval $(a - R, a + R)$.

Example. Let $f(x) = e^x$ for $-\infty < x < \infty$. Prove that f is equal to the sum of its Maclaurin series. **Proof.** By Taylor's formula, $f(x) = T_n(x) + R_n(x)$, where $T_n(x) = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}$ $\frac{x^n}{n!}$ is the *n*th-degree Taylor polynomial of f at 0 and

$$
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1} = \frac{e^c}{(n+1)!}x^{n+1}
$$

with c between 0 and x. Suppose that M is a positive number and $|x| \leq M$. Then $|c| \leq M$. Consequently,

$$
|R_n(x)| \le e^M \frac{|x|^{n+1}}{(n+1)!}.
$$

By the ratio test, the series $\sum_{n=0}^{\infty}$ $|x|^{n+1}$ $\frac{|x|}{(n+1)!}$ converges. Thus, lim $n\rightarrow\infty$ $|x|^{n+1}$ $\frac{1}{(n+1)!} = 0$, and hence $\lim_{n \to \infty}$ $R_n(x) = 0.$ Therefore,

$$
e^x = \lim_{n \to \infty} T_n(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad -\infty < x < \infty.
$$

Computation of e

Recall that

$$
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
$$

for $-\infty < x < \infty$. In particular,

$$
e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots
$$

Let s_n be the nth partial sum of the above series:

$$
s_n = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}.
$$

Then $s_n = T_n(1)$ and $e - T_n(1) = R_n(1)$. By Taylor's formula

$$
R_n(1) = \frac{e^c}{(n+1)!} \quad \text{with} \ \ 0 < c < 1.
$$

It follows that

$$
|e-T_n(1)| = |R_n(1)| \le \frac{e^c}{(n+1)!} < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}.
$$