
84 1541-1672/10/$26.00 © 2010 IEEE Ieee InTeLLIGenT SySTeMS
Published by the IEEE Computer Society

A G E N T S

Semantic Web Support
for Intelligent Search
and Retrieval of
Business Knowledge

Valentina Tamma, University of Liverpool

well as the assessment of the retrieved pages’ rel-
evance, comes mainly from human sources, with
limited support from software.1 Although this
type of processing is still adequate for searches re-
turning a few hundred pages, it can’t scale to the
volume of information available in business, where
enterprises couple the vast amount of data avail-
able on the Web with company documents and
databases. Current keyword-based search engines
can’t fully capture the intrinsic richness of natural
language; synonymy and polysemy, for example,
pose diffi cult problems for a keyword-based search
task. Enhancing search engines with lexicons such
as WordNet2 can help relieve these problems, but
this doesn’t identify and resolve more complicated
types of ambiguity. Furthermore, keyword-based
search engines make little provision for the formu-
lation of very specifi c queries, particularly those
that make use of relationships between entities.

Semantic Web technologies offer a possible
way to overcome these limitations. The Seman-
tic Web is an evolution of the current Web that
represents information in a machine-readable
format, while maintaining the human-friendly
HTML representation.3 In the Semantic Web,
ontologies give resources shared, machine-
processable meaning by modeling the entities
and processes used to describe both the con-
tent of a Web resource and, more importantly,
the logical relations between the resources.4 On-
tological models allow the annotation of Web

documents (modeling the representation of in-
formation contained in them) and thus the for-
mulation of more precise queries to retrieve doc-
uments. Annotation normally involves creating
metadata items (as instances of concepts from the
ontology) to represent specifi c entities recognized
in the resources, and then linking this metadata
to the resource as its description. Many research
efforts have thus focused on providing automatic
or semiautomatic ways to annotate Web docu-
ments in various formats—mainly text, but also
structured formats such as databases.

In this article we present our experience devel-
oping QuestSemantics (QS), an agent-based plat-
form that uses fi ne-grained business knowledge to
support semiautomatic discovery, annotation, fi l-
tering and retrieval of information resources on
the Internet and in intranets. We designed QS to
maximize the separation between the different
types of knowledge represented—domain- versus
task-specifi c knowledge, and application versus ge-
neric knowledge. The goal of this separation is to
achieve reusability and easy customization of the
platform’s various agents, thus allowing semantics-
based search in various task and domain scenar-
ios. QS includes two main components:

a general framework for (semi-)automatic re-•	
source annotation based on a detailed ontologi-
cal model of the domain and
a user-friendly search interface that allows the •	
formulation and execution of knowledge-based
queries over the generated metadata.

We designed QS for application scenarios that
exploit different information sources to provide

In today’s Web, information is primarily in-

tended to be read and processed by humans; it

can’t be readily comprehended and manipulated by

agents. The intelligence underlying search tasks, as

is-25-01-agen.indd 84 1/27/10 7:48:19 PM

January/february 2010 www.computer.org/intelligent 85

searchable knowledge. The process
often differs only slightly between
different application scenarios and
different domains. The aim of the
general framework for annotation
is to abstract from different scenar-
ios all the common implementation
and policy details in order to reduce
and simplify application-specific
code.

Knowledge-Independent
Components
Because QS is intended as a generic
platform, we designed its compo-
nents to be customizable to the spe-
cific domain of application. There-
fore, a main concern in designing the
platform was to limit its customiza-
tion to domain-related aspects only.
The design of QS distinguishes be-
tween domain knowledge and task
knowledge. Domain knowledge de-
scribes all relevant entities in a spe-
cific domain of knowledge, represent-
ing a state of affairs and constraining
the possible states it can evolve into.
Task knowledge, in general, uses do-
main knowledge to describe relevant
entities with respect to the required
tasks.5

