Ontologies have become ubiquitous in information systems. They constitute the Semantic Web’s backbone, facilitate e-commerce, and serve such diverse application fields as bioinformatics and medicine. As ontology development becomes increasingly widespread and collaborative, developers are creating ontologies using different tools and different languages. These ontologies cover unrelated or overlapping domains at different levels of detail and granularity.

This growth inevitably produces an ontology management problem: ontology developers and users must be able to find and compare existing ontologies, reuse complete ontologies or their parts, maintain different versions, and translate between different formalisms. In short, ontology developers face problems similar to those that software engineers have faced for many years.

A uniform framework, which we present here, helps users manage multiple ontologies by leveraging data and algorithms developed for one tool in another. For example, by using an algorithm we developed for structural evaluation of ontology versions, this framework lets developers compare different ontologies and map similarities and differences among them.

Managing multiple ontologies

Multiple-ontology management includes these tasks:

- **Maintain ontology libraries.** Allow uniform access to ontologies in a library; provide pertinent information about each ontology such as its authors, domain, and documentation; provide search capabilities across all ontologies in a library; and permit browsing of the ontologies themselves.
- **Import and reuse ontologies.** Let users extend and customize ontologies others developed.
- **Translate ontologies from one formalism to another.** Ensure interoperability of ontology development tools by providing translators or import export mechanisms for ontologies developed using different tools.
- **Support ontology versioning.** Provide mechanisms to store and identify various versions of the same ontology and to highlight differences between them.
- **Specify transformation rules between different ontologies and versions.** Enable transformation of one ontology’s instance data to another ontology.
- **Merge ontologies.** Create a new ontology that incorporates information from all given source ontologies.
- **Align and map between ontologies.** Define correspondences between different ontologies’ concepts and relations.
- **Extract an ontology’s self-contained parts.** Analyze dependencies and let users extract sets of concepts and relations as a subontology.
- **Support inference across multiple ontologies.** Use mappings defined between ontologies to support inference across several ontologies.
- **Support query across multiple ontologies.** Use mappings to support queries to one ontology posed in terms of another.

This list includes only the tasks we face today and will likely grow as more diverse and overlapping ontologies appear. Currently, most researchers treat these tasks as completely independent ones, and the corresponding tools are also independent from one another. Ontology-merging tools (such as Chimaera) have no relation to ontology-mapping tools (such as ONION) or ontology-versioning tools (such as...
ontologies to work with and looks for overlap between them. When we compare ontologies from different sources, we concentrate on similarities, whereas in version comparison we need to highlight the differences. These processes can be complementary.

In a previous study, we used heuristics similar to those we present here to provide suggestions in interactive ontology merging. Because ontology versioning deals with two versions of the same ontology, we can use the same techniques but require significantly less user input and verification. We concentrate here on the ontology-versioning aspect of multiple-ontology management.

An integrated infrastructure for multiple-ontology management

Consider a set of ontologies. This set can be rather small, such as a set of local ontologies developed by a single user. It can be large, such as an ontology library for an organization or a community, or larger yet, such as all ontologies in the Semantic Web. An ontology set often includes ontologies a user needs to relate to one another—perhaps ontologies from other projects that a user wants to merge to create a single coherent ontology, or different versions of the same ontology that the user needs to analyze. In these cases, the user picks two or more ontologies to work with and looks for overlap between them. We can express the overlap as a set of declarative mapping rules or operational rules that would transform one ontology into the other.

We gain significant advantages from considering these tasks together rather than independently:

- We can leverage algorithms for finding similarities between overlapping ontologies from various sources to find differences between ontology versions. We use different thresholds to decide whether two frames are similar, but the underlying analysis can be the same. Similarly, we can use heuristics discovered when comparing ontology versions to compare different ontologies.
- Because ontology management tasks involve comparing several ontologies, analyzing and understanding semantic relations between their elements can be cognitively difficult. Regardless of whether the ontologies are headed for merging or alignment or the user simply wants to compare them, a uniform interface that shows similarities and differences between ontologies, suggestions for integrating them, and visualization of large-scale ontologies and relations among them can greatly reduce the user’s cognitive load.

