10°

t — thounce = 11.62°s t— thounce = 12.61 s

t — thounce=13.1s

0.010

0.005
108

107 ‘ .

e
S
0.000 3
-~
8
=

Dean & RF (2024a)

. : ~0.005
3 ‘
5
= T —0.010
N 106 107 0 5 )
108 7
102 x (10’ cm)
16TI_SFHo — 1010 N 49.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
10° x (107 cm) x (107 cm) x (107 cm) 48.5 —_
] T
: 480 2,
: : _ _ =
16TI SFHo 3 i unoscillated NDAF 16TI-SFHo-dt QL
- < < i D=10kpc y 475 »
< N L‘“ 10° : %
p S e 470 2
= g - g
2 L b 46.5
S =} 4 |
2 a % 10 adiabatic 460
2 °g 2 | 0 1 2 3
© =
g ] Q x (107 cm)
= 8 < 10°
| RF et al. (2025)
107 5 00 2 I50 17200 1

J | - - l
Mass number, A 11 12 13 14
time post bounce (s)

Collapsar Disk Outflows: Nucleosynthesis
and Multi-Messenger Signatures

Rodrigo Fernandez (University of Alberta)
with Coleman Dean, Silas Janke (Heidelberg), and lIrene Tamborra (NBI)



Studying Collapsar Disk Outflows

Nucleosynthesis
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Global Collapsar Disk Simulations

Long history of global simulations

(e.g., MacFadyen & Woosley, Harikae+, Lee+, Lopez-Camara+,
Aloy & Obergaulinger, Sekiguchi & Shibata, and many others)

Technically challenging problem
with large parameter space. ‘

To address key science questions, we need:
- Full star simulations (initial & boundary cnd.)
- Angular momentum transport (disk evolution)
- Neutrino transport (Ye evolution, r-process)
- Nuclear evolution (Ni56 mass)
- Long-term evolution (ejecta properties)

- Self-Gravity (accretion, unbound ejecta)

Tradeoffs are inevitable MacFadyen & Woosley (1999)
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Global Collapsar Disk Simulations

Step 1: GR1D evolution from core-collapse
to BH formation: 16TI & 350C (woosley & Heger 2006)

Step 2: FLASH for 2D Newtonian hydrodynamics: Coleman Dean & FF (2024a)

* self-gravity with pseudo-Newtonian BH excision ;2
(updating mass & spin) Feire = ‘A7

*map from 1D, evolve to shock breakout 10— —T— 1T

* viscous stress: alpha prescription

: L 108F -
* neutrino emission (leakage) &

absorption (annular light bulb) for Ye
* coupled 19-isotope nuclear network (Ni56)

distance from origin (cm
I &
A
\
1 \ -

¢4 16TI_SFHo
] 1

+ tracer particles (r-process) 0T34 5

enclosed gravitational mass (M)

see also Just+ (2022), Fujibayashi+(2022) Dean & RF (2024a)



Collapsar Disk Evolution
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RF, Janke, Dean, & Tamborra (2025)



Collapsar Disk
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x (107 cm) x (107 cm) x (107 cm)

Initially a Dwarf Disk (equatorial shock)
Shocked Bubble

Neutrino cooled (NDAF) phase: 2-6's
Oscillations & Gradual Expansion

Transition to ADAF: runaway expansion

—volution
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Disk Outflow Explodes the Star

Shock reaches the surface in all
cases.

Explosion energies compatible
with Type Ic-BL SNe.

Ejecta masses a bit large and

velocities a bit small, by factor ~2.

L] IIllqu 1 LA
—— 16Tl _SFHo_a01

10*—— 16TI_SFHo
Lo 16TI_SFHo_a001
10 16TI_DD2

350C_SFHo

avg shock radius (cm)

10~ 10~ 10 10 10
t — tdisk formation (S)

Dean & RF (2024a)

Model Me; (Mg) K (10° ergs) Koo (10°!ergs)  (veo) (10° km/s)
16TI_SFHo 8.19 9.07 9.20 8.7
16TI_SFHo_a01 8.97 2.39 2.41 4.8
16TI_SFHo_a001 7.93 4.34 4.37 6.0
16TI_DD2 9.17 3.67 3.70 5.6
350C_SFHo 15.1 9.45 10.6 7.7

Dean & RF (2024a)



-|ecta Properties
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consistent with Just et al. (2022) & Fujibayashi et al. (2024)

Neutron rich matter is quickly
accreted by the BH and none of
it ejected.

z (107 cm)

Need large-scale B-field for the

plgcm3]

Lorentz force to eject matter

during neutrino-cooled phase. iseo  — agm

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x (107 cm) x (107 cm) x (107 cm)

see Issa+ 2024 & Shibata+ 2025
Dean & RF (2024a)



R-process Yield: Very Low
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Dean & RF (2024Db)
Only low-viscosity yielded Particles reaching A~200 did
first r-process peak so along a proton-rich path: the
(longer NDAF phase). rp-process (in small amounts).

Modifying stellar rotation profile (deeper circularization)
did not improve r-process yield.

10—12



mass fraction
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Neutrino Emission

Gap in emission (few s) between
- BH formation
- disk formation

Sensitive to flavor transformation:

very low vx emission

Galactic collapsar easily
detectable by lceCube,
emission dominated by
neutrino-cooled (NDAF) phase.

IceCube event rate (s~!)

Dean & RF (2024a)
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Neutrino and GW Emission
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Time Variations

lceCube
Correlated emission in the
frequency range 10 - 50 Hz.
- , , GW
Characteristic frequencies of the disk:
radial advection, lateral & radial sound
crossing
shook
Neutrinos: densest regions of the disk ~ “"*°
. global shock oscillations.
Not considering higher-frequency ook
components (mass quadrupole quadrupole
limitations)
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Summary

1) Collapsar Disk Outflows alone can explode its progenitor star
with E ~ 1092 erg

2) Collapsars eject little neutron-rich mass in viscous hydrodynamics.
Only 1st r-process peak material with a = 0.01, nothing for higher a.
Need large-scale B for outflows during the neutrino-cooled phase.

3) Collapsar disks easily eject ~1 Msun Of 56N, well-mixed.
Very promising as |Ic-BL engines.

4) The neutrino and GW signal from a galactic collapsar are easily
detectable. Correlated time-variations are key diagnostics.

() arXiv:2403.08877 (Il) arXiv:2408.15338 (Ill) arXiv:2507.17836
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