The only decisions that QS makes
at platform level relate to the formal-
isms adopted for representing domain
and task knowledge. A domain on-
tology needs a formalism that allows
easy expression of taxonomical and
nontaxonomical relationships among
agents—static knowledge. A task on-
tology, on the other hand, must rep-
resent dynamic operations such as
sequences, selections, and iterations
that are necessary to represent tasks.
The Semantic Web standard for rep-
resenting ontologies is the Web On-
tology Language, OWL.6 Although
OWL is adequate for modeling
domain knowledge, it isn’t suitable
for representing dynamic operations.
For these, we supplement OWL

ontologies with rules represented
using the Semantic Web Rule Lan-
guage, SWRL.7,8 Such an extension
is necessary, for example, to express
part-whole relations;9 description
logic, the representation formalism
underlying OWL, isn’t sufficiently ex-
pressive to formalize these relations.
QS represents procedural knowledge,
on the other hand, by mixing declar-
ative rules with a traditional pro-
gramming language (Java). It then
represents tasks using clauses—a set
of conjunctive premises and a single
consequence, with the consequence
represented by a block of executable
code.

Annotation and Search
The QS framework consists of two
stages. In the annotation stage, QS
uses both domain knowledge and
task-specific knowledge (such as lay-
out specification, annotation, and
filter rules) to create semantic meta-
data about the information sources.
It then uses this metadata in the
search stage, in which it answers spe-
cific queries from the user, using do-
main knowledge to guide the query
process.

The annotation stage involves a
collaboration of several agents, each

of which provides distinct process
capabilities:

harvesting live information sources, •	
ensuring retrieved information is
up to date with the latest informa-
tion available;
analyzing the retrieved resources •	
using knowledge encoded in the
heuristic task rules to identify
which are of interest for the anno-
tation component;
annotating the analysis results us-•	
ing domain ontologies, identifying
instances of concepts, and, where
possible, retrieving attributes and
stating relations between instances;
and
storing the metadata resulting •	
from the annotation process in a
Resource Description Framework
(RDF) database (www.w3.org/RDF).

The search stage is primarily de-
voted to retrieving specific informa-
tion from the metadata stored in the
last step of the annotation phase.
QS expresses queries in the SPARQL
query language10 and uses the on-
tology representing the application
domain to impose constraints on
potentially matching resources. Re-
sponses to queries are lists of match-
ing resources, containing the meta-
data descriptions and a pointer to
the original source (for example, a
Web page or a database record set).
A graphical search interface enables
user specification of the semantic
queries in an intuitive, nontechni-
cal manner and allows clear presen-
tation of and access to the resulting
resources.

Framework Design
The framework design (Figure 1) is
based on two main components im-
plemented as multiagent systems: the
annotation engine11 and the search
engine.12

A task ontology must
represent dynamic
operations such as
sequences, selections,
and iterations that are
necessary to represent
tasks.

is-25-01-agen.indd 85 1/27/10 7:48:20 PM

86 www.computer.org/intelligent Ieee InTeLLIGenT SySTeMS

An annotation engine
analyzes and filters the
retrieved documents (the
annotation stage), and a
semantic search engine
provides fine-grained ac-
cess to the filtered docu-
ments (the search stage).
The two components
share a store component,
which stores all data:
document contents, on-
tologies and metadata in-
stantiations, and interme-
diate results created by
the analysis and annota-
tion components.

Annotation Engine
The annotation engine re-
trieves documents from
their sources and then
analyzes, annotates, and
filters them on the basis
of the application needs.
Each of these functions
is performed by a specific
element that represents
an implementation of one of the in-
terfaces (harvester, analyzer, or se-
mantic annotator). At this level of
abstraction, QS separates task-specific
knowledge and domain knowledge:
The analyzer element poses only the
task-specific knowledge available—
for example, how to find relevant in-
formation on a Web page. The seman-
tic annotator element uses domain
knowledge to create the actual meta-
data. We obtain these independent
components by leveraging the distinc-
tion between the knowledge needed
for each functionality, so that changes
in task or domain have an impact on
only one component. Moreover, con-
fining the task-specific knowledge to
the analyzer system makes the search
component completely in dependent
of the way information is retrieved,
easing the process of using multiple

knowledge bases to answer users’
queries. Now we’ll look at the ele-
ments of the annotation engine com-
ponent in more detail.

Harvester. An implementation of the
harvester interface must be able to
retrieve information resources and
convert them into a form suitable for
the annotation process. In the case
of Web pages, the harvester retrieves
the pages and saves them in the store
component as text documents. When
the source is a database, the harvester
retrieves first the database schema
and then the contents and saves them
in XML format.