Figure 1 presents our PROMPT ontology management framework. All components are plugins or extensions to the Protégé ontology development environment (http://protege.stanford.edu). Protégé provides an intuitive graphical user interface for ontology development, a rich knowledge model that lets us test our tools with different knowledge-modeling features, and an extensible architecture that provides API access to both the Protégé knowledge bases and its user interface components.

This framework assembles several ontology management tools and provides an infrastructure for other related tools. Its key components include:

- **iPROMPT**, an interactive ontology-merging tool that helps users merge ontologies by providing suggestions, analyzing conflicts, and suggesting conflict resolution strategies
- **ANCHORPROMPT**, a graph-based tool for finding related concepts in different ontologies that takes as input pairs of related terms in the source ontologies and analyzes the ontologies’ graph structure to find new pairs of related terms
- **PROMPTDIFF**, an ontology-versioning tool we describe later that finds a structural diff (that is, determines what has changed) between versions of the same ontology
- **The Protégé project browser**, which provides access to an ontology library, giving users meta-information about ontologies (such as authors, documentation, and modification date), snapshots of top levels of ontologies, and allowing users to search through classes and slots in all ontologies

These tools interact closely. iPROMPT provides interface components for other tools that let users browse two ontologies side by side, use different colors for concepts from different ontologies, list pairs of related terms, and so on. iPROMPT also provides pairs of related terms to ANCHORPROMPT. Analysis in ANCHORPROMPT in turn provides additional suggestions that iPROMPT can present to users. PROMPTDIFF uses heuristics we developed in iPROMPT to compare ontology versions. We concentrate here on the problem of comparing ontology versions and present an algorithm that automatically finds differences between them.
Ontologies

Related Work

Philip Bernstein and his colleagues explored the possibility of creating a uniform view of model management for database systems applications. They viewed a model as a complex structure, such as a relational schema, a UML (Unified Modeling Language) model, an XML document type definition, or a semantic network. They developed a formal framework for mapping between models, using a mapping as a formal structure that contains expressions linking concepts in one model to those in another model. This mapping can then be used for transferring instance data, schema integration, schema merging, and other similar tasks.

Current ontology-versioning research addresses three main issues:

- Identifying ontology versions in distributed environments such as the Semantic Web
- Explicitly specifying change logs between versions
- Determining a set of additional ontology changes that each user-specified change incurs

However, change logs might not always be available, especially with distributed ontology development. So, our research focuses on developing an automatic way to compare different versions on the basis of the semantics encoded in their structure.

The OntoView ontology version management system also compares source ontologies’ structures and identifies change types between versions of the same concept. However, if a concept name changes, OntoView doesn’t attempt to determine whether the newly named concept is the same as an old concept. That is, OntoView concentrates on describing differences between concepts that would be in the same row of the PROMPTDIFF table. OntoView does let its users augment a conceptual description of how the concept has changed.

Finding structural diffs between ontologies

Ontology developers now face the same problem software engineers began encountering long ago: versioning and evolution. Software code version management tools such as CVS (Concurrent Versions System, www.cvshome.org) have become indispensable for software engineers participating in dynamic collaborative projects. These tools provide a uniform version storage mechanism, the ability to check out particular code segments for editing, an archive of earlier versions, and mechanisms for comparing versions and merging changes and updates.

Like software, ontologies change. These changes can be caused, for example, by domain modifications (that is, our knowledge about the domain or the domain itself) or altered conceptualization (if we introduce new distinctions or eliminate old ones). Furthermore, ontology development in large projects is a dynamic process in which multiple developers participate, releasing subsequent ontology versions. Naturally, collaborative development of dynamic ontologies requires tools similar to software-versioning tools. In fact, ontology developers can use the storage, archival, and check-out mechanisms of tools such as CVS with few changes.

One crucial difference exists, however: comparing software code versions entails simply comparing text files. Program code consists of text documents, and comparing them—the diff process—yields a list of lines that differ in the two versions. This approach doesn’t work for comparing ontologies: two ontologies can be exactly the same conceptually but have different text representations. For example, their storage syntax or the order in which they introduce definitions in the text file might differ, or a representation language might use several mechanisms to express the same thing. Text-file comparison thus proves largely useless in comparing ontology versions. The PROMPTDIFF algorithm compares ontology version structures, not their serialization.

We assume the following knowledge model: an ontology has classes, a class hierarchy, instances of classes, slots as first-class objects, slot attachments to classes to specify class properties, and facets to specify constraints on slot values. These elements also exist in other representation formalisms such as RDF-S (Resource Description Framework Schema, www.w3c.org/rdf) and OWL (Web Ontology Language, www.w3.org/OWL/).Ontologies is a dynamic process in which multiple developers participate, releasing subsequent ontology versions. Therefore, ontology development in large projects is a dynamic process in which multiple developers participate, releasing subsequent ontology versions. The PROMPTDIFF algorithm compares ontology version structures, not their serialization.
PromptDiff automatically produces a table (see Figure 3) showing differences between the two versions—similar to the diff between text files, this table presents a structural diff. The first two columns show pairs of matching frames from the two ontologies. Given two versions of an ontology O, V 1 and V 2, frames F 1 from V 1 and F 2 from V 2 match if F 1 became F 2. The third column identifies whether the frame has been renamed. The operation column shows the user how a frame has changed: whether it was added or deleted, split in two frames, or merged with another frame. We assign a map operation to a frame pair if no other operation applies. Map level indicates whether the matching frames differ enough to warrant user attention. If the map level is unchanged, the user can safely ignore the frames—nothing has changed in their definitions. If two frames are isomorphic, their corresponding slots and facet values are images of each other but not necessarily identical. The map level is changed if the frames have slots or facet values that aren’t images of each other.

References

Ontologies

mats address representation of the ontologies to be available. Many ontology development tralized environment of ontology development between versions. However, given the decen-

much simpler if we had logs of changes

the “almost” in that sentence).

at the results in the end, we can tolerate

almost certainly represents exactly the same

in two versions of the same ontology, it

ments, faculty, and so on. If we encounter

versity as an organization with its depart-

Figure 3. A PROMPTDIFF table shows differences between the wine ontology versions in

(Red wine) have.

The PROMPTDIFF algorithm has two parts:

1. An extensible set of heuristic matchers
2. A fixed-point algorithm to combine the

matchers’ results to produce a structural
diff between two versions

Each matcher employs a small number of

the structural properties in an ontology to

produce matches. The fixed-point step in-
vokes the matchers repeatedly, feeding one

matcher’s results into the others until they

produce no more changes in the diff.

We based our approach to automating the

comparison on two experimental observa-
tions. First, when we compare two versions of

the same ontology, a large number of frames

remain unchanged. Second, two frames of the

same type (for example, both classes or both

slots) with the same or very similar names

were almost certainly images of each other.

These observations aren’t true, however, when

we compare two different ontologies from dif-

dent sources. Consider a class named Univer-
sity. In two different ontologies, the class might

represent either a university campus or a uni-

versity as an organization with its depart-

ments, faculty, and so on. If we encounter Univer-
sity in two versions of the same ontology, it

almost certainly represents exactly the same

concept (and because we have a human look-
ing at the results in the end, we can tolerate

the “almost” in that sentence).

Comparing ontology versions would be

much simpler if we had logs of changes

between versions. However, given the decen-
tralized environment of ontology development
today, we can’t realistically expect such logs
to be available. Many ontology development
tools provide no logging capability, and ontol-
ygy libraries are set up to publish ontology ver-
sions but not change logs. Representation for-
mats address representation of the ontologies

themselves but not changes in them. Further-

more, logs aren’t always helpful when several

users work on the same ontology. We thus

expect users will increasingly need to compare

versions without consulting a change log.

The PROMPTDIFF algorithm combines an

arbitrary number of heuristic matchers, each of

which looks for a particular property in the

unmatched frames. All the matchers must

conform to the monotonicity principle: matchers don’t retract any matches that have

already been established.

The matchers we describe here are fairly

simple; our approach’s strength lies in their

combination. Each looks at a particular part of

the ontology structure, such as an is-a hier-
archy or slots attached to a class. Being

heuristic matchers (hence based on observa-
tions that in some cases may not turn out to

be true), they could theoretically produce

incorrect results. Having examined ontology

versions in several large projects, however,

we haven’t come across such examples and

believe the matchers would consistently pro-
duce correct results. Furthermore, PROMPTDIFF

presents the matching results to a human

expert for analysis, highlighting changed

frames so that the expert can examine and

confirm or reject these matches. These

frames usually constitute a small fraction of

all frames in an ontology. So, even for very

large ontologies, human experts need to

examine only a few frames.