Analyzer. Analyzer elements define
methods to extract relevant infor-
mation from an input information
source and store it in an intermediate

format suitable for the an-
notation engine. Figure 2
shows its architecture.

D o c u m e n t - l a y o u t -
specific information is en-
coded in the form of regu-
lar expressions (or with
specialized Java code)
into an implementation of
the MatchingPattern in-
terface. A parser imple-
mentation uses a set
of these implementations,
and a parser together with
its MatchingPattern ele-
ments forms a rule. Rules
are considered atomic ob-
jects, meaning that the rel-
evant information found
by the MatchingPattern
elements within a rule are
extracted only if the in-
put document or source
satisfies all the Matching-
Pattern elements; in this
case, the rule is applicable.
Some rules can condition
the applicability of other

rules—for example, if one rule deter-
mines that the current resource is un-
suitable, it forces all subsequent rules to
be skipped (a blocking rule).

Semantic Annotator. This element
creates the RDF models represent-
ing the information highlighted by
the analyzer, building source meta-
data according to the domain- and
application-specific ontologies. Figure 2
shows its architecture. Analogously
with the internal structure of the
analyzer element, annotation takes
place through AbstractDocument-
MatchingPattern implementations.
Each implementation extracts a spe-
cific piece of information from the an-
alyzer output, and annotator processes
create and formalize the metadata
into an RDF model. Annotators and
AbstractDocumentMatchingPatterns

Figure 1. QuestSemantics (QS) general system architecture.
The annotation engine applies mapping and annotation rules
to the database. The knowledge base manager reviews and
edits annotations. The search interface is a Web-based GUI for
creating queries and viewing results. The search engine answers
semantic queries over annotated resources.

Knowledge use

Knowledge source

Core application

User interface

Annotation
ontology

Source
model

Mapping
rules

Annotation
rules

Filter
rules

Domain
ontology

Annotation
engine

Data
sources

Semantic
annotations Search engine

Queries
and replies

Generated
knowledge

Editing

Raw
data

Knowlege
base manager

Search interface

is-25-01-agen.indd 86 1/27/10 7:48:21 PM

January/february 2010 www.computer.org/intelligent 87

are grouped into AnnotationRules,
which can be blocking or nonblock-
ing. The semantic annotator element
is the first point in the process where
the form of the source information
becomes unimportant—that is, it
is agnostic with respect to whether
the data originates from Web pages
or from other sources, such as a da-
tabase. Filters in the semantic anno-
tator apply predefined filter rules to
determine whether a specific resource
is suitable for use by the search en-
gine. For example, a filter might re-
move information that is no longer up
to date or useful (such as information
that expires after a certain amount of
time).

Store Element. Each step of the an-
notation process produces data that
must be saved persistently, both for
performance (for example, to save
retrieved documents so that they
are available for the analysis step)
and to keep track of connections
between information items, such as
the source of a specific annotation.
The store interface enables an ap-
plication to save and retrieve data
identified by a URI, such as byte
streams (typically containing text
documents such as HTML pages),
Java maps containing interme-
diate mapping results, and RDF
models containing finished annota-
tions. In addition, the store inter-
face can save relations such as the
fact that a specific URI is an alter-
nate name for another equivalent
resource—that is, in OWL terms,
the two resources are owl:sameAs.
This is particularly useful when dif-
ferent documents describe a single
conceptual resource. The annota-
tion rules retrieve all available in-
formation for the resource, address-
ing the problem of information that
is logically related but physically
disconnected.

Semantic Search Engine
The framework’s search engine
component queries the information
generated by the annotation com-
ponent. It accepts queries posed in
SPARQL and returns a set of links
to matching resources. A special-
ized search interface lets users de-
velop an abstract model of a seman-
tic query, pose it to the engine, and
then review the resulting matched
documents. The search interface
gives end users (people who aren’t
experts in Semantic Web technolo-
gies) a way to access the resources
filtered and annotated by the se-
mantic annotator component. It is
also possible to add and delete enti-
ties and properties (with related val-
ues), so that a user can interact with
the knowledge base to fine-tune the
query, making subsequent searches
more accurate.

The key aim for the query inter-
face is to give the user an intuitive
and clear abstract query model that
hides, as much as possible, the un-
derlying complexity of representation
and reasoning.