Here we describe some of the matchers

that we use in the algorithm. In the descrip-
tions below, F_1 denotes a frame of any type

(class, slot, facet, or instance), C denotes a

class, and S denotes a slot.

The first matcher looks for frames of the

same type with the same name. In Figure 2,

ontology versions V_1 and V_2 have a frame

Wine, which in both versions is a class. So the

matcher declares that the two frames match.

In general, if $F_1 \in V_1$ and $F_2 \in V_2$, and F_1 and

F_2 have the same name and type, then F_1 and

F_2 match. Frames can be of type class, slot,

facet, or instance. In our experiments, this

matcher produced on average 97.9 percent of

all matches because ontologies usually don’t

change much from one version to the next.

Another matcher looks for a single un-
matched sibling. In the example in Figure 2,
suppose we matched the classes Wine, Red wine,

and White wine from V_1 to their counterparts

with the same names in V_2. Then the Wine class

in both versions has exactly one unmatched sub-
class: Blush wine in V_1 and Rosé wine in V_2. In this

situation, we conclude that Rosé wine is the

image of Blush wine. In general, if $C_1 \in V_1$ and

$C_2 \in V_2$, C_1 and C_2 match, and each class has

exactly one unmatched subclass ($subC_1$ and

$subC_2$, respectively), then $subC_1$ and $subC_2$

match. A similar matcher for multiple un-
matched siblings (see the next paragraph)
can be distinguished by its set of slots.

We can extend the previous matcher to

look for a more complicated situation: mul-
tiple unmatched siblings exist, but only one

pair of siblings has the same set of slots. Sup-

pose that Wine first had only two subclasses,

Red and White. Red has a tannin_level slot of type

String. In the next version, Wine has three sub-
classes, and we added “wino” to each subclass

name (see Figure 4a). When all of the Wine’s

subclasses are unmatched, we can still match

Red to Red wine because these are the only

classes that have the tannin_level slot. In gen-

eral, if $C_1 \in V_1$ and $C_2 \in V_2$, C_1 and C_2 match, and

$subC_1$ and $subC_2$ are subclasses of C_1 and

C_2 respectively, and all the slots of $subC_1$

match all the slots of $subC_2$, and for each of

$subC_1$ and $subC_2$, its set of slots is different

from the set of slots of all of its siblings, then

$subC_1$ and $subC_2$ match.

The next matcher looks for siblings with

the same suffixes or prefixes. Taking the sec-

ond situation further, if we remove “wino”

from the class name for Wine subclasses (see

Figure 4b), all names for these subclasses

change. However, if we see they’ve all

changed in the same way—the same suffix

has been removed—we can create the corre-

sponding matches anyway. In general, if

$C_1 \in V_1$ and $C_2 \in V_2$, C_1 and C_2 match, and

all C_1 subclass names match all C_2 subclass

names except for a constant suffix or prefix,

which in both versions is a class. So the

matcher would correctly match Red and $Red

wino$.

Figure 2.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on October 1, 2009 at 14:49 from IEEE Xplore. Restrictions apply.
top of the hierarchy **Wines** but used singular for all the subclasses (see Figure 4c), then corrected the mistake. (In a separate matcher, we can look for class names that change from plural to singular or vice versa.) All subclasses of the two unmatched classes—**Wines** and **Wine**—will then match, and we can conclude that the two unmatched classes match as well. In general, if all subclasses of \(C_1 \in V_2 \) match subclasses of \(C_2 \in V_2 \), then \(C_1 \) and \(C_2 \) match.

Another matcher looks for a single unmatched slot. In the example in Figure 2, suppose we matched the class **Wine** from the first version to its counterpart in the second version. Each class has a single slot that’s so far unmatched: **maker** and **produced_by**, respectively. Not only is each slot the only unmatched slot attached to its respective class, but the slot’s range restriction is also the same: the class **Winery**. We can therefore match **maker** and **produced_by**. In general, if \(C_1 \in V_1 \) and \(C_2 \in V_2 \), \(C_1 \) and \(C_2 \) match, and each class has exactly one unmatched slot, \(S_1 \) and \(S_2 \) respectively, and \(S_1 \) and \(S_2 \) have the same facets, then \(S_1 \) and \(S_2 \) match.

If a knowledge model allows definition of inverse relationships, we can take advantage of such relationships and look for unmatched inverse slots. Suppose we have a slot **maker** in \(V_1 \) (at the **Wine** class in Figure 2), which has an inverse slot **makes** at the **Winery** class (see Figure 4d), and we have a slot **produced_by** in \(V_2 \), which has an inverse slot **produces**. Once we match **maker** and **produced_by**, we can match **makes** and **produces** because they are inverses of the slots that match. In general, if \(S_1 \in V_1 \) and \(S_2 \in V_2 \), \(S_1 \) and \(S_2 \) match, then \(im(S_1) \) and \(im(S_2) \) are inverse slots for \(S_1 \) and \(S_2 \) respectively, and \(im(S_1) \) and \(im(S_2) \) are unmatched, then \(im(S_1) \) and \(im(S_2) \) match.

Finally, we look for split classes. Suppose an early definition of our wine ontology included only white and red wines and we simply defined all rosé wines as **White wine** instances. In the next version, we introduced a **Blush wine** class and moved all corresponding rosé wine instances to this new class. In other words, we split the **White wine** into two classes: **White wine** and **Blush wine**. In general, if \(C_0 \in V_1 \) and \(C_1 \in V_2 \) and \(C_2 \in V_2 \), and for each instance of \(C_0 \) its image is an instance of either \(C_1 \) or \(C_2 \), then \(C_0 \) splits into \(C_1 \) and \(C_2 \). A similar matcher identifies merged classes.

Each matcher considers only frames that haven’t yet been matched. So in practice each matcher (except the first one) examines only a small number of frames (only those that don’t yet have a match).

Figure 4. Situations for applying different PROMPTDIFF matchers.

- **(a)** The **Wine** class acquires an additional subclass, and the slots for the class **Red** in \(V_1 \) and the class **Red wine** in \(V_2 \) match.
- **(b)** The **Wine** subclasses match except for the “wine” suffix.
- **(c)** The class names for the **Wine** and **Wines** subclasses match; the superclass name has changed.
- **(d)** The slots **maker** and **makes** are inverse slots in one version; the slots **produced_by** and **produces** are inverse slots in another version.

We combine all available heuristic matchers (such as those described earlier, and any others available) in the PROMPTDIFF algorithm, a fixed-point algorithm that produces the complete structural diff for two ontology versions. PROMPTDIFF runs all matchers until they produce no new changes in the table. Because no matcher retracts the results of previous matchers or its own results from previous runs (the monotonicity principle), the algorithm always converges. We show elsewhere that if each matcher’s running time is polynomial, the whole algorithm’s running time is also polynomial.4
Figure 5. Snapshots of the two source ontologies’ class hierarchies, both representing academic organizational structures, developed by DAML groups at (a) Carnegie Mellon University and (b) the University of Maryland.

Evaluation

Empirical evaluation is particularly important for heuristic algorithms because no provable way exists to verify their correctness. We implemented PROMPTDIFF as a Protégé plugin. We then evaluated it using ontology versions in two large projects at our department: EON (www.smi.stanford.edu/projects/eon) and PharmGKB (www.pharmgkb.org). Both rely heavily on ontologies, use Protégé for ontology development, and keep records of different ontology versions. We compared consecutive ontology versions and versions that were farther apart. For each pair, we created the structural diff manually (given that the ontologies contained between 300 and 1,900 concepts, the process was onerous) and compared this manually generated result with the one PROMPTDIFF produced.

We’ve presented the complete evaluation results elsewhere but summarize them here. On average, 97.9 percent of the frames in each version remained unchanged. To evaluate our algorithm’s accuracy, we considered the frames that had changed (the remaining 2.1 percent)—exactly those frames that a user would need to look at. On average, PROMPTDIFF identified 96 percent of the matches between those frames (this measure resembles recall in information retrieval terms), and 93 percent of the matches that PROMPTDIFF identified were correct (precision). More important, all discrepancies between manual and automatic results were confined to the frames for which PROMPTDIFF did not find any matches. In other words, when PROMPTDIFF did find a match for a frame, it was always correct. Sometimes the algorithm failed to find a match when a human expert could find one. A human expert can determine that two frames are similar even if a rule applied in a specific case isn’t sufficiently general to apply in all cases.