Furthermore, the agents in the
search engine multiagent system ex-
hibit various autonomic features that
aim at making the system more ro-
bust and scalable.12

The QS system has been deployed in
two different commercial test cases in
the UK. In the first case, QS was used
to examine specific Web-published
documents for commercial opportu-
nities matching the business interests
of the customer company. In the sec-
ond deployment, QS was used to per-
form knowledge-based searches over
existing database sources. In evalu-
ating the performance of the search
system in both applications, we could
see that by using ontological knowl-
edge and ontology-based annota-
tions, users could perform more ac-
curate queries while being returned
up to 71 per cent fewer documents
than with a keyword-based search
engine—in the best cases eliminat-
ing more than 90 percent of the ir-
relevant documents.11 We are now in
the process of further refining these
two deployments, and we are plan-
ning more industrial deployments
in the near future with other UK
companies.

References
 1. V. Uren et al., “Semantic Annotation for

Knowledge Management: Requirements

and a Survey of the State of the Art,”

J. Web Semantics, vol. 4, no. 1, 2006,

pp. 14–28.

Figure 2. QS annotation components detailed architecture.

Nonblocking rule Parser

Annotator

Action

MatchingPattern list

Rule list

Nonblocking
AnnotationRule AnnotationMatchingPattern list

AnnotationRule list

Filter list

Filter FilterMatchingPattern list
Semantic
annotator

Store

Analyzer

is-25-01-agen.indd 87 1/27/10 7:48:23 PM

88 www.computer.org/intelligent Ieee InTeLLIGenT SySTeMS

 2. G.A. Miller, “Wordnet: A Lexical

Database for English,” Comm. ACM,

vol. 38, no. 11, 1995, pp. 39–41.

 3. T. Berners-Lee, J. Hendler, and

O. Lassila, “The Semantic Web,”

Scientific Am., vol. 284, no. 5, May

2001, pp. 34–43.

 4. R. Studer, R. Benjamins, and D. Fensel,

“Knowledge Engineering: Principles

and Methods,” J. ACM, vol. 25,

nos. 1–2, 1998, pp. 161–197.

 5. G. van Heijst, A.T. Schreiber, and B.J.

Wielinga, “Using Explicit Ontologies

in KBS Development,” Int’l J. Human-

Computer Studies, vol. 46, no. 2, 1997,

pp. 183–292.

 6. D.L. McGuinness and F. van Harmelen,

eds., OWL Web Ontology Language

Overview, W3C recommendation,

2004; www.w3.org/TR/owl-features.

 7. I. Horrocks et al., “SWRL: A Semantic

Web Rule Language Combining OWL

and RuleML,” W3C member submis-

sion, 2004; www.w3.org/Submission/

SWRL.

 8. I. Horrocks et al., “OWL Rules:

A Proposal and Prototype Implementa-

tion,” J. Web Semantics, vol. 3, no. 1,

2005, pp. 23–40.

 9. M.E. Winston, R. Chaffin, and D. Her-

rmann, “A Taxonomy of Part-Whole

Relations,” Cognitive Science, vol. 11,

no. 4, 1987, pp. 417–444.

 10. SPARQL Query Language for RDF,

W3C recommendation, 2008; www.

w3.org/TR/2008/REC-rdf-sparql-

query-20080115.

 11. I.W. Blacoe et al., “QuestSemantics—

Intelligent Search and Retrieval of Busi-

ness Knowledge,” Proc. 18th European

Conf. Artificial Intelligence (ECAI 08),

IOS Press, 2008, pp. 648–652.

 12. I.W. Blacoe, V. Tamma, and M.J.

Wooldridge, “Evaluation of Scalable

Multi-Agent System Architectures for

Searching the Semantic Web,” to be

published in Int’l J. Metadata, Seman-

tics and Ontologies, 2010.

Valentina Tamma is a lecturer in the De-

partment of Computer Science at the Uni-

versity of Liverpool, where she coordi-

nates the Semantic Web Lab in the Agent

ART Group. Her research focuses on on-

tologies in open and distributed environ-

ments, such as multiagent systems, the

Semantic Web, and grid systems. She

holds a PhD in ontologies and information

systems from the University of Liverpool,

UK. Contact her at v.tamma@liverpool.

ac.uk.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

is-25-01-agen.indd 88 1/27/10 7:48:28 PM