Versioning and other ontology management tasks

As we previously mentioned, PROMPTDIFF is only one element in our multiple-ontology management infrastructure. Much synergy exists between PROMPTDIFF and ontology-merging tools—we leverage both data and algorithms from one tool in the others. While we designed PROMPTDIFF to compare different versions of the same ontology, IPROMPT helps users find similarities and differences between ontologies from different sources. Many of the heuristic matchers described earlier came originally from IPROMPT. Conversely, PROMPTDIFF provided new heuristics for finding similarities among different ontologies.

Consider, for example, the two ontologies shown in Figure 5. These come from the DAML ontology library and were designed by two different DAML participants. Both ontologies describe the structure of academic organizations. Consider the matcher for multiple unmatched siblings. If multiple unmatched siblings exist in two different versions, PROMPTDIFF looks at slot information to find matches. In IPROMPT, where we compare two different ontologies, slots aren’t likely to be similar, and the exact number of siblings will probably differ as well (compare the two
Different matchers, IPROMPT uses matches of matching frame pairs. Whereas PROMPT-merging tools differ primarily in the source match between classes.

For example, suppose we have already matched the following class pairs from Figure 5: Organization and Organization, Governmental and GovernmentalOrganization, and Academic and EducationOrganization. The unmatched siblings are Industrial on the CMU side and CommercialOrganization and NonprofitOrganization on the UMD side. Probably no direct match exists between the related classes, but the user might decide that, in fact, Industrial and CommercialOrganization are related.

Now consider the matcher for a single unmatched sibling. If the same situation arises during merging, we can suggest to the user, with a high level of confidence, that the classes match. For example, if we match classes Thesis and MastersThesis in Figure 5, classes PhDThesis and DoctoralThesis would be unmatched.

Likewise, IPROMPT can easily reuse many other matchers we’ve described. If, during merging, IPROMPT encounters a situation similar to that described for unmatched inverse slots, it can also suggest that the user merge the corresponding slots. The matcher that looks for siblings with the same suffixes and prefixes will also work well for merging. The number of siblings could differ slightly because different modelers might represent different divisions. However, IPROMPT can again use the heuristic to indicate a potential match between classes.

Our ontology-versioning and ontology-merging tools differ primarily in the source of matching frame pairs. Whereas PROMPTDIFF collects them by recursively calling different matchers, IPROMPT uses match information provided by users to find new matches. IPROMPT also can use matches produced by ANCHORPROMPT, a graph-based algorithm for comparing different ontologies. Figure 1 shows how the different multiple-ontology management tools interrelate by providing algorithms and data to one another.

Versioning is just one task in managing multiple ontologies. By looking at these processes in an integrated framework, we can reuse the algorithms and leverage the information we gain in executing one task to perform analysis for another task. For example, in implementing version comparison, we used heuristics that we developed for ontology merging by just lowering the threshold for considering two terms to be similar. Conversely, when studying ontology versions in different projects, we learned new heuristics that we can apply to finding similarities between ontologies for ontology merging and alignment.

When we evaluate interactive merging and mapping tools, we must compare ontologies that different users produced from the same source ontologies. We can use the PROMPTDIFF results to measure similarities between two related ontologies—how many concepts have changed, how many are isomorphic, and so on.

In the future, we plan to explore using PROMPTDIFF results to generate transformation scripts from one version to another (another task in multiple-ontology management). Computer programs can then use these scripts to migrate instance data (as in schema versioning) or to query one version using another version. This task’s main challenge will be minimizing the number of lossy transformations, which cause loss of values at intermediate steps.

Acknowledgments
We thank Warren Shen for implementing the Protégé library browser. Parts of this article appeared in the proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), Protege-2000 is supported by the National Library of Medicine under grant LM007885; the system may be freely downloaded under an open-source license from http://protege.stanford.edu. A contract from the US National Cancer Institute partly supported this research.

References